EP0976457A1 - Verfahren zum Behandeln von Halbleitermaterial - Google Patents

Verfahren zum Behandeln von Halbleitermaterial Download PDF

Info

Publication number
EP0976457A1
EP0976457A1 EP99113591A EP99113591A EP0976457A1 EP 0976457 A1 EP0976457 A1 EP 0976457A1 EP 99113591 A EP99113591 A EP 99113591A EP 99113591 A EP99113591 A EP 99113591A EP 0976457 A1 EP0976457 A1 EP 0976457A1
Authority
EP
European Patent Office
Prior art keywords
semiconductor material
energy
shock wave
pulse
energy converter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP99113591A
Other languages
English (en)
French (fr)
Other versions
EP0976457B1 (de
Inventor
Matthäus Schantz
Dirk Dr. Flottmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wacker Chemie AG
Original Assignee
Wacker Chemie AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wacker Chemie AG filed Critical Wacker Chemie AG
Publication of EP0976457A1 publication Critical patent/EP0976457A1/de
Application granted granted Critical
Publication of EP0976457B1 publication Critical patent/EP0976457B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28DWORKING STONE OR STONE-LIKE MATERIALS
    • B28D5/00Fine working of gems, jewels, crystals, e.g. of semiconductor material; apparatus or devices therefor
    • B28D5/0005Fine working of gems, jewels, crystals, e.g. of semiconductor material; apparatus or devices therefor by breaking, e.g. dicing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C19/00Other disintegrating devices or methods
    • B02C19/18Use of auxiliary physical effects, e.g. ultrasonics, irradiation, for disintegrating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C19/00Other disintegrating devices or methods
    • B02C19/18Use of auxiliary physical effects, e.g. ultrasonics, irradiation, for disintegrating
    • B02C2019/183Crushing by discharge of high electrical energy

Definitions

  • the invention relates to a method for treating Semiconductor material.
  • Crystal rods are used as a starting material, for example Manufacture of single crystals needed.
  • Crystal rods are first crushed into fragments. These fragments are melted in a crucible and then the single crystal is formed Melt drawn.
  • the dopants specifically introduced into the semiconductor material be the only impurity in the semiconductor material is present.
  • the The aim is to prevent contamination of the semiconductor material minimize.
  • EP-573 855 A1 (corresponds to US 5,464,159) describes in detail the with the crushing of semiconductor materials in Related problems as well as various already proposed solutions.
  • EP-573 855 A1 discloses a Process in which a crystal rod is focused using Shock waves is smashed. It is by repeated Action of shock waves on the semiconductor material this way long to crush until the fragments of the semiconductor material are smaller than a desired limit the fragments.
  • a crucible for pulling single crystals that is too big polycrystalline silicon fragments is filled a comparatively low degree of filling and thus contains not enough material to make a single crystal of the necessary or desired size.
  • the too big fragments also lead to an extension of the melting time in the Crucibles, which in turn lead to undesirable contamination can. Fragments that are too large must therefore be shredded to avoid these disadvantages.
  • Fragments that are too small are more likely due to their large surface area contaminated and would therefore have to be expensive from impurities be freed. Because of this, small fragments and Particulate matter that occurs when the polysilicon rods are shredded arises, not used for the production of single crystals, but are e.g. for the production of solar silicon used.
  • the contamination arising during the treatment should less than with conventional crushing Hand chisels in rooms with clean classes greater than 1000.
  • the invention relates to a method for treating Semiconductor materials, in which one or more by means of a Energy converter generated shock waves, in a liquid Transfer medium to a rod-shaped semiconductor material are characterized in that the energy converter from Semiconductor material has a distance of 1 cm to 100 cm and a shock wave a pulse energy of 1 to 20 kJ and one Has pulse rise time up to the energy maximum of 1 to 5 ⁇ s.
  • the energy converter never has a direct one Contact with the semiconductor material.
  • the shock waves are from their place of origin, preferably by a liquid Medium, for example water, preferably degassed water highest purity, transferred.
  • the energy converter is preferably spaced from 1 to 12 cm, particularly preferably from 1.5 to 3 cm from the surface of the semiconductor material.
  • Shock waves are caused, for example, by explosive charges, electrical discharges, on electromagnetic or Piezoelectric path can be generated.
  • a shock wave preferably has a pulse energy of 10 to 15 kJ, particularly preferably 11 to 13 kJ.
  • the shock wave preferably has a pulse rise time up to Energy maximum of 2 to 4 ⁇ s.
  • the invention thus also relates to the use of the Method according to the invention for crushing Semiconductor material.
  • shock waves from electrical discharge between two electrodes in the focal point of a semi-ellipsoid reflector to create. That between the discharge the plasma forming the electrodes leads to a Speed of sound propagating in the transmission medium, spherical shock wave front, which from the walls of the Reflector reflects and in the focus of an imaginary to Half-ellipsoids arranged in mirror symmetry is bundled. The is around this focal point Focus area of the semi-ellipsoid reflector.
  • the size of the energy input determines in which area and how many microcracks form and thus the size of the fracture.
  • the shock wave is focused on the semiconductor rod usually not in the case of bars made of currently customary materials required.
  • the method according to the invention does not make a small one Part of the rod crushed, but the whole with the shock wave
  • the loaded rod area is shredded homogeneously.
  • a comminution chamber filled with water is expedient provided that in the simplest case Can be water basin, in which the to be shredded Semiconductor material is introduced.
  • the shock waves are coupled into the comminution chamber.
  • the semi-ellipsoid reflector in the comminution chamber located or mounted on one of their boundary surfaces. If necessary, the location of the shock wave generation is determined by one that transmits shock waves impermeable to foreign substances Membrane spatially separated from the semiconductor material to get it in front To protect contaminants.
  • the rod When using 1 or two energy converters, the rod preferably treated bit by bit with one pulse each.
  • each two energy converters at an angle of 180 ° to each other arranged.
  • the semiconductor material is preferably comminuted at low temperatures, for example room temperature, see above that an induced by high temperatures and / or accelerated diffusion of superficially adsorbed Foreign substances, especially foreign metals, largely avoided becomes.
  • the work surfaces of the tools for transportation and the Positioning of the semiconductor material are to Exclude impurities, preferably made of plastic, such as polyethylene (PE), polytetrafluoroethylene (PTFE) or polyvinylidene difluoride (PVDF), or from the Material such as the comminuted material itself. As well it has proven to be convenient to use the inner surfaces of the Line the shredding chamber with plastic.
  • PE polyethylene
  • PTFE polytetrafluoroethylene
  • PVDF polyvinylidene difluoride
  • the method according to the invention enables use for the first time the shock wave comminution for the comminution of Semiconductor material such that a specifically adjustable Fractional size distribution of the semiconductor material is obtained.
  • the inventive method has the advantage that Strength and possibly also direction of the impulses that affect the Crystal surface act, a force is exerted by their effect, the number and direction of microcracks being affected. The number and orientation of the cracks along The grain boundaries of the material determine the shape and size of the newly created fragments.
  • Another advantage of the method according to the invention lies in the fact that it is still in the effective range of the pulse generator Fragments not further crushed by further impulses be so that the post-shredding in this process has no significant influence.
  • the one through the Impact, abrasion causing contamination from the rod base can by the geometric arrangement the energy converter can be greatly minimized.
  • the invention thus also relates to the use of the Process according to the invention for cleaning Semiconductor material.
  • cavitation bubbles occur as a result of the shock waves, which have a cleaning effect on the surface of the semiconductor material.
  • oxidizing compounds are formed in the cavitation bubbles, which are usually used for cleaning semiconductor materials. So are found in the liquid in which the method is carried out after performing the method z.
  • the oxidizing compounds occur in very high local concentrations, which are in the mol / l range, since the compounds are initially limited to the cavitation bubbles, that is, they are formed there and z. T. also be destroyed again.
  • a cleaning effect occurs not only through the implosion of the cavitation bubbles on the surface of the semiconductor material, but also through the cleaning action of the oxidizing compounds which act on the surface in high local concentrations when the gas bubbles break up on the surface of the semiconductor material.
  • the method according to the invention is massive for the treatment, large-volume body made of semiconductor material, preferably made of mono- or polycrystalline silicon, suitable.
  • the semiconductor material is preferably polycrystalline silicon.
  • Fig. 1 shows an apparatus for performing the inventive method as used in Example 1 becomes.
  • a piece of a from a separation plant polycrystalline silicon rod (1) was on a base made of polysilicon rods (2) completely into a water-filled one Basin (3) immersed. At a distance of 2 cm from the Rod surface are two semi-ellipsoid reflectors (4) arranged so that they form an angle of 180 ° to each other, being in the middle between the semi-ellipsoid reflectors the silicon rod (1) is located.
  • the semi-ellipsoid reflectors (4) are via supply lines (5) with the associated Energy supply facilities (6) connected.
  • a shock wave pulse with a pulse energy of 12kJ and a pulse duration of 3 ⁇ s was generated by igniting an arc between the electrodes (8) of the semi-ellipsoid reflector.
  • the shock wave runs over an elastic membrane (7) to the surface of the silicon rod (1).
  • the position of the rod in the pelvis was chosen so that it at least approximately matched the focusing area of a semi-ellipsoid reflector.
  • the rod section exposed to the shock wave had a diameter of 190 mm and a length of 1.20 m.
  • the treatment resulted in fragments of the following size: Fracture size (longest dimension / cm) Proportion (% by weight) 0 to 1 2nd > 1 to 4.5 3rd > 4.5 to 7 15 > 7 to 12 75 > 12 5
  • This size distribution is for further processing in Crucible pulling process very well suited.

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Food Science & Technology (AREA)
  • Mechanical Engineering (AREA)
  • Disintegrating Or Milling (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

Verfahren zum Behandeln von Halbleitermaterial bei dem eine oder mehrere mittels eines Energiewandlers erzeugte Schockwellen, in einem flüssigen Medium auf ein stabförmiges Halbleitermaterial übertragen werden, dadurch gekennzeichnet, daß der Energiewandler vom Halbleitermaterial einen Abstand von 1 cm bis 100 cm hat und eine Schockwelle eine Pulsenergie von 1 bis 20 kJ und eine Pulsanstiegszeit bis zum Energiemaximum von 1 bis 5 µs hat.

Description

Die Erfindung betrifft ein Verfahren zum Behandeln von Halbleitermaterial.
Für die Herstellung von Solarzellen oder elektronischen Bauelementen, wie beispielsweise Speicherelementen oder Mikroprozessoren, wird hochreines Halbleitermaterial benötigt. Silizium ist das in der Elektronikindustrie mit Abstand am meisten verwendete Halbleitermaterial. Reines Silizium wird durch thermische Spaltung von Siliziumverbindungen, wie beispielsweise Trichlorsilan, gewonnen und fällt dabei häufig in Form von polykristallinen Kristallstäben an. Die Kristallstäbe werden als Ausgangsmaterial beispielsweise zur Herstellung von Einkristallen benötigt. Zur Herstellung von Einkristallen nach dem Czochralski-Verfahren müssen die Kristallstäbe zunächst in Bruchstücke zerkleinert werden. Diese Bruchstücke werden in einem Tiegel geschmolzen und anschließend wird der Einkristall aus der entstandenen Schmelze gezogen. Im günstigsten Fall sollten dabei die gezielt in das Halbleitermaterial eingebrachten Dotierstoffe die einzige Verunreinigung sein, die im Halbleitermaterial vorliegt. Es sind bereits verschiedene Verfahren zur Zerkleinerung von Kristallstäben vorgeschlagen worden, deren Ziel es ist, die Verunreinigung des Halbleitermaterials zu minimieren.
EP-573 855 A1 (entspricht US 5,464,159) beschreibt ausführlich die mit dem Zerkleinern von Halbleitermaterialien in Zusammenhang stehenden Probleme sowie verschieden bereits vorgeschlagene Lösungen. EP-573 855 A1 offenbart ein Verfahren, bei dem ein Kristallstab mit Hilfe von fokussierten Stoßwellen zertrümmert wird. Dabei ist durch wiederholtes Einwirken von Stoßwellen auf das Halbleitermaterial dieses so lange zu zerkleinern, bis die Bruchstücke des Halbleitermaterials kleiner sind, als eine jeweils erwünschte Grenzgröße der Bruchstücke.
Alle bekannten Zerkleinerungsverfahren haben den Nachteil, daß Größe und Gewichtsverteilungen der Bruchstücke durch Verfahrensparameter nicht gezielt eingestellt werden können.
Zudem hat sich gezeigt, daß, anders als in EP-573 855 A1 beschrieben, ein allmähliches Zerkleinern durch wiederholtes Aufbringen niederenergetischer Schockwellen nicht zum Zerkleinern des Halbleitermaterials geeignet ist, da es in der Praxis unmöglich ist, jedes einzelne Bruchstück erneut zu fokussieren und nochmals nachzuzerkleinern. Bei dieser Art der Nachzerkleinerung würde zudem ein unerwünscht großer Anteil kleiner Bruchstücke erreicht. Darüber hinaus wird die Variabilität der Einstellung von Bruchgrößenklassen einschränkt.
Ein Tiegel zum Ziehen von Einkristallen, der mit zu großen polykristallinen Silizium Bruchstücken gefüllt wird, besitzt einen vergleichsweise geringen Füllungsgrad und enthält somit nicht genügend Material um einen Einkristall der notwendigen oder erwünschten Größe zu ziehen. Die zu großen Bruchstücke führen auch zu einer Verlängerung der Aufschmelzzeit im Tiegel, was wiederum zu unerwünschten Kontaminationen führen kann. Zu große Bruchstücke müssen daher nachzerkleinert werden um diese Nachteile zu vermeiden.
Zu kleine Bruchstücke sind wegen ihrer großen Oberfläche eher verunreinigt und müßten daher aufwendig von Verunreinigungen befreit werden. Aus diesem Grund werden kleine Bruchstücke und Feinstaub, der beim Zerkleinern der Polysiliziumstäbe entsteht, nicht zur Herstellung von Einkristallen verwendet, sondern werden z.B. zur Herstellung von Solarsilizium verwendet.
Zur Herstellung von einkristallinem Halbleitermaterial mittels Tiegelziehen sollten die Bruchstücke des polykristallinen Halbleitermaterials daher vorzugsweise eine maximale Länge von 2 bis 25 cm haben, wobei der überwiegende Teil eine maximale Länge von 4 bis 12 cm besitzen sollte.
Es ist wünschenswert, ein Verfahren zur Behandlung von Halbleitermaterial zur Verfügung zu haben, welches es erlaubt, das Halbleitermaterial derart zu zerkleinern, daß der Gewichtsanteil bestimmter Bruchgrößen durch Verfahrensparameter derart einzustellen ist, daß eine für die weitere Verarbeitung bevorzugte Bruchgrößenverteilung erhalten wird.
Ferner sollten die bei der Behandlung entstehenden Kontaminationen geringer sein als beim herkömmlichen Brechen mit Handmeißel in Räumen mit Reinklassen größer 1000.
Beim herkömmlichen Brechen entstehen in der Regel mittlere Kontaminationen von 4 ppb Metall auf der Oberfläche der Polysilizium Bruchstücke.
Zudem ist es wünschenswert, ein Verfahren zur Verfügung zu haben, welches beim Zerkleinern eine Reinigung der Oberfläche des Halbleitermaterials ermöglicht und keine weitere Verunreinigung in das Material einbringt.
Die Erfindung betrifft ein Verfahren zum Behandeln von Halbleitermaterialien, bei dem eine oder mehrere mittels eines Energiewandlers erzeugte Schockwellen, in einem flüssigen Medium auf ein stabförmiges Halbleitermaterial übertragen werden, dadurch gekennzeichnet, daß der Energiewandler vom Halbleitermaterial einen Abstand von 1 cm bis 100 cm hat und eine Schockwelle eine Pulsenergie von 1 bis 20 kJ und eine Pulsanstiegszeit bis zum Energiemaximum von 1 bis 5 µs hat.
Der Energiewandler hat zu keinem Zeitpunkt einen direkten Kontakt mit dem Halbleitermaterial. Die Schockwellen werden von ihrem Entstehungsort vorzugsweise durch ein flüssiges Medium beispielsweise Wasser, vorzugsweise entgastes Wasser höchster Reinheit, übertragen.
Vorzugsweise hat der Energiewandler einen Abstand von 1 bis 12 cm, besonders bevorzugt von 1,5 bis 3 cm von der Oberfläche des Halbleitermaterials.
Schockwellen sind beispielsweise durch Sprengladungen, elektrische Entladungen, auf elektromagnetischem oder piezoelektrischem Weg erzeugbar.
Vorzugsweise hat eine Schockwelle eine Pulsenergie von 10 bis 15 kJ, besonders bevorzugt 11 bis 13 kJ.
Vorzugsweise hat die Schockwelle eine Pulsanstiegszeit bis zum Energiemaximum von 2 bis 4 µs.
Vorzugsweise wird im Verfahren nur eine Schockwelle pro jeweils beaufschlagtem Abschnitt des Halbleiterstabes eingesetzt, die einen Zerfall des bestrahlten Halbleitermaterials bewirkt.
Die Erfindung betrifft somit auch die Verwendung des erfindungsgemäßen Verfahrens zum Zerkleinern von Halbleitermaterial.
Für das erfindungsgemäße Verfahren ist es günstig, aber nicht zwingend, Schockwellen durch die elektrische Entladung zwischen zwei Elektroden im Brennpunkt eines Halbellipsoidreflektors zu erzeugen. Das sich bei der Entladung zwischen den Elektroden ausbildende Plasma führt zu einer sich mit Schallgeschwindigkeit im Übertragungsmedium ausbreitenden, kugelförmigen Schockwellenfront, die von den Wänden des Reflektors reflektiert und im Brennpunkt eines gedachten, zum Reflektor spiegelsymmetrisch angeordneten Halbellipsoids gebündelt wird. Um diesen Brennpunkt liegt der Fokussierungsbereich des Halbellipsoidreflektors.
Vorzugsweise wird als Energiewandler ein Halbellipsoidreflektor eingesetzt.
Die Größe des Energieeintrages bestimmt, in welchem Bereich und wieviele Mikrorisse sich bilden und damit die Bruchgröße.
So besitzt sehr sprödes, brüchiges Material schon zahlreiche Mikrorisse und bedarf nur noch eines Auseinanderbrechens dieser Teile, was durch eine unfokussierte Schockwelle erreicht werden kann.
Eine Fokussierung der Schockwelle auf den Halbleiterstab ist in der Regel bei Stäben aus derzeit üblichen Materialien nicht erforderlich.
Je nach zukünftiger Materialentwicklung kann es jedoch erforderlich werden, die Schockwelle auf den Halbleiterstab zu fokussieren.
Durch das erfindungsgemäße Verfahren wird nicht ein kleiner Teil des Stabes zerkleinert, sondern der ganze mit der Schockwelle beaufschlagte Stabbereich wird homogen zerkleinert.
Zweckmäßigerweise wird eine mit Wasser gefüllte Zerkleinerungskammer bereitgestellt, die im einfachsten Fall ein Wasserbecken sein kann, in welche das zu zerkleinernde Halbleitermaterial eingebracht wird. Die Schockwellen werden in die Zerkleinerungskammer eingekoppelt. Zu diesem Zweck kann sich der Halbellipsoidreflektor in der Zerkleinerungskammer befinden oder an eine ihrer Begrenzungsflächen montiert sein. Gegebenenfalls wird der Ort der Schockwellenerzeugung durch eine für Fremdstoffe undurchlässige, Schockwellen übertragende Membran räumlich vom Halbleitermaterial abgetrennt, um es vor Verunreinigungen zu schützen.
Vorzugsweise werden 1 bis 20 Energiewandler eingesetzt. Besonders bevorzugt werden 2, 4, 6, 8, 10, 12, 14, 16, 18 oder 20 Energiewandler eingesetzt. Insbesondere bevorzugt werden 2 Energiewandler eingesetzt.
Beim Einsatz einer größeren Anzahl von Energiewandlern (z. B. mehr als zwei Energiewandler) werden diese vorzugsweise entlang des Halbleiterstabes derart angeordnet, daß ein größerer Abschnitt des Stabes oder der ganze Halbleiterstab auf einmal mit einem Puls behandelt wird.
Beim Einsatz von 1 oder zwei Energiewandlern wird der Stab vorzugsweise Stück für Stück mit jeweils einem Puls behandelt.
Bevorzugt werden beim Einsatz mehrerer Energiewandler jeweils zwei Energiewandler im Winkel von 180° gegeneinander angeordnet.
Vorzugsweise erfolgt die Zerkleinerung des Halbleitermaterials bei niedrigen Temperaturen, beispielsweise Raumtemperatur, so daß eine durch hohe Temperaturen induzierte und/oder beschleunigte Diffusion oberflächlich adsorbierter Fremdstoffe, insbesondere Fremdmetalle, weitgehend vermieden wird.
Die Arbeitsflächen der Werkzeuge für den Transport und die Positionierung des Halbleitermaterials sind, um Verunreinigungen auszuschließen, vorzugsweise aus Kunststoff, wie beispielsweise Polyethylen (PE), Polytetrafluorethylen (PTFE) oder Polyvinylidendifluorid (PVDF), oder aus dem Werkstoff, wie das zerkleinerungsgut selbst, gefertigt. Ebenso hat es sich als günstig erwiesen, die Innenflächen der Zerkleinerungskammer mit Kunststoff auszukleiden.
Das erfindungsgemäße Verfahren ermöglicht erstmals den Einsatz der Schockwellenzerkleinerung zur Zerkleinerung von Halbleitermaterial derart, daß eine gezielt einstellbare Bruchgrößenverteilung des Halbleitermaterials erhalten wird.
Das erfindungsgemäße Verfahren hat den Vorteil, daß durch die Stärke und ggf. auch Richtung der Impulse, die auf die Kristalloberfläche wirken, eine Kraft ausgeübt wird, durch deren Wirkung, die Anzahl und Richtung von Mikrorissen beeinflußt wird. Die Anzahl und Ausrichtung der Risse entlang der Korngrenzen des Materials bestimmt die Form und Größe der neu entstehenden Bruchstücke.
Ein weiterer Vorteil des erfindungsgemäßen Verfahrens liegt darin, daß noch im Wirkkreis des Impulsgebers liegende Bruchstücke durch weitere Impulse nicht weiter nachzerkleinert werden, so daß die Nachzerkleinerung bei diesem Verfahren keinen wesentlichen Einfluß besitzt. Der durch die Schlagwirkung entstehende, Kontamination verursachende, Abrieb von der Stabunterlage kann durch die geometrische Anordnung der Energiewandler stark minimiert werden.
Besonders bevorzugt ist hierbei die Anordnung, bei der je zwei Energiewandler im Winkel von 180° gegeneinander stehen, wobei sich das Halbleitermaterial vorzugsweise in der Mitte zwischen den Energiewandlern befindet.
Überraschenderweise zeigte sich, daß das erfindungsgemäße Verfahren auch eine Reinigung der Oberfläche des Halbleitermaterials bewirkt, wenn diese mit mehr als 2 ppb an Metall verunreinigt ist.
Die Erfindung betrifft somit auch die Verwendung des erfindungsgemäßen Verfahrens zur Reinigung von Halbleitermaterial.
Bei der Durchführung des erfindungsgemäßen Verfahrens entstehen in Folge der Schockwellen Kavitationsblasen, welche einen Reinigungseffekt auf der Oberfläche des Halbleitermaterials bewirken. Zudem bilden sich in den Kavitationsblasen oxidierende Verbindungen, die üblicherweise zur Reinigung von Halbleitermaterialien eingesetzt werden. So finden sich in der Flüssigkeit in der das Verfahren durchgeführt wird nach der Durchführung des Verfahrens z. B. Nitrat, Nitrit, OH-Radikale und H2O2. Die Gesamtkonzentration dieser Verbindungen liegt im Bereich von µmol/l bis mmol/l. In den Kavitationsblasen treten die oxidierenden Verbindungen jedoch in sehr hohen lokalen Konzentrationen, die im mol/l Bereich liegen, auf, da die Verbindungen zunächst auf die Kavitationsblasen beschränkt sind, d. h. dort entstehen und z. T. auch wieder zerstört werden. So tritt im erfindungsgemäßen Verfahren ein Reinigungseffekt auf nicht nur durch die Implosion der Kavitationsblasen an der Oberfläche des Halbleitermaterials auf, sondern auch durch die Reinigungswirkung der oxidierenden Verbindungen die in hohen lokalen Konzentrationen auf die Oberfläche einwirken, wenn die Gasblasen an der Oberfläche des Halbleitermaterials aufbrechen.
Das erfindungsgemäße Verfahren ist zur Behandlung massiver, großvolumiger Körper aus Halbleitermaterial, bevorzugt aus mono- oder polykristallinem Silicium, geeignet.
Vorzugsweise handelt es sich bei dem Halbleitermaterial um polykristallines Silizium.
Mit dem erfindungsgemäßen Verfahren gelingt es, Halbleitermaterial, insbesondere Silicium, bei niedrigen Temperaturen und ohne die Berührung eines Brechwerkzeugs zu Bruchstücken mit einer maximalen Länge von 110 mm bis 250 mm zu zerkleinern und gleichzeitig zu reinigen. Bei fehlender oder nur geringer oberflächlicher Verunreinigung des zu zerkleinernden Halbleitermaterials kann die bisher übliche Oberflächenreinigung der Bruchstücke z. B. durch Ätzen reduziert oder eingespart werden.
Durch das Brechen von Halbleitermaterial mittels des erfindungsgemäßen Verfahrens kommt es zu einer Kontamination kleiner 2 ppb Metall. Bruchstücke, die nur durch Metallstaub der Umgebung auf 4 ppb Metall verunreinigt wurden, werden durch das erfindungsgemäße Verfahren auf kleiner 2 ppb Metall gereinigt. Selbst in herkömmlicher Weise handgebrochenes Halbleitermaterial, bei dem die Verunreinigung fester in der Oxidschicht des Polysilizium Bruchstückes sitzt, werden durch das erfindungsgemäße Verfahren im Mittel auf 3 ppb Metall gereinigt. Zu einer weiteren Zerkleinerung unter die jeweils erwünschte Teilchengröße kommt es dabei nicht soweit die Teile bereits per Hand in diesen Größenbereich zerkleinert wurden.
Fig. 1 zeigt eine Vorrichtung zur Durchführung des erfindungsgemäßen Verfahrens wie sie in Beispiel 1 verwendet wird.
Das folgendene Beispiel dient der weiteren Erläuterung der Erfindung.
Beispiel:
Ein Stück eines aus einer Abscheideanlage stammenden, polykristallinen Siliziumstabes (1) wurde auf einer Unterlage aus Polysiliziumstangen (2) vollständig in ein wassergefülltes Becken (3) eingetaucht. Im Abstand von 2 cm von der Staboberfläche sind zwei Halbellipsoidreflektoren (4) derart angeordnet, daß sie zueinander einen Winkel von 180° bilden, wobei sich in der Mitte zwischen den Halbellipsoidreflektoren der Siliciumstab (1) befindet. Die Halbellipsoidreflektoren (4) werden über Versorgungsleitungen (5) mit den dazugehörigen Energieversorgungseinrichtungen (6) verbunden.
Ein Schockwellenpuls mit einer Pulsenergie von 12kJ und einer Pulsdauer von 3 µs wurde durch Zünden eines Lichtbogens zwischen den Elektroden (8) des Halbellipsoidreflektors erzeugt. Die Schockwelle läuft über eine elastische Membran (7) zur Oberfläche des Siliciumstabes (1). Die Position des Stabs im Becken war so gewählt, daß er zumindest annähernd mit dem Fokussierungsbereich eines Halbellipsoidreflektors übereinstimmte. Das der Schockwelle ausgesetzten Stabstück hatte einen Durchmesser von 190 mm und eine Länge von 1,20 m. Die Behandlung führte zu Bruchstücken folgender Bruchgröße:
Bruchgröße (längste Ausdehnung/cm) Anteil (Gew.%)
0 bis 1 2
> 1 bis 4.5 3
> 4.5 bis 7 15
> 7 bis 12 75
> 12 5
Diese Größenverteilung ist für einer Weiterverarbeitung im Tiegelziehprozeß sehr gut geeignet.

Claims (10)

  1. Verfahren zum Behandeln von Halbleitermaterial bei dem eine oder mehrere mittels eines Energiewandlers erzeugte Schockwellen, in einem flüssigen Medium auf ein stabförmiges Halbleitermaterial übertragen werden, dadurch gekennzeichnet, daß der Energiewandler vom Halbleitermaterial einen Abstand von 1 cm bis 100 cm hat und eine Schockwelle eine Pulsenergie von 1 bis 20 kJ und eine Pulsanstiegszeit bis zum Energiemaximum von 1 bis 5 µs hat.
  2. Verfahren gemäß Anspruch 1, dadurch gekennzeichnet, daß der Energiewandler einen Abstand von 1 bis 12 cm von der Oberfläche des Halbleitermaterials hat.
  3. Verfahren gemäß Anspruch 1 oder 2, dadurch gekennzeichnet eine Schockwelle eine Pulsenergie von 10 bis 15 kJ, besonders bevorzugt 11 bis 13 kJ hat.
  4. Verfahren gemäß einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß die Schockwelle eine Pulsanstiegszeit bis zum Energiemaximum von 2 bis 4 µs hat.
  5. Verfahren gemäß einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß eine Schockwelle pro jeweils beaufschlagtem Abschnitt des Halbleitermaterials eingesetzt wird, die einen Zerfall des bestrahlten Halbleitermaterials bewirkt.
  6. Verfahren gemäß einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß 1 bis 20 Energiewandler eingesetzt werden.
  7. Verfahren gemäß einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß als Energiewandler ein Halbellipsoidreflektor eingesetzt wird.
  8. Verfahren gemäß einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß jeweils zwei Energiewandler im Winkel von 180° gegeneinander angeordnet sind.
  9. Verwendung des Verfahrens gemäß einem der Ansprüche 1 bis 8 zum Zerkleinern von Halbleitermaterial.
  10. Verwendung des Verfahrens gemäß einem der Ansprüche 1 bis 8 zur Reinigung von Halbleitermaterial.
EP99113591A 1998-07-30 1999-07-08 Verfahren zum Behandeln von Halbleitermaterial Expired - Lifetime EP0976457B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19834447 1998-07-30
DE19834447A DE19834447A1 (de) 1998-07-30 1998-07-30 Verfahren zum Behandeln von Halbleitermaterial

Publications (2)

Publication Number Publication Date
EP0976457A1 true EP0976457A1 (de) 2000-02-02
EP0976457B1 EP0976457B1 (de) 2000-11-15

Family

ID=7875902

Family Applications (1)

Application Number Title Priority Date Filing Date
EP99113591A Expired - Lifetime EP0976457B1 (de) 1998-07-30 1999-07-08 Verfahren zum Behandeln von Halbleitermaterial

Country Status (4)

Country Link
US (1) US6360755B1 (de)
EP (1) EP0976457B1 (de)
JP (1) JP3180910B2 (de)
DE (2) DE19834447A1 (de)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003078321A1 (de) * 2002-03-18 2003-09-25 Wacker-Chemie Gmbh Hochreines silica-pulver, verfahren und vorrichtung zu seiner herstellung
WO2009047107A3 (de) * 2007-10-02 2010-03-11 Wacker Chemie Ag Polykristallines silicium und verfahren zu seiner herstellung
US7780937B2 (en) 2005-03-09 2010-08-24 Evonik Degussa Gmbh Granules based on pyrogenically prepared silicon dioxide, method for their preparation and use thereof
WO2010106056A1 (de) * 2009-03-16 2010-09-23 Schmid Silicon Technology Gmbh Aufreinigung von metallurgischem silizium
CN102600948A (zh) * 2012-03-29 2012-07-25 北京德高洁清洁设备有限公司 一种全自动机械化多晶硅破碎机
CN103372490A (zh) * 2012-04-13 2013-10-30 洛阳理工学院 一种带有回转臂的自平衡冲击多晶硅破碎机
RU2733434C1 (ru) * 2020-02-27 2020-10-01 Анатолий Евгеньевич Волков Способ и устройство электроимпульсного дробления-сепарации
CN112334232A (zh) * 2018-07-04 2021-02-05 三菱综合材料株式会社 半导体原料的破碎方法或裂纹产生方法及半导体原料块的制造方法
CN113304848A (zh) * 2021-07-08 2021-08-27 江苏鑫华半导体材料科技有限公司 一种硅块破碎装置及使用方法、硅块破碎方法及应用方法

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1167786A (ja) * 1997-08-25 1999-03-09 Mitsubishi Electric Corp 半導体装置及びその製造方法
DE10009569C2 (de) * 2000-02-29 2003-03-27 Schott Glas Verfahren und Vorrichtung zum Zerkleinern von Glaskörpern mittels Mikrowellenerwärmung
IL147049A0 (en) * 2001-12-12 2002-08-14 Do Coop Techmologies Ltd Thermal process involving cold rf irradiated liquid as core method for producing nano-size particles
DE102005019873B4 (de) * 2005-04-28 2017-05-18 Wacker Chemie Ag Vorrichtung und Verfahren zum maschinellen Zerkleinern von Halbleitermaterialien
DE102012213565A1 (de) 2012-08-01 2014-02-06 Wacker Chemie Ag Vorrichtung und Verfahren zum Zerkleinern eines polykristallinen Siliciumstabs
CN102836765B (zh) * 2012-09-18 2014-12-31 新特能源股份有限公司 一种破碎多晶硅的方法及其装置
WO2015031444A1 (en) * 2013-08-29 2015-03-05 The Board Of Trustees Of The Leland Stanford Junior University Method of controlled crack propagation for material cleavage using electromagnetic forces
JP6339994B2 (ja) * 2015-12-08 2018-06-06 パナソニック株式会社 放電破砕装置及び放電破砕方法
JP6722874B2 (ja) * 2017-06-06 2020-07-15 パナソニックIpマネジメント株式会社 板状物品の分解装置
JP2021107042A (ja) * 2019-12-27 2021-07-29 三菱マテリアル株式会社 半導体材料の破砕方法又はクラック発生方法、及び半導体材料塊の製造方法
US11630153B2 (en) * 2021-04-26 2023-04-18 Winbond Electronics Corp. Chip testing apparatus and system with sharing test interface
CN114433330B (zh) * 2022-02-08 2023-06-02 西安交通大学 一种可控冲击波破碎矿石的装置及方法
US11865546B2 (en) * 2022-02-11 2024-01-09 Sharp Pulse Corp. Material extracting system and method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1986006652A1 (en) * 1985-05-03 1986-11-20 Ceee Corporation Method and apparatus for fragmenting a substance by the discharge of pulsed electrical energy
US5082502A (en) * 1988-09-08 1992-01-21 Cabot Corporation Cleaning apparatus and process
EP0573855A1 (de) 1992-05-27 1993-12-15 Wacker-Chemitronic Gesellschaft für Elektronik-Grundstoffe mbH Verfahren zum kontaminationsfreien Zerkleinern von Halbleitermaterial, insbesondere Silicium
DE19545579A1 (de) * 1995-12-07 1997-06-12 Tzn Forschung & Entwicklung Verfahren und Anordnung zur Zerkleinerung von Materialien in metallischen Gehäusen, insbesondere Autokatalysatoren
DE19749127A1 (de) * 1997-11-06 1999-05-20 Wacker Chemie Gmbh Verfahren zur Vorbereitung der Zerkleinerung eines Kristalls

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4313573A (en) * 1980-02-25 1982-02-02 Battelle Development Corporation Two stage comminution
DE19534232C2 (de) * 1995-09-15 1998-01-29 Karlsruhe Forschzent Verfahren zur Zerkleinerung und Zertrümmerung von aus nichtmetallischen oder teilweise metallischen Bestandteilen konglomerierten Festkörpern und zur Zerkleinerung homogener nichtmetallischer Festkörper
US6033994A (en) * 1997-05-16 2000-03-07 Sony Corporation Apparatus and method for deprocessing a multi-layer semiconductor device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1986006652A1 (en) * 1985-05-03 1986-11-20 Ceee Corporation Method and apparatus for fragmenting a substance by the discharge of pulsed electrical energy
US5082502A (en) * 1988-09-08 1992-01-21 Cabot Corporation Cleaning apparatus and process
EP0573855A1 (de) 1992-05-27 1993-12-15 Wacker-Chemitronic Gesellschaft für Elektronik-Grundstoffe mbH Verfahren zum kontaminationsfreien Zerkleinern von Halbleitermaterial, insbesondere Silicium
US5464159A (en) 1992-05-27 1995-11-07 Wacker-Chemitronic Gesellschaft Fur Elektronik-Grundstoffe Mbh Method for the contamination-free size reduction of semiconductor material, especially silicon
DE19545579A1 (de) * 1995-12-07 1997-06-12 Tzn Forschung & Entwicklung Verfahren und Anordnung zur Zerkleinerung von Materialien in metallischen Gehäusen, insbesondere Autokatalysatoren
DE19749127A1 (de) * 1997-11-06 1999-05-20 Wacker Chemie Gmbh Verfahren zur Vorbereitung der Zerkleinerung eines Kristalls

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003078321A1 (de) * 2002-03-18 2003-09-25 Wacker-Chemie Gmbh Hochreines silica-pulver, verfahren und vorrichtung zu seiner herstellung
US7780937B2 (en) 2005-03-09 2010-08-24 Evonik Degussa Gmbh Granules based on pyrogenically prepared silicon dioxide, method for their preparation and use thereof
CN101815671B (zh) * 2007-10-02 2012-10-24 瓦克化学股份公司 多晶硅及其生产方法
WO2009047107A3 (de) * 2007-10-02 2010-03-11 Wacker Chemie Ag Polykristallines silicium und verfahren zu seiner herstellung
US8398946B2 (en) 2007-10-02 2013-03-19 Wacker Chemie Ag Polycrystalline silicon and method for the production thereof
WO2010106056A1 (de) * 2009-03-16 2010-09-23 Schmid Silicon Technology Gmbh Aufreinigung von metallurgischem silizium
CN102600948A (zh) * 2012-03-29 2012-07-25 北京德高洁清洁设备有限公司 一种全自动机械化多晶硅破碎机
CN103372490A (zh) * 2012-04-13 2013-10-30 洛阳理工学院 一种带有回转臂的自平衡冲击多晶硅破碎机
CN103372490B (zh) * 2012-04-13 2015-04-22 洛阳理工学院 一种带有回转臂的自平衡冲击多晶硅破碎机
CN112334232A (zh) * 2018-07-04 2021-02-05 三菱综合材料株式会社 半导体原料的破碎方法或裂纹产生方法及半导体原料块的制造方法
EP3819031A4 (de) * 2018-07-04 2022-04-27 Mitsubishi Materials Corporation Verfahren zur fragmentierung oder verfahren zur herstellung von rissen in einem halbleiterrohstoff und verfahren zur herstellung einer masse aus halbleiterrohstoff
RU2733434C1 (ru) * 2020-02-27 2020-10-01 Анатолий Евгеньевич Волков Способ и устройство электроимпульсного дробления-сепарации
WO2021173032A1 (ru) * 2020-02-27 2021-09-02 Общество С Ограниченной Ответственностью «Дельтарут» Способ и устройство электроимпульсного дробления-сепарации
CN113304848A (zh) * 2021-07-08 2021-08-27 江苏鑫华半导体材料科技有限公司 一种硅块破碎装置及使用方法、硅块破碎方法及应用方法

Also Published As

Publication number Publication date
JP2000079350A (ja) 2000-03-21
US6360755B1 (en) 2002-03-26
DE59900015D1 (de) 2000-12-21
EP0976457B1 (de) 2000-11-15
DE19834447A1 (de) 2000-02-10
JP3180910B2 (ja) 2001-07-03

Similar Documents

Publication Publication Date Title
EP0976457B1 (de) Verfahren zum Behandeln von Halbleitermaterial
EP0573855B1 (de) Verfahren zum kontaminationsfreien Zerkleinern von Halbleitermaterial, insbesondere Silicium
EP2766123B1 (de) Verfahren zur fragmentierung und/oder vorschwächung von material mittels hochspannungsentladungen
DE102006027273B3 (de) Verfahren zur Gewinnung von Reinstsilizium
DE19534232A1 (de) Verfahren zur Zerkleinerung und Zertrümmerung von aus nichtmetallischen oder teilweise metallischen Bestandteilen konglomerierten Festkörpern und zur Zerkleinerung homogener nichtmetallischer Festkörper
WO2007113087A1 (de) Vorrichtung und verfahren zum zerkleinern von grobteilig gebrochenem polykristallinem silicium
EP2451753A1 (de) Verfahren zur herstellung eines hochreinen quarz-granulates
DE3811091A1 (de) Verfahren zum kontaminationsarmen zerkleinern von massivem stueckigem silicium
EP0887105B1 (de) Vorrichtung und Verfahren zum Zerkleinern von Halbleitermaterial
DE112013004071B4 (de) Verfahren und Vorrichtung zum Brechen von polykristallinem Silicium
DE10101040A1 (de) Vorrichtung und Verfahren zur Herstellung eines polykristallinen Siliciumstabes
DE102013016682A1 (de) Erzeugung einer Rissauslösestelle oder einer Rissführung zum verbesserten Abspalten einer Festkörperschicht von einem Festkörper
DE60219349T2 (de) Verfahren zur behandlung von kontaminiertem nuklearem graphit
EP3122463B1 (de) Verfahren zum fragmentieren eines stangenartigen materials, insbesondere aus polykristallinem silizium
DE4316626A1 (de) Verfahren und Vorrichtung zur Zerkleinerung von Halbleitermaterial
EP2607309B1 (de) Polykristallines Siliciumstück und Verfahren zum Brechen eines Siliciumkörpers
DE4327958C1 (de) Verfahren und Vorrichtung zum Recyceln von Kunststoff und/oder organisches Material enthaltendem Abfall
EP0924487B1 (de) Vakuumtechnisches Trocknen von Halbleiterbruch
DE102005061690A1 (de) Verfahren zur Herstellung solartauglichen Siliziums
EP0995821B1 (de) Verfahren und Vorrichtung zur Bearbeitung von Halbleitermaterial
DE19749127A1 (de) Verfahren zur Vorbereitung der Zerkleinerung eines Kristalls
DE102008031388A1 (de) Verfahren zur Gewinnung von Reinstsilizium
DE4223458A1 (de) Verfahren zur Zerkleinerung von Halbleitermaterial, insbesondere Silicium
DE19847100A1 (de) Verfahren und Vorrichtung zur Zerkleinerung von Halbleitermaterial
DE2344618A1 (de) Verfahren und vorrichtung zum zerkleinern von wiederaufzuarbeitenden brenn- und/ oder brutelementen fuer kernreaktoren

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19990713

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE IT

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17Q First examination report despatched

Effective date: 20000327

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AKX Designation fees paid

Free format text: DE IT

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE IT

ITF It: translation for a ep patent filed

Owner name: JACOBACCI & PERANI S.P.A.

REF Corresponds to:

Ref document number: 59900015

Country of ref document: DE

Date of ref document: 20001221

EN Fr: translation not filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20020730

Year of fee payment: 4

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040203

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050708