EP1048953B1 - Methode et dispositif pour transferer les liquides dans un appareil d'analyse - Google Patents

Methode et dispositif pour transferer les liquides dans un appareil d'analyse Download PDF

Info

Publication number
EP1048953B1
EP1048953B1 EP00107965A EP00107965A EP1048953B1 EP 1048953 B1 EP1048953 B1 EP 1048953B1 EP 00107965 A EP00107965 A EP 00107965A EP 00107965 A EP00107965 A EP 00107965A EP 1048953 B1 EP1048953 B1 EP 1048953B1
Authority
EP
European Patent Office
Prior art keywords
liquid
liquid transfer
cannula
electrode
tip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP00107965A
Other languages
German (de)
English (en)
Other versions
EP1048953A2 (fr
EP1048953A3 (fr
Inventor
Karl-Heinz Mann
Stephan Sattler
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Roche Diagnostics GmbH
Original Assignee
Roche Diagnostics GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Roche Diagnostics GmbH filed Critical Roche Diagnostics GmbH
Publication of EP1048953A2 publication Critical patent/EP1048953A2/fr
Publication of EP1048953A3 publication Critical patent/EP1048953A3/fr
Application granted granted Critical
Publication of EP1048953B1 publication Critical patent/EP1048953B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/10Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices
    • G01N35/1009Characterised by arrangements for controlling the aspiration or dispense of liquids
    • G01N35/1016Control of the volume dispensed or introduced
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F23/00Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
    • G01F23/22Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water
    • G01F23/24Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring variations of resistance of resistors due to contact with conductor fluid
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F23/00Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
    • G01F23/22Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water
    • G01F23/24Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring variations of resistance of resistors due to contact with conductor fluid
    • G01F23/245Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring variations of resistance of resistors due to contact with conductor fluid with a probe moved by an auxiliary power, e.g. meter, to follow automatically the level
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F23/00Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
    • G01F23/22Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water
    • G01F23/26Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring variations of capacity or inductance of capacitors or inductors arising from the presence of liquid or fluent solid material in the electric or electromagnetic fields
    • G01F23/263Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring variations of capacity or inductance of capacitors or inductors arising from the presence of liquid or fluent solid material in the electric or electromagnetic fields by measuring variations in capacitance of capacitors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/10Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices
    • G01N35/1009Characterised by arrangements for controlling the aspiration or dispense of liquids
    • G01N35/1016Control of the volume dispensed or introduced
    • G01N2035/1018Detecting inhomogeneities, e.g. foam, bubbles, clots
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/10Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices
    • G01N35/1009Characterised by arrangements for controlling the aspiration or dispense of liquids
    • G01N2035/1025Fluid level sensing

Definitions

  • the invention relates to a liquid transfer device for an analyzer having a liquid transfer cannula and a capacitive liquid level detector for detecting the immersion of the liquid transfer cannula in an analysis liquid contained in a vessel, the liquid level detector a signal electrode, a counter electrode and a detection circuit for detecting a change in the capacitance between the signal electrode and the counter electrode, and a corresponding method for controlling the suction of analysis liquid in a liquid transfer cannula and a correspondingly formed liquid transfer cannula.
  • Common liquid transfer devices are, for example, pipettors, which are used to suck samples or reagents from a first vessel and eject into a second vessel, as well as dispensers, in which the liquid transfer cannula is connected via a hose to a larger supply of liquid, which with Help a pumping device can be ejected through the cannulas.
  • Dispensers usually also fulfill the pipetting function at the same time.
  • a liquid transfer device in the sense of the present invention is any device which serves to immerse in an analysis device in an analysis fluid in order to allow any fluid transfer steps (aspiration and / or expulsion of fluid) by means of the fluid transfer cannula.
  • the fluid transfer cannula is, for example, a hollow needle, which usually consists of a thin tube of metal or plastic. It will be referred to as a "cannula" for simplicity's sake.
  • Other known embodiments are disposable dosing tips that are disposed of after use and replaced with new ones. They may have a tubular or conical-pointed shape, optionally with a nozzle-like changing cross-section, made of metal or plastic, for example a conductive plastic, and are also referred to below as "cannula".
  • liquid transfer devices are provided with a sensor device for detecting the immersion of the cannula in the Analysis fluid, which is commonly referred to as liquid level detector or LLD (liquid level detector).
  • LLD liquid level detector
  • the liquid level detector is connected to the vertical drive by which the cannula is immersed in the analysis liquid to stop the plunging movement when the tip of the cannula is immersed by a few millimeters in the analysis liquid. It is not only the problem of carryover to be considered, but at the same time it must also be ensured that no air is sucked in, which could lead to diagnostically relevant measurement errors. For this reason, a minimum immersion depth should be maintained, which may be between approx. 0.1 mm and 5 mm.
  • the vertical position of the cannula is at the same time a measure of the level of the liquid in the respective vessel.
  • the liquid level detector also allows the control of the amount of liquid present in the respective vessel, for example, to give a signal when the supply of a reagent liquid is consumed and the reagent bottle must therefore be replaced.
  • a common design principle for liquid level detectors is based on measuring the electrical resistance between the cannula and an electrode attached to the tip of the cannula.
  • Cannula and electrode are electrically insulated from each other, so that the electrical resistance between them in the dry state is very high.
  • the sample liquid forms a conductive connection, so that the electrical resistance changes abruptly. This signal can be reliably detected by simple electronic means.
  • a disadvantage of this principle is the fact that except the Cannula must immerse an electrode in the liquid on which inevitably a liquid excess gets stuck. Thus, the aforementioned problems of carryover and reduced accuracy are further increased, except when disposable dosing tips are used.
  • the first electrode is usually the cannula itself (which consists of metal or an electrically conductive (metallized) plastic) and with which the hot pole of the AC voltage source is connected (signal electrode).
  • the counter electrode which is usually at ground potential, is located in the known devices on the outside of the liquid vessel (below its bottom and partially around the side walls of the vessel). It is usually a component of the vessel holder.
  • a fundamental problem of capacitive liquid level detectors is that the capacitance change when immersed in the liquid is very small compared to the other inevitable existing capacity (“Störkapazticianen", eg the connection cable and the amplifier input). As a result, the ratio between the wanted signal and interfering signals is very unfavorable.
  • Störkapazticianen eg the connection cable and the amplifier input.
  • a particular problem is that a portion of the Störkapazticianen is not constant, but changes relatively quickly in time. This applies in particular to capacitive disturbances caused by the movement of objects (components of the automated analyzer, hands or other body parts of the operating personnel). In particular, on a fully automatic analyzer, which has numerous moving parts, such interference in practice can not be avoided.
  • a fluid transfer device for an analyzer having a fluid level detector with improved Fault safety and more reliable function is known from the document EP 0555710 A2.
  • a coaxial electrode assembly including the liquid transfer cannula, which has an active shield by means of a compensation electrode connected to a voltage follower circuit.
  • an additional shielding electrode which acts as a counter electrode and is at constant potential.
  • a liquid film which falsifies the detection of the liquid surface can be the formation of foam or soap-bubble-like structures which are relatively durable and which are not necessarily destroyed by puncturing the cannula.
  • foam layers or soap-bubble-like structures arise, for example, when shaking whole blood samples, when centrifuging blood samples in serum plasma collection, when transporting reagent rack packs and when resuspending and stirring so-called streptavidin-coated beads.
  • foam layers are usually 2 to 5 mm thick. Even at the container collar forming bubbles can not be pierced by the thin cannula in many cases.
  • Another problem that arises in the transfer of liquid is that incorrect errors can be obtained by errors occurring if the liquid to be transferred is not metered or not correctly dosed.
  • Causes can be not only foam layers or soap bubble-like structures on the liquid, but also, for example, mechanical Failure of the cannula, obstruction of the cannula or placement of the cannula on the bottom of the vessel.
  • blockages which are also referred to as clots, which may result when liquid is sucked into the cannula or the placement of the cannula on the vessel bottom, are in principle detectable by the fact that a high negative pressure is built up in the cannula when attempting to draw in liquid ,
  • the associated with an additional negative pressure measurement equipment to detect such errors is relatively high.
  • a particular elaborate method of controlling dosing is known in a blood bank immunology analyzer in which each dosing operation is controlled by a video camera and image processing.
  • the air bubble detector only indicates a correct function of the liquid transfer when the detection path between the electrodes is filled with liquid. This requires that the dosing volume is greater than the cannula volume, so that the dosage of small amounts of liquid in the range less than a few ⁇ l is not possible or only if more liquid is absorbed than is given off in the subsequent dosing.
  • the latter has the disadvantage of increased carry-over, a reduced dosing accuracy and requires a complicated washing of the cannula.
  • Another disadvantage is that, even in the event that the air bubble detector has detected the presence of liquid, there may be undetected air bubbles between the lower end of the cannula tip and the air bubble detector which result in misdosing.
  • the known air bubble detectors are unsuitable for use with disposable dosing tips, since they must come into contact with the analysis liquid to be transferred and thus by the replacement of the disposable dosing tips to achieve the carry-over freedom to be achieved.
  • the two cited documents do not address capacitive liquid level controls which, because of the generally small change in signal, have particular difficulty in detecting the immersion of the cannula tip into the liquid.
  • the invention is based on the object, the known capacitive liquid level detectors, in particular the known from document EP 0555710 A2 triaxial arrangement with actively shielded compensation electrode and entrained, acting as a counter electrode shielding electrode in such a way that a clear distinction between compact solid liquid and foam or liquid films and can be controlled even at low dosing volume, whether air or liquid was sucked.
  • the idea underlying the invention is that, for checking whether the cannula is immersed in the analysis liquid, or for checking whether air or liquid has been sucked into the liquid transfer cannula, the electrical resistance or corresponding to the electrical conductance of a detection path is detected Fluid channel of the liquid transfer cannula is located and filled with correct function with analysis fluid.
  • a detection path in this sense is thus a conductive path through analysis fluid, which is located in the cannula.
  • Such a current path can be formed linearly or spatially as a detection zone, wherein the beginning and the end or the poles are given by the two control electrodes.
  • the detection path runs predominantly in the interior of the cannula and at least one of the control electrodes is arranged above the lower end of the tip of the cannula, it is ensured that the control device can detect the immersion of the cannula in foam, since the foam does not lead to a greatly increased conductivity the detection path can lead.
  • the detection path can thus be used to check and verify a dip in a liquid detected by the capacitive liquid level detector and to detect the suction of air into the cannula.
  • a control of the conductivity of the analysis liquid by means of the detection path would also be alone, i. without combination with a capacitive liquid level detector, for detection of immersion in the analysis liquid and for detection of air bubbles.
  • a capacitive liquid level detector for detection of immersion in the analysis liquid and for detection of air bubbles.
  • Such a design is too sluggish in most applications to meet the detection speed requirements.
  • the inventive combination of a fast-reacting capacitive liquid level detection with a slower follow-up control by means of the detection path combines the advantages of both detection possibilities.
  • With the invention is a qualitative control of fluid transfer with the cannula by monitoring the resistance of the detection path both during suction and when dispensing liquid possible.
  • the individual liquid portions sucked into the cannula and separated by separation bubbles can be identified, since the separation bubbles change the resistance of the detection path.
  • a quantitative control of the liquid transfer can be performed when the metering rate with which analysis liquid is sucked or discharged is known and the time elapsed until the resistance of the detection path is changed is measured.
  • a defect of the cannula, an aspiration of air, a clogging of the fluid channel (by so-called clots) or the placement of the dosing cannula on the vessel bottom can be recognized by the fact that no analysis liquid reaches or fills the detection path and its resistance does not change.
  • the invention thus has the advantage that it is possible to perform a qualitative dosage control, wherein it is checked whether analysis liquid was sucked into the cannula or discharged through it. Furthermore, a quantitative dosage control of the transferred analysis liquid is possible. Another advantage is that foam is reliably detected and the surface of the analysis liquid can be reliably detected so that correct fluid transfer is enabled. No costly vacuum measurement is required to register clogging of the dispensing needle. With the invention, goals are thus achieved by which the experts have long endeavored.
  • liquid transfer cannula in particular the needle tip, forms one of the control electrodes.
  • the cannula forms one of the control electrodes, the design complexity for the production and possibly also the technical complexity for measuring the resistance of the detection path is reduced.
  • the control electrode can be placed at any point in the cannula by appropriate design of the leads and the materials of the cannula in principle. It is particularly advantageous if the tip forms a control electrode, since this ensures that the detection path runs close to the tip.
  • Another advantageous feature may be that the detection path is located at such a distance above the lower end of the tip that it does not pass completely through the analysis liquid when the liquid transfer cannula is immersed in the analysis liquid, but only when the analysis liquid is sucked into the liquid transfer cannula.
  • the detection path between the control electrodes only changes the resistance when the analysis liquid is aspirated.
  • the detection path extends over the entire height of the cannula. It is even desirable to allow the control of the smallest possible dosing volume, that the detection path extends over the smallest possible height portion of the cannula and is not located too far from the tip.
  • the lower end of the detection path is arranged above the lower end of the cannula tip. This makes it possible to use the cannula in slightly submerge the analysis fluid without the lower control electrode being wetted or the detection path already reacting to analysis fluid, so that the aspiration of air bubbles can be reliably detected.
  • the lower end of the detection path is preferably arranged between 0.5 mm and 5 mm above the lower end of the tip.
  • the detection path is arranged in the region of the tip, so that not much analysis liquid must be sucked into the liquid transfer cannula until a change in the resistance of the detection path occurs.
  • the upper end of the detection path is arranged in the region of the tip, preferably between 0.5 mm and 30 mm above the lower end of the tip.
  • the additional conductivity measurement according to the invention of a detection path in combination with a capacitive liquid level detector is advantageous in principle with all capacitive liquid level detectors, regardless of whether the capacity of the liquid transfer cannula is mass-measured or if the liquid-transfer cannula is part of a coaxial electrode arrangement.
  • control by means of a detection path is always advantageous when the capacitive liquid level detector is designed to be very sensitive to capacitive changes in the environment (samples, rotor, reagent vessels, static charges, etc.), and in particular if it is very sensitive to capacitance changes in the vicinity of the tip of the fluid transfer cannula reacts.
  • the control of the In practice, detection path in practice offer no particular advantages in the detection of foam, when the mass of the detected liquid itself is included in the signal path, since in this case, the foam or bubble formation hardly affects the detection of the liquid surface.
  • the invention is therefore preferred in the case of coaxial electrode arrangements according to the document EP 0555710 A2, to which reference is made in full insofar.
  • coaxial electrode arrangements which advantageously have an active shielding by means of a compensation electrode connected to a voltage follower circuit and / or a shielding electrode guided as far as the region of the tip of the liquid transfer cannula as counterelectrode.
  • a first preferred additional feature may be that the fluid transfer cannula is part of a coaxial electrode assembly having, in addition to the fluid transfer cannula, at least one coaxial electrode surrounding and insulated therefrom.
  • the coaxial electrode arrangement has a shielding electrode which surrounds the signal electrode, is at constant potential and acts as a counterelectrode.
  • the detection circuit comprises an AC voltage source and a voltage follower circuit, and the input and output of the voltage follower circuit are connected to two adjacent electrodes of the Koaxialelektrodenan let as a signal electrode and compensation electrode, so that no voltage difference occurs between the signal electrode and the compensation electrode capacity between the signal electrode and the compensation electrode is compensated. It may be provided according to a further advantageous feature that a first of the electrodes of the Koaxialelektrodenanowski the signal electrode of the remplisstechniks breathenstandsdetektors and is connected to the input of the voltage follower circuit and a second electrode of the Koaxialelektrodenan accent, which is adjacent to the signal electrode, connected to the output of the voltage follower circuit ,
  • liquid transfer cannula is connected as a signal electrode to the input of the voltage follower circuit and the adjacent coaxial electrode as a compensation electrode to the output of the voltage follower circuit.
  • the liquid transfer device 1 shown in FIG. 1 serves to remove an analysis fluid from one of the vessels 2 and to transfer it into another vessel.
  • the vessels 2 are located on a rotor 3 or other mobile vessel holder.
  • automatic analyzers usually have multiple vessel holders.
  • the vessel volumes are about 400 ⁇ l to 40 ml and the transferred amounts of liquid about 10-100 ⁇ l, with a resolution of about 0.25 ⁇ l.
  • the fluids are ejected into microcuvettes on an incubation rotor; Also, the level must be determined.
  • a fluid transfer cannula 5 with an inner diameter of about 0.4 mm is fastened to a movement device 6 which has a vertical column 7 which can be moved up and down by means of a vertical drive, not shown, and a swivel arm 8. This allows the cannula 5 on the pivoting circle 9 in different positions brought and lowered into one of the vessels 2.
  • a suitable drive mechanism reference is made, for example, to EP-A-0 408 804.
  • FIG. 2 shows a cross section through a first fluid transfer cannula 5 according to the invention, which is in the form of a needle. It comprises two concentric tubes 10, 11 which are made of metal or a conductive plastic and are electrically insulated from each other by means of an insulating material 12. In the area of the tip 5 a of the cannula 5, the tubes 10, 11 are pulled out like a tip, wherein the outer tube 10 has a straight end piece 13 at the lower end.
  • the outer tube 10 forms the signal electrode of a capacitive liquid level detector for detecting the immersion of the cannula 5 in an analysis liquid.
  • the lowering of the cannula 5 in the direction of an analysis liquid takes place with a motor drive.
  • the capacitive liquid level detector detects contact with a conductive medium.
  • the connected metering pump draws a certain volume from the analysis liquid by means of the auxiliary fluid, which may be air or a system liquid, located in the interior of the cannula 5.
  • the auxiliary fluid which may be air or a system liquid, located in the interior of the cannula 5.
  • the lower end of the inner tube 11 terminates above the lower end of the tip 5a of the cannula 5.
  • the lower portions of the inner tube 11 and the outer tube 10 each form a control electrode 14, 15, between which a detection path 16 is formed.
  • the control electrodes 14, 15 experience a conductive compound that can be detected by absorbing the analysis liquid.
  • the cannula 5 is immersed in the analysis liquid and aspirated by the metering pump analysis liquid, can be controlled by means of the detection path 16, whether analysis liquid was sucked. If during the lowering movement, the cannula 5 has not reached the liquid surface and was stopped in foam, air is sucked in mainly. The resulting electrical conductivity between the control electrodes 14, 15 along the detection path 16 is less than in the absorption of analysis liquid, so that it can be determined whether analysis liquid or foam was sucked. Also possible other sources of error in the dosing of analysis liquid can be detected in this way by means of the detection path 16.
  • the liquid transfer cannula 5 is preferably part of a coaxial electrode arrangement 11.
  • a coaxial electrode arrangement the electronic circuit, the advantages and possible alternatives and variants, reference is made to the documents EP 0555710 A2 and EP 0913671 A1.
  • FIG. 3 of a coaxial electrode arrangement 18 of a liquid transfer cannula 5 comprises a coaxial electrode 19 acting as a compensation electrode of an active shield and one of the coaxial electrodes Shielding serving counter electrode 20. Between the individual electrodes is insulating material 12, which may be formed as required as a dielectric. The outside of the cannula 5 may be coated with a protective coating 21, which may be made of insulating material, for example.
  • the outer tube 10 serving as a signal electrode is surrounded in the radial direction over its entire circumference by the compensation electrode 19 and the shield electrode 20 and is fixed in its spatial position relative to the electrodes.
  • the coaxial electrode is thus a fixed part of a coaxial electrode assembly 18 extending in the axial direction over the major length of the liquid transfer cannula 5, with the exception of the tip 5a, so that there is no relative movement between the outer tube 10 and the surrounding electrodes.
  • the compensation electrode 19, like the shielding electrode 20, is moved up and down together with the liquid transfer cannula 5 by means of a movement device or, conversely, the vessel with the analysis liquid is raised and lowered in the direction of the liquid transfer cannula 5.
  • the outer tube 10 serving as a signal electrode is largely shielded, so that not the entire cannula length capacitively couples to all conductive parts in its environment, but essentially the unshielded, at the lower end on a short piece protruding tip 5a. Thus, it is only there that the capacitance or a change of the capacitance is detected, where it is expedient for the capacitive liquid level detection.
  • FIG. 4 shows a fluid transfer cannula 5 according to the invention, which is designed in the form of a disposable dosing tip. Its structure corresponds to that of the cannula 5 shown in Fig. 2, with the difference that it is tapered towards the tip. It comprises three concentric plastic layers, of which the outer 10 and inner 11 are conductive and the middle of insulating material 12 is made. Again, the lower portions of the layers 10, 11 each form a control electrode 14, 15, between which a detection path 16 is formed, which has a distance from the lower end of the tip 5a and extending over a longitudinal direction of the cannula 5 extending portion.
  • FIG. 5 shows the cannula 5 of FIG. 2 during dosing with system liquid 22 and an air bubble 23.
  • the detection path 16 for detecting the system liquid 22 and the air bubble 23 and for controlling the suction of analysis liquid can be used. This is shown in Fig. 6, where a suctioned from the foam foam bubble 24 24 leads only to a low conductivity of the detection path 16, so that can be recognized by a conductivity between the control electrodes 14, 15 verifying detection circuit that sucked foam instead of analysis liquid has been.
  • FIG. 7 shows a block diagram of a detection circuit with a liquid transfer cannula 5, which corresponds to that of FIG. 3.
  • Schematically represented is the movement device 6 with the associated scatterer circuit 25, which evaluates two signals of a detection circuit 26.
  • the first signal 27 is that of the capacitive Liquid level detection and the second signal 28, the signal of the dosing control means arranged in the region of the tip 5a of the cannula 5 detection path 16.
  • the cannula 5 is connected via the hose 36 to a metering pump, not shown.
  • the two switches 29 and 30 are opened to interfere with the capacitive liquid level detection, not by the low resistance load resistor R2 for the conductivity measurement.
  • the excitation voltage for the capacitive liquid level detector with a frequency of approximately 100 kHz is applied to the outer tube 10 of the cannula 5 by the first generator 31 via a high-resistance resistor R1 of approximately 100 k ⁇ .
  • the electrical connection to the inner tube 11 is capacitive and via induction or induction, i. the inner tube 11 is electrically coupled to the outer tube 10.
  • the capacitance at the tip 5a changes abruptly, so that the voltage across the resistor R1 changes in amplitude and phase. This change is converted into DC voltage by means of the preamplifier 33, the phase rectifier 34 and the low-pass filter 35 and supplied to the control circuit 25 as a first signal 27, which forms the signal of the capacitive liquid level detection.
  • the controller 25 and the movement device 6 After it has been detected by the capacitive liquid level detector that the cannula 5 has touched liquid, which may possibly also be the case when it is foam or a disorder, by the controller 25 and the movement device 6, a further lowering of the cannula 5 by a few millimeters to ensure a minimum immersion depth. Thereafter, the control by means of the detection path 16 prepared and the switches 29 and 30 are closed.
  • the inner tube 11 is connected to the second generator 32.
  • the second generator 32 generates a significantly lower frequency than the first generator 31 for detecting the conductivity of the detection path; its frequency is about 1 kHz.
  • the detection path 16 is loaded with a resistor R2. Resistor R2 is approx. 1k ⁇ . Due to the low frequency and small resistance R2, capacitive perturbations become negligible, i. the conductivity measurement is facilitated.
  • the metering pump is caused by the control circuit 25 to suck a small volume, which is so large that the detection path 16 extends entirely through aspirated analysis liquid, if there is no error. If conductive analysis liquid is drawn into the detection path 16 in the tip 5a, it forms a conductive connection between the control electrodes 14, 15. From the second generator 32, current flows through the detection path 16 in the aspirated analysis liquid and the resistor R2 to ground.
  • the to the conductivity of the detection path 16 proportional voltage drop across the resistor R2 is converted by means of the preamplifier 33, the phase rectifier 37 and the low-pass filter 38 into a DC voltage which is supplied as a second signal 28 for performing the metering control of the control circuit 25. If the detection path 16 has a sufficiently high conductivity, this means that analysis liquid has been sucked in. Is the resistance of the detection path 16 on the other hand, after the suction is too high, there is an error condition, for example an aspiration of air or foam, a blockage of the cannula 5 or a leakage of the tube 36. In order to verify the fault condition, the cannula 5 can then be positioned stepwise or continuously deeper, wherein the suction and the control of the conductivity of the detection path 16 are regularly repeated or carried out continuously.
  • FIG. 8 shows in a time diagram the signal 27 at the output of the low-pass filter 35 when lowering the liquid transfer cannula 5 in the direction of the analysis liquid 4.
  • the lowering movement is performed incrementally, wherein the traversing speed of the cannula is about 1000 steps per second with a pitch of 0.2 mm. It is queried at regular time intervals of 1 msec, whether the voltage has changed at a certain speed.
  • the sampling times 57 are indicated by the vertical bars.
  • a disturbance takes place, which results in a rapid, short-term lowering of the signal.
  • a disturbance can be caused for example by an electrostatic disturbance or a bursting bladder.
  • the lowering of the cannula 5 is not stopped by the short-term and rapid drop in the signal, but following this event is several times, for example, three times, queried whether a certain value relative to the last measured reference value falls below this disturbance. If this is not the case, for example, because the bladder has burst in the meantime and the tip 5a is therefore now is back in air, the downward movement is further continued, since it was recognized that the tip 5a is not yet immersed in the analysis liquid 4.
  • the signal drops again rapidly and thereafter remains at the low value during the multiple further samples 57 as well.
  • the tip 5a is either immersed in the analysis liquid 4 or is in a bubble or a foam over the analysis liquid 4, which have not regressed by the piercing.
  • this distinction which must be taken within a very short time in order to prevent too deep immersion of the liquid transfer cannula 5 into the analysis liquid 4, can not be made.
  • a variant of this which is particularly interesting for time-critical applications in which it depends on a very fast measurement and in which the time for the follow-up by means of a detection path 16 before the liquid transfer is not available, is that the liquid transfer already after the Stopping the immersion movement, ie, at time t 3 , at which the capacitive subsequent checks are completed, is performed and during the liquid transfer, the control with the detection path 16 is performed. If the resistance measurement shows that the liquid transfer cannula 5 was not yet immersed in the analysis liquid at time t 3 , this is signaled to the analysis system and the measurement result of the respective Subsequently, the sample was discarded or the operator was immediately alerted by a signal that dosing problems were occurring. In this way, a higher throughput rate can be achieved.
  • control electrodes 14, 15 should be low in capacitance so as not to disturb the capacitive liquid level detector by parasitic capacitances. Therefore, it is proposed in an advantageous embodiment that the control electrodes 14, 15 or at least one feed line between a shield electrode and a compensation electrode is arranged, whose capacity is compensated by a voltage follower circuit.
  • the detection path 16 may also be formed between the signal electrode and a control electrode.
  • the advantage here is that you do not need separate leads to the detection path 16, since, for example, the liquid transfer cannula, the shielding electrode or the coaxial electrode can be used as a supply line.
  • the capacitive, to be detected signal is thus not additionally loaded capacitively.
  • control electrodes 14, 15 should be smooth, offer no attack surface and suitably mechanically fixed and electronically connected. Eventually, they may be provided with a liquid-repellent nano-coating. They can also be embedded in a recess or opening in the area of the tip 5a or be cast with a chemical resistant grout.
  • FIGS. 10 and 11 illustrate the manufacture of a cannula 5 according to FIG. 2.
  • Prefabricated metal tubes 10, 11 are mounted concentrically with one another.
  • a metal wire 39 which has almost the same diameter as the arranged at the lower end of the metal tubes 10, 11 metering, is passed through both metal tubes 10, 11.
  • the gap 40 between the two metal tubes 10, 11 is filled with meltable or sinterable, non-conductive powder or granules.
  • the metal wire 39 serves for the radial positioning of the metal tubes 10, 11 and prevents the material filled in the intermediate space 40 from penetrating into the metering bores.
  • the metal pipes 10, 11 are heated vertically standing.
  • the cured insulating material 12 extends up to a predetermined height in the intermediate space 40.
  • the gap 40 need not be completely filled; In many applications, it is sufficient if the lower ends of the tubes 10, 11 are fixed to each other by insulating material 12, without the gap 40 is filled over its entire height.
  • the metal wire is pulled out, so that a cannula 5 as shown in FIG. 11 is formed.
  • the metal wire 39 can be stretched before pulling out, thereby reducing its diameter. If necessary, the interior of the metering opening can be additionally smoothed, for example by honing or a similar method.
  • FIGS. 12 to 15 illustrate the production of a liquid transfer cannula 5 in the form of a disposable dosing tip according to FIG. 4. Three layers are produced by a multi-component injection molding process.
  • Fig. 12 shows a mold 41 with a fitted mandrel 42 inserted therein.
  • the inner, conductive Layer 11 is injected by means of the sprue 43 into the cavity between the mold 41 and mandrel 42, wherein a scraper 44 is formed.
  • the mandrel 42 is slightly pulled out of the mold 41 and the resulting cavity is filled as shown in Fig. 13 to form the insulating layer 12 by a further gate 45.
  • the mandrel 42 is again slightly pulled out of the mold 41 and as shown in Fig. 14, the layer 10 of conductive plastic injected through the gate 46.
  • the mold is opened and the finished cannula 5, which is shown in Fig. 15, stripped from the mandrel 42.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Thermal Sciences (AREA)
  • Power Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Biochemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Electromagnetism (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)
  • Measurement Of Levels Of Liquids Or Fluent Solid Materials (AREA)
  • Sampling And Sample Adjustment (AREA)

Claims (17)

  1. Dispositif pour le transfert de liquides pour un instrument d'analyse, avec une canule de transfert de liquide (5) et avec un détecteur capacitif de niveau de remplissage du liquide pour la détection de l'immersion de la canule de transfert de liquide (5) dans un liquide à analyser (4) se trouvant dans un récipient (2), le détecteur de niveau de remplissage du liquide comprenant une électrode collectrice, une contre-électrode et un circuit de détection (26), pour la détection d'une modification de la capacité entre l'électrode collectrice et la contre-électrode,
    caractérisé en ce que
    la canule de transfert de liquide (5) comporte deux électrodes de contrôle (14, 15), entre lesquelles est créé un trajet de détection (16), qui s'étend sur un tronçon s'étendant en direction longitudinale de la canule de transfert de liquide (5), la canule de transfert de liquide (5) formant l'une des électrodes de contrôle (15),
    les électrodes de contrôle (14, 15) sont disposées de façon telle que le trajet de détection (16) s'étende à l'intérieur de la canule de transfert de liquide (5),
    au moins l'une des électrodes de contrôle (14) est disposée à une distance au dessus de l'extrémité inférieure de la pointe (5a) de la canule de transfert de liquide (5),
    le circuit de détection (26) comprend un dispositif de contrôle (32, 36), qui est conçu pour contrôler une modification de la résistance (R) du trajet de détection (16) résultant lors du remplissage du trajet de détection (16) dans la canule de transfert de liquide (5) avec du liquide à analyser (4).
  2. Dispositif pour le transfert de liquides selon la revendication 1, caractérisé en ce que la pointe (5a) de la canule de transfert de liquide (5) forme l'une des électrodes de contrôle (15).
  3. Dispositif pour le transfert de liquides selon l'une quelconque des revendications précédentes, caractérisé en ce que l'extrémité inférieure du trajet de détection (16) est disposée au dessus de l'extrémité inférieure de la pointe (5a).
  4. Dispositif pour le transfert de liquides selon la revendication 3, caractérisé en ce que l'extrémité inférieure du trajet de détection (16) est disposée à entre 0,5 mm et 5 mm au dessus de l'extrémité inférieure de la pointe (5a).
  5. Dispositif pour le transfert de liquides selon l'une quelconque des revendications précédentes, caractérisé en ce que l'extrémité supérieure du trajet de détection (16) est disposée à entre 0,5 mm et 30 mm au dessus de l'extrémité inférieure de la pointe (5a).
  6. Dispositif pour le transfert de liquides selon l'une quelconque des revendications précédentes, caractérisé en ce qu'une électrode de contrôle (14) est formée par un tube intérieur (11) disposé dans canule de transfert de liquide (5), dans lequel le liquide à analyser (4) peut être aspiré, notamment par l'extrémité inférieure de celui-ci.
  7. Dispositif pour le transfert de liquides selon l'une quelconque des revendications précédentes, caractérisé en ce que la canule de transfert de liquide (5) est un élément d'une pointe de dosage à usage unique.
  8. Dispositif pour le transfert de liquides selon l'une quelconque des revendications précédentes, caractérisé en ce que la canule de transfert de liquide (5) est un élément d'un agencement d'électrodes coaxiales (18), qui hormis la canule de transfert de liquide (5) comporte au moins une électrode coaxiale (19) entourant cette dernière et isolée par rapport à elle.
  9. Dispositif pour le transfert de liquides selon la revendication 8, caractérisé en ce que l'agencement d'électrodes coaxiales (18) comporte une électrode de blindage (20) qui entoure l'électrode collectrice, qui est sur potentiel constant et qui agit en tant que contre-électrode.
  10. Dispositif pour le transfert de liquides selon la revendication 8 ou 9, caractérisé en ce que le circuit de détection (26) comporte une source de tension alternative et un circuit d'asservissement de tension et en ce que l'entrée et la sortie du circuit d'asservissement de tension sont reliées avec deux électrodes voisines de l'agencement d'électrodes coaxiales (18) en tant qu'électrode collectrice et qu'électrode de compensation, pour qu'aucune tension différentielle ne naisse entre l'électrode collectrice et l'électrode de compensation.
  11. Dispositif pour le transfert de liquides selon la revendication 10, caractérisé en ce qu'une première des électrodes de l'agencement d'électrodes coaxiales (18) est l'électrode collectrice du détecteur de niveau de liquide et est reliée avec l'entrée du circuit d'asservissement de tension, et en ce que la deuxième électrode de l'agencement d'électrodes coaxiales, qui est voisine de l'électrode collectrice est reliée avec la sortie du circuit d'asservissement de tension.
  12. Dispositif pour le transfert de liquides selon la revendication 10 ou 11, caractérisé en ce que, en tant qu'électrode collectrice, la canule de transfert de liquide (5) est reliée à l'entrée du circuit d'asservissement de tension et en tant qu'électrode de compensation, l'électrode coaxiale voisine est reliée à la sortie du circuit d'asservissement de tension.
  13. Procédé de contrôle de l'aspiration de liquide à analyser (4) dans une canule de transfert de liquide (5) d'un dispositif pour le transfert de liquides selon l'une quelconque des revendications précédentes d'un instrument d'analyse, dont l'immersion dans un liquide à analyser (4) se trouvant dans un récipient (2) est détectée au moyen d'un détecteur capacitif du niveau de liquide qui comprend une électrode collectrice, une contre-électrode et un circuit de détection (26), pour la détection d'une modification de la capacité entre l'électrode collectrice et la contre-électrode,
    caractérisé en ce que
    pour le contrôle du remplissage de la canule de transfert de liquide (5) avec du liquide à analyser (4), on contrôle la modification de la résistance (R) d'un trajet de détection (16) conçu entre des électrodes de contrôle (14, 15) de la canule de transfert de liquide (5), qui s'étend sur un tronçon s'étendant dans la direction longitudinale de la canule de transfert de liquide (5), au moyen d'un dispositif de contrôle (32, 36), les électrodes de contrôle (14, 15) étant disposées de façon telle, que le trajet de détection (16) s'étende à l'intérieur de la canule de transfert de liquide (5) et qu'au moins l'une des électrodes de contrôle (14) soit disposée à une distance au dessus de l'extrémité supérieure de la pointe (5a) de la canule de transfert de liquide (5).
  14. Procédé selon la revendication 13,
    caractérisé en ce que le mouvement d'immersion de la canule de transfert de liquide (5) dans le liquide à analyser (4) est réalisé par étapes incrémentales d'abaissement, en ce que pendant la première détection d'une surface de liquide au moyen du détecteur capacitif du niveau de liquide, le mouvement d'immersion se poursuit et en ce que le mouvement d'immersion n'est arrêté qu'après une détection de liquide successive, multiple, réalisée pendant la poursuite du mouvement d'immersion au moyen du détecteur capacitif de niveau de liquide.
  15. Procédé selon la revendication 13 ou 14,
    caractérisé en ce que la modification de la résistance (R) du trajet de détection (16) est contrôlée en continu ou par intermittence pendant le mouvement d'immersion de la canule de transfert de liquide (5) ou après l'arrêt du mouvement d'immersion, et dans le cas d'une détection positive de liquide compact au moyen des électrodes de contrôle (14, 15), le transfert de liquide se réalise, ou dans le cas d'une détection négative de liquide compact au moyen des électrodes de contrôle (14, 15), le mouvement d'immersion se relance ou se poursuit.
  16. Procédé selon la revendication 13 ou 14,
    caractérisé en ce que le transfert de liquide se réalise après un arrêt du mouvement d'immersion de la canule de transfert de liquide (5), et pendant le transfert de liquide, l'immersion de la canule de transfert de liquide (5) dans le liquide à analyser (4) est vérifiée au moyen d'une mesure de la résistance (R) du trajet de détection (16).
  17. Canule de transfert de liquide (5) destinée à être utilisée dans un dispositif pour le transfert de liquide selon l'une quelconque des revendications 1 à 12 ou dans un procédé selon l'une quelconque des revendications 13 à 16, caractérisée en ce que la canule de transfert de liquide (5) comporte deux électrodes de contrôle (14, 15), entre lesquelles est conçu un trajet de détection (16), qui s'étend sur un tronçon s'étendant dans la direction longitudinale de la canule de transfert de liquide (5) et dont la modification de la résistance (R) résultant du remplissage du trajet de détection (16) dans la canule de transfert de liquide (5) avec du liquide à analyser (4) est détectable, en ce que les électrodes de contrôle (14, 15) sont disposées de façon telle, que le trajet de détection (16) s'étende à l'intérieur de la canule de transfert de liquide (5), en ce que l'une des électrodes de contrôle (15) est formée par la canule de transfert de liquide (5), notamment par la pointe (5a) et en ce que l'autre électrode de contrôle (14) est disposée à une distance au dessus de l'extrémité inférieure de la pointe (5a) de la canule de transfert de liquide (5).
EP00107965A 1999-04-28 2000-04-17 Methode et dispositif pour transferer les liquides dans un appareil d'analyse Expired - Lifetime EP1048953B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19919305A DE19919305A1 (de) 1999-04-28 1999-04-28 Verfahren und Vorrichtung zum Flüssigkeitstransfer mit einem Analysegerät
DE19919305 1999-04-28

Publications (3)

Publication Number Publication Date
EP1048953A2 EP1048953A2 (fr) 2000-11-02
EP1048953A3 EP1048953A3 (fr) 2003-12-17
EP1048953B1 true EP1048953B1 (fr) 2007-05-30

Family

ID=7906159

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00107965A Expired - Lifetime EP1048953B1 (fr) 1999-04-28 2000-04-17 Methode et dispositif pour transferer les liquides dans un appareil d'analyse

Country Status (6)

Country Link
US (1) US6551558B1 (fr)
EP (1) EP1048953B1 (fr)
JP (1) JP4293710B2 (fr)
AT (1) ATE363661T1 (fr)
DE (2) DE19919305A1 (fr)
ES (1) ES2285980T3 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107444570A (zh) * 2017-07-28 2017-12-08 中国船舶科学研究中心(中国船舶重工集团公司第七0二研究所) 船舶喷气减阻模型试验中的阻力分布测量机构

Families Citing this family (56)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2005211566B2 (en) * 2000-02-29 2007-01-04 Gen-Probe Incorporated Fluid dispense and fluid surface verification system and method
US6604054B2 (en) * 2000-02-29 2003-08-05 Gen-Probe, Inc. Method of detecting fluid flow through a conduit
JP4076048B2 (ja) * 2000-09-22 2008-04-16 富士フイルム株式会社 定量吸引装置
DE10052819B4 (de) * 2000-10-24 2004-02-19 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Pipettensystem und Pipettenarray sowie Verfahren zum Befüllen eines Pipettensystems
EP1354211A1 (fr) * 2001-01-25 2003-10-22 Tecan Trading AG Dispositif de pipettage
AU2002240143A1 (en) * 2001-01-26 2002-08-06 Advion Biosciences, Inc. Robotic autosampler for automated electrospray from a microfluidic chip
DE10104854B4 (de) * 2001-02-03 2005-08-18 Format Messtechnik Gmbh Messkapsel zur Produktionsüberwachung von Kunststoffschäumen
ES2250644T3 (es) 2001-03-09 2006-04-16 Hamilton Bonaduz Ag Procedimiento y dispositivo para evaluar un proceso de dosificacion de liquido.
JP3742580B2 (ja) * 2001-04-11 2006-02-08 株式会社堀場製作所 自動蓄尿検査装置
US7250303B2 (en) * 2001-07-20 2007-07-31 Ortho-Clinical Diagnostics, Inc. Chemistry system for a clinical analyzer
US6948537B2 (en) 2002-05-31 2005-09-27 John Jones Systems and methods for collecting a particulate substance
US6908226B2 (en) * 2003-02-07 2005-06-21 Beckman Coulter, Inc. Method and apparatus for aspirating liquid from a container
US8262991B2 (en) * 2003-05-19 2012-09-11 Lattec I/S Apparatus for analysing fluid taken from a body
ES2298756T3 (es) * 2003-05-19 2008-05-16 Lattec I/S Un aparato para analizar fluido tomado de un cuerpo.
US7191647B2 (en) 2003-10-30 2007-03-20 Perkinelmer Las, Inc. Method and apparatus to reject electrical interference in a capacitive liquid level sensor system
US7222526B2 (en) * 2004-06-17 2007-05-29 Ortho-Clinical Diagnostics, Inc Liquid measurements using capacitive monitoring
US7275430B2 (en) * 2005-10-07 2007-10-02 Beckman Coulter, Inc. Method and apparatus for detecting liquid levels in liquid-storage containers
EP1785731A1 (fr) * 2005-11-15 2007-05-16 Roche Diagnostics GmbH Surveillance de chute électrique
US7482939B2 (en) * 2005-11-15 2009-01-27 Roche Molecular Systems, Inc. Electrical drop surveillance
DE102006052833A1 (de) 2006-11-09 2008-05-15 Diasys Diagnostic Systems Gmbh Verfahren zum Feststellen einer Verstopfung, eines Koagels oder eines Pfropfens an der Aufnahmeöffnung einer Dosiernadel
US7794664B2 (en) 2006-11-16 2010-09-14 Idexx Laboratories, Inc. Pipette tip
US8268261B2 (en) * 2006-11-22 2012-09-18 Altair Corporation Pipette core member, pipette, and pipette device
DE102006060921A1 (de) * 2006-12-20 2008-06-26 Endress + Hauser Gmbh + Co. Kg Vorrichtung zur Bestimmung und/oder Überwachung einer Prozessgröße
JP5277241B2 (ja) 2007-04-18 2013-08-28 ベクトン・ディキンソン・アンド・カンパニー 分配容積を決定するための方法および装置
US20110086850A1 (en) * 2008-04-11 2011-04-14 Board Of Regents, The University Of Texas System Radiosensitization of tumors with indazolpyrrolotriazines for radiotherapy
JP2009281877A (ja) * 2008-05-22 2009-12-03 Hitachi High-Technologies Corp 分注装置
US7804599B2 (en) * 2008-07-24 2010-09-28 MGM Instruments, Inc. Fluid volume verification system
US8515687B2 (en) * 2009-01-06 2013-08-20 Eaton Corporation Degradation detection system for a hose assembly
CN101792105B (zh) * 2009-02-04 2012-09-26 刘伟耀 定量取液器
DE102009049783A1 (de) 2009-10-19 2011-04-21 Eppendorf Ag Elektrisch leitfähige Pipettenspitze
EP2752671A3 (fr) * 2010-07-23 2016-08-24 Beckman Coulter, Inc. Système ou procédé comprenant des unités analytiques
JP5850625B2 (ja) * 2011-03-02 2016-02-03 シスメックス株式会社 分析装置及び位置確認方法
US9529009B2 (en) 2011-06-06 2016-12-27 Hitachi High-Technologies Corporation Automatic analyzer
WO2013006343A1 (fr) * 2011-07-01 2013-01-10 Beckman Coulter, Inc. Sonde de manipulation de liquide à faible report pour analyseur automatisé
EP2607905B1 (fr) 2011-12-23 2020-10-14 F. Hoffmann-La Roche AG Procédé et système de discrimination de liquide en vrac à partir de mousse et résidus de liquide en vrac
JP2014119387A (ja) * 2012-12-18 2014-06-30 Sony Corp 分注装置、分析装置及び分注装置の制御方法
WO2015092844A1 (fr) * 2013-12-16 2015-06-25 株式会社島津製作所 Dispositif de collecte de liquide et analyseur automatisé disposé avec celui-ci
CH709917A2 (de) * 2014-07-24 2016-01-29 Tecan Trading Ag Verfahren und Vorrichtung zum Unterscheiden zwischen einer Schaum- und/oder Flüssigkeitskontaktierung.
JP6049671B2 (ja) * 2014-10-29 2016-12-21 東芝メディカルシステムズ株式会社 自動分析装置及びその分注プローブ
EP3081942A1 (fr) * 2015-04-17 2016-10-19 Roche Diagniostics GmbH Liquide de transmission de pression pour analyseur cellulaire, analyseur cellulaire et procédé d'analyse d'un échantillon cellulaire liquide
CH711157A2 (de) * 2015-06-02 2016-12-15 Tecan Trading Ag Verfahren zur Detektion einer Schaumgrenze und entsprechend ausgestattete Vorrichtung.
CN107148937A (zh) * 2016-03-02 2017-09-12 卢志勇 一种红外线探头用于水位探测时防止气泡干扰的方法及装置
WO2017197021A1 (fr) * 2016-05-11 2017-11-16 Siemens Healthcare Diagnostics Inc. Raccord rapide pour sonde de mesure de niveau de liquide activée par détection
WO2017197116A1 (fr) * 2016-05-12 2017-11-16 Siemens Healthcare Diagnostics Inc. Mécanisme et processus de détection d'écrasement de sonde d'analyseur clinique
WO2017223214A1 (fr) * 2016-06-22 2017-12-28 Abbott Laboratories Appareil de détection de niveau de liquide et procédés associés
CH712735A1 (de) * 2016-07-22 2018-01-31 Tecan Trading Ag Pipettiervorrichtung mit einem Flüssigkeitsvolumensensor und Flüssigkeitsbearbeitungssystem.
WO2018015419A1 (fr) * 2016-07-22 2018-01-25 Tecan Trading Ag Pointe de pipette pour dispositif de pipetage automatique et procédé pour la réaliser
CH712764A2 (de) 2016-07-22 2018-01-31 Tecan Trading Ag Pipettenspitze aufweisend eine Volumenmesselektrode sowie Verfahren zu deren Herstellung und Pipettiervorrichtung.
EP3501654B1 (fr) * 2017-12-22 2021-08-25 Tecan Trading Ag Appareil de pipetage avec un tube de pipette et procédé pour détecter un liquide à l'intérieur d'une section intermédiaire du tube de pipette
JP7339260B2 (ja) 2017-12-28 2023-09-05 フォーミュラトリクス・インターナショナル・ホールディング・リミテッド 液体内のピペットチップの深さを自動的に保つためのピペットチップ及び方法
CN109443855B (zh) * 2018-12-27 2023-12-01 天津博硕科技有限公司 一种防触底采样装置
US11674838B2 (en) 2019-04-04 2023-06-13 Poseidon Systems Llc Capacitive fringe field oil level sensor with integrated humidity and temperature sensing
DE102019134200A1 (de) * 2019-12-12 2021-06-17 Hamilton Bonaduz Ag Pipettiereinheit mit kapazitiver Flüssigkeitsdetektion, Kombination einer solchen Pipettiereinheit und einer Pipettierspitze, und Verfahren zum kapazitiven Detektieren von Pipettierflüssigkeit
US11761870B2 (en) * 2021-06-01 2023-09-19 The Government of the United States of America, as represented by the Secretary of Homeland Security Miniature wireless concentration meter
CN113324620B (zh) * 2021-06-02 2022-08-30 成都瀚辰光翼科技有限责任公司 一种液面探测方法及装置
JPWO2023032336A1 (fr) * 2021-08-30 2023-03-09

Family Cites Families (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3754444A (en) 1970-09-14 1973-08-28 Bio Logics Products Medical sampling and reading
JPS55136957A (en) 1979-04-14 1980-10-25 Olympus Optical Co Ltd Automatic analyzer
JPS5782769A (en) 1980-11-10 1982-05-24 Hitachi Ltd Automatic analyzing device
DE3248449A1 (de) 1982-01-16 1983-07-21 Jastram-Werke GmbH & Co KG, 2050 Hamburg Verfahren zur messung des fluessigkeitsspiegels von elektrisch leitenden medien in fluessigkeitsbehaeltern mit sich veraenderndem fluessigkeitsniveau und eine vorrichtung zur durchfuehrung des verfahrens
JPS5948657A (ja) 1982-09-13 1984-03-19 Hitachi Ltd 血液自動分析装置用サンプリング機構
NO156305C (no) 1982-09-17 1987-08-26 Tanksystem As Anordning for registrering av nivaa, overgangssoner og temperatur.
US4647432A (en) 1982-11-30 1987-03-03 Japan Tectron Instruments Corporation Tokuyama Soda Kabushiki Kaisha Automatic analysis apparatus
CA1268814A (fr) 1984-06-13 1990-05-08 Larry Wayne Moore Dispositifs et methodes de sondage d'un niveau de fluide
US4794085A (en) * 1984-07-19 1988-12-27 Eastman Kodak Company Apparatus and method for detecting liquid penetration by a container used for aspirating and dispensing the liquid
US4736638A (en) 1985-12-20 1988-04-12 Beckman Instruments, Inc. Liquid level sensor
JPH0833320B2 (ja) 1986-03-20 1996-03-29 株式会社東芝 自動化学分析装置
US5104621A (en) 1986-03-26 1992-04-14 Beckman Instruments, Inc. Automated multi-purpose analytical chemistry processing center and laboratory work station
US4747316A (en) 1987-03-05 1988-05-31 Millipore Corporation Probe-gripper
US4912976A (en) 1987-06-26 1990-04-03 Beckman Instruments, Inc. Liquid level sensing apparatus
US5004582A (en) 1987-07-15 1991-04-02 Fuji Photo Film Co., Ltd. Biochemical analysis apparatus
JP2582795B2 (ja) 1987-08-10 1997-02-19 株式会社東芝 液面検知装置
US5178835A (en) 1987-09-18 1993-01-12 Fuji Photo Film Co., Ltd. Biochemical analysis apparatus
US5045286A (en) 1988-02-25 1991-09-03 Olympus Optical Co., Ltd. Device for aspirating a fixed quantity of liquid
JPH01242967A (ja) * 1988-03-24 1989-09-27 Olympus Optical Co Ltd 液面検知用電極付ディスポーザブルノズル
JP2501460B2 (ja) 1988-03-23 1996-05-29 オリンパス光学工業株式会社 ヘマトクリット値の測定方法
JPH063395B2 (ja) 1988-08-26 1994-01-12 株式会社日立製作所 液面検出機能を有する分析装置
JPH0781996B2 (ja) * 1988-08-27 1995-09-06 株式会社日立製作所 オートサンプラ
JPH0448267A (ja) 1990-06-15 1992-02-18 Hitachi Ltd 自動分析装置
SU1763897A1 (ru) 1990-06-22 1992-09-23 Государственный научно-исследовательский институт теплоэнергетического приборостроения Емкостный компенсационный уровнемер
GB2245707A (en) 1990-06-23 1992-01-08 Sycopel Scient Ltd Screened electrochemical electrode
US5178019A (en) 1991-03-26 1993-01-12 Akzo N.V. Heated liquid sampling probe for an automated sampling apparatus
US5212992A (en) 1991-06-14 1993-05-25 Medical Laboratory Automation, Inc. Capacitive probe sensor with reduced effective stray capacitance
JPH0510958A (ja) * 1991-07-02 1993-01-19 Olympus Optical Co Ltd 分析装置
JP3043510B2 (ja) * 1992-02-05 2000-05-22 シスメックス株式会社 試料攪拌吸引装置
DE4203638A1 (de) 1992-02-08 1993-08-12 Boehringer Mannheim Gmbh Fluessigkeitstransfereinrichtung fuer ein analysegeraet
JPH0577765U (ja) * 1992-03-21 1993-10-22 株式会社島津製作所 自動化学分析装置のサンプリング装置
US6203759B1 (en) * 1996-05-31 2001-03-20 Packard Instrument Company Microvolume liquid handling system
DE4402654A1 (de) * 1994-01-29 1995-08-03 Behringwerke Ag Kunststoffpipette mit Levelsensorfunktion
JPH08338849A (ja) * 1995-04-11 1996-12-24 Precision Syst Sci Kk 液体の吸引判別方法およびこの方法により駆動制御される分注装置
US6158269A (en) * 1995-07-13 2000-12-12 Bayer Corporation Method and apparatus for aspirating and dispensing sample fluids
GB9522056D0 (en) * 1995-10-27 1996-01-03 Dynatech Med Prod Ltd Level sensor and washer unit
US6083762A (en) * 1996-05-31 2000-07-04 Packard Instruments Company Microvolume liquid handling system
JP3158054B2 (ja) * 1996-07-19 2001-04-23 株式会社日立製作所 液体採取装置
SE9603379D0 (sv) * 1996-09-17 1996-09-17 Pharmacia & Upjohn Ab Anordning för att detektera när en mätsond kommer i kontakt med en vätskeyta
DE19750642C2 (de) * 1996-11-19 1998-11-26 Hitachi Ltd Analysator mit Pipettiersonde
EP0913671A1 (fr) * 1997-10-29 1999-05-06 Roche Diagnostics GmbH Procédé et dispositif pour transférer des fluides dans un analyseur
EP1876451A3 (fr) * 1998-07-27 2012-02-29 Hitachi, Ltd. Procédé et système pour fournir des informations visuelles d'un emplacement à distance pour un conducteur de véhicule

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107444570A (zh) * 2017-07-28 2017-12-08 中国船舶科学研究中心(中国船舶重工集团公司第七0二研究所) 船舶喷气减阻模型试验中的阻力分布测量机构
CN107444570B (zh) * 2017-07-28 2019-04-05 中国船舶科学研究中心(中国船舶重工集团公司第七0二研究所) 船舶喷气减阻模型试验中的阻力分布测量机构

Also Published As

Publication number Publication date
DE50014358D1 (de) 2007-07-12
US6551558B1 (en) 2003-04-22
DE19919305A1 (de) 2000-11-02
ES2285980T3 (es) 2007-12-01
JP4293710B2 (ja) 2009-07-08
EP1048953A2 (fr) 2000-11-02
EP1048953A3 (fr) 2003-12-17
JP2000338117A (ja) 2000-12-08
ATE363661T1 (de) 2007-06-15

Similar Documents

Publication Publication Date Title
EP1048953B1 (fr) Methode et dispositif pour transferer les liquides dans un appareil d'analyse
EP0555710B1 (fr) Dispositif de transfert de liquide pour appareil d'analyse
EP0913671A1 (fr) Procédé et dispositif pour transférer des fluides dans un analyseur
DE68919167T2 (de) Analysegerät mit einer Vorrichtung zur Detektion einer Flüssigkeitsoberfläche.
DE69210662T2 (de) Abstand zwischen Spitze und Oberfläche zur optimalen Abgeben einer Flüssigkeit
EP3452223B1 (fr) Dispositif de pipettage pourvu d'un capteur de volume de liquide et système de traitement de liquide
DE69103777T2 (de) Kapazitiver Sensor für Flüssigkeitsgrenzschichten.
WO2018015543A1 (fr) Pointe de pipette destinée à un dispositif de pipetage automatique
EP1134024B1 (fr) Dispositif de prélèvement thermostaté pour fluides
DE102006052833A1 (de) Verfahren zum Feststellen einer Verstopfung, eines Koagels oder eines Pfropfens an der Aufnahmeöffnung einer Dosiernadel
DE3905622C2 (fr)
EP0681184B1 (fr) Appareil d'analyse avec détermination automatique de la position de référence d'une aiguille de prélèvement
DE102007003040B4 (de) Vorrichtung zur optischen Detektion eines Phasenübergangs oder dergleichen
DE69206309T2 (de) Flüssigkeitsniveaudetektor.
EP0429795A1 (fr) Dispositif de commande pour la descente de la tubulure d'aspiration d'un dispensateur automatique d'échantillons
WO2020011774A1 (fr) Dispositif et procédé de commande d'une unité de détection optique faisant appel à une mesure capacitive du niveau de remplissage de récipients à liquide
DE68924890T2 (de) Vereinfachter Lysekreislauf für einen automatischen Blutanalysator.
EP3896457A1 (fr) Vérification automatique et ré-étalonnage d'un volume transporté de pompe
DE4402463C2 (de) Vorrichtung zur diskontinuierlichen Erfassung der Dicke einer Schicht auf einer Metallschmelze
DE19756842A1 (de) Verfahren und Vorrichtung zum Flüssigkeitstransfer mit einem Analysegerät
EP0643989A1 (fr) Procédé et système pour mélanger des liquides
DE4209885A1 (de) Verfahren und vorrichtung zum automatischen dosieren, abgeben und verduennen eines kleinstvolumens an fluessigkeit
DE112010000792T5 (de) Automatische Analysevorrichtung
DE3737204A1 (de) Vorrichtung zum dosierten umfuellen von fluessigkeiten
EP1632757A1 (fr) Elément en forme de barre pour détecter un niveau de liquide et un dispositif correspondant pour la détection d'un niveau de liquide

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20000417

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

AKX Designation fees paid

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070530

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: A. BRAUN, BRAUN, HERITIER, ESCHMANN AG PATENTANWAE

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 50014358

Country of ref document: DE

Date of ref document: 20070712

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20070718

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070830

ET Fr: translation filed
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2285980

Country of ref document: ES

Kind code of ref document: T3

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071030

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070530

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070530

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070530

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070831

26N No opposition filed

Effective date: 20080303

REG Reference to a national code

Ref country code: CH

Ref legal event code: PFA

Owner name: ROCHE DIAGNOSTICS GMBH

Free format text: ROCHE DIAGNOSTICS GMBH#SANDHOFER STRASSE 116#68305 MANNHEIM (DE) -TRANSFER TO- ROCHE DIAGNOSTICS GMBH#SANDHOFER STRASSE 116#68305 MANNHEIM (DE)

BERE Be: lapsed

Owner name: ROCHE DIAGNOSTICS G.M.B.H.

Effective date: 20080430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070530

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080417

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20140325

Year of fee payment: 15

REG Reference to a national code

Ref country code: CH

Ref legal event code: PCAR

Free format text: NEW ADDRESS: HOLBEINSTRASSE 36-38, 4051 BASEL (CH)

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20140425

Year of fee payment: 15

Ref country code: AT

Payment date: 20140325

Year of fee payment: 15

Ref country code: FR

Payment date: 20140328

Year of fee payment: 15

Ref country code: DE

Payment date: 20140430

Year of fee payment: 15

Ref country code: ES

Payment date: 20140410

Year of fee payment: 15

Ref country code: IT

Payment date: 20140414

Year of fee payment: 15

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50014358

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 363661

Country of ref document: AT

Kind code of ref document: T

Effective date: 20150417

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20150417

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150417

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150417

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151103

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150430

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150430

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20151231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150417

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150430

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20160527

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150418