EP0976457A1 - Method for treating semiconductor material - Google Patents

Method for treating semiconductor material Download PDF

Info

Publication number
EP0976457A1
EP0976457A1 EP99113591A EP99113591A EP0976457A1 EP 0976457 A1 EP0976457 A1 EP 0976457A1 EP 99113591 A EP99113591 A EP 99113591A EP 99113591 A EP99113591 A EP 99113591A EP 0976457 A1 EP0976457 A1 EP 0976457A1
Authority
EP
European Patent Office
Prior art keywords
semiconductor material
energy
shock wave
pulse
energy converter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP99113591A
Other languages
German (de)
French (fr)
Other versions
EP0976457B1 (en
Inventor
Matthäus Schantz
Dirk Dr. Flottmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wacker Chemie AG
Original Assignee
Wacker Chemie AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wacker Chemie AG filed Critical Wacker Chemie AG
Publication of EP0976457A1 publication Critical patent/EP0976457A1/en
Application granted granted Critical
Publication of EP0976457B1 publication Critical patent/EP0976457B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28DWORKING STONE OR STONE-LIKE MATERIALS
    • B28D5/00Fine working of gems, jewels, crystals, e.g. of semiconductor material; apparatus or devices therefor
    • B28D5/0005Fine working of gems, jewels, crystals, e.g. of semiconductor material; apparatus or devices therefor by breaking, e.g. dicing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C19/00Other disintegrating devices or methods
    • B02C19/18Use of auxiliary physical effects, e.g. ultrasonics, irradiation, for disintegrating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C19/00Other disintegrating devices or methods
    • B02C19/18Use of auxiliary physical effects, e.g. ultrasonics, irradiation, for disintegrating
    • B02C2019/183Crushing by discharge of high electrical energy

Definitions

  • the invention relates to a method for treating Semiconductor material.
  • Crystal rods are used as a starting material, for example Manufacture of single crystals needed.
  • Crystal rods are first crushed into fragments. These fragments are melted in a crucible and then the single crystal is formed Melt drawn.
  • the dopants specifically introduced into the semiconductor material be the only impurity in the semiconductor material is present.
  • the The aim is to prevent contamination of the semiconductor material minimize.
  • EP-573 855 A1 (corresponds to US 5,464,159) describes in detail the with the crushing of semiconductor materials in Related problems as well as various already proposed solutions.
  • EP-573 855 A1 discloses a Process in which a crystal rod is focused using Shock waves is smashed. It is by repeated Action of shock waves on the semiconductor material this way long to crush until the fragments of the semiconductor material are smaller than a desired limit the fragments.
  • a crucible for pulling single crystals that is too big polycrystalline silicon fragments is filled a comparatively low degree of filling and thus contains not enough material to make a single crystal of the necessary or desired size.
  • the too big fragments also lead to an extension of the melting time in the Crucibles, which in turn lead to undesirable contamination can. Fragments that are too large must therefore be shredded to avoid these disadvantages.
  • Fragments that are too small are more likely due to their large surface area contaminated and would therefore have to be expensive from impurities be freed. Because of this, small fragments and Particulate matter that occurs when the polysilicon rods are shredded arises, not used for the production of single crystals, but are e.g. for the production of solar silicon used.
  • the contamination arising during the treatment should less than with conventional crushing Hand chisels in rooms with clean classes greater than 1000.
  • the invention relates to a method for treating Semiconductor materials, in which one or more by means of a Energy converter generated shock waves, in a liquid Transfer medium to a rod-shaped semiconductor material are characterized in that the energy converter from Semiconductor material has a distance of 1 cm to 100 cm and a shock wave a pulse energy of 1 to 20 kJ and one Has pulse rise time up to the energy maximum of 1 to 5 ⁇ s.
  • the energy converter never has a direct one Contact with the semiconductor material.
  • the shock waves are from their place of origin, preferably by a liquid Medium, for example water, preferably degassed water highest purity, transferred.
  • the energy converter is preferably spaced from 1 to 12 cm, particularly preferably from 1.5 to 3 cm from the surface of the semiconductor material.
  • Shock waves are caused, for example, by explosive charges, electrical discharges, on electromagnetic or Piezoelectric path can be generated.
  • a shock wave preferably has a pulse energy of 10 to 15 kJ, particularly preferably 11 to 13 kJ.
  • the shock wave preferably has a pulse rise time up to Energy maximum of 2 to 4 ⁇ s.
  • the invention thus also relates to the use of the Method according to the invention for crushing Semiconductor material.
  • shock waves from electrical discharge between two electrodes in the focal point of a semi-ellipsoid reflector to create. That between the discharge the plasma forming the electrodes leads to a Speed of sound propagating in the transmission medium, spherical shock wave front, which from the walls of the Reflector reflects and in the focus of an imaginary to Half-ellipsoids arranged in mirror symmetry is bundled. The is around this focal point Focus area of the semi-ellipsoid reflector.
  • the size of the energy input determines in which area and how many microcracks form and thus the size of the fracture.
  • the shock wave is focused on the semiconductor rod usually not in the case of bars made of currently customary materials required.
  • the method according to the invention does not make a small one Part of the rod crushed, but the whole with the shock wave
  • the loaded rod area is shredded homogeneously.
  • a comminution chamber filled with water is expedient provided that in the simplest case Can be water basin, in which the to be shredded Semiconductor material is introduced.
  • the shock waves are coupled into the comminution chamber.
  • the semi-ellipsoid reflector in the comminution chamber located or mounted on one of their boundary surfaces. If necessary, the location of the shock wave generation is determined by one that transmits shock waves impermeable to foreign substances Membrane spatially separated from the semiconductor material to get it in front To protect contaminants.
  • the rod When using 1 or two energy converters, the rod preferably treated bit by bit with one pulse each.
  • each two energy converters at an angle of 180 ° to each other arranged.
  • the semiconductor material is preferably comminuted at low temperatures, for example room temperature, see above that an induced by high temperatures and / or accelerated diffusion of superficially adsorbed Foreign substances, especially foreign metals, largely avoided becomes.
  • the work surfaces of the tools for transportation and the Positioning of the semiconductor material are to Exclude impurities, preferably made of plastic, such as polyethylene (PE), polytetrafluoroethylene (PTFE) or polyvinylidene difluoride (PVDF), or from the Material such as the comminuted material itself. As well it has proven to be convenient to use the inner surfaces of the Line the shredding chamber with plastic.
  • PE polyethylene
  • PTFE polytetrafluoroethylene
  • PVDF polyvinylidene difluoride
  • the method according to the invention enables use for the first time the shock wave comminution for the comminution of Semiconductor material such that a specifically adjustable Fractional size distribution of the semiconductor material is obtained.
  • the inventive method has the advantage that Strength and possibly also direction of the impulses that affect the Crystal surface act, a force is exerted by their effect, the number and direction of microcracks being affected. The number and orientation of the cracks along The grain boundaries of the material determine the shape and size of the newly created fragments.
  • Another advantage of the method according to the invention lies in the fact that it is still in the effective range of the pulse generator Fragments not further crushed by further impulses be so that the post-shredding in this process has no significant influence.
  • the one through the Impact, abrasion causing contamination from the rod base can by the geometric arrangement the energy converter can be greatly minimized.
  • the invention thus also relates to the use of the Process according to the invention for cleaning Semiconductor material.
  • cavitation bubbles occur as a result of the shock waves, which have a cleaning effect on the surface of the semiconductor material.
  • oxidizing compounds are formed in the cavitation bubbles, which are usually used for cleaning semiconductor materials. So are found in the liquid in which the method is carried out after performing the method z.
  • the oxidizing compounds occur in very high local concentrations, which are in the mol / l range, since the compounds are initially limited to the cavitation bubbles, that is, they are formed there and z. T. also be destroyed again.
  • a cleaning effect occurs not only through the implosion of the cavitation bubbles on the surface of the semiconductor material, but also through the cleaning action of the oxidizing compounds which act on the surface in high local concentrations when the gas bubbles break up on the surface of the semiconductor material.
  • the method according to the invention is massive for the treatment, large-volume body made of semiconductor material, preferably made of mono- or polycrystalline silicon, suitable.
  • the semiconductor material is preferably polycrystalline silicon.
  • Fig. 1 shows an apparatus for performing the inventive method as used in Example 1 becomes.
  • a piece of a from a separation plant polycrystalline silicon rod (1) was on a base made of polysilicon rods (2) completely into a water-filled one Basin (3) immersed. At a distance of 2 cm from the Rod surface are two semi-ellipsoid reflectors (4) arranged so that they form an angle of 180 ° to each other, being in the middle between the semi-ellipsoid reflectors the silicon rod (1) is located.
  • the semi-ellipsoid reflectors (4) are via supply lines (5) with the associated Energy supply facilities (6) connected.
  • a shock wave pulse with a pulse energy of 12kJ and a pulse duration of 3 ⁇ s was generated by igniting an arc between the electrodes (8) of the semi-ellipsoid reflector.
  • the shock wave runs over an elastic membrane (7) to the surface of the silicon rod (1).
  • the position of the rod in the pelvis was chosen so that it at least approximately matched the focusing area of a semi-ellipsoid reflector.
  • the rod section exposed to the shock wave had a diameter of 190 mm and a length of 1.20 m.
  • the treatment resulted in fragments of the following size: Fracture size (longest dimension / cm) Proportion (% by weight) 0 to 1 2nd > 1 to 4.5 3rd > 4.5 to 7 15 > 7 to 12 75 > 12 5
  • This size distribution is for further processing in Crucible pulling process very well suited.

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Food Science & Technology (AREA)
  • Mechanical Engineering (AREA)
  • Disintegrating Or Milling (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

For the processing of semiconductor materials, such as for the prodn. of solar cells, the semiconductor rods (1) of polycrystalline silicon are in a liquid medium and are subjected to shock waves from an energy converter (4). The energy converter is at a gap of 1-100 cm from the semiconductor rods. The shock waves from an arc between electrodes (8), through an elastic membrane (7), have a pulse energy of 1-20 kJ and a pulse increase time of 1-5 mu s to the max. energy level. The energy converter is a semi-ellipsoid reflector. The working surfaces of the transport and positioning units are of plastics to prevent any soiling of the semiconductor materials. The inner surfaces of the chamber are coated with plastics, where the semiconductor materials are broken down.

Description

Die Erfindung betrifft ein Verfahren zum Behandeln von Halbleitermaterial.The invention relates to a method for treating Semiconductor material.

Für die Herstellung von Solarzellen oder elektronischen Bauelementen, wie beispielsweise Speicherelementen oder Mikroprozessoren, wird hochreines Halbleitermaterial benötigt. Silizium ist das in der Elektronikindustrie mit Abstand am meisten verwendete Halbleitermaterial. Reines Silizium wird durch thermische Spaltung von Siliziumverbindungen, wie beispielsweise Trichlorsilan, gewonnen und fällt dabei häufig in Form von polykristallinen Kristallstäben an. Die Kristallstäbe werden als Ausgangsmaterial beispielsweise zur Herstellung von Einkristallen benötigt. Zur Herstellung von Einkristallen nach dem Czochralski-Verfahren müssen die Kristallstäbe zunächst in Bruchstücke zerkleinert werden. Diese Bruchstücke werden in einem Tiegel geschmolzen und anschließend wird der Einkristall aus der entstandenen Schmelze gezogen. Im günstigsten Fall sollten dabei die gezielt in das Halbleitermaterial eingebrachten Dotierstoffe die einzige Verunreinigung sein, die im Halbleitermaterial vorliegt. Es sind bereits verschiedene Verfahren zur Zerkleinerung von Kristallstäben vorgeschlagen worden, deren Ziel es ist, die Verunreinigung des Halbleitermaterials zu minimieren.For the production of solar cells or electronic Components such as memory elements or Microprocessors, high purity semiconductor material is required. Silicon is by far the most common in the electronics industry most used semiconductor material. Pure silicon will by thermal cleavage of silicon compounds, such as for example trichlorosilane, won and often falls in the form of polycrystalline crystal rods. The Crystal rods are used as a starting material, for example Manufacture of single crystals needed. For production of Single crystals according to the Czochralski method have to Crystal rods are first crushed into fragments. These fragments are melted in a crucible and then the single crystal is formed Melt drawn. In the best case, the dopants specifically introduced into the semiconductor material be the only impurity in the semiconductor material is present. There are already various procedures for Crushing of crystal rods have been proposed, the The aim is to prevent contamination of the semiconductor material minimize.

EP-573 855 A1 (entspricht US 5,464,159) beschreibt ausführlich die mit dem Zerkleinern von Halbleitermaterialien in Zusammenhang stehenden Probleme sowie verschieden bereits vorgeschlagene Lösungen. EP-573 855 A1 offenbart ein Verfahren, bei dem ein Kristallstab mit Hilfe von fokussierten Stoßwellen zertrümmert wird. Dabei ist durch wiederholtes Einwirken von Stoßwellen auf das Halbleitermaterial dieses so lange zu zerkleinern, bis die Bruchstücke des Halbleitermaterials kleiner sind, als eine jeweils erwünschte Grenzgröße der Bruchstücke. EP-573 855 A1 (corresponds to US 5,464,159) describes in detail the with the crushing of semiconductor materials in Related problems as well as various already proposed solutions. EP-573 855 A1 discloses a Process in which a crystal rod is focused using Shock waves is smashed. It is by repeated Action of shock waves on the semiconductor material this way long to crush until the fragments of the semiconductor material are smaller than a desired limit the fragments.

Alle bekannten Zerkleinerungsverfahren haben den Nachteil, daß Größe und Gewichtsverteilungen der Bruchstücke durch Verfahrensparameter nicht gezielt eingestellt werden können.All known crushing processes have the disadvantage that Size and weight distributions of the fragments Process parameters cannot be set specifically.

Zudem hat sich gezeigt, daß, anders als in EP-573 855 A1 beschrieben, ein allmähliches Zerkleinern durch wiederholtes Aufbringen niederenergetischer Schockwellen nicht zum Zerkleinern des Halbleitermaterials geeignet ist, da es in der Praxis unmöglich ist, jedes einzelne Bruchstück erneut zu fokussieren und nochmals nachzuzerkleinern. Bei dieser Art der Nachzerkleinerung würde zudem ein unerwünscht großer Anteil kleiner Bruchstücke erreicht. Darüber hinaus wird die Variabilität der Einstellung von Bruchgrößenklassen einschränkt.In addition, it has been shown that, unlike in EP-573 855 A1 described, a gradual shredding by repeated Do not apply low-energy shock waves to the Crushing the semiconductor material is suitable because it is in the In practice it is impossible to reapply every single fragment focus and shred again. With this type of Post-shredding would also be an undesirably large proportion small fragments reached. In addition, the Variability in setting fraction sizes restricted.

Ein Tiegel zum Ziehen von Einkristallen, der mit zu großen polykristallinen Silizium Bruchstücken gefüllt wird, besitzt einen vergleichsweise geringen Füllungsgrad und enthält somit nicht genügend Material um einen Einkristall der notwendigen oder erwünschten Größe zu ziehen. Die zu großen Bruchstücke führen auch zu einer Verlängerung der Aufschmelzzeit im Tiegel, was wiederum zu unerwünschten Kontaminationen führen kann. Zu große Bruchstücke müssen daher nachzerkleinert werden um diese Nachteile zu vermeiden.A crucible for pulling single crystals that is too big polycrystalline silicon fragments is filled a comparatively low degree of filling and thus contains not enough material to make a single crystal of the necessary or desired size. The too big fragments also lead to an extension of the melting time in the Crucibles, which in turn lead to undesirable contamination can. Fragments that are too large must therefore be shredded to avoid these disadvantages.

Zu kleine Bruchstücke sind wegen ihrer großen Oberfläche eher verunreinigt und müßten daher aufwendig von Verunreinigungen befreit werden. Aus diesem Grund werden kleine Bruchstücke und Feinstaub, der beim Zerkleinern der Polysiliziumstäbe entsteht, nicht zur Herstellung von Einkristallen verwendet, sondern werden z.B. zur Herstellung von Solarsilizium verwendet.Fragments that are too small are more likely due to their large surface area contaminated and would therefore have to be expensive from impurities be freed. Because of this, small fragments and Particulate matter that occurs when the polysilicon rods are shredded arises, not used for the production of single crystals, but are e.g. for the production of solar silicon used.

Zur Herstellung von einkristallinem Halbleitermaterial mittels Tiegelziehen sollten die Bruchstücke des polykristallinen Halbleitermaterials daher vorzugsweise eine maximale Länge von 2 bis 25 cm haben, wobei der überwiegende Teil eine maximale Länge von 4 bis 12 cm besitzen sollte. For the production of single-crystalline semiconductor material by means of Crucibles should pull the fragments of the polycrystalline Semiconductor material therefore preferably a maximum length of Have 2 to 25 cm, the majority of which is a maximum Should have a length of 4 to 12 cm.

Es ist wünschenswert, ein Verfahren zur Behandlung von Halbleitermaterial zur Verfügung zu haben, welches es erlaubt, das Halbleitermaterial derart zu zerkleinern, daß der Gewichtsanteil bestimmter Bruchgrößen durch Verfahrensparameter derart einzustellen ist, daß eine für die weitere Verarbeitung bevorzugte Bruchgrößenverteilung erhalten wird.It is desirable to have a method of treating To have available semiconductor material, which allows to crush the semiconductor material so that the Weight fraction of certain fractional sizes through process parameters is set so that one for the other Processing preferred fraction size distribution is obtained.

Ferner sollten die bei der Behandlung entstehenden Kontaminationen geringer sein als beim herkömmlichen Brechen mit Handmeißel in Räumen mit Reinklassen größer 1000.Furthermore, the contamination arising during the treatment should less than with conventional crushing Hand chisels in rooms with clean classes greater than 1000.

Beim herkömmlichen Brechen entstehen in der Regel mittlere Kontaminationen von 4 ppb Metall auf der Oberfläche der Polysilizium Bruchstücke.Conventional crushing usually produces medium ones Contamination of 4 ppb metal on the surface of the Polysilicon fragments.

Zudem ist es wünschenswert, ein Verfahren zur Verfügung zu haben, welches beim Zerkleinern eine Reinigung der Oberfläche des Halbleitermaterials ermöglicht und keine weitere Verunreinigung in das Material einbringt.It is also desirable to have a process available have a cleaning of the surface when crushing of the semiconductor material and no other Introduces contamination into the material.

Die Erfindung betrifft ein Verfahren zum Behandeln von Halbleitermaterialien, bei dem eine oder mehrere mittels eines Energiewandlers erzeugte Schockwellen, in einem flüssigen Medium auf ein stabförmiges Halbleitermaterial übertragen werden, dadurch gekennzeichnet, daß der Energiewandler vom Halbleitermaterial einen Abstand von 1 cm bis 100 cm hat und eine Schockwelle eine Pulsenergie von 1 bis 20 kJ und eine Pulsanstiegszeit bis zum Energiemaximum von 1 bis 5 µs hat.The invention relates to a method for treating Semiconductor materials, in which one or more by means of a Energy converter generated shock waves, in a liquid Transfer medium to a rod-shaped semiconductor material are characterized in that the energy converter from Semiconductor material has a distance of 1 cm to 100 cm and a shock wave a pulse energy of 1 to 20 kJ and one Has pulse rise time up to the energy maximum of 1 to 5 µs.

Der Energiewandler hat zu keinem Zeitpunkt einen direkten Kontakt mit dem Halbleitermaterial. Die Schockwellen werden von ihrem Entstehungsort vorzugsweise durch ein flüssiges Medium beispielsweise Wasser, vorzugsweise entgastes Wasser höchster Reinheit, übertragen. The energy converter never has a direct one Contact with the semiconductor material. The shock waves are from their place of origin, preferably by a liquid Medium, for example water, preferably degassed water highest purity, transferred.

Vorzugsweise hat der Energiewandler einen Abstand von 1 bis 12 cm, besonders bevorzugt von 1,5 bis 3 cm von der Oberfläche des Halbleitermaterials.The energy converter is preferably spaced from 1 to 12 cm, particularly preferably from 1.5 to 3 cm from the surface of the semiconductor material.

Schockwellen sind beispielsweise durch Sprengladungen, elektrische Entladungen, auf elektromagnetischem oder piezoelektrischem Weg erzeugbar.Shock waves are caused, for example, by explosive charges, electrical discharges, on electromagnetic or Piezoelectric path can be generated.

Vorzugsweise hat eine Schockwelle eine Pulsenergie von 10 bis 15 kJ, besonders bevorzugt 11 bis 13 kJ.A shock wave preferably has a pulse energy of 10 to 15 kJ, particularly preferably 11 to 13 kJ.

Vorzugsweise hat die Schockwelle eine Pulsanstiegszeit bis zum Energiemaximum von 2 bis 4 µs.The shock wave preferably has a pulse rise time up to Energy maximum of 2 to 4 µs.

Vorzugsweise wird im Verfahren nur eine Schockwelle pro jeweils beaufschlagtem Abschnitt des Halbleiterstabes eingesetzt, die einen Zerfall des bestrahlten Halbleitermaterials bewirkt.Preferably, only one shock wave per each applied section of the semiconductor rod used a decay of the irradiated Semiconductor material causes.

Die Erfindung betrifft somit auch die Verwendung des erfindungsgemäßen Verfahrens zum Zerkleinern von Halbleitermaterial.The invention thus also relates to the use of the Method according to the invention for crushing Semiconductor material.

Für das erfindungsgemäße Verfahren ist es günstig, aber nicht zwingend, Schockwellen durch die elektrische Entladung zwischen zwei Elektroden im Brennpunkt eines Halbellipsoidreflektors zu erzeugen. Das sich bei der Entladung zwischen den Elektroden ausbildende Plasma führt zu einer sich mit Schallgeschwindigkeit im Übertragungsmedium ausbreitenden, kugelförmigen Schockwellenfront, die von den Wänden des Reflektors reflektiert und im Brennpunkt eines gedachten, zum Reflektor spiegelsymmetrisch angeordneten Halbellipsoids gebündelt wird. Um diesen Brennpunkt liegt der Fokussierungsbereich des Halbellipsoidreflektors.It is favorable for the method according to the invention, but not imperative, shock waves from electrical discharge between two electrodes in the focal point of a semi-ellipsoid reflector to create. That between the discharge the plasma forming the electrodes leads to a Speed of sound propagating in the transmission medium, spherical shock wave front, which from the walls of the Reflector reflects and in the focus of an imaginary to Half-ellipsoids arranged in mirror symmetry is bundled. The is around this focal point Focus area of the semi-ellipsoid reflector.

Vorzugsweise wird als Energiewandler ein Halbellipsoidreflektor eingesetzt. Is preferably used as an energy converter Semi-ellipsoid reflector used.

Die Größe des Energieeintrages bestimmt, in welchem Bereich und wieviele Mikrorisse sich bilden und damit die Bruchgröße.The size of the energy input determines in which area and how many microcracks form and thus the size of the fracture.

So besitzt sehr sprödes, brüchiges Material schon zahlreiche Mikrorisse und bedarf nur noch eines Auseinanderbrechens dieser Teile, was durch eine unfokussierte Schockwelle erreicht werden kann.Very brittle, fragile material already has numerous Micro cracks and only needs to break apart of these parts what is caused by an unfocused shock wave can be achieved.

Eine Fokussierung der Schockwelle auf den Halbleiterstab ist in der Regel bei Stäben aus derzeit üblichen Materialien nicht erforderlich.The shock wave is focused on the semiconductor rod usually not in the case of bars made of currently customary materials required.

Je nach zukünftiger Materialentwicklung kann es jedoch erforderlich werden, die Schockwelle auf den Halbleiterstab zu fokussieren.Depending on future material development, however, it may be necessary the shock wave towards the semiconductor rod focus.

Durch das erfindungsgemäße Verfahren wird nicht ein kleiner Teil des Stabes zerkleinert, sondern der ganze mit der Schockwelle beaufschlagte Stabbereich wird homogen zerkleinert.The method according to the invention does not make a small one Part of the rod crushed, but the whole with the shock wave The loaded rod area is shredded homogeneously.

Zweckmäßigerweise wird eine mit Wasser gefüllte Zerkleinerungskammer bereitgestellt, die im einfachsten Fall ein Wasserbecken sein kann, in welche das zu zerkleinernde Halbleitermaterial eingebracht wird. Die Schockwellen werden in die Zerkleinerungskammer eingekoppelt. Zu diesem Zweck kann sich der Halbellipsoidreflektor in der Zerkleinerungskammer befinden oder an eine ihrer Begrenzungsflächen montiert sein. Gegebenenfalls wird der Ort der Schockwellenerzeugung durch eine für Fremdstoffe undurchlässige, Schockwellen übertragende Membran räumlich vom Halbleitermaterial abgetrennt, um es vor Verunreinigungen zu schützen.A comminution chamber filled with water is expedient provided that in the simplest case Can be water basin, in which the to be shredded Semiconductor material is introduced. The shock waves are coupled into the comminution chamber. For this purpose the semi-ellipsoid reflector in the comminution chamber located or mounted on one of their boundary surfaces. If necessary, the location of the shock wave generation is determined by one that transmits shock waves impermeable to foreign substances Membrane spatially separated from the semiconductor material to get it in front To protect contaminants.

Vorzugsweise werden 1 bis 20 Energiewandler eingesetzt. Besonders bevorzugt werden 2, 4, 6, 8, 10, 12, 14, 16, 18 oder 20 Energiewandler eingesetzt. Insbesondere bevorzugt werden 2 Energiewandler eingesetzt. Preferably 1 to 20 energy converters are used. 2, 4, 6, 8, 10, 12, 14, 16, 18 or are particularly preferred 20 energy converters used. 2 are particularly preferred Energy converter used.

Beim Einsatz einer größeren Anzahl von Energiewandlern (z. B. mehr als zwei Energiewandler) werden diese vorzugsweise entlang des Halbleiterstabes derart angeordnet, daß ein größerer Abschnitt des Stabes oder der ganze Halbleiterstab auf einmal mit einem Puls behandelt wird.When using a larger number of energy converters (e.g. more than two energy converters) these are preferred arranged along the semiconductor rod such that a larger section of the rod or the entire semiconductor rod is treated with a pulse at once.

Beim Einsatz von 1 oder zwei Energiewandlern wird der Stab vorzugsweise Stück für Stück mit jeweils einem Puls behandelt.When using 1 or two energy converters, the rod preferably treated bit by bit with one pulse each.

Bevorzugt werden beim Einsatz mehrerer Energiewandler jeweils zwei Energiewandler im Winkel von 180° gegeneinander angeordnet.Are preferred when using several energy converters each two energy converters at an angle of 180 ° to each other arranged.

Vorzugsweise erfolgt die Zerkleinerung des Halbleitermaterials bei niedrigen Temperaturen, beispielsweise Raumtemperatur, so daß eine durch hohe Temperaturen induzierte und/oder beschleunigte Diffusion oberflächlich adsorbierter Fremdstoffe, insbesondere Fremdmetalle, weitgehend vermieden wird.The semiconductor material is preferably comminuted at low temperatures, for example room temperature, see above that an induced by high temperatures and / or accelerated diffusion of superficially adsorbed Foreign substances, especially foreign metals, largely avoided becomes.

Die Arbeitsflächen der Werkzeuge für den Transport und die Positionierung des Halbleitermaterials sind, um Verunreinigungen auszuschließen, vorzugsweise aus Kunststoff, wie beispielsweise Polyethylen (PE), Polytetrafluorethylen (PTFE) oder Polyvinylidendifluorid (PVDF), oder aus dem Werkstoff, wie das zerkleinerungsgut selbst, gefertigt. Ebenso hat es sich als günstig erwiesen, die Innenflächen der Zerkleinerungskammer mit Kunststoff auszukleiden.The work surfaces of the tools for transportation and the Positioning of the semiconductor material are to Exclude impurities, preferably made of plastic, such as polyethylene (PE), polytetrafluoroethylene (PTFE) or polyvinylidene difluoride (PVDF), or from the Material such as the comminuted material itself. As well it has proven to be convenient to use the inner surfaces of the Line the shredding chamber with plastic.

Das erfindungsgemäße Verfahren ermöglicht erstmals den Einsatz der Schockwellenzerkleinerung zur Zerkleinerung von Halbleitermaterial derart, daß eine gezielt einstellbare Bruchgrößenverteilung des Halbleitermaterials erhalten wird.The method according to the invention enables use for the first time the shock wave comminution for the comminution of Semiconductor material such that a specifically adjustable Fractional size distribution of the semiconductor material is obtained.

Das erfindungsgemäße Verfahren hat den Vorteil, daß durch die Stärke und ggf. auch Richtung der Impulse, die auf die Kristalloberfläche wirken, eine Kraft ausgeübt wird, durch deren Wirkung, die Anzahl und Richtung von Mikrorissen beeinflußt wird. Die Anzahl und Ausrichtung der Risse entlang der Korngrenzen des Materials bestimmt die Form und Größe der neu entstehenden Bruchstücke.The inventive method has the advantage that Strength and possibly also direction of the impulses that affect the Crystal surface act, a force is exerted by their effect, the number and direction of microcracks being affected. The number and orientation of the cracks along The grain boundaries of the material determine the shape and size of the newly created fragments.

Ein weiterer Vorteil des erfindungsgemäßen Verfahrens liegt darin, daß noch im Wirkkreis des Impulsgebers liegende Bruchstücke durch weitere Impulse nicht weiter nachzerkleinert werden, so daß die Nachzerkleinerung bei diesem Verfahren keinen wesentlichen Einfluß besitzt. Der durch die Schlagwirkung entstehende, Kontamination verursachende, Abrieb von der Stabunterlage kann durch die geometrische Anordnung der Energiewandler stark minimiert werden.Another advantage of the method according to the invention lies in the fact that it is still in the effective range of the pulse generator Fragments not further crushed by further impulses be so that the post-shredding in this process has no significant influence. The one through the Impact, abrasion causing contamination from the rod base can by the geometric arrangement the energy converter can be greatly minimized.

Besonders bevorzugt ist hierbei die Anordnung, bei der je zwei Energiewandler im Winkel von 180° gegeneinander stehen, wobei sich das Halbleitermaterial vorzugsweise in der Mitte zwischen den Energiewandlern befindet.The arrangement in which two each are particularly preferred Energy converters stand at an angle of 180 ° to each other, whereby the semiconductor material preferably in the middle between the energy converters.

Überraschenderweise zeigte sich, daß das erfindungsgemäße Verfahren auch eine Reinigung der Oberfläche des Halbleitermaterials bewirkt, wenn diese mit mehr als 2 ppb an Metall verunreinigt ist.Surprisingly, it was found that the invention Process also cleaning the surface of the Semiconductor material causes if this with more than 2 ppb Metal is contaminated.

Die Erfindung betrifft somit auch die Verwendung des erfindungsgemäßen Verfahrens zur Reinigung von Halbleitermaterial.The invention thus also relates to the use of the Process according to the invention for cleaning Semiconductor material.

Bei der Durchführung des erfindungsgemäßen Verfahrens entstehen in Folge der Schockwellen Kavitationsblasen, welche einen Reinigungseffekt auf der Oberfläche des Halbleitermaterials bewirken. Zudem bilden sich in den Kavitationsblasen oxidierende Verbindungen, die üblicherweise zur Reinigung von Halbleitermaterialien eingesetzt werden. So finden sich in der Flüssigkeit in der das Verfahren durchgeführt wird nach der Durchführung des Verfahrens z. B. Nitrat, Nitrit, OH-Radikale und H2O2. Die Gesamtkonzentration dieser Verbindungen liegt im Bereich von µmol/l bis mmol/l. In den Kavitationsblasen treten die oxidierenden Verbindungen jedoch in sehr hohen lokalen Konzentrationen, die im mol/l Bereich liegen, auf, da die Verbindungen zunächst auf die Kavitationsblasen beschränkt sind, d. h. dort entstehen und z. T. auch wieder zerstört werden. So tritt im erfindungsgemäßen Verfahren ein Reinigungseffekt auf nicht nur durch die Implosion der Kavitationsblasen an der Oberfläche des Halbleitermaterials auf, sondern auch durch die Reinigungswirkung der oxidierenden Verbindungen die in hohen lokalen Konzentrationen auf die Oberfläche einwirken, wenn die Gasblasen an der Oberfläche des Halbleitermaterials aufbrechen.When the method according to the invention is carried out, cavitation bubbles occur as a result of the shock waves, which have a cleaning effect on the surface of the semiconductor material. In addition, oxidizing compounds are formed in the cavitation bubbles, which are usually used for cleaning semiconductor materials. So are found in the liquid in which the method is carried out after performing the method z. B. nitrate, nitrite, OH radicals and H 2 O 2 . The total concentration of these compounds is in the range of µmol / l to mmol / l. In the cavitation bubbles, however, the oxidizing compounds occur in very high local concentrations, which are in the mol / l range, since the compounds are initially limited to the cavitation bubbles, that is, they are formed there and z. T. also be destroyed again. Thus, in the method according to the invention, a cleaning effect occurs not only through the implosion of the cavitation bubbles on the surface of the semiconductor material, but also through the cleaning action of the oxidizing compounds which act on the surface in high local concentrations when the gas bubbles break up on the surface of the semiconductor material.

Das erfindungsgemäße Verfahren ist zur Behandlung massiver, großvolumiger Körper aus Halbleitermaterial, bevorzugt aus mono- oder polykristallinem Silicium, geeignet.The method according to the invention is massive for the treatment, large-volume body made of semiconductor material, preferably made of mono- or polycrystalline silicon, suitable.

Vorzugsweise handelt es sich bei dem Halbleitermaterial um polykristallines Silizium.The semiconductor material is preferably polycrystalline silicon.

Mit dem erfindungsgemäßen Verfahren gelingt es, Halbleitermaterial, insbesondere Silicium, bei niedrigen Temperaturen und ohne die Berührung eines Brechwerkzeugs zu Bruchstücken mit einer maximalen Länge von 110 mm bis 250 mm zu zerkleinern und gleichzeitig zu reinigen. Bei fehlender oder nur geringer oberflächlicher Verunreinigung des zu zerkleinernden Halbleitermaterials kann die bisher übliche Oberflächenreinigung der Bruchstücke z. B. durch Ätzen reduziert oder eingespart werden.With the method according to the invention it is possible to Semiconductor material, especially silicon, at low Temperatures and without touching a crusher Fragments with a maximum length of 110 mm to 250 mm to shred and clean at the same time. If there is no or only slight superficial contamination of the comminuting semiconductor material can be the usual one Surface cleaning of the fragments z. B. by etching reduced or saved.

Durch das Brechen von Halbleitermaterial mittels des erfindungsgemäßen Verfahrens kommt es zu einer Kontamination kleiner 2 ppb Metall. Bruchstücke, die nur durch Metallstaub der Umgebung auf 4 ppb Metall verunreinigt wurden, werden durch das erfindungsgemäße Verfahren auf kleiner 2 ppb Metall gereinigt. Selbst in herkömmlicher Weise handgebrochenes Halbleitermaterial, bei dem die Verunreinigung fester in der Oxidschicht des Polysilizium Bruchstückes sitzt, werden durch das erfindungsgemäße Verfahren im Mittel auf 3 ppb Metall gereinigt. Zu einer weiteren Zerkleinerung unter die jeweils erwünschte Teilchengröße kommt es dabei nicht soweit die Teile bereits per Hand in diesen Größenbereich zerkleinert wurden.By breaking semiconductor material using the The method according to the invention results in contamination less than 2 ppb metal. Fragments that are only due to metal dust contaminated to 4 ppb metal by the method according to the invention on less than 2 ppb metal cleaned. Even hand-broken in the traditional way Semiconductor material in which the impurity is solid in the Oxide layer of the polysilicon fragment sits through the process according to the invention on average to 3 ppb metal cleaned. For further shredding under each The desired particle size does not come as far as the parts have already been crushed by hand in this size range.

Fig. 1 zeigt eine Vorrichtung zur Durchführung des erfindungsgemäßen Verfahrens wie sie in Beispiel 1 verwendet wird.Fig. 1 shows an apparatus for performing the inventive method as used in Example 1 becomes.

Das folgendene Beispiel dient der weiteren Erläuterung der Erfindung.The following example serves to further explain the Invention.

Beispiel:Example:

Ein Stück eines aus einer Abscheideanlage stammenden, polykristallinen Siliziumstabes (1) wurde auf einer Unterlage aus Polysiliziumstangen (2) vollständig in ein wassergefülltes Becken (3) eingetaucht. Im Abstand von 2 cm von der Staboberfläche sind zwei Halbellipsoidreflektoren (4) derart angeordnet, daß sie zueinander einen Winkel von 180° bilden, wobei sich in der Mitte zwischen den Halbellipsoidreflektoren der Siliciumstab (1) befindet. Die Halbellipsoidreflektoren (4) werden über Versorgungsleitungen (5) mit den dazugehörigen Energieversorgungseinrichtungen (6) verbunden.A piece of a from a separation plant polycrystalline silicon rod (1) was on a base made of polysilicon rods (2) completely into a water-filled one Basin (3) immersed. At a distance of 2 cm from the Rod surface are two semi-ellipsoid reflectors (4) arranged so that they form an angle of 180 ° to each other, being in the middle between the semi-ellipsoid reflectors the silicon rod (1) is located. The semi-ellipsoid reflectors (4) are via supply lines (5) with the associated Energy supply facilities (6) connected.

Ein Schockwellenpuls mit einer Pulsenergie von 12kJ und einer Pulsdauer von 3 µs wurde durch Zünden eines Lichtbogens zwischen den Elektroden (8) des Halbellipsoidreflektors erzeugt. Die Schockwelle läuft über eine elastische Membran (7) zur Oberfläche des Siliciumstabes (1). Die Position des Stabs im Becken war so gewählt, daß er zumindest annähernd mit dem Fokussierungsbereich eines Halbellipsoidreflektors übereinstimmte. Das der Schockwelle ausgesetzten Stabstück hatte einen Durchmesser von 190 mm und eine Länge von 1,20 m. Die Behandlung führte zu Bruchstücken folgender Bruchgröße: Bruchgröße (längste Ausdehnung/cm) Anteil (Gew.%) 0 bis 1 2 > 1 bis 4.5 3 > 4.5 bis 7 15 > 7 bis 12 75 > 12 5 A shock wave pulse with a pulse energy of 12kJ and a pulse duration of 3 µs was generated by igniting an arc between the electrodes (8) of the semi-ellipsoid reflector. The shock wave runs over an elastic membrane (7) to the surface of the silicon rod (1). The position of the rod in the pelvis was chosen so that it at least approximately matched the focusing area of a semi-ellipsoid reflector. The rod section exposed to the shock wave had a diameter of 190 mm and a length of 1.20 m. The treatment resulted in fragments of the following size: Fracture size (longest dimension / cm) Proportion (% by weight) 0 to 1 2nd > 1 to 4.5 3rd > 4.5 to 7 15 > 7 to 12 75 > 12 5

Diese Größenverteilung ist für einer Weiterverarbeitung im Tiegelziehprozeß sehr gut geeignet.This size distribution is for further processing in Crucible pulling process very well suited.

Claims (10)

Verfahren zum Behandeln von Halbleitermaterial bei dem eine oder mehrere mittels eines Energiewandlers erzeugte Schockwellen, in einem flüssigen Medium auf ein stabförmiges Halbleitermaterial übertragen werden, dadurch gekennzeichnet, daß der Energiewandler vom Halbleitermaterial einen Abstand von 1 cm bis 100 cm hat und eine Schockwelle eine Pulsenergie von 1 bis 20 kJ und eine Pulsanstiegszeit bis zum Energiemaximum von 1 bis 5 µs hat.Process for treating semiconductor material in one or more generated by an energy converter Shock waves, in a liquid medium on a rod-shaped semiconductor material are transferred, thereby characterized in that the energy converter from Semiconductor material has a distance of 1 cm to 100 cm and a shock wave a pulse energy of 1 to 20 kJ and a pulse rise time up to the energy maximum of 1 to 5 µs has. Verfahren gemäß Anspruch 1, dadurch gekennzeichnet, daß der Energiewandler einen Abstand von 1 bis 12 cm von der Oberfläche des Halbleitermaterials hat.A method according to claim 1, characterized in that the Energy converter a distance of 1 to 12 cm from the Has surface of the semiconductor material. Verfahren gemäß Anspruch 1 oder 2, dadurch gekennzeichnet eine Schockwelle eine Pulsenergie von 10 bis 15 kJ, besonders bevorzugt 11 bis 13 kJ hat.A method according to claim 1 or 2, characterized a shock wave a pulse energy of 10 to 15 kJ, particularly preferably has 11 to 13 kJ. Verfahren gemäß einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß die Schockwelle eine Pulsanstiegszeit bis zum Energiemaximum von 2 bis 4 µs hat.Method according to one of claims 1 to 3, characterized characterized in that the shock wave has a pulse rise time up to the energy maximum of 2 to 4 µs. Verfahren gemäß einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß eine Schockwelle pro jeweils beaufschlagtem Abschnitt des Halbleitermaterials eingesetzt wird, die einen Zerfall des bestrahlten Halbleitermaterials bewirkt.Method according to one of claims 1 to 4, characterized characterized in that one shock wave per each applied section of the semiconductor material is used, the decay of the irradiated Semiconductor material causes. Verfahren gemäß einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß 1 bis 20 Energiewandler eingesetzt werden.Method according to one of claims 1 to 5, characterized characterized in that 1 to 20 energy converters are used become. Verfahren gemäß einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß als Energiewandler ein Halbellipsoidreflektor eingesetzt wird. Method according to one of claims 1 to 6, characterized characterized that as an energy converter Semi-ellipsoid reflector is used. Verfahren gemäß einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß jeweils zwei Energiewandler im Winkel von 180° gegeneinander angeordnet sind.Method according to one of claims 1 to 5, characterized characterized that two energy converters at an angle of 180 ° are arranged against each other. Verwendung des Verfahrens gemäß einem der Ansprüche 1 bis 8 zum Zerkleinern von Halbleitermaterial.Use of the method according to one of claims 1 to 8 for shredding semiconductor material. Verwendung des Verfahrens gemäß einem der Ansprüche 1 bis 8 zur Reinigung von Halbleitermaterial.Use of the method according to one of claims 1 to 8 for cleaning semiconductor material.
EP99113591A 1998-07-30 1999-07-08 Method for treating semiconductor material Expired - Lifetime EP0976457B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19834447 1998-07-30
DE19834447A DE19834447A1 (en) 1998-07-30 1998-07-30 Process for treating semiconductor material

Publications (2)

Publication Number Publication Date
EP0976457A1 true EP0976457A1 (en) 2000-02-02
EP0976457B1 EP0976457B1 (en) 2000-11-15

Family

ID=7875902

Family Applications (1)

Application Number Title Priority Date Filing Date
EP99113591A Expired - Lifetime EP0976457B1 (en) 1998-07-30 1999-07-08 Method for treating semiconductor material

Country Status (4)

Country Link
US (1) US6360755B1 (en)
EP (1) EP0976457B1 (en)
JP (1) JP3180910B2 (en)
DE (2) DE19834447A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003078321A1 (en) * 2002-03-18 2003-09-25 Wacker-Chemie Gmbh Highly pure silica-powder, method and device for the production thereof
WO2009047107A3 (en) * 2007-10-02 2010-03-11 Wacker Chemie Ag Polycrystalline silicon and method for the production thereof
US7780937B2 (en) 2005-03-09 2010-08-24 Evonik Degussa Gmbh Granules based on pyrogenically prepared silicon dioxide, method for their preparation and use thereof
WO2010106056A1 (en) * 2009-03-16 2010-09-23 Schmid Silicon Technology Gmbh Purifying metallurgical silicon
CN102600948A (en) * 2012-03-29 2012-07-25 北京德高洁清洁设备有限公司 Full-automatic mechanized polycrystalline silicon crusher
CN103372490A (en) * 2012-04-13 2013-10-30 洛阳理工学院 Self-balancing impact polycrystalline silicon crusher with rotary arm
RU2733434C1 (en) * 2020-02-27 2020-10-01 Анатолий Евгеньевич Волков Electric pulsed crushing-separation method and device
CN112334232A (en) * 2018-07-04 2021-02-05 三菱综合材料株式会社 Method for breaking or cracking semiconductor material and method for producing semiconductor material block
CN113304848A (en) * 2021-07-08 2021-08-27 江苏鑫华半导体材料科技有限公司 Silicon block crushing device and using method thereof, and silicon block crushing method and application method thereof

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1167786A (en) * 1997-08-25 1999-03-09 Mitsubishi Electric Corp Semiconductor device and manufacture thereof
DE10009569C2 (en) * 2000-02-29 2003-03-27 Schott Glas Method and device for comminuting glass bodies by means of microwave heating
IL147049A0 (en) * 2001-12-12 2002-08-14 Do Coop Techmologies Ltd Thermal process involving cold rf irradiated liquid as core method for producing nano-size particles
DE102005019873B4 (en) * 2005-04-28 2017-05-18 Wacker Chemie Ag Apparatus and method for the mechanical comminution of semiconductor materials
DE102012213565A1 (en) 2012-08-01 2014-02-06 Wacker Chemie Ag Apparatus and method for crushing a polycrystalline silicon rod
CN102836765B (en) 2012-09-18 2014-12-31 新特能源股份有限公司 Method and device for breaking polysilicon
WO2015031444A1 (en) * 2013-08-29 2015-03-05 The Board Of Trustees Of The Leland Stanford Junior University Method of controlled crack propagation for material cleavage using electromagnetic forces
JP6339994B2 (en) * 2015-12-08 2018-06-06 パナソニック株式会社 Discharge crushing apparatus and discharge crushing method
JP6722874B2 (en) * 2017-06-06 2020-07-15 パナソニックIpマネジメント株式会社 Plate-shaped article disassembling device
JP2021107042A (en) * 2019-12-27 2021-07-29 三菱マテリアル株式会社 Method for fracturing semiconductor material or method for generating crack and method for manufacturing semiconductor material block
US11630153B2 (en) * 2021-04-26 2023-04-18 Winbond Electronics Corp. Chip testing apparatus and system with sharing test interface
CN114433330B (en) * 2022-02-08 2023-06-02 西安交通大学 Device and method for crushing ores by controllable shock waves
US11865546B2 (en) * 2022-02-11 2024-01-09 Sharp Pulse Corp. Material extracting system and method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1986006652A1 (en) * 1985-05-03 1986-11-20 Ceee Corporation Method and apparatus for fragmenting a substance by the discharge of pulsed electrical energy
US5082502A (en) * 1988-09-08 1992-01-21 Cabot Corporation Cleaning apparatus and process
EP0573855A1 (en) 1992-05-27 1993-12-15 Wacker-Chemitronic Gesellschaft für Elektronik-Grundstoffe mbH Process for contamination free comminuting of semi-conductor material, especially of silicon
DE19545579A1 (en) * 1995-12-07 1997-06-12 Tzn Forschung & Entwicklung Comminution of materials in metal housings, in particular, motor car catalyst units
DE19749127A1 (en) * 1997-11-06 1999-05-20 Wacker Chemie Gmbh Crystal rod, especially a polycrystalline silicon rod for producing raw material for single crystal growth

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4313573A (en) * 1980-02-25 1982-02-02 Battelle Development Corporation Two stage comminution
DE19534232C2 (en) * 1995-09-15 1998-01-29 Karlsruhe Forschzent Process for comminuting and crushing solids conglomerated from non-metallic or partially metallic components and for comminuting homogeneous non-metallic solids
US6033994A (en) * 1997-05-16 2000-03-07 Sony Corporation Apparatus and method for deprocessing a multi-layer semiconductor device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1986006652A1 (en) * 1985-05-03 1986-11-20 Ceee Corporation Method and apparatus for fragmenting a substance by the discharge of pulsed electrical energy
US5082502A (en) * 1988-09-08 1992-01-21 Cabot Corporation Cleaning apparatus and process
EP0573855A1 (en) 1992-05-27 1993-12-15 Wacker-Chemitronic Gesellschaft für Elektronik-Grundstoffe mbH Process for contamination free comminuting of semi-conductor material, especially of silicon
US5464159A (en) 1992-05-27 1995-11-07 Wacker-Chemitronic Gesellschaft Fur Elektronik-Grundstoffe Mbh Method for the contamination-free size reduction of semiconductor material, especially silicon
DE19545579A1 (en) * 1995-12-07 1997-06-12 Tzn Forschung & Entwicklung Comminution of materials in metal housings, in particular, motor car catalyst units
DE19749127A1 (en) * 1997-11-06 1999-05-20 Wacker Chemie Gmbh Crystal rod, especially a polycrystalline silicon rod for producing raw material for single crystal growth

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003078321A1 (en) * 2002-03-18 2003-09-25 Wacker-Chemie Gmbh Highly pure silica-powder, method and device for the production thereof
US7780937B2 (en) 2005-03-09 2010-08-24 Evonik Degussa Gmbh Granules based on pyrogenically prepared silicon dioxide, method for their preparation and use thereof
CN101815671B (en) * 2007-10-02 2012-10-24 瓦克化学股份公司 Polycrystalline silicon and method for the production thereof
WO2009047107A3 (en) * 2007-10-02 2010-03-11 Wacker Chemie Ag Polycrystalline silicon and method for the production thereof
US8398946B2 (en) 2007-10-02 2013-03-19 Wacker Chemie Ag Polycrystalline silicon and method for the production thereof
WO2010106056A1 (en) * 2009-03-16 2010-09-23 Schmid Silicon Technology Gmbh Purifying metallurgical silicon
CN102600948A (en) * 2012-03-29 2012-07-25 北京德高洁清洁设备有限公司 Full-automatic mechanized polycrystalline silicon crusher
CN103372490A (en) * 2012-04-13 2013-10-30 洛阳理工学院 Self-balancing impact polycrystalline silicon crusher with rotary arm
CN103372490B (en) * 2012-04-13 2015-04-22 洛阳理工学院 Self-balancing impact polycrystalline silicon crusher with rotary arm
CN112334232A (en) * 2018-07-04 2021-02-05 三菱综合材料株式会社 Method for breaking or cracking semiconductor material and method for producing semiconductor material block
EP3819031A4 (en) * 2018-07-04 2022-04-27 Mitsubishi Materials Corporation Method for fragmenting or method for producing cracks in semiconductor raw material, and method for producing mass of semiconductor raw material
RU2733434C1 (en) * 2020-02-27 2020-10-01 Анатолий Евгеньевич Волков Electric pulsed crushing-separation method and device
WO2021173032A1 (en) * 2020-02-27 2021-09-02 Общество С Ограниченной Ответственностью «Дельтарут» Method and device for electric pulse crushing and separation
CN113304848A (en) * 2021-07-08 2021-08-27 江苏鑫华半导体材料科技有限公司 Silicon block crushing device and using method thereof, and silicon block crushing method and application method thereof

Also Published As

Publication number Publication date
DE19834447A1 (en) 2000-02-10
EP0976457B1 (en) 2000-11-15
JP2000079350A (en) 2000-03-21
DE59900015D1 (en) 2000-12-21
US6360755B1 (en) 2002-03-26
JP3180910B2 (en) 2001-07-03

Similar Documents

Publication Publication Date Title
EP0976457B1 (en) Method for treating semiconductor material
EP0573855B1 (en) Process for contamination free comminuting of semi-conductor material, especially of silicon
EP2766123B1 (en) Method for fragmenting and/or pre-weakening material using high-voltage discharges
DE102005019873B4 (en) Apparatus and method for the mechanical comminution of semiconductor materials
DE10009569C2 (en) Method and device for comminuting glass bodies by means of microwave heating
DE102006027273B3 (en) Production of ultra-clean silicon to manufacture solar cells, comprises melting impurities contained in metallurgical silicon using solidification on a casting mold surface and mechanically removing the impurities from the mold
DE19534232A1 (en) Process for comminuting and crushing solids conglomerated from non-metallic or partially metallic components and for comminuting homogeneous non-metallic solids
WO2007113087A1 (en) Device and method for comminuting coarsely crushed polycrystalline silicon
WO2011003777A1 (en) Method for producing a highly pure quartz granulate
EP3055447B1 (en) Creation of a crack-initiating point or a cracking line for the improved splitting off of a solid layer from a solid body
DE3811091A1 (en) METHOD FOR COMMANDING LOW CONTAMINATION OF SOLID, PIECE OF SILICONE
EP0887105B1 (en) Device and method for comminution of semiconductive material
DE112013004071B4 (en) Method and apparatus for breaking polycrystalline silicon
DE10101040A1 (en) Device and method for producing a polycrystalline silicon rod
DE60219349T2 (en) PROCESS FOR TREATING CONTAMINATED NUCLEAR GRAPHITE
EP3122463B1 (en) Method for fragmenting a rod-like material, in particular made of polycrystalline silicon
EP1890338B1 (en) Method of texturing silicon wafer for fabricating solar cells
DE4316626A1 (en) Method and device for dividing up semiconductor material
EP2607309B1 (en) Polycrystalline silicon portion and method for breaking a silicon body
DE4327958C1 (en) Process and apparatus for recycling waste containing plastic and/or organic material
EP0924487B1 (en) Vacuum drying of semiconductor material
DE102005061690A1 (en) Metallurgical silicon producing method for manufacturing e.g. multi-crystalline silicon solar cells, involves forming crystallization front during directed freezing process, where front has shape of sector of spherical surface
DE68915465T2 (en) Process for forming parts of a preselected size from silicon rods.
EP0995821B1 (en) Method and apparatus for working semiconductor material
DE19749127A1 (en) Crystal rod, especially a polycrystalline silicon rod for producing raw material for single crystal growth

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19990713

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE IT

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17Q First examination report despatched

Effective date: 20000327

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AKX Designation fees paid

Free format text: DE IT

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE IT

ITF It: translation for a ep patent filed

Owner name: JACOBACCI & PERANI S.P.A.

REF Corresponds to:

Ref document number: 59900015

Country of ref document: DE

Date of ref document: 20001221

EN Fr: translation not filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20020730

Year of fee payment: 4

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040203

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050708