EP1008184A1 - Lateral-hochspannungstransistor - Google Patents

Lateral-hochspannungstransistor

Info

Publication number
EP1008184A1
EP1008184A1 EP99913117A EP99913117A EP1008184A1 EP 1008184 A1 EP1008184 A1 EP 1008184A1 EP 99913117 A EP99913117 A EP 99913117A EP 99913117 A EP99913117 A EP 99913117A EP 1008184 A1 EP1008184 A1 EP 1008184A1
Authority
EP
European Patent Office
Prior art keywords
trenches
epitaxial layer
voltage transistor
lateral high
rows
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP99913117A
Other languages
German (de)
English (en)
French (fr)
Inventor
Jenö Tihanyi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Infineon Technologies AG
Original Assignee
Siemens AG
Siemens Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG, Siemens Corp filed Critical Siemens AG
Publication of EP1008184A1 publication Critical patent/EP1008184A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D30/00Field-effect transistors [FET]
    • H10D30/60Insulated-gate field-effect transistors [IGFET]
    • H10D30/64Double-diffused metal-oxide semiconductor [DMOS] FETs
    • H10D30/65Lateral DMOS [LDMOS] FETs
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D62/00Semiconductor bodies, or regions thereof, of devices having potential barriers
    • H10D62/10Shapes, relative sizes or dispositions of the regions of the semiconductor bodies; Shapes of the semiconductor bodies
    • H10D62/102Constructional design considerations for preventing surface leakage or controlling electric field concentration
    • H10D62/103Constructional design considerations for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse-biased devices
    • H10D62/105Constructional design considerations for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse-biased devices by having particular doping profiles, shapes or arrangements of PN junctions; by having supplementary regions, e.g. junction termination extension [JTE] 
    • H10D62/106Constructional design considerations for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse-biased devices by having particular doping profiles, shapes or arrangements of PN junctions; by having supplementary regions, e.g. junction termination extension [JTE]  having supplementary regions doped oppositely to or in rectifying contact with regions of the semiconductor bodies, e.g. guard rings with PN or Schottky junctions
    • H10D62/107Buried supplementary regions, e.g. buried guard rings 
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D62/00Semiconductor bodies, or regions thereof, of devices having potential barriers
    • H10D62/10Shapes, relative sizes or dispositions of the regions of the semiconductor bodies; Shapes of the semiconductor bodies
    • H10D62/102Constructional design considerations for preventing surface leakage or controlling electric field concentration
    • H10D62/103Constructional design considerations for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse-biased devices
    • H10D62/105Constructional design considerations for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse-biased devices by having particular doping profiles, shapes or arrangements of PN junctions; by having supplementary regions, e.g. junction termination extension [JTE] 
    • H10D62/109Reduced surface field [RESURF] PN junction structures
    • H10D62/111Multiple RESURF structures, e.g. double RESURF or 3D-RESURF structures

Definitions

  • the invention relates to a lateral high-voltage transistor with a semiconductor body consisting of a weakly doped semiconductor substrate of one conductivity type and an epitaxial layer of the other provided on the semiconductor substrate, for one conductivity type of opposite conductivity type, a drain electrode, a source electrode, a gate electrode and one under the gate electrode provided and embedded in the epitaxial layer semiconductor zone of one conductivity type.
  • This object is achieved according to the invention in a lateral high-voltage transistor of the type mentioned at the outset by trenches (trenches) arranged in rows and rows between the source electrode and the drain electrode in the epitaxial layer, the walls of which are highly doped with dopant of one conductivity type.
  • the trenches are line by line between the source electrode and drain electrode on the surface of the epitaxial
  • Layer with strip-shaped, lightly doped areas of one conductivity type interconnected At a. Layer thickness of the epitaxial layer of, for example, approximately 20 ⁇ m, the trenches have a depth of approximately 18 ⁇ m with a diameter of approximately 1 ⁇ m.
  • the distance between rows of the trenches i.e. between trenches in the direction between the source electrode and drain electrode, is preferably dimensioned such that the area of the other conduction type is cleared between the rows of the trenches rather than the trenches or their walls of the one Line type to the epitaxial layer of the other line type reach the breakdown voltage.
  • the lateral high-voltage transistor In the lateral high-voltage transistor according to the invention, it increases when a positive voltage is applied to the drain electrode.
  • the space charge zone lies from the source electrode side in the direction of the drain electrode side with increasing voltage at the drain electrode.
  • the floating trenches of one line type are located in rows on the
  • the trenches are preferably, as already explained, line by line, connected on the surface of the semiconductor body with narrow s ⁇ ripe shaped regions of one conductivity type, 30 are lightly doped with one another.
  • the trenches can form a structure which is ring-shaped or elongated, ellipsoidal, the drain electrode being arranged essentially in the middle of such a structure.
  • Fig. 1 is a sectional view of the invention
  • FIG. 2 shows a top view of the lateral high-voltage transistor from FIG. 1.
  • An n-type epitaxial layer 2 is provided on a p ' -conducting silicon semiconductor substrate 1, in the surface of which an n + -conducting drain electrode connection region 3, to which a voltage + U D is applied, a p-type trough 4 and a n + conductive source electrode connection region 5 are introduced.
  • the tub 4 and the area 5 are connected to ground.
  • a gate electrode 7 with a contact G is arranged above a gate insulating layer 6 made of silicon dioxide, for example.
  • connection area 5 for the source electrode are located between the connection area 5 for the source electrode and the connection area 3 for the
  • Trenche drain electrode 8 which are introduced, for example, by etching into the epitaxial layer 2 and whose walls are highly doped with p + dopant, for example boron. This can be done by diffusion out of p-doped polycrystalline silicon or from a corresponding oxide filling.
  • the trenches 8 are arranged in rows and rows (cf. FIG. 2), wherein they are connected to one another line by line on the surface with a narrow p " -conducting strip 9, as is indicated schematically in the top view of FIG. 2
  • the trenches 8 are "floating" or potential-free and - as has been explained - are connected to one another line by line via the strips 9.
  • connection area 3 When an increasing voltage + U D is applied to the connection area 3, the space charge zone increases from the side of the source electrode (connection area 5) towards the side of the drain electrode (connection area 3).
  • the floating p-type trenches 8 are row by row at the potential with which the space charge zone reaches the corresponding row.
  • the distance between the rows of trenches 8, that is to say in FIG. 1 between the trenches 8 shown there, is preferably such that the removal of charge carriers of the epitaxial layer 2 takes place between the rows rather than the trenches 8 to the n-conducting epitaxial layer 2 reach the breakdown voltage.
  • the structure of the trench 8 can be designed in the manner of a ring or an elongated ellipse, the drain (cf. the connection region 3) being arranged in the middle of this structure.

Landscapes

  • Insulated Gate Type Field-Effect Transistor (AREA)
EP99913117A 1998-06-24 1999-03-17 Lateral-hochspannungstransistor Withdrawn EP1008184A1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19828191A DE19828191C1 (de) 1998-06-24 1998-06-24 Lateral-Hochspannungstransistor
DE19828191 1998-06-24
PCT/DE1999/000761 WO1999067826A1 (de) 1998-06-24 1999-03-17 Lateral-hochspannungstransistor

Publications (1)

Publication Number Publication Date
EP1008184A1 true EP1008184A1 (de) 2000-06-14

Family

ID=7871901

Family Applications (1)

Application Number Title Priority Date Filing Date
EP99913117A Withdrawn EP1008184A1 (de) 1998-06-24 1999-03-17 Lateral-hochspannungstransistor

Country Status (5)

Country Link
US (1) US6326656B1 (enExample)
EP (1) EP1008184A1 (enExample)
JP (1) JP2002519852A (enExample)
DE (1) DE19828191C1 (enExample)
WO (1) WO1999067826A1 (enExample)

Families Citing this family (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3804375B2 (ja) * 1999-12-09 2006-08-02 株式会社日立製作所 半導体装置とそれを用いたパワースイッチング駆動システム
US6461918B1 (en) 1999-12-20 2002-10-08 Fairchild Semiconductor Corporation Power MOS device with improved gate charge performance
JP2002100772A (ja) * 2000-07-17 2002-04-05 Toshiba Corp 電力用半導体装置及びその製造方法
US7745289B2 (en) 2000-08-16 2010-06-29 Fairchild Semiconductor Corporation Method of forming a FET having ultra-low on-resistance and low gate charge
DE10052170C2 (de) * 2000-10-20 2002-10-31 Infineon Technologies Ag Mittels Feldeffekt steuerbares Halbleiterbauelement
DE10052007C1 (de) * 2000-10-20 2002-03-07 Infineon Technologies Ag Halbleiterbauelement mit durchgehenden Kompensationszonen
US7211846B2 (en) 2000-10-20 2007-05-01 Infineon Technologies Ag Transistor having compensation zones enabling a low on-resistance and a high reverse voltage
KR100340925B1 (ko) * 2000-11-04 2002-06-20 오길록 고주파용 전력소자 및 그의 제조 방법
US6710403B2 (en) 2002-07-30 2004-03-23 Fairchild Semiconductor Corporation Dual trench power MOSFET
US6803626B2 (en) 2002-07-18 2004-10-12 Fairchild Semiconductor Corporation Vertical charge control semiconductor device
US6818513B2 (en) 2001-01-30 2004-11-16 Fairchild Semiconductor Corporation Method of forming a field effect transistor having a lateral depletion structure
US7132712B2 (en) 2002-11-05 2006-11-07 Fairchild Semiconductor Corporation Trench structure having one or more diodes embedded therein adjacent a PN junction
US6713813B2 (en) 2001-01-30 2004-03-30 Fairchild Semiconductor Corporation Field effect transistor having a lateral depletion structure
US6916745B2 (en) 2003-05-20 2005-07-12 Fairchild Semiconductor Corporation Structure and method for forming a trench MOSFET having self-aligned features
US6677641B2 (en) 2001-10-17 2004-01-13 Fairchild Semiconductor Corporation Semiconductor structure with improved smaller forward voltage loss and higher blocking capability
US7345342B2 (en) 2001-01-30 2008-03-18 Fairchild Semiconductor Corporation Power semiconductor devices and methods of manufacture
DE10114788C1 (de) * 2001-03-26 2002-06-20 Infineon Technologies Ag Halbleiterbauelement
KR100393201B1 (ko) * 2001-04-16 2003-07-31 페어차일드코리아반도체 주식회사 낮은 온 저항과 높은 브레이크다운 전압을 갖는 고전압수평형 디모스 트랜지스터
US7061066B2 (en) 2001-10-17 2006-06-13 Fairchild Semiconductor Corporation Schottky diode using charge balance structure
US7078296B2 (en) 2002-01-16 2006-07-18 Fairchild Semiconductor Corporation Self-aligned trench MOSFETs and methods for making the same
KR100859701B1 (ko) 2002-02-23 2008-09-23 페어차일드코리아반도체 주식회사 고전압 수평형 디모스 트랜지스터 및 그 제조 방법
US7576388B1 (en) 2002-10-03 2009-08-18 Fairchild Semiconductor Corporation Trench-gate LDMOS structures
US7033891B2 (en) 2002-10-03 2006-04-25 Fairchild Semiconductor Corporation Trench gate laterally diffused MOSFET devices and methods for making such devices
US6710418B1 (en) 2002-10-11 2004-03-23 Fairchild Semiconductor Corporation Schottky rectifier with insulation-filled trenches and method of forming the same
DE10310552B4 (de) * 2003-03-11 2014-01-23 Infineon Technologies Ag Feldeffekttransistor und Halbleiterchip mit diesem Feldeffekttransistor
US7638841B2 (en) 2003-05-20 2009-12-29 Fairchild Semiconductor Corporation Power semiconductor devices and methods of manufacture
US7005703B2 (en) * 2003-10-17 2006-02-28 Agere Systems Inc. Metal-oxide-semiconductor device having improved performance and reliability
KR100994719B1 (ko) 2003-11-28 2010-11-16 페어차일드코리아반도체 주식회사 슈퍼정션 반도체장치
US7368777B2 (en) 2003-12-30 2008-05-06 Fairchild Semiconductor Corporation Accumulation device with charge balance structure and method of forming the same
FI20055057A7 (fi) * 2004-05-11 2005-11-12 Artto Aurola Puolijohdelaite
US7352036B2 (en) 2004-08-03 2008-04-01 Fairchild Semiconductor Corporation Semiconductor power device having a top-side drain using a sinker trench
US7265415B2 (en) 2004-10-08 2007-09-04 Fairchild Semiconductor Corporation MOS-gated transistor with reduced miller capacitance
DE102005012217B4 (de) 2005-03-15 2007-02-22 Infineon Technologies Austria Ag Lateraler MISFET und Verfahren zur Herstellung desselben
CN101185169B (zh) 2005-04-06 2010-08-18 飞兆半导体公司 沟栅场效应晶体管及其形成方法
US7385248B2 (en) 2005-08-09 2008-06-10 Fairchild Semiconductor Corporation Shielded gate field effect transistor with improved inter-poly dielectric
DE102005042868B4 (de) * 2005-09-08 2009-07-23 Infineon Technologies Ag Feldeffektleistungsbauteil mit integrierter CMOS-Struktur und Verfahren zur Herstellung desselben
DE102005046007B4 (de) * 2005-09-26 2018-06-07 Infineon Technologies Ag Laterales Kompensationshalbleiterbauteil mit gekoppelten Kompensationszellen
US7554137B2 (en) * 2005-10-25 2009-06-30 Infineon Technologies Austria Ag Power semiconductor component with charge compensation structure and method for the fabrication thereof
US7473976B2 (en) * 2006-02-16 2009-01-06 Fairchild Semiconductor Corporation Lateral power transistor with self-biasing electrodes
US7446374B2 (en) 2006-03-24 2008-11-04 Fairchild Semiconductor Corporation High density trench FET with integrated Schottky diode and method of manufacture
US7319256B1 (en) 2006-06-19 2008-01-15 Fairchild Semiconductor Corporation Shielded gate trench FET with the shield and gate electrodes being connected together
JP4625793B2 (ja) * 2006-09-08 2011-02-02 株式会社東芝 半導体デバイス
DE102006047489B9 (de) * 2006-10-05 2013-01-17 Infineon Technologies Austria Ag Halbleiterbauelement
EP2208229A4 (en) 2007-09-21 2011-03-16 Fairchild Semiconductor SUPER TRANSITION STRUCTURES FOR PERFORMANCE ARRANGEMENTS AND MANUFACTURING PROCESSES
US7772668B2 (en) 2007-12-26 2010-08-10 Fairchild Semiconductor Corporation Shielded gate trench FET with multiple channels
US20120273916A1 (en) 2011-04-27 2012-11-01 Yedinak Joseph A Superjunction Structures for Power Devices and Methods of Manufacture
US8432000B2 (en) 2010-06-18 2013-04-30 Fairchild Semiconductor Corporation Trench MOS barrier schottky rectifier with a planar surface using CMP techniques
CN102569382B (zh) * 2010-12-09 2014-04-23 旺宏电子股份有限公司 金属氧化半导体元件及其形成方法
US8673700B2 (en) 2011-04-27 2014-03-18 Fairchild Semiconductor Corporation Superjunction structures for power devices and methods of manufacture
US8836028B2 (en) 2011-04-27 2014-09-16 Fairchild Semiconductor Corporation Superjunction structures for power devices and methods of manufacture
US8786010B2 (en) 2011-04-27 2014-07-22 Fairchild Semiconductor Corporation Superjunction structures for power devices and methods of manufacture
US8772868B2 (en) 2011-04-27 2014-07-08 Fairchild Semiconductor Corporation Superjunction structures for power devices and methods of manufacture
CN111640785B (zh) * 2020-06-12 2021-09-07 电子科技大学 一种具有多沟槽的ligbt器件

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2089119A (en) * 1980-12-10 1982-06-16 Philips Electronic Associated High voltage semiconductor devices
JPS6218768A (ja) * 1985-07-17 1987-01-27 Tdk Corp 高耐圧縦形半導体装置及びその製造方法
US4811075A (en) * 1987-04-24 1989-03-07 Power Integrations, Inc. High voltage MOS transistors
JP2597412B2 (ja) * 1990-03-20 1997-04-09 三菱電機株式会社 半導体装置およびその製造方法
US5111254A (en) * 1990-08-17 1992-05-05 Gte Laboratories Incorporated Floating gate array transistors
DE4309764C2 (de) * 1993-03-25 1997-01-30 Siemens Ag Leistungs-MOSFET
JP3400025B2 (ja) * 1993-06-30 2003-04-28 株式会社東芝 高耐圧半導体素子

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
T. FUJIHIRA: "Theory of Semiconductor Superjunction Devices", JPN. J. APPL. PHYS., vol. 36, no. 10, 10 October 1997 (1997-10-10), pages 6254 - 6262, XP000918328 *

Also Published As

Publication number Publication date
DE19828191C1 (de) 1999-07-29
WO1999067826A1 (de) 1999-12-29
US6326656B1 (en) 2001-12-04
JP2002519852A (ja) 2002-07-02

Similar Documents

Publication Publication Date Title
DE19828191C1 (de) Lateral-Hochspannungstransistor
DE19539541B4 (de) Lateraler Trench-MISFET und Verfahren zu seiner Herstellung
DE19848828C2 (de) Halbleiterbauelement mit kleiner Durchlaßspannung und hoher Sperrfähigkeit
EP1408554B1 (de) Durch Feldeffekt steuerbares Halbleiterbauelement
DE102014117780B4 (de) Halbleiterbauelement mit einer Grabenelektrode und Verfahren zur Herstellung
DE19839970C2 (de) Randstruktur und Driftbereich für ein Halbleiterbauelement sowie Verfahren zu ihrer Herstellung
DE102004052678B3 (de) Leistungs- Trenchtransistor
DE112016006380B4 (de) Halbleiterbauelement
DE112009005069B4 (de) Leistungshalbleitervorrichtung und verfahren zum herstellen einer leistungshalbleitervorrichtung
DE102007033839B4 (de) Halbleiterbauelement und Verfahren zur Herstellung desselben
DE19604043C2 (de) Durch Feldeffekt steuerbares Halbleiterbauelement
WO1999035695A1 (de) Soi-hochspannungsschalter
EP0996981A1 (de) Hochvolt-randabschluss für planarstrukturen
EP0888639A1 (de) Durch feldeffekt steuerbares halbleiterbauelement
DE10101081B4 (de) Schottky-Diode
AT505176A2 (de) Grabenfeldplattenabschluss für leistungsvorrichtungen
DE102005018378A1 (de) Halbleitervorrichtung der Bauart mit dielektrischer Isolierung
DE10245049B4 (de) Kompensationshalbleiterbauelement
DE19816448C1 (de) Universal-Halbleiterscheibe für Hochspannungs-Halbleiterbauelemente, ihr Herstellungsverfahren und ihre Verwendung
EP0913000A1 (de) Durch feldeffekt steuerbares halbleiterbauelement
DE19534154C2 (de) Durch Feldeffekt steuerbares Leistungs-Halbleiterbauelement
DE19741167C2 (de) Randstruktur für ein Halbleiterbauelement
DE10051909B4 (de) Randabschluss für Hochvolt-Halbleiterbauelement und Verfahren zum Herstellen eines Isolationstrenches in einem Halbleiterkörper für solchen Randabschluss
DE19638437C2 (de) Durch Feldeffekt steuerbares Halbleiterbauelement und Verfahren zu dessen Herstellung
DE10005772B4 (de) Trench-MOSFET

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20000218

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IE IT

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: INFINEON TECHNOLOGIES AG

17Q First examination report despatched

Effective date: 20061002

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20070213