EP0970327B1 - Mit einem brenner ausgerüsteter heizkessel - Google Patents

Mit einem brenner ausgerüsteter heizkessel Download PDF

Info

Publication number
EP0970327B1
EP0970327B1 EP98907799A EP98907799A EP0970327B1 EP 0970327 B1 EP0970327 B1 EP 0970327B1 EP 98907799 A EP98907799 A EP 98907799A EP 98907799 A EP98907799 A EP 98907799A EP 0970327 B1 EP0970327 B1 EP 0970327B1
Authority
EP
European Patent Office
Prior art keywords
flame
boiler
heat exchanger
combustion chamber
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP98907799A
Other languages
English (en)
French (fr)
Other versions
EP0970327A1 (de
Inventor
Jörg Füllemann
Heinrich Boner
Andreas Allemann
Marco Allemann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vth Verfahrentechnik fur Heizung AG
Original Assignee
Vth Verfahrentechnik fur Heizung AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=27172344&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0970327(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Vth Verfahrentechnik fur Heizung AG filed Critical Vth Verfahrentechnik fur Heizung AG
Publication of EP0970327A1 publication Critical patent/EP0970327A1/de
Application granted granted Critical
Publication of EP0970327B1 publication Critical patent/EP0970327B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H1/00Water heaters, e.g. boilers, continuous-flow heaters or water-storage heaters
    • F24H1/22Water heaters other than continuous-flow or water-storage heaters, e.g. water heaters for central heating
    • F24H1/40Water heaters other than continuous-flow or water-storage heaters, e.g. water heaters for central heating with water tube or tubes
    • F24H1/43Water heaters other than continuous-flow or water-storage heaters, e.g. water heaters for central heating with water tube or tubes helically or spirally coiled
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C9/00Combustion apparatus characterised by arrangements for returning combustion products or flue gases to the combustion chamber
    • F23C9/006Combustion apparatus characterised by arrangements for returning combustion products or flue gases to the combustion chamber the recirculation taking place in the combustion chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C9/00Combustion apparatus characterised by arrangements for returning combustion products or flue gases to the combustion chamber
    • F23C9/08Combustion apparatus characterised by arrangements for returning combustion products or flue gases to the combustion chamber for reducing temperature in combustion chamber, e.g. for protecting walls of combustion chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D11/00Burners using a direct spraying action of liquid droplets or vaporised liquid into the combustion space
    • F23D11/36Details, e.g. burner cooling means, noise reduction means
    • F23D11/40Mixing tubes or chambers; Burner heads
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D14/00Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid
    • F23D14/34Burners specially adapted for use with means for pressurising the gaseous fuel or the combustion air
    • F23D14/36Burners specially adapted for use with means for pressurising the gaseous fuel or the combustion air in which the compressor and burner form a single unit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D14/00Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid
    • F23D14/46Details, e.g. noise reduction means
    • F23D14/72Safety devices, e.g. operative in case of failure of gas supply
    • F23D14/82Preventing flashback or blowback
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D17/00Burners for combustion conjointly or alternatively of gaseous or liquid or pulverulent fuel
    • F23D17/002Burners for combustion conjointly or alternatively of gaseous or liquid or pulverulent fuel gaseous or liquid fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23MCASINGS, LININGS, WALLS OR DOORS SPECIALLY ADAPTED FOR COMBUSTION CHAMBERS, e.g. FIREBRIDGES; DEVICES FOR DEFLECTING AIR, FLAMES OR COMBUSTION PRODUCTS IN COMBUSTION CHAMBERS; SAFETY ARRANGEMENTS SPECIALLY ADAPTED FOR COMBUSTION APPARATUS; DETAILS OF COMBUSTION CHAMBERS, NOT OTHERWISE PROVIDED FOR
    • F23M9/00Baffles or deflectors for air or combustion products; Flame shields
    • F23M9/06Baffles or deflectors for air or combustion products; Flame shields in fire-boxes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C2202/00Fluegas recirculation
    • F23C2202/10Premixing fluegas with fuel and combustion air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C2202/00Fluegas recirculation
    • F23C2202/20Premixing fluegas with fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C2900/00Special features of, or arrangements for combustion apparatus using fluid fuels or solid fuels suspended in air; Combustion processes therefor
    • F23C2900/03006Reverse flow combustion chambers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C2900/00Special features of, or arrangements for combustion apparatus using fluid fuels or solid fuels suspended in air; Combustion processes therefor
    • F23C2900/09002Specific devices inducing or forcing flue gas recirculation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D2207/00Ignition devices associated with burner
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D2209/00Safety arrangements
    • F23D2209/20Flame lift-off / stability
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D2210/00Noise abatement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D2900/00Special features of, or arrangements for burners using fluid fuels or solid fuels suspended in a carrier gas
    • F23D2900/11402Airflow diaphragms at burner nozzle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D2900/00Special features of, or arrangements for burners using fluid fuels or solid fuels suspended in a carrier gas
    • F23D2900/11403Flame surrounding tubes in front of burner nozzle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H1/00Water heaters, e.g. boilers, continuous-flow heaters or water-storage heaters
    • F24H1/22Water heaters other than continuous-flow or water-storage heaters, e.g. water heaters for central heating
    • F24H1/24Water heaters other than continuous-flow or water-storage heaters, e.g. water heaters for central heating with water mantle surrounding the combustion chamber or chambers
    • F24H1/26Water heaters other than continuous-flow or water-storage heaters, e.g. water heaters for central heating with water mantle surrounding the combustion chamber or chambers the water mantle forming an integral body
    • F24H1/263Water heaters other than continuous-flow or water-storage heaters, e.g. water heaters for central heating with water mantle surrounding the combustion chamber or chambers the water mantle forming an integral body with a dry-wall combustion chamber

Definitions

  • the present invention relates to a Burner-equipped boiler or instantaneous water heater, with a casing enclosing a boiler room, a jacket-shaped heat exchanger, which converts the boiler room into a Combustion chamber and an exhaust chamber split and over the The lateral surface distributes passages for hot combustion gases has, and one arranged in the combustion chamber Burner head according to the preamble of patent claim 1.
  • GB-A-792 747 discloses a boiler with one Boiler room, which is made up of a heat exchanger special coiled pipe into a pipe wrapped by the heat exchanger Fire chamber and an exhaust gas chamber surrounding the heat exchanger divides. Opposite an arranged on the front, Fireclay flame pot, in which for the commissioning of the Arrange a boiler head, not shown, in the boiler is a head assembly is formed on which the hot gases are redirected and swirled. Through the Turbulence gets unburned gases from the periphery back to the central flame.
  • the influx of fresh ignited air / fuel mixture into the combustion chamber creates an overpressure with which the exhaust gases openings between the windings of the heat exchanger tube in a ring channel outside the heat exchanger become.
  • the exhaust gases can be close to the head arrangement get into a first ring channel, in this to Flow on the burner side and in a second outer ring channel back again. In a simpler embodiment they reach the burner side within the combustion chamber, and step through the openings into the ring channel. In this The flue gas flows in the other direction again to a fireplace.
  • a burner head is inside the flame pot to arrange which is the heat exchanger before the radiant heat protects the flame and the burner head.
  • a recirculation of the exhaust gas in the flame is only in the boiler room provided outside the flame pot. With one Boilers can therefore only use high fuels Burn exhaust emissions.
  • a boiler according to the The preamble of claim 1 is known.
  • the boiler is with a vertical spiral tube as a heat exchanger Mistake.
  • On the top of the boiler is a burner head Fall burner arranged.
  • Opposite the fire opening of the The lint burner's flame cup is a concave one Firebrick arranged.
  • the heat exchanger is arranged, which an annular one arranged around the heat exchanger Separates the hot gas flue from the combustion chamber.
  • the turns of the spiral tube are in one middle area tight. Through increasing openings the gas enters between the end turns of the helical tube the outer hot gas flue, where it is down again and again passed through the heat exchanger into an exhaust pipe becomes
  • the disadvantage of this boiler is that the temperature the heating gas in the outer heating gas flue is still so high that radiant heat from one that surrounds the heating gas flue and on the Heat exchanger can be transferred.
  • the heating system should an oil or gas burner can be operated.
  • One advantage of the boiler according to the invention is in that it can be heated with burners, which one have lance-shaped flame. Such a flame is needed usually one elongated in the direction of the flame Firebox.
  • An arranged according to the invention Flame deflecting part allows the length of the Shorten the combustion chamber significantly. The deflecting part directs the Flame back to its starting point and shorten it Boiler room about half the length. This is the Combustion chamber almost filled with a flame, which comes from a flame tube in one direction and on the deflection part redirected in the opposite direction burns.
  • the rear part of the flame forms an axial core flow and the front part of the flame one around the core flow opposite mantle flow arranged around.
  • the Returning the flame to its root has continued Advantage that immediately after lighting the flame around the There are hot gases around the flame tube, which are suitable for the Improvement of the cold start behavior can be used.
  • Another advantage is that by turning the flame Furnace is better used and more compact than with a long, thin flame shape. In particular the entire length of the firebox is practically uniform suitable for heat transfer to a heat exchange medium, because the burning head is covered by the flame.
  • the heat exchanger advantageously has at or near at least one end of a final organ, which the Combustion chamber limited in the longitudinal direction. This is in addition to the exhaust gas chamber around the heat exchanger formed yet another chamber in which exhaust gas from the Exhaust chamber flows. This exhaust gas is now through the Heat exchanger is already cooled and can be used to cool the flame partly recirculated into the flame tube and partly through a chimney be drained.
  • a closing body advantageously divides its side facing away from the combustion chamber from the boiler room outflow chamber connectable with a chimney. Such Outflow chamber lies axially in the boiler. So she takes it Flue gas from the periphery evenly. Unilateral Loads on the heat exchanger can thus be avoided.
  • a closing organ from the boiler room advantageously divides one Recirculation chamber.
  • Cooled exhaust gas can be used to cool the flame into the flame tube be recirculated.
  • the recirculation chamber can also be the outflow chamber. It is advantageous the exhaust gas discharge chamber partitioned off by a closing element or / and the recirculation chamber from the heat exchanger encased. As a result, what flows into these chambers becomes Exhaust gas additionally cooled before it leaves the boiler room or performs its cooling task.
  • the exhaust gas is through the double contact with the heat exchanger up to about 80 Degrees cooled, even under continuous operation Full performance. This allows the flue gas to go directly to the boiler be drained into a plastic fireplace.
  • the closing body advantageously points between Combustion chamber and exhaust gas outflow a bulge for Exhaust gas outflow chamber open to extend the combustion chamber and the outflow chamber does not take up too much space claimed. Expediently through such Bulge the heat exchanger area around the Exhaust gas outflow chamber in relation to its volume kept large.
  • the flame deflecting part advantageously forms Closing organ, so the number of parts required can be reduced.
  • the arrangement of the Deflection part at a distance from the housing wall also acoustic Benefits.
  • This closing body is expediently or Flame deflection part bulged out towards the outflow chamber.
  • the flame deflecting part expediently has one on the flame axis, the flame opposing flame dividers and one around them annular deflection channel.
  • the flame divider divides the Flame apart and the deflector guides the flame parts so that their flow direction is turned through 180 °.
  • the Deflection channel is advantageously uniform all round designed so that the flame even after the deflection has a uniform shape.
  • the jacket of the heat exchanger advantageously consists of with space next to each other, which the combustion chamber arranged extensively and to a feed and a Discharge are connected.
  • These are expediently Heat exchanger tubes wound helically.
  • Such a heat exchanger jacket is easy to manufacture, exhibits a large surface and passages between the pipes on.
  • pipes can a smaller wall thickness and thus a more dynamic one Have heat transfer, which is characterized by a higher Performance noticeable in a small footprint.
  • the jacket of the heat exchanger is advantageous from a A plurality of heat exchanger units put together. The Individual heat exchanger units face each other a heat exchanger with a single one, but all the longer Pipe, a smaller length of pipe, causing the Flow rate can be increased.
  • the heat exchanger units are expedient therefore connected in parallel to the inlet and outlet.
  • Heat exchanger units according to the in French Patent No. 93 00498 Heat exchanger elements applied. These stand out other by a flattened pipe cross-section, which rounds out the exchange surface Cross sections is also enlarged.
  • Heat exchanger units also in that their production is already running for gas water heaters and therefore in excellent quality available on the market.
  • the burner is advantageous for exhaust gas recirculation equipped to meet the exhaust gas values prescribed today, especially in the case of frequent cold starts. Even if gas burners are used in the boiler according to the invention can find, so the burner is advantageous Oil burners because oil can be stored in simple tanks and these can easily be refilled. The dependence from a pipeline network can thus be avoided. The Handling oil is also much less dangerous than the handling of gas which, so it is not through a network is distributed under pressure in appropriate pressure tanks must be filled.
  • the burner is advantageously switchable or switchable on gas operation. If the burner head for both oil and oil Alternatively, these two media can be used with gas little additional installation effort, in the same Plant can be used. This has the advantages that e.g. on Price developments that can be responded to are higher Security against delivery bottlenecks exists or through Installation of a temporary oil tank on a projected creation of a gas supply line can, etc.
  • an air supply duct is expediently designed as a mixing tube for the admixture of gaseous fuel.
  • the inlet openings in the flame tube for the fuel / air mixture or the recirculated exhaust gas are advantageously designed such that the fuel / air mixture and the exhaust gas mix in a hollow cylindrical or frustoconical vortex zone. Due to these similar methods, the same flame tube can be used for both oil and gas.
  • the oil nozzle can even remain in the system during gas operation or the gas supply means during oil operation, so that there is a two-media firing system with a single burner.
  • these burners achieve exhaust gas values of less than 60 mg NO x per kW for oil and less than 20 mg NO x for gas.
  • the CO values of 16 mg / kW are also at a low level. Apart from this, excellent cold start behavior is achieved with this burner.
  • This flame chamber jacket ensures one even distribution of the hot smoke gases to the Heat exchanger and forms an ash catcher. It protects the Heat exchanger before direct contact with the flame. Thereby the distance between the flame and the heat exchanger can be very small being held.
  • This flame chamber coat also has an effect positive on noise insulation. They are advantageous Passages arranged so that the flue gases are approximately tangential flow out of the flame chamber jacket because they are in one common direction of rotation ordered the heat exchanger jacket flow through tangentially. This is the Heat transfer versus radial heat transfer Flow direction improved.
  • the housing advantageously has an installation in Enabling wall heater or plug-in kitchen unit Dimensions on.
  • the housing with air supply and exhaust duct can have a length of up to approx. 50 cm.
  • a the short version comes with a good 30 cm boiler length. This allows for a separate room for this heater to be dispensed with. It can be stored in a closet become.
  • a supply air line in counterflow is advantageous the flue gas pipe arranged to allow the air to pass through the waste heat is preheated in the flue gas.
  • This is expedient Blower arranged next to the housing and a supply air duct from Fan on one end of the housing and on the burner head led to the length or depth of the plant as small as possible to keep.
  • Essential housing parts are expedient and / or the heat exchanger made of austenitic stainless steel manufactured, which is resistant to the aggressive exhaust gases and condensates.
  • FIG. 1.1 shows a schematically simplified Representation of an embodiment of an inventive Boiler 11 '.
  • a housing 13 is from a heat exchanger 15 divided into a combustion chamber 17 and an exhaust gas chamber 19.
  • a flame tube 23 is on an end face of the combustion chamber 17 arranged and from the flame tube 23 strikes the flame axially 25.
  • supply air flows through a mixing tube 21 into the flame tube 23, burns in the flame 25 and flows as hot Combustion gas or flue gas through passages in the Heat exchanger 15 in the exhaust chamber 19 (arrows). From there The flue gas leaves the exhaust gas space 19 by means of one in FIG. 1 not shown opening in the housing 13.
  • Figure 1.2 shows a variant of this, in which in a boiler 11 " Closing member 27, the combustion chamber 17 limited in length.
  • FIG. 1.3 shows a simplified variant of the Figure 1.2, in which the heat exchanger 15, the exhaust chamber 19th does not separate from the outflow chamber 29, but only that Combustion chamber 17 envelops. In Figure 1.2 and Figure 1.3 is by Arrows indicate how exhaust gas recirculates into the flame tube 23 becomes.
  • 1.4 shows a boiler 11 "" in which Boiler room in addition to the final organ 27 Closing member 27 'is arranged, which is a Recirculation chamber 33, so that recirculating Exhaust gas from the combustion chamber 17 through the heat exchanger 15 in the exhaust chamber 19 and again through the heat exchanger 15 through into the recirculation chamber 33 and from there through recirculation openings in the flame tube 23 this is sucked in.
  • FIG. 2 shows a section through a Embodiment of a boiler 11 in turn Heat exchanger 15, combustion chamber 17 and exhaust chamber 19.
  • the flame tube 23 is arranged in the combustion chamber 17, which recirculation openings 35 and a flame opening 37 having.
  • the heat exchanger 15 is made of tubes 40 with a flat Cross section formed, which are wound helically. The tubes 40 are spaced from each other so that in the space 41 between the pipes 40 the exhaust gas Can flow through heat exchanger 15.
  • the heat exchanger 15 consists of individual elements 43, which are parallel and / or are connected in series to an inlet or outlet.
  • the A deflection part 39 is arranged opposite the flame opening 37. This deflection part 39 forms a closure member 27 or is connected to a closure member 27.
  • the closing body 27 sits between two tubes 40 or between two elements 43, so that the hot exhaust gas through the spaces 41 from the combustion chamber 17 into the exhaust chamber 19 and from there again between the pipes 40 into the outflow chamber 29 must flow.
  • the exhaust gas can then flow out of the outflow chamber 29 through the opening 31 into a fireplace or a Step over the exhaust pipe.
  • the deflection part 39 forms on the axis 45 of the Flame tube 23 or the boiler 11 an increase 47, which opposes the flame and divides it symmetrically.
  • the Flame is through the deflection channel 49 in one of the original direction of flame opposite direction deflected and strikes between the flame tube 23 and the Heat exchanger tubes 40 back against the flame root. This creates an approximately cylindrical flame body of about double the flame tube diameter and the hot exhaust gases are through the entire length of the combustion chamber 17 Gaps 41 conveyed between the tubes 40 where an exchange of energy with that flowing in the tubes 40 Heat transfer medium takes place.
  • the deflection part 39 is basin-shaped and sits with its bottom 49 near that opposite the flame tube Front of the housing 13.
  • the outer pool rim 51 closes almost flush with the outer channel edge 53 of the Deflection channel 49 between the heat exchanger tubes 40 to this and the pool wall 55 runs obliquely from the edge 51 of the Heat exchanger tubes 40 away, so that none of the tubes 40 through the depth claimed by the deflection part 39 is covered.
  • the the space occupied by the basin-shaped deflection part 39 opens up Cost of the outflow chamber 29, which thereby necessary minimum dimension is reduced.
  • the combustion chamber 17th is opposed by this form of closing body 27 the outflow chamber 29 extended. So that the length of the boiler room can be minimized.
  • a cover 57 is arranged, which is connected to the housing 13 is screwed.
  • the cover 57 has an opening 59 the inside of which is a baffle plate or cover 61 which the flame tube 23 is attached.
  • an annular disc 63 arranged, which consists of a refractory, porous or felt-like material and therefore an insulating It has an effect on both heat and sound.
  • the deflecting part 39 has a structure and thus the same effect.
  • the flame tube 23 is located near the baffle plate 61 Recirculation openings 35 through which exhaust gas from the Space 65 between heat exchanger 15 and flame tube 23 in the Flame tube to be recirculated.
  • the exhaust gas encased in Flame tube 23 a centrally let air flow. Thereby the flame tube is immediately after the ignition of a flame hot exhaust gas and immediately becomes hot itself.
  • an oil nozzle 67 is provided which the fuel through the central air flow into the Exhaust jacket sprays. The fuel evaporates in the exhaust jacket. The vaporized fuel is now together with the exhaust gas swirled in the air. The flame burns blue because of the whole Fuel is gasified before flame formation.
  • the same burner head can be used for gas operation. Only the gaseous fuel is added to the air, preferably on the vacuum side in the fan.
  • the flame tube 23 becomes hot and transfers a certain amount of energy to the heat exchanger 15 by radiation. This effect is desirable, especially because blue-burning flames otherwise emit little radiant energy.
  • the exhaust gas values are very low in both operating modes:
  • the NO X emissions are below 60 mg / kW in the case of an oil fire and below 20 mg / kW in the case of a gas fire.
  • the CO values are below 16 mg / kW.
  • FIGs 3 and 4 show a further embodiment of a boiler according to the invention.
  • Figure 3 is a Longitudinal section
  • Figure 4 is a cross section of the same boiler.
  • This boiler 11 "is the closing member 27, for example as a simplified deflecting part without a specific shape designed.
  • boiler 11 2 shows a flame chamber jacket 69 on the combustion chamber side of the Heat exchanger 15 arranged in the combustion chamber 17.
  • the Flame chamber jacket 69 points to its cylindrical jacket Slits 71 and baffles 73, which are called Flue gases from the inner area of the combustion chamber 17 released and in a flow rotating about axis 45 through the spaces 41 between the tubes 40 of the Conduct heat exchanger 15 (arrows in Fig. 4).
  • the flame now strikes between the flame tube 23 and the flame chamber jacket 69 back to the flame tube side end of the housing 13.
  • the flame chamber jacket directs the exhaust gases into a spiral Movement around.
  • the flame chamber jacket 69 is a Protection for the heat exchanger 15. It protects the heat exchanger 15 largely before direct flame contact. That is why Flame chamber jacket at its front end, near that Closing member 27 or the deflecting part 39 closed and has no slots 71 through which they are not total deflected flame to the tubes 40 of the heat exchanger 15 could get.
  • the screw turns 77 of the heat exchanger 15 are included a straight connector 79 (Fig. 4) on both sides to a Lead 81 or a lead 83 connected.
  • the individual heat exchanger elements 43 consist of four Windings of a tube 40 with a flat cross section and are in parallel to the lead 81 and the lead 83 connected. Bulges in the pipe wall (not shown) keep a distance between the tubes 40 of turns 77.
  • FIG. 5 shows a burner head 111 for liquid Fuels, with a baffle plate 113, which is not in a Wall of a combustion chamber 112 shown is mountable.
  • a flame tube 115 with a 1: 2 diameter to length ratio arranged.
  • a lance or nozzle 119 is arranged.
  • the fasteners for the nozzle 119 and the baffle plate 113 together form e.g. an aperture unit, as described, for example, in EPA 0 650 014 is described.
  • the nozzle head 123 is centered in an orifice insert 125.
  • the spray opening 121 of the nozzle 119 lies in the plane of the baffle plate 113 or Aperture insert 125.
  • the aperture insert 125 is on the Baffle plate 113 attached and covers except for an annular Air opening 129 around nozzle head 123, opening 127 in the baffle plate 113.
  • the annular air opening 129 takes an area of approximately 8% of the cross-sectional area of the flame tube 115 a.
  • the air opening 129 is also swirling Guides 131 equipped. These guide surfaces 131 are radially aligned and are opposite the flame tube axis 117 and flow direction 114 inclined so that through the Air opening 129 flowing air rotating about axis 117 is transferred.
  • the fins or guide surfaces 131 are made made in one piece with the panel insert 125 (Fig. 7 and 8th). In their manufacture and alignment, they are up to a roughly twice the material thickness Connection 132 from the panel insert plate 134 cut out or punched and then opposite the Aperture insert plane rotated by 60 to 88 degrees. Here are on the most deformable places due to the twisting of the connections the lengths of the deforming sheet edges enlarged by round cutouts (136 in FIG. 7) by one Prevent cracking.
  • the flame tube 115 is with links 133 on the Baffle plate 113 attached.
  • the links 133 are formed in one piece with the wall 139 of the flame tube 115, protrude over the baffle plate end of the flame tube 115 out and are through slots in the baffle plate 113th put through. Be upstream of the baffle plate 113 the connectors 133 twisted after plugging together, so that a firm connection between baffle plate 113 and Flame tube 115 is formed.
  • the connecting links 133 have a stepped, themselves tapered silhouette on.
  • Paragraphs 137 in the stairs are on the flame tube side of the baffle plate 113 and thus define the opening width of the recirculation slot 135. Exhaust gas becomes through this recirculation slot 135 along the baffle plate 113 and the aperture insert 125 in the Flame tube 115 sucked to soot this area to prevent.
  • a favorable opening width is around 1 mm.
  • the flame tube 115 has recirculation openings 139 through which the exhaust gas through the Vacuum, which is downstream of the baffle plate 113 due to the Air flow is created, is sucked in.
  • the openings 139 can but also in a different number and / or other form.
  • the flame tube 115 has an inner diameter of about 80 mm and a length of about 160 mm. At the The combustion chamber 112 facing the end of the flame tube 15 is this constricted. The constriction 141 narrows the Flame outlet opening 143 opposite Flame tube cross section. The edge area 145 of the flame tube 115 is round inward to form the constriction 141 turned.
  • the ignition electrodes 147 are near the periphery of the Flame tube 115 with ceramic insulation pieces 149 through the baffle plate 13 and protrude with their ends 151 into the flame tube 115.
  • the ignition point 153 is in a distance from the baffle plate 113 of about 2/5 of the length of the flame tube 115.
  • the fuel is the shortest route through the Air flow sprayed through, shown with broken lines 172.
  • the cone shell of the sprayed Fuel has an angle between 60 and 90 degrees.
  • the nozzle preferably has a conical jacket characteristic 80 degrees. Gasified in an area 173 of the exhaust jacket 167 the fuel and is by vortex 175 in the exhaust jacket 167th mixed with the exhaust gas. Because upstream of the gasification zone 173 there is no gasified fuel that could burn, and on the short penetration path that the fuel must travel through airflow 169 which Fuel does not start to burn becomes practical All fuel in gas jacket 167 gasifies and arrives only in a gasified form with the air in a reaction triggering contact.
  • Gasified fuel is thus in vortices 171 the exhaust gas swirls with the air and burns first in the area of these vertebrae 171 cool and low in pollutants.
  • the flame begins in its root region 177 at the end of the first third of the flame tube 115.
  • the flame root is annular between exhaust jacket 167 and air flow 169 embedded.
  • the ends in the last third of the flame tube central air flow 169 in the center of the flame and cools it.
  • the thickness of the jacket 167 is decreasing downstream because the exhaust gas / fuel vapor mixture is on this route mixed with the air.
  • the fuel vapor is about two thirds of the flame tube length fed to the flame.
  • the Flame thus has an annular and elongated Root area and is out of the cladding area 167 nourished.
  • the casing zone 167 becomes through the constriction 141 limited downstream.
  • the gas in the jacket area 167 is at Flowing out of the flame tube 115 hindered. A swirl this favors the two media.
  • the exiting Flame sticks to the flame tube.
  • burner head 111 ' is for gas and are different zones during the combustion of gaseous Fuel shown schematically.
  • the burner head 111 ' corresponds essentially to the burner head 111 for liquid Fuel.
  • a perforated plate 157 is in front of the baffle plate 113 in the direction of flow however, a perforated plate 157 at a distance from the baffle plate 113 arranged.
  • the perforated plate 157 has an opening 158, through which the displacement body or the oil nozzle 119 pushes through.
  • the holes are arranged around it which cause a pressure drop to kick back to prevent the flame into the feed channel 155.
  • At the Supply duct 155 is a fuel supply and a blower arranged (both not shown).
  • the flame begins in its root area 177 in the first Third of the flame tube 115.
  • the flame root is ring-shaped between exhaust jacket 167 and air / fuel flow 169 embedded.
  • the central stream 169 ends in the center of the Flame and cool it.
  • the thickness of the sheath is 167 decreasing downstream because the exhaust gas is on this System mixed with the air / fuel mixture.
  • the Fuel burns quietly and is low in pollutants.
  • the gas burner works practically regardless of the shape of the furnace. It is particularly suitable for compact firing systems with short firing rooms.
  • the burner is not only suitable for burning gas.
  • the burner achieves exhaust gas values for NO x below 60 mg / kW with liquid fuels.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Combustion Of Fluid Fuel (AREA)
  • Gas Burners (AREA)

Description

Technisches Gebiet der Erfindung
Die vorliegende Erfindung betrifft einen mit einem Brenner ausgerüsteten Heizkessel oder Durchlauferhitzer, mit einem einen Kesselraum umhüllenden Gehäuse, einem mantelförmigen Wärmetauscher, welcher den Kesselraum in eine Brennkammer und eine Abgaskammer aufteilt und über die Mantelfläche verteilt Durchlässe für heisse Verbrennungsgase aufweist, und einem in der Brennkammer angeordneten Brennerkopf, gemäss Oberbegriff des Patentanspruchs 1.
Stand der Technik
In der französischen Patentschrift Nr. 93 00498 sind eine Reihe von Anordnungen von Heizkesseln aufgezeichnet, welche einige der oben angeführten Merkmale aufweisen. Diese Heizkessel sind jedoch auf Gasbrenner ausgerichtet, welche einen stirnseitig verschlossenen, zylindrischen Mantel aufweisen, auf dessen Mantelfläche verteilt eine Vielzahl von Flammöffnungen angeordnet sind. Ein solcher Gas-Heizkessel oder Durchlauferhitzer ist sehr platzsparend und benötigt keinen separaten Heizungsraum.
Schon lange besteht ein Bedürfnis nach einer derart platzsparenden Heizanlage, welche mit dem Brennstoff Öl betrieben werden kann. Denn ein Nachteil des Brennstoffs Gas ist, dass seine Vorrathaltung bedeutend aufwendiger ist, als die Vorrathaltung von Öl. So ist eine Gasfeuerung entweder auf einen teuren Drucktank oder einen Anschluss an ein Verteilnetz für Gas angewiesen, wogegen Öl bereits in Tausenden von installierten Tanks problemlos und in genügender Menge vor Ort gelagert wird. Auch die Versorgung bzw. das Auffüllen des Öltanks mit Öl ist wesentlich einfacher und weniger gefährlich als beim Gas.
GB-A-792 747 offenbart einen Heizkessel mit einem Kesselraum, welcher durch einen Wärmetauscher aus einem spezielle gewundenen Rohr in eine vom Wärmetauscher umwundene Feuerkammer und eine den Wärmetauscher umgebende Abgaskammer aufteilt. Gegenüber einem stirnseitig angeordneten, Schamotte-Flammtopf, in welchem für die Inbetriebnahme des Heizkessels ein nicht dargestellter Brennerkopf anzuordnen ist, ist eine Kopfanordnung ausgebildet, an welcher die heissen Gase umgelenkt und verwirbelt werden. Durch die Verwirbelung geraten unverbrannte Gase von der Peripherie zurück in die zentrale Flamme. Der Zustrom des frisch entzündeten Luft/Brennstoffgemisches in die Brennkammer erzeugt einen Überdruck, mit welchem die Abgase Öffnungen zwischen den Wicklungen des Wärmetauscherrohres hindurch in einen Ringkanal ausserhalb des Wärmetauschers gedrängt werden. Die Abgase können dabei in der Nähe der Kopfanordnung in einen ersten Ringkanal gelangen, in diesem zur Brennerseite strömen und in einem zweiten äusseren Ringkanal wieder zurück. In einem einfacheren Ausführungsbeispiel gelangen sie innerhalb der Brennkammer zur Brennerseite, und treten dort durch die Öffnungen in den Ringkanal. In diesem Ringkanal strömt das Abgas wieder in die andere Richtung einem Kamin zu. Ein Brennerkopf ist innerhalb des Flammtopfes anzuordnen, welcher den Wärmetauscher vor der Strahlungswärme der Flamme und des Brennerkopfes schützt. Eine Rezirkulation des Abgases in die Flamme ist lediglich im Kesselraum ausserhalb des Flammtopfes vorgesehen. Mit einem solchen Kessel lassen sich deshalb Brennstoffe lediglich mit hohen Abgasemissionswerten verbrennen.
Aus der DE-A-32 12 006 ist ein Heizkessel gemäss dem Oberbegriff des Patentanspruchs 1 bekannt. Der Kessel ist mit einem senkrecht stehenden Wendelrohr als Wärmetauscher versehen. Oberseitig des Kessels ist ein Brennerkopf eines Sturzbrenners angeordnet. Gegenüber der Feueröffnung des Flammbechers des Sturzbrenners ist eine konkave Schamottplatte angeordnet. Um die Schamottplatte und die zwischen Feueröffnung und Schamottplatte sich erstreckende Umkehrbrennkammer ist der Wärmetauscher angeordnet, welcher einen um den Wärmetauscher herum angeordneten, ringförmigen Heizgaszug von der Brennkammer trennt. Durch die Schamottplatte werden die heissen Gase zurück zum Brennerkopf umgelenkt. Die Windungen des Wendelrohres sind in einem mittleren Bereich eng anliegend. Durch zunehmende Öffnungen zwischen den Endwindungen des Wendelrohrs gelangt das Gas in den äusseren Heizgaszug, wo es wieder nach unten und nochmals durch den Wärmetauscher hindurch in ein Abgasrohr geleitet wird
Nachteilig an diesem Heizkessel ist, dass die Temperatur des Heizgases im äusseren Heizgaszug noch derart hoch ist, dass Strahlungswärme von einem den Heizgaszug umschliesenden und durch die Heizgase bestrichenen Schamotterohr auf den Wärmetauscher übertragen werden kann.
Aufgabe der Erfindung
Es ist deshalb Aufgabe der Erfindung, eine Feuerungsanlage zu schaffen, welche mit einem Ölbrenner betrieben werden kann, ohne dass sie deswegen grösser als eine Gasfeuerungsanlagen ist. Zudem soll die Heizanlage mit einem Öl- oder Gasbrenner betrieben werden können. Weiter ist es Aufgabe der Erfindung, eine Feuerungsanlage zu schaffen, die sich durch sehr niedrige Abgaswerte und kleine Wärmeverluste und auch einen niedrigen Geräuschpegel auszeichnet.
Beschreibung der Erfindung
Erfindungsgemäss wird dies durch die Kennzeichenden Merkmale des Anspruchs 1 erreicht.
Ein Vorteil des erfindungsgemässen Heizkessels liegt darin, dass er mit Brennern beheizt werden kann, welche eine lanzenförmige Flamme aufweisen. Eine solche Flamme benötigt normalerweise einen in Flammenrichtung langgezogenen Feuerraum. Ein erfindungsgemäss angeordnetes Flammenumlenkteil ermöglicht jedoch, die Länge des Feuerraumes wesentlich zu verkürzen. Das Umlenkteil lenkt die Flamme zurück zu ihrem Ausgangspunkt und verkürzt den Kesselraum damit auf etwa halbe Länge. Dadurch ist die Brennkammer mit einer Flamme fast ausgefüllt, welche aus einem Flammrohr hinaus in die eine Richtung und am Umlenkteil umgelenkt in die entgegengesetzte Richtung brennt. Hierbei bildet der hintere Teil der Flamme eine axiale Kernströmung und der vordere Teil der Flamme eine um die Kernströmung herum angeordnete gegenläufige Mantelströmung. Die Rückführung der Flamme zu ihrer Wurzel hat weiter den Vorteil, dass sofort nach Entfachen der Flamme um das Flammrohr herum heisse Gase vorliegen, welche für die Verbesserung des Kaltstartverhaltens genutzt werden können. Von Vorteil ist weiter, dass durch das Wenden der Flamme der Feuerungsraum besser ausgenutzt ist und kompakter gestaltet werden kann, als bei langer, dünner Flammenform. Insbesondere ist die ganze Länge des Feuerraumes praktisch gleichmässig zur Wärmeübertragung auf ein Wärmetauschermedium geeignet, weil der Brennkopf von der Flamme ummantelt ist.
Vorteilhaft weist der Wärmetauscher bei oder nahe wenigstens einem Ende ein Abschlussorgan auf, welches die Brennkammer in der Längsrichtung begrenzt. Dadurch ist zusätzlich zur Abgaskammer um den Wärmetauscher herum auch noch eine weitere Kammer gebildet, in welche Abgas aus der Abgaskammer fliesst. Dieses Abgas ist nun durch den Wärmetauscher bereits gekühlt und kann zur Kühlung der Flamme teils in das Flammrohr rezirkuliert und teils durch ein Kamin abgelassen werden. Vorteilhaft teilt ein Abschlussorgan auf seiner der Brennkammer abgewandten Seite vom Kesselraum eine mit einem Kamin verbindbare Ausströmkammer ab. Eine solche Ausströmkammer liegt axial im Kessel. Dadurch nimmt sie das Rauchgas aus der Peripherie gleichmässig auf. Einseitige Belastungen des Wärmetauschers können damit vermieden werden. Vorteilhaft teilt ein Abschlussorgan vom Kesselraum eine Rezirkulationskammer ab. Durch diese Rezirkulationskammer kann gekühltes Abgas zur Kühlung der Flamme ins Flammrohr rezirkuliert werden. Die Rezirkulationskammer kann gleichzeitig auch die Ausströmkammer sein. Vorteilhaft ist die durch ein Abschlussorgan abgeteilte Abgasausströmkammer oder/und die Rezirkulationskammer vom Wärmetauscher ummantelt. Dadurch wird das in diese Kammern einströmende Abgas zusätzlich gekühlt, bevor es den Heizraum verlässt, bzw. seine kühlende Aufgabe wahrnimmt. Das Abgas wird durch den zweimaligen Kontakt mit dem Wärmetauscher bis auf etwa 80 Grad abgekühlt, und dies selbst im Dauerbetrieb unter Volleistung. Dadurch kann das Rauchgas nach dem Kessel direkt in ein Kunststoffkamin abgelassen werden.
Vorteilhaft weist das Abschlussorgan zwischen Brennkammer und Abgasausströmkammer eine Ausbuchtung zur Abgasausströmkammer hin auf, damit die Brennkammer verlängert werden kann und die Ausströmkammer nicht unnötig viel Platz beansprucht. Zweckmässigerweise wird durch eine solche Ausbuchtung die Wärmetauscherfläche um die Abgasausströmkammer herum im Verhältnis zu deren Volumen gross gehalten.
Vorteilhaft bildet das Flammenumlenkteil ein Abschlussorgan, damit die Anzahl der benötigten Teile reduziert werden kann. Zudem hat die Anordnung des Umlenkteils mit Abstand zur Gehäusewand auch akustische Vorteile. Zweckmässigerweise ist dieses Abschlussorgan oder Flammenumlenkteil zur Ausströmkammer hin ausgebuchtet. In der Ausbuchtung geschieht zweckmässigerweise die Umlenkung der Flamme, ohne dass dabei Wärmetauscherelemente beteiligt sind, und die gesamte Wärmetauscherfläche kann genutzt werden, weil das Umlenkteil keine Durchlässe für heisses Rauchgas verdeckt. Zweckmässigerweise weist das Flammenumlenkteil einen auf der Flammenachse angeordneten, der Flamme entgegenstehenden Flammenteiler und um diesen herum eine ringförmige Umlenkrinne auf. Der Flammenteiler teilt die Flamme auseinander und die Umlenkrinne führt die Flammenteile so, dass deren Strömungsrichtung um 180° gewendet wird. Die Umlenkrinne ist vorteilhaft umlaufend gleichmässig ausgestaltet, so dass die Flamme auch nach der Umlenkung eine gleichmässige Form aufweist.
Vorteilhaft besteht der Mantel des Wärmetauschers aus mit Zwischenraum nebeneinander aufgereihten Rohren, welche die Brennkammer umfangend angeordnet und an eine Zu- und eine Ableitung angeschlossen sind. Zweckmässigerweise sind die Wärmetauscherrohre schraubenförmig gewickelt. Ein solcher wärmetauschermantel ist einfach in der Herstellung, weist eine grosse Oberfläche und Durchlässe zwischen den Rohren auf. Rohre können zusätzlich, im Vergleich zu Gussteilen, eine geringere Wandstärke und damit eine dynamischere Wärmeübertragung aufweisen, was sich durch eine höhere Leistung bei geringem Platzbedarf bemerkbar macht. Vorteilhaft ist der Mantel des Wärmetauschers aus einer Mehrzahl von Wärmetauschereinheiten zusammengefügt. Die einzelnen Wärmetauschereinheiten weisen dadurch gegenüber einem Wärmetauscher mit einem einzigen, dafür umso längeren Rohr, eine kleinere Rohrleitungslänge auf, wodurch die Durchflussgeschwindigkeit erhöht werden kann.
Zweckmässigerweise sind die Wärmetauschereinheiten deshalb parallel an die Zu- und Ableitung angeschlossen. Mit Vorteil werden Wärmetauschereinheiten gemäss den im französischen Patent Nr. 93 00498 beschriebenen Wärmetauscherelementen angewendet. Diese zeichnen sich unter anderem durch einen flachgedrückten Rohrquerschnitt aus, wodurch die Austauschoberfläche gegenüber runden Querschnitten zusätzlich vergrössert wird. Unter anderem besteht ein wesentlicher Vorteil bei'der Verwendung dieser Wärmetauschereinheiten auch darin, dass ihre Produktion bereits für Gas-Durchlauferhitzer läuft und sie deshalb in ausgezeichneter Qualität auf dem Markt käuflich vorliegen.
Vorteilhaft ist der Brenner für Abgasrezirkulation ausgerüstet, um die heute vorgeschriebenen Abgaswerte, insbesondere auch bei häufigem Kaltstart, zu unterschreiten. Wenn auch Gasbrenner im erfindungsgemässen Kessel Verwendung finden können, so ist der Brenner doch vorteilhaft ein Ölbrenner, weil Öl in einfachen Tanks bevorratet werden kann und diese einfach nachgefüllt werden können. Die Abhängigkeit von einem Leitungsnetz kann so vermieden werden. Die Handhabung von Öl ist zudem wesentlich weniger gefährlich als die Handhabung von Gas, welches, so es nicht durch ein Netz verteilt wird, unter Druck in entsprechende Drucktanks abgefüllt werden muss.
Vorteilhaft ist der Brenner umstell- oder umschaltbar auf Gasbetrieb. Wenn der Brennerkopf sowohl für Öl wie für Gas geeignet ist, können diese beiden Medien alternativ, mit geringem zusätzlichem Installationsaufwand, in der gleichen Anlage genutzt werden. Dies hat die Vorteile, dass z.B. auf Preisentwicklungen reagiert werden kann, dass eine höhere Sicherheit gegenüber Lieferengpässen vorliegt oder durch Installation eines provisorischen Öltanks auf eine projektierte Erstellung einer Gaszuleitung gewartet werden kann, usw.
Vorteilhaft sprüht bei Ölbetrieb des Brenners eine Öldüse das Öl zum Verdampfen in in das Flammrohr rezirkuliertes Abgas und sind die Einlassöffnungen in das Flammrohr für die Luft bzw. das Abgas derart ausgebildet, dass sich die Luft und das Abgas in einer hohlzylindrischen oder hohlkegelstumpfförmigen Wirbelzone vermischen. Das mit dem Abgas vermischte Öl ist dadurch vollständig verdampft, bevor es mit der Luft vermischt wird. Dadurch ergeben sich sehr vorteilhafte Abgaswerte und ein ausgezeichnetes Startverhalten des Brenners.
Zweckmässigerweise ist bei Gasbetrieb des Brenners ein Zuluftkanal als Mischrohr für die Beimischung von gasförmigem Brennstoff ausgebildet. Vorteilhaft sind die Einlassöffnungen in das Flammrohr für das Brennstoff/Luft-Gemisch bzw, das rezirkulierte Abgas derart ausgebildet, dass sich das Brennstoff/Luft-Gemisch und das Abgas in einer hohlzylindrischen oder hohlkegelstumpfförmigen Wirbelzone vermischen. Durch diese ähnlichen Methoden bedingt, kann das gleiche Flammrohr sowohl für Öl wie für Gas Verwendung finden. Es können sogar die Öldüse bei Gasbetrieb, beziehungsweise die gaszuführenden Mittel bei Ölbetrieb in der Anlage verbleiben, so dass eine Zweimedien-Feuerunganlage mit einem einzigen Brenner vorliegt. Zusätzlich werden mit diesen Brennern Abgaswerte von unter 60 mg NOx pro kW für Öl und unter 20 mg NOx bei Gas erreicht. Auch die CO-Werte liegen mit 16 mg/kW auf einem tiefen Niveau. Abgesehen davon wird mit diesem Brenner ein ausgezeichnetes Kaltstartverhalten erzielt.
Vorteilhaft ist in der Brennkammer zwischen Brennrohr, bzw. umgelenkter Flamme und Wärmetauscher ein zylindrischer Flammraummantel angeordnet, welcher Durchlässe für heisse Rauchgase aufweist. Dieser Flammraummantel gewährleistet eine gleichmässige Verteilung der heissen Rauchgase auf den Wärmetauscher und bildet einen Aschenfänger. Er schützt den Wärmetauscher vor direktem Kontakt mit der Flamme. Dadurch kann der Abstand zwischen Flamme und Wärmetauscher sehr klein gehalten werden. Zusätzlich wirkt sich dieser Flammraummantel positiv auf die Lärmdämmung aus. Vorteilhaft sind die Durchlässe so angeordnet, dass die Rauchgase etwa tangential aus dem Flammraummantel ausströmen, weil sie so in einer gemeinsamen Drehrichtung geordnet den Wärmetauschermantel etwa tangential durchströmen. Dadurch ist die Wärmeübertragung gegenüber der Wärmeübertragung bei radialer Durchströmungsrichtung verbessert.
Vorteilhaft weist das Gehäuse den Einbau in ein Wandheizgerät oder Kücheneinschubgerät ermöglichende Abmessungen auf. Das Gehäuse mit Luftzuleitung und Abgaskanal kann dazu eine Länge von bis zu ca. 50 cm aufweisen. Eine kurze Ausführungsform kommt mit gut 30 cm Kessellänge aus. Damit kann auf einen eigenen Raum für diese Heizung verzichtet werden. Sie kann in einem Schrank untergebracht werden. Vorteilhaft ist eine Zuluftleitung im Gegenstrom um das Rauchgasrohr angeordnet, damit die Luft durch die Abwärme im Rauchgas vorgeheizt wird. Zweckmässigerweise ist das Gebläse neben dem Gehäuse angeordnet und ein Zuluftkanal vom Gebläse auf eine Stirnseite des Gehäuses und an den Brennkopf geführt, um die Länge oder Tiefe der Anlage möglichst klein zu halten.
Vorteilhaft sind an den Stirnseiten der Brennkammer feuerfeste Platten mit labyrinthischer innerer Struktur angeordnet. Diese schützen die dahinterliegenden Metallteile, isolieren das Gehäuse gegenüber der Hitze der Flamme und dämmen die Schallemissionen des Brenners. Zweckmässigerweise ist eine Stirnseite des Gehäuses durch einen entfernbaren Deckel verschlossen. Vorteilhaft ist der Brenner am Deckel befestigt. Dadurch ist der Kesselraum und der Brenner leicht zugänglich.
Zweckmässigerweise sind wesentliche Gehäuseteile und/oder der Wärmetauscher aus austenitischem Edelstahl gefertigt, welcher resistent ist gegen die aggressiven Abgase und Kondensate.
Kurze Beschreibung der Figuren
Nachfolgend werden Ausführungsbeispiele der Erfindung unter Bezugnahme auf die Figuren beschrieben. Es zeigt:
Fig. 1
vier schematische Anordnungen von Heizkesseln,
Fig. 2
ein Ausführungsbeispiel eines erfindungsgemässen Heizkessels, im Längsschnitt,
Fig. 3
ein Ausführungsbeispiel eines erfindungsgemässen Heizkessels mit Flammraummantel, im Längsschnitt,
Fig. 4
ein Ausführungsbeispiel gemäss Figur 3, im Querschnitt,
Fig. 5
den Öl-Brennerkopf im Längsschnitt,
Fig. 6
schematisch das Verbrennungsverfahren bei flüssigem Brennstoff,
Fig. 7
Aufsicht auf einen Blendeneinsatz mit ausgeschnittenen, jedoch noch nicht verdrehten Führungsflächen,
Fig. 8
Schnitt durch den Blendeneinsatz nach Fig. 7, wobei die Führungsflächen zur Drallerzeugung verdreht sind,
Fig. 9
den Gas-Brennerkopf im Längsschnitt und schematisch das Verbrennungsverfahren bei Verwendung von gasförmigem Brennstoff.
Detaillierte Beschreibung der Erfindung anhand der Ausführungsbeispiele
Figur 1.1 zeigt eine schematisch vereinfachte Darstellung einer Ausführungsform eines erfindungsgemässen Heizkessels 11'. Ein Gehäuse 13 wird von einem Wärmetauscher 15 in eine Brennkammer 17 und eine Abgaskammer 19 aufgeteilt. Ein Flammrohr 23 ist auf einer Stirnseite der Brennkammer 17 angeordnet und aus dem Flammrohr 23 schlägt axial die Flamme 25. Zuluft strömt durch ein Mischrohr 21 in das Flammrohr 23, verbrennt in der Flamme 25 und strömt als heisses Verbrennungsgas oder Rauchgas durch Durchlässe im Wärmetauscher 15 in die Abgaskammer 19 (Pfeile). Von dort verlässt das Rauchgas den Abgasraum 19 durch eine in Fig. 1 nicht dargestellte Öffnung im Gehäuse 13. Figur 1.2 zeigt eine Variante dazu, bei der in einem Heizkessel 11" ein Abschlussorgan 27 die Brennkammer 17 in der Länge begrenzt.
Der Kesselraum ist dadurch in drei Zonen gegliedert: die Brennkammer 17, die Abgaskammer 19 und eine Abgasausströmkammer 29. Die Abgase strömen nun aus der Abgaskammer 19 zuerst durch den Wärmetauscher 15 hindurch in die Abgasausströmkammer 29 und von dort durch eine Öffnung 31 in ein Kamin. Figur 1.3 zeigt eine vereinfachte Variante der Figur 1.2, bei der der Wärmetauscher 15 die Abgaskammer 19 nicht von der Ausströmkammer 29 trennt, sondern nur die Brennkammer 17 umhüllt. In Figur 1.2 und Figur 1.3 ist durch Pfeile angegeben, wie Abgas in das Flammrohr 23 rezirkuliert wird. In Figur 1.4 ist ein Kessel 11"" gezeigt, in dessen Kesselraum zusätzlich zum Abschlussorgan 27 ein Abschlussorgan 27' angeordnet ist, welches eine Rezirkulationskammer 33 abteilt, so dass rezirkulierendes Abgas von der Brennkammer 17 durch den Wärmetauscher 15 in die Abgaskammer 19 und wieder durch den Wärmetauscher 15 hindurch in die Rezirkulationskammer 33 gelangt und von dort durch Rezirkulationsöffnungen im Flammrohr 23 hindurch in dieses hineingesaugt wird.
Figur 2 zeigt in einem Schnitt durch ein Ausführungsbeispiel eines Kessels 11 wiederum den Wärmetauscher 15, die Brennkammer 17 und die Abgaskammer 19. In der Brennkammer 17 ist das Flammrohr 23 angeordnet, welches Rezirkulationsöffnungen 35 und eine Flammöffnung 37 aufweist. Der Wärmetauscher 15 ist aus Rohren 40 mit flachem Querschnitt gebildet, welche schraubenförmig gewickelt sind. Die Rohre 40 sind mit Abstand zueinander angeordnet, so dass im Zwischenraum 41 zwischen den Rohren 40 das Abgas den Wärmetauscher 15 durchströmen kann. Der Wärmetauscher 15 besteht aus einzelnen Elementen 43, welche parallel und/oder in Serie an eine Zu- bzw. Ableitung angeschlossen sind. Der Flammöffnung 37 gegenüber ist ein Umlenkteil 39 angeordnet. Dieses Umlenkteil 39 bildet ein Abschlussorgan 27 oder ist mit einem Abschlussorgan 27 verbunden. Das Abschlussorgan 27 sitzt zwischen zwei Rohren 40 bzw. zwischen zwei Elementen 43, so dass das heisse Abgas durch die Zwischenräume 41 von der Brennkammer 17 in die Abgaskammer 19 und von dort wieder zwischen den Rohren 40 hindurch in die Ausströmkammer 29 strömen muss. Von der Ausströmkammer 29 kann das Abgas dann durch die Öffnung 31 hindurch in ein Kamin oder eine Abgasleitung hinübertreten.
Das Umlenkteil 39 bildet auf der Achse 45 des Flammrohres 23 bzw. des Kessels 11 eine Erhöhung 47, welche der Flamme entgegensteht und sie symmetrisch teilt. Die Flamme wird durch die Umlenkrinne 49 in eine der ursprünglichen Flammenrichtung entgegengesetzte Richtung umgelenkt und schlägt zwischen dem Flammrohr 23 und den Wärmetauscherrohren 40 gegen die Flammenwurzel zurück. Dadurch entsteht ein etwa zylindrischer Flammenkörper von etwa doppeltem Flammrohrdurchmesser und die heissen Abgase werden über die ganze Länge der Brennkammer 17 durch die Zwischenräume 41 zwischen den Rohren 40 hindurchgefördert, wo ein Energieaustausch mit dem in den Rohren 40 fliessenden Wärmeträgermedium stattfindet.
Das Umlenkteil 39 ist beckenförmig ausgebildet und sitzt mit seinem Boden 49 nahe der dem Flammrohr gegenüberliegenden Stirnseite des Gehäuses 13. Der äussere Beckenrand 51 schliesst nahezu bündig mit dem äusseren Rinnenrand 53 der Umlenkrinne 49 zwischen den Wärmetauscherrohren 40 an diese an und die Beckenwand 55 läuft vom Rand 51 schräg von den Wärmetauscherrohren 40 weg, so dass keines der Rohre 40 durch die vom Umlenkteil 39 beanspruchte Tiefe abgedeckt wird. Der vom beckenförmigen Umlenkteil 39 beanspruchte Platz geht auf Kosten der Ausströmkammer 29, welche dadurch auf ein notwendiges Minimalmass reduziert wird. Die Brennkammer 17 wird hingegen durch diese Form des Abschlussorgans 27 gegen die Ausströmkammer 29 hin verlängert. Damit kann die Länge des Kesselraumes minimalisiert werden.
Auf der brennerkopfseitigen Stirnseite des Kessels 11 ist ein Deckel 57 angeordnet, welcher mit dem Gehäuse 13 verschraubt ist. Der Deckel 57 weist eine Öffnung 59 auf, auf deren Innenseite eine Stauscheibe oder Blende 61 sitzt, an welche das Flammrohr 23 befestigt ist. Um das Flammrohr 23 herum und mit Abstand dazu ist eine ringförmige Scheibe 63 angeordnet, welche aus einem feuerfesten, porösen oder filzartigen Material besteht und dadurch eine isolierende Wirkung hat sowohl für Wärme wie für Schall. Die gleiche Struktur und damit den gleichen Effekt hat das Umlenkteil 39.
Nahe der Stauscheibe 61 weist das Flammrohr 23 Rezirkulationsöffnungen 35 auf, durch welche Abgas aus dem Raum 65 zwischen Wärmetauscher 15 und Flammrohr 23 in das Flammrohr rezirkuliert werden. Das Abgas ummantelt im Flammrohr 23 einen zentral eingelassenen Luftstrom. Dadurch ist das Flammrohr sofort nach der Zündung einer Flamme von heissem Abgas eingehüllt und wird sofort selber heiss. Für flüssigen Brennstoff ist eine Öldüse 67 vorgesehen, welche den Brennstoff durch den zentralen Luftstrom hindurch in den Abgasmantel sprüht. Im Abgasmantel verdampft der Brennstoff. Der verdampfte Brennstoff wird nun zusammen mit dem Abgas mit der Luft verwirbelt. Die Flamme brennt blau, weil der gesamte Brennstoff vor der Flammenbildung vergast wird.
Für den Betrieb mit Gas kann der selbe Brennerkopf verwendet werden. Nur wird der gasförmige Brennstoff, vorzugsweise auf der Unterdruckseite im Gebläse der Luft beigemengt. Ein Abgasmantel, rezirkuliert durch die Rezirkulationsöffnungen 35 in Flammrohr 23, ummantelt den zentral eingelassenen Luft/Brennstoff-Strom, vermischt sich mit diesem in der Wirbelzone zwischen Mantel- und Kernströmung und die Flamme brennt in der Folge sehr ähnlich wie bei der mit vergastem flüssigen Brennstoff gespeisten Flamme. Bei beiden Betriebsarten wird das Flammrohr 23 heiss und überträgt eine gewisse Menge von Energie auf den Wärmetauscher 15 durch Strahlung. Dieser Effekt ist erwünscht, insbesondere weil blau brennende Flammen sonst wenig Strahlungsenergie abgeben. Bei beiden Betriebsarten liegen die Abgaswerte sehr tief: Die NOX-Emissionen liegen bei Ölbrand unter 60 mg/kW und bei Gasbrand unter 20 mg/kW. Die CO-Werte liegen unter 16 mg/kW.
Nach der soeben beschriebenen Weise gebaute und funktionierende Brenner sind in den beiden gleichentags eingereichten Europäischen Anmeldungen "Verfahren und Vorrichtung zur Verbrennung von flüssigem Brennstoff" und "Verfahren und Vorrichtung zur Verbrennung von gasförmigem Brennstoff" ausführlich beschrieben, welche auf den Schweizerischen Prioritätsanmeldungen Nr. 1997 0718/97 bzw. 0719/97 basieren.
Die Figuren 3 und 4 zeigen eine weitere Ausführungsform eines erfindungsgemässen Kessels. Figur 3 ist ein Längsschnitt, Figur 4 ein Querschnitt desselben Kessels. In diesem Kessel 11" ist das Abschlussorgan 27 beispielsweise als vereinfachtes Umlenkteil ohne eine spezifische Form ausgestaltet. Weiter ist als Hauptunterschied zum Kessel 11 der Figur 2 ein Flammraummantel 69 brennkammerseitig des Wärmetauschers 15 in der Brennkammer 17 angeordnet. Der Flammraummantel 69 weist auf seinem zylindrischen Mantel Schlitze 71 und Leitbleche 73 auf, welche die heissen Rauchgase aus dem inneren Bereich der Brennkammer 17 entlassen und in einer um die Achse 45 rotierenden Strömung durch die Zwischenräume 41 zwischen den Rohren 40 des Wärmetauschers 15 leiten (Pfeile in Fig. 4). Die Flamme schlägt nun zwischen dem Flammrohr 23 und dem Flammraummantel 69 zurück zur flammrohrseitigen Stirnseite des Gehäuses 13. Der Flammraummantel lenkt die Abgase in eine spiralige Bewegung um.
Im Bodenbereich 75 des Flammraummantels ist eine Zone vorgesehen ohne Schlitze 71. Durch diese Massnahme kann allfällig vorhandene Asche am Flammraummantel 69 hängen bleiben und sich im Bodenbereich 75 sammeln. Von dort ist die Asche leicht entfernbar. Der Flammraummantel 69 ist ein Schutz für den Wärmetauscher 15. Er schützt den Wärmetauscher 15 weitgehend vor direktem Flammenkontakt. Deshalb ist der Flammraummantel an seinem vorderen Ende, nahe dem Abschlussorgan 27 oder dem Umlenkteil 39 geschlossen und weist keine Schlitze 71 auf, durch welche die nicht total umgelenkte Flamme zu den Rohren 40 des Wärmetauschers 15 gelangen könnte.
Die Schraubenwindungen 77 des Wärmetauschers 15 sind mit einem geraden Anschlussteil 79 (Fig. 4) beidseitig an eine Zuleitung 81 bzw. eine Ableitung 83 angeschlossen. Die einzelnen Wärmetauscherelemente 43 bestehen aus vier Windungen eines Rohres 40 mit flachem Querschnitt und sind parallel an die Zuleitung 81 und die Ableitung 83 angeschlossen. Ausbuchtungen in der Rohrwandung (nicht eingezeichnet) halten einen Abstand zwischen den Rohren 40 der Windungen 77.
Die Figur 5 zeigt einen Brennerkopf 111 für flüssige Brennstoffe, mit einer Stauscheibe 113, welche in eine nicht dargestellte Wandung eines Brennraums 112 montierbar ist. An der Stauscheibe 113 ist in Strömungsrichtung, welche durch den Pfeil 114 angezeigt ist, ein Flammrohr 115 mit einem Verhältnis von Durchmesser zu Länge von ca. 1 zu 2 angeordnet. Weiter ist zentral auf der Flammrohrachse 117 eine Lanze oder Düse 119 angeordnet. Die Befestigungsmittel für die Düse 119 und die Stauscheibe 113 bilden zusammen z.B. eine Blendeneinheit, wie sie beispielsweise in der EPA 0 650 014 beschrieben ist. Der Düsenkopf 123 sitzt zentrisch in einem Blendeneinsatz 125. Die Sprühöffnung 121 der Düse 119 liegt in der Ebene der Stauscheibe 113 bzw. des Blendeneinsatzes 125. Der Blendeneinsatz 125 ist auf der Stauscheibe 113 befestigt und deckt bis auf eine ringförmige Luftöffnung 129 um den Düsenkopf 123 herum die Öffnung 127 in der Stauscheibe 113 ab. Die ringförmige Luftöffnung 129 nimmt eine Fläche von ca. 8% der Querschnittfläche des Flammrohrs 115 ein.
Die Luftöffnung 129 ist ausserdem mit drallerzeugenden Leitflächen 131 ausgestattet. Diese Leitflächen 131 sind radial ausgerichtet und sind gegenüber der Flammrohrachse 117 und Strömungsrichtung 114 geneigt, so dass durch die Luftöffnung 129 strömende Luft in Rotation um die Achse 117 versetzt wird. Die Lamellen oder Leitflächen 131 sind aus einem Stück mit dem Blendeneinsatz 125 gefertigt (Fig. 7 und 8). Bei ihrer Herstellung und Ausrichtung werden sie bis auf eine etwa der gut doppelten Materialstärke entsprechenden Verbindung 132 aus dem Blendeneinsatzblech 134 herausgeschnitten oder gestanzt und danach gegenüber der Blendeneinsatzebene um 60 bis 88 Grad verdreht. Dabei sind an den durch die Verdrehung am meisten zu verformenden Stellen der Verbindungen die Längen der sich verformenden Blechkanten durch runde Ausschnitte (136 in Fig. 7) vergrössert, um einer Rissbildung vorzubeugen.
Das Flammrohr 115 ist mit Verbindungsgliedern 133 an der Stauscheibe 113 befestigt. Die Verbindungsglieder 133 sind einstückig mit der Wandung 139 des Flammrohres 115 gebildet, ragen über das stauscheibenseitige Ende des Flammrohres 115 hinaus und sind durch Schlitze in der Stauscheibe 113 hindurchgesteckt. Stromaufwärts der Stauscheibe 113 werden die Verbindungsglieder 133 nach dem Zusammenstecken verdreht, so dass eine feste Verbindung zwischen Stauscheibe 113 und Flammrohr 115 entsteht.
Die Verbindungsglieder 133 weisen eine abgetreppte, sich verjüngende Silhouette auf. Die Absätze 137 in der Abtreppung stehen flammrohrseitig an der Stauscheibe 113 an und definieren so die Öffnungsweite des Rezirkulationsschlitzes 135. Durch diesen Rezirkulationsschlitz 135 wird Abgas entlang der Stauscheibe 113 und dem Blendeneinsatz 125 in das Flammrohr 115 gesaugt, um einer Verrussung dieses Bereiches vorzubeugen. Eine günstige Öffnungsweite liegt um ca. 1 mm.
In Stauscheibennähe weist das Flammrohr 115 Rezirkulationsöffnungen 139 auf, durch die das Abgas durch den Unterdruck, der stromabwärts der Stauscheibe 113 aufgrund der Luftströmung entsteht, angesaugt wird. Im gezeigten Fall sind es deren 18 kreisrunde Rezirkulationsöffnungen 139 mit einem jeweiligen Durchmesser von ca. 6 mm. Die Öffnungen 139 können aber auch in anderer Anzahl und/oder anderer Form vorliegen.
Das Flammrohr 115 weist einen inneren Durchmesser von etwa 80 mm und eine Länge von etwa 160 mm auf. Am dem Brennraum 112 zugewandten Ende des Flammrohres 15 ist dieses eingeschnürt. Die Einschnürung 141 verengt die Flammenaustrittöffnung 143 gegenüber dem Flammrohrquerschnitt. Der Randbereich 145 des Flammrohres 115 ist zur Bildung der Einschnürung 141 rund nach innen gewendet.
Die Zündelektroden 147 sind nahe der Peripherie des Flammrohres 115 mit keramischen Isolationsstücken 149 durch die Stauscheibe 13 hindurchgeführt und ragen mit ihren Enden 151 in das Flammrohr 115 hinein. Die Zündstelle 153 liegt in einem Abstand von der Stauscheibe 113 von etwa 2/5 der Länge des Flammrohres 115.
In Figur 6 sind die verschiedenen Zonen während der Verbrennung schematisch dargestellt. Dadurch dass die Luft durch die Luftöffnung 129 geblasen wird entsteht stromabwärts der Stauscheibe 113 ein Unterdruck im Bereich 161. Durch diesen Unterdruck wird Abgas angesaugt, dargestellt durch die Pfeile 163 und 165. Dieses Abgas bildet einen Mantel 167 um die Kernströmung 169. Das entlang Pfeil 165 einströmende Abgas streicht der Oberfläche der Stauscheibe entlang und schützt sie vor Russablagerung. Zwischen der Kernströmung 169 und dem Mantel 167 entstehen Wirbel 171, in denen die beiden Medien Luft und Abgas vermischt werden.
Der Brennstoff wird auf kürzestem Wege durch die Luftströmung hindurchgespritzt, dargestellt mit unterbrochenen Linien 172. Der Kegelmantel des versprühten Brennstoffes weist einen Winkel zwischen 60 und 90 Grad auf. Die Düse hat vorzugsweise eine Kegelmantelcharakteristik mit 80 Grad. In einem Bereich 173 des Abgasmantels 167 vergast der Brennstoff und wird durch Wirbel 175 im Abgasmantel 167 mit dem Abgas vermengt. Da stromaufwärts der Vergasungszone 173 kein vergaster Brennstoff vorliegt, der brennen könnte, und auf dem kurzen Durchdringungsweg, den der Brennstoff durch den Luftstrom 169 hindurch zurücklegen muss, der Brennstoff nicht zu brennen beginnt, wird praktisch sämtlicher Brennstoff im Gasmantel 167 vergast und gelangt erst in vergaster Form mit der Luft in einen eine Reaktion auslösenden Kontakt.
Vergaster Brennstoff wird also in den Wirbeln 171 mit dem Abgas zusammen mit der Luft verwirbelt und verbrennt erst im Bereich dieser Wirbel 171 kühl und schadstoffarm.
Die Flamme beginnt in ihrem Wurzelbereich 177 am Ende des ersten Drittels des Flammrohrs 115. Die Flammenwurzel ist ringförmig zwischen Abgasmantel 167 und Luftstrom 169 eingebettet. Im letzten Drittel des Flammrohrs endet der zentrale Luftstrom 169 im Zentrum der Flamme und kühlt diese. Die Stärke des Mantels 167 ist stromabwärts abnehmend, weil das Abgas/ Brennstoffdampf-Gemisch sich auf dieser Strecke mit der Luft vermischt. Der Brennstoffdampf wird über etwa zwei Drittel der Flammrohrlänge der Flamme zugeführt. Die Flamme hat somit einen ringförmigen und langgezogenen Wurzelbereich und wird aus dem Mantelbereich 167 heraus genährt.
Durch die Einschnürung 141 wird die Mantelzone 167 stromabwärts begrenzt. Das Gas im Mantelbereich 167 wird beim Ausströmen aus dem Flammrohr 115 behindert. Eine Verwirbelung der beiden Medien wird dadurch begünstigt. Die austretende Flamme hält stabil am Flammrohr.
In Figur 9 ist der Brennerkopf 111' für Gas und sind die verschiedenen Zonen während der Verbrennung von gasförmigem Brennstoff schematisch dargestellt. Der Brennerkopf 111' entspricht im Wesentlichen dem Brennerkopf 111 für flüssigen Brennstoff. In Strömungsrichtung vor der Stauscheibe 113 ist jedoch mit Abstand zur Stauscheibe 113 ein Lochblech 157 angeordnet. Das Lochblech 157 weist eine Öffnung 158 auf, durch welche der Verdrängungskörper oder die Öldüse 119 hindurchstösst. Darum herum sind die Löcher angeordnet, welche ein Druckgefälle verursachen, um ein Zurückschlagen der Flamme in den Zufuhrkanal 155 zu verhindern. Am Zufuhrkanal 155 ist eine Brennstoff Zuführung und ein Gebläse angeordnet (beides nicht dargestellt).
Dadurch dass das Luft/Brennstoff-Gemisch durch den Durchlass 129 geblasen wird entsteht stromabwärts der Stauscheibe 113 ein Unterdruck im Bereich 161. Durch diesen Unterdruck wird Abgas angesaugt, dargestellt durch die Pfeile 163 und 165. Dieses Abgas bildet einen Mantel 167 um die Kernströmung 169. Das entlang Pfeil 165 einströmende Abgas streicht der Oberfläche der Stauscheibe entlang und schützt sie vor Russablagerung. Zwischen der Kernströmung 169 und dem Mantel 167 entstehen Wirbel 171, in denen die beiden Medien Luft/Brennstoff und Abgas vermischt werden. Gasförmiger Brennstoff wird also in den Wirbeln 171 mit der Luft zusammen mit dem Abgas verwirbelt und verbrennt erst im Bereich dieser Wirbel 171 kühl und schadstoffarm.
Die Flamme beginnt in ihrem Wurzelbereich 177 im ersten Drittel des Flammrohrs 115. Die Flammenwurzel ist ringförmig zwischen Abgasmantel 167 und Luft/Brennstoff-Strom 169 eingebettet. Der zentrale Strom 169 endet im Zentrum der Flamme und kühlt diese. Die Stärke des Mantels 167 ist stromabwärts abnehmend, weil das Abgas sich auf dieser Strecke mit dem Luft/Brennstoff-Gemisch vermischt. Der Brennstoff brennt ruhig und schadstoffarm.
Der Gasbrenner funktioniert praktisch unabhängig von der Form des Feuerungsraumes. Er ist insbesondere geeignet für kompakte Feuerunganlagen mit kurzen Feuerungsräumen. Der Brenner eignet sich nicht nur für die Verbrennung von Gas. Durch Ersetzen des Verdrängungskörpers 119 durch eine Brennstoffdüse für flüssigen Brennstoff mit einer Kegelmantelcharakteristik ist er insbesondere zur Verbrennung von Heizöl extraleicht, Ökoöl oder Kerosen geeignet. Der Brenner erreicht mit flüssigen Brennstoffen Abgaswerte für NOx unter 60 mg/kW.

Claims (20)

  1. Mit einem Brenner ausgerüsteter Heizkessel, mit einem einen Kesselraum umhüllenden Gehäuse, einem mantelförmigen Wärmetauscher, welcher den Kesselraum in eine Brennkammer (17,112) und eine Abgaskammer (19) aufteilt und über die Mantelfläche verteilt Durchlässe (41) für heisse Verbrennungsgase aufweist, einem in der Brennkammer angeordneten Brennerkopf (111,111'), welcher ein Flammrohr (23,115) mit einer axialen Flammöffnung (37,143) aufweist, und in Abstand von der Flammöffnung (37,143) einem Flammenumlenkteil (39), dadurch gekennzeichnet, dass das Flammenumlenkteil (39) derart ausgebildet ist, dass die Flamme (25) in den Raum (65) zwischen Flammrohr (23,115) und Wärmetauscher (15) umgelenkt wird, und dass die Durchlässe (41) für heisse Verbrennungsgase auf die ganze Länge der Brennkammer (17) verteilt angeordnet sind.
  2. Heizkessel nach Anspruch 1, dadurch gekennzeichnet, dass der Wärmetauscher (15) bei oder nahe wenigstens einem Ende ein Abschlussorgan (27) aufweist, und dass das Abschlussorgan (27) auf seiner von der Brennkammer (17,112) abgewandten Seite vom Kesselraum eine mit einem Kamin verbindbare Rauchgasausströmkammer (29) abteilt.
  3. Heizkessel nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass der Wärmetauscher (15) bei oder nahe wenigstens einem Ende ein Abschlussorgan (27') aufweist, und dass das Abschlussorgan (27') vom Kesselraum eine Rezirkulationskammer (33) abteilt.
  4. Heizkessel nach einem der Ansprüche 2 oder 3, dadurch gekennzeichnet, dass eine durch ein Abschlussorgan (27,27') abgeteilte Kammer (29, 33) vom Wärmetauscher (15) ummantelt ist.
  5. Heizkessel nach einem der Ansprüche 2 bis 4, dadurch gekennzeichnet, dass das Abschlussorgan (27) eine Ausbuchtung zur Ausströmkammer (29) hin aufweist.
  6. Heizkessel nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass das Flammenumlenkteil (39) einen auf der Flammenachse (45, 117) angeordneten, der Flamme (25) entgegenstehenden Flammenteiler (47) und um diesen herum eine ringförmige Umlenkrinne (49) aufweist.
  7. Heizkessel nach einem der Ansprüche 2 bis 6, dadurch gekennzeichnet, dass das Flammenumlenkteil (39) ein Abschlussorgan (27) bildet.
  8. Heizkessel nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass der Wärmetauscher (15) aus mit Zwischenraum (41) nebeneinander aufgereihten Rohren (40) besteht, welche die Brennkammer (17,112) umfangend angeordnet und an eine Zuleitung (81) und eine Ableitung (83) angeschlossen sind.
  9. Heizkessel nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass die Wärmetauscherrohre (40) schraubenförmig gewickelt sind.
  10. Heizkessel nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass der Mantel des Wärmetauschers (15) aus einer Mehrzahl von die Wärmetauschereinheiten (43) zusammengefügt ist.
  11. Heizkessel nach Anspruch 10, dadurch gekennzeichnet, dass die Wärmetauschereinheiten (43) parallel an die Zuleitung (81) und Ableitung (83) angeschlossen sind.
  12. Heizkessel nach einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, dass der Brenner zur Verbrennung von Öl und/oder Gas und für Abgasrezirkulation ausgerüstet ist, und dass der Brenner gegebenenfalls auf den Betrieb mit Öl oder Gas umstell- oder umschaltbar ist.
  13. Heizkessel nach einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, dass der Brennerkopf mit einer zentral angeordneten Brennstoffdüse mit Kegelmantelcharakteristik, einer Stauscheibe mit Luftöffnung und in Strömungsrichtung an die Stauscheibe anschliessend einem Flammrohr, welches in Stauscheibennähe Öffnungen zum Einlass von Abgas in ein Unterdruckgebiet in Strömungsrichtung hinter der Stauscheibe aufweist, ausgerüstet ist, und dass die Sprühöffnung (121) der Brennstoffdüse (67,123) etwa in der Ebene der Unterdruck erzeugenden Stauscheibe (61,113) liegt und die Stauscheibe (61,113) lediglich eine Öffnung aufweist, welche einen ringförmig konzentrisch um die Brennstoffdüse (67,123) herum angeordneten Lufteinlass (129) bildet.
  14. Heizkessel nach einem der Ansprüche 1 bis 13, mit einem Gebläse und einer Brennstoffzuführung für gasförmigen Brennstoff, dadurch gekennzeichnet, dass die Brennstoffzuführung für gasförmigen Brennstoff in einem solchen Abstand zur Stauscheibe (61,113) im Zufuhrkanal (155) angeordnet ist, dass vor der Stauscheibe (61,113) eine praktisch homogene Durchmischung von Brennstoff und Luft gewährleistet ist, und dass die Stauscheibe (61,113) bis auf einen zentralen Durchlass (129) den Zufuhrkanal (155) abschliesst.
  15. Heizkessel nach einem der Ansprüche 12 bis 14, dadurch gekennzeichnet, dass die Luftöffnung (129) der Stauscheibe (61,113) mit drallerzeugenden Leitflächen (131) versehen ist.
  16. Heizkessel nach einem der Ansprüche 1 bis 15, dadurch gekennzeichnet, dass in der Brennkammer (17) zwischen Flammrohr (23,115), bzw. umgelenkter Flamme (25) und Wärmetauscher (15) ein zylindrischer Flammraummantel (69) angeordnet ist, welcher Durchlässe (71) für heisse Rauchgase aufweist.
  17. Heizkessel nach Anspruch 16, dadurch gekennzeichnet, dass die Durchlässe (71) so ausgebildet sind, dass die Rauchgase etwa tangential vom Flammraummantel (69) wegströmen, wobei allenfalls der Flammraummantel (69) nahe des Abschlussorgans (27) oder des Flammenumlenkteils (39) geschlossen ist.
  18. Heizkessel nach Anspruch 16 oder 17, dadurch gekennzeichnet, dass der Flammraummantel (69) in einem Bodenbereich (75) geschlossen ist.
  19. Heizkessel nach einem der Ansprüche 1 bis 18, dadurch gekennzeichnet, dass das Gebläse neben dem Gehäuse (13) angeordnet ist und ein Zuluftkanal (155) vom Gebläse auf eine Stirnseite des Gehäuses (13) und an das Flammrohr (23,115) geführt ist.
  20. Heizkessel nach einem der Ansprüche 1 bis 19, dadurch gekennzeichnet, dass eine Stirnseite des Gehäuses (13) mit einem Deckel (57) verschliessbar ist, an welchem der Brennerkopf (111,111') befestigt ist.
EP98907799A 1997-03-24 1998-03-23 Mit einem brenner ausgerüsteter heizkessel Expired - Lifetime EP0970327B1 (de)

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
CH71897 1997-03-24
CH71897 1997-03-24
CH71997 1997-03-24
CH71997 1997-03-24
CH72097 1997-03-24
CH72097 1997-03-24
PCT/CH1998/000112 WO1998043019A1 (de) 1997-03-24 1998-03-23 Mit einem brenner ausgerüsteter heizkessel

Publications (2)

Publication Number Publication Date
EP0970327A1 EP0970327A1 (de) 2000-01-12
EP0970327B1 true EP0970327B1 (de) 2001-12-05

Family

ID=27172344

Family Applications (1)

Application Number Title Priority Date Filing Date
EP98907799A Expired - Lifetime EP0970327B1 (de) 1997-03-24 1998-03-23 Mit einem brenner ausgerüsteter heizkessel

Country Status (7)

Country Link
US (2) US6305331B1 (de)
EP (1) EP0970327B1 (de)
AT (1) ATE210266T1 (de)
AU (1) AU6606498A (de)
CA (1) CA2284706A1 (de)
DE (1) DE59802337D1 (de)
WO (1) WO1998043019A1 (de)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2314948A2 (de) 2009-10-14 2011-04-27 Viessmann Werke GmbH & Co. KG Heizkessel
EP2784408A1 (de) 2013-03-28 2014-10-01 Viessmann Werke GmbH & Co. KG Heizkessel
CN109642750A (zh) * 2016-07-18 2019-04-16 阿利斯顿特莫股份公司 用于锅炉的热交换器
DE102021120235A1 (de) 2021-08-04 2023-02-09 Viessmann Climate Solutions Se Heizkessel

Families Citing this family (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE59802337D1 (de) * 1997-03-24 2002-01-17 Vth Ag Mit einem brenner ausgerüsteter heizkessel
EP1143206A3 (de) 2000-04-03 2003-05-02 VTH Verfahrentechnik für Heizung AG Wärmetauscher für Heizkessel oder Durchlauferhitzer
US6644393B2 (en) 2002-04-16 2003-11-11 Laars, Inc. Cylindrical heat exchanger
US6629412B1 (en) 2002-05-16 2003-10-07 Ut-Battelle, Llc Electricity-producing heating apparatus utilizing a turbine generator in a semi-closed brayton cycle
EP1523537A1 (de) * 2002-07-19 2005-04-20 Shell Internationale Researchmaatschappij B.V. Verwendung eines blaubrenners
WO2004033886A2 (en) * 2002-10-10 2004-04-22 Combustion Science & Engineering, Inc. System for vaporization of liquid fuels for combustion and method of use
CA2502526C (fr) * 2002-10-16 2010-11-30 Societe D'etude Et De Realisation Mecaniques Engeneering En Technologies Avancees Echangeur de chaleur a condensation, a enveloppe plastique
FR2846075B1 (fr) * 2002-10-16 2005-03-04 Realisation Mecaniques Engenee Echangeur de chaleur a condensation, a enveloppe plastique
FR2854229A1 (fr) * 2003-04-25 2004-10-29 Realisation Mecaniques Engenee Echangeur de chaleur a condensation
DE102004005048A1 (de) * 2004-01-30 2005-09-01 Viessmann Werke Gmbh & Co Kg Heizgerät
US7428883B2 (en) * 2004-05-11 2008-09-30 Noritz Corporation Heat exchanger and water heater
CH694972A5 (de) * 2004-10-22 2005-10-14 Toby Ag Vormischender Brenner mit einem zylindrischen Flammenhalter sowie Heizkessel mit einem solchen Brenner.
KR101201624B1 (ko) * 2004-12-08 2012-11-14 엘피피 컴버션, 엘엘씨 액체 탄화수소 연료의 컨디셔닝을 위한 방법 및 장치
DK1752718T3 (da) * 2005-08-05 2010-10-25 Riello Spa Fremgangsmåde til fremstilling af varmeveksler
AT502684B1 (de) * 2006-02-16 2007-05-15 Freller Walter Ing Vorrichtung zum verbrennen organischer stoffe
US8529646B2 (en) * 2006-05-01 2013-09-10 Lpp Combustion Llc Integrated system and method for production and vaporization of liquid hydrocarbon fuels for combustion
US7836942B2 (en) * 2007-02-05 2010-11-23 Riello S.P.A. Heat exchanger and method of producing the same
US8365812B2 (en) * 2007-06-27 2013-02-05 King Fahd University Of Petroleum And Minerals Shell and tube heat exchanger
US20100221675A1 (en) * 2009-03-02 2010-09-02 Laars Heating Systems Company Condensing boiler and water heater
DE102009024442A1 (de) * 2009-06-10 2011-01-05 Robert Bosch Gmbh Gliederheizkessel
US9353967B2 (en) * 2010-02-03 2016-05-31 Farshid Ahmady Fluid heating apparatus
ITMI20100790A1 (it) * 2010-05-05 2011-11-06 Worgas Bruciatori Srl Gruppo bruciatore-scambiatore di calore
USD665901S1 (en) 2011-01-31 2012-08-21 Kärcher North America, Inc. Oil burner assembly
EA201391511A1 (ru) 2011-04-12 2014-06-30 Роберт Левиц Батарейный коннектор для электронной сигареты с боковым забором воздуха
US20130019816A1 (en) * 2011-07-21 2013-01-24 Claude Lesage Fuel-fired water heater with air draft inducer and flue heat exchanger
DE102012000302B4 (de) * 2011-09-23 2022-07-14 Herbert Kannegiesser Gmbh Vorrichtung zum Aufheizen eines Wärmeträgers für insbesondere Wäschereimaschinen
US9282772B2 (en) 2012-01-31 2016-03-15 Altria Client Services Llc Electronic vaping device
US9631808B2 (en) * 2014-11-21 2017-04-25 Honeywell International Inc. Fuel-air-flue gas burner
RU2566863C1 (ru) * 2014-12-02 2015-10-27 Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский Томский политехнический университет" Устройство для сжигания жидкого и газообразного топлива
DE102016215210A1 (de) * 2016-08-16 2018-02-22 Vaillant Gmbh Wendelförmiger Heizungswärmetauscher
WO2017213635A1 (en) * 2016-06-07 2017-12-14 Cleaver-Brooks, Inc. Burner with adjustable end cap and method of operating same
PL422320A1 (pl) * 2017-07-24 2019-01-28 Instytut Lotnictwa Wtryskiwacz przebogaconej mieszanki paliwowo-powietrznej do komory spalania silników spalinowych
US10753644B2 (en) 2017-08-04 2020-08-25 A. O. Smith Corporation Water heater
IT201700106687A1 (it) * 2017-09-25 2019-03-25 I C I Caldaie S P A Metodo per convertire una caldaia alimentata a gas in una caldaia alimentata a combustibile liquido.
IT201800003438A1 (it) * 2018-03-12 2019-09-12 Athena S P A Caldaia perfezionata
IT201900004753A1 (it) * 2019-03-29 2020-09-29 Immergas Spa Scambiatore di calore
DE102021100007A1 (de) * 2021-01-04 2022-07-07 Vaillant Gmbh Brenneranordnung für einen Vormischbrenner
CH718928A1 (de) 2021-08-26 2023-02-28 Swiss E Futurtec Ag Verfahren zum Verbrennen eines flüssigen oder gasförmigen Brennstoffs in einem Heizkessel, Heizkessel zur Durchführung des Verfahrens und Therme mit einem Heizkessel.
CN116221718B (zh) * 2023-03-10 2023-09-29 安徽理工大学环境友好材料与职业健康研究院(芜湖) 低排放旋流燃烧装置和使用方法

Family Cites Families (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE24682E (en) * 1959-08-18 johnson
GB385644A (en) * 1931-05-27 1933-01-05 Carl Harald Hermodsson Apparatus for heating water, air or other fluid by the combustion gas derived from gaseous fuel
US2216809A (en) * 1937-08-10 1940-10-08 Norman L Derby Heater and thermo control therefor
US2701608A (en) * 1951-02-03 1955-02-08 Thermal Res And Engineering Co Burner
GB792747A (en) * 1955-02-18 1958-04-02 Vapor Heating Corp Improvements in or relating to water tube hot-water boilers or steam generators
FR1375306A (fr) * 1963-09-23 1964-10-16 Ross Gmbh Vorm Joseph Meys & C Chaudière perfectionnée pour caloporteurs de chaleur à point d'ébullition élevé
DE1905006A1 (de) * 1967-04-28 1970-09-10 Gako Ges Fuer Gas Kohle Und Oe Verfahren und Vorrichtung zur Oxydation von Kohlenwasserstoffen in einer Brennkammer mit Gegenstrom-Turbulenz
US3638621A (en) * 1969-08-26 1972-02-01 Aqua Chem Inc Combination fire and water tube boiler
DE2059693A1 (de) * 1970-12-04 1972-06-15 Werner Pieper Brenner fuer fluessige Brennstoffe
JPS5218233A (en) * 1975-08-02 1977-02-10 Kawasaki Heavy Ind Ltd Burning gas circulation-type pre-combustion chamber
DE2839969A1 (de) * 1978-09-14 1980-03-27 Thyssen Industrie Rohrfoermiges flammrohr fuer oelbrenner
US4357910A (en) * 1980-11-28 1982-11-09 Blockley Eugene T Multi-pass helical coil thermal fluid heater
DE3212066A1 (de) * 1982-04-01 1983-01-20 Peter 8137 Berg Flögel Oel/gas-spezial-heizkessel
JPS58205011A (ja) * 1982-05-26 1983-11-29 Sanyo Electric Co Ltd 燃料油バ−ナ
FR2582781A1 (fr) * 1985-06-04 1986-12-05 Mueller Rudolf Bruleur pour chaudiere a combustion liquide avec circuit de recyclage des gaz de combustion
US5154597A (en) 1987-03-13 1992-10-13 Vth Ag Verfahrenstechnik Fur Heizung Burner for combustion of gasified liquid fuels
DE3738623C2 (de) * 1987-11-11 1995-05-04 Wolf Klimatechnik Gmbh Heizkessel mit Rauchgasrezirkulation
US5015173A (en) 1988-06-09 1991-05-14 Vth Ag Verfahrenstechnik Fur Heizung Burner for the combustion of liquids in the gaseous state
DE3821526A1 (de) * 1988-06-25 1989-12-28 May Michael G Verfahren und einrichtung zur verbrennung von brennstoff
US4989549A (en) * 1988-10-11 1991-02-05 Donlee Technologies, Inc. Ultra-low NOx combustion apparatus
DE9007612U1 (de) * 1989-07-13 1993-05-06 Elco Energiesysteme AG, Vilters Brenner zur stöchiometrischen Verbrennung von flüssigen oder gasförmigen Brennstoffen
DE3930569C2 (de) * 1989-09-13 1995-06-01 Siegfried W Schilling Brennerkopf
US5022379A (en) * 1990-05-14 1991-06-11 Wilson Jr James C Coaxial dual primary heat exchanger
DE9101375U1 (de) * 1991-02-07 1991-07-11 Mann, Wilhelm, Dipl.-Ing., 6301 Allendorf Brennkammereinsatz für Heizkessel mit Gebläsebrenner
DE4118864C2 (de) * 1991-06-07 1995-10-12 Bta Beheizungstechnik Ag Verfahren zum Verbrennen eines gasförmigen oder flüssigen Brennstoffs und Brenner zur Durchführung des Verfahrens
AT401288B (de) * 1991-10-14 1996-07-25 Schwarz A & Co Mischeinrichtung für ölbrenner
US5313914A (en) * 1991-10-30 1994-05-24 Woollen Donald E Potable hot water storage vessel and direct-fired heat exchanger
DE59303606D1 (de) 1992-02-28 1996-10-10 Fuellemann Patent Ag Brenner, insbesondere Oelbrenner oder kombinierter Oel/Gas-Brenner
US5437248A (en) * 1992-07-23 1995-08-01 Miura Co., Ltd. Fire tube boiler
FR2700608B1 (fr) * 1993-01-15 1995-04-07 Joseph Le Mer Elément échangeur de chaleur, procédé et dispositif pour le fabriquer.
DE4301779C2 (de) * 1993-01-23 1997-07-17 Elco Energiesysteme Ag Brenner zur Verbrennung eines flüssigen oder gasförmigen Brennstoffes
RU2113656C1 (ru) * 1993-04-30 1998-06-20 Джин Мин Чой Устройство для вихревого рассеивания воздуха для горения в турбулентной форсунке
ATE169735T1 (de) 1993-10-22 1998-08-15 Bf Patent Ag Blendeneinheit
AT400259B (de) 1993-11-29 1995-11-27 Schwarz A & Co Mischeinrichtung für öl- oder gasbrenner
DE4412185B4 (de) * 1994-04-08 2005-05-12 Körting Hannover AG Brenner für flüssige oder gasförmige Brennstoffe, insbesondere für Öl
DE29602990U1 (de) * 1995-02-06 1996-04-04 Joh. Vaillant Gmbh U. Co, 42859 Remscheid Wasserheizer
DE19531387C2 (de) * 1995-08-26 2001-06-28 Man B & W Diesel Ag Verfahren zum Verbrennen insbesondere flüssiger Brennstoffe und Brenner zur Durchführung des Verfahrens
DE19623187A1 (de) 1996-06-11 1997-01-16 Heinrich Dr Ing Koehne Mischeinrichtung für flüssige, gas- und/oder staubförmige Brennstoffe
ES2154491T3 (es) 1997-03-24 2001-04-01 Vth Ag Procedimiento y dispositivo para la combustion de combustible liquido.
DE59802337D1 (de) * 1997-03-24 2002-01-17 Vth Ag Mit einem brenner ausgerüsteter heizkessel

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2314948A2 (de) 2009-10-14 2011-04-27 Viessmann Werke GmbH & Co. KG Heizkessel
DE102009049449A1 (de) 2009-10-14 2011-05-26 Viessmann Werke Gmbh & Co Kg Heizkessel
EP2784408A1 (de) 2013-03-28 2014-10-01 Viessmann Werke GmbH & Co. KG Heizkessel
DE102013103191A1 (de) 2013-03-28 2014-10-02 Viessmann Werke Gmbh & Co Kg Heizkessel
CN109642750A (zh) * 2016-07-18 2019-04-16 阿利斯顿特莫股份公司 用于锅炉的热交换器
CN109642750B (zh) * 2016-07-18 2021-07-06 阿利斯顿特莫股份公司 用于锅炉的热交换器
DE102021120235A1 (de) 2021-08-04 2023-02-09 Viessmann Climate Solutions Se Heizkessel

Also Published As

Publication number Publication date
DE59802337D1 (de) 2002-01-17
CA2284706A1 (en) 1998-10-01
US20010031440A1 (en) 2001-10-18
US6579086B2 (en) 2003-06-17
WO1998043019A1 (de) 1998-10-01
EP0970327A1 (de) 2000-01-12
ATE210266T1 (de) 2001-12-15
US6305331B1 (en) 2001-10-23
AU6606498A (en) 1998-10-20

Similar Documents

Publication Publication Date Title
EP0970327B1 (de) Mit einem brenner ausgerüsteter heizkessel
DE69606189T2 (de) Gasgerät zum erhitzen von flüssigkeiten
DE1922582A1 (de) Hochdruckgasbrenner
DE2650660A1 (de) Heizkessel mit einem heissgasgenerator fuer fluessige oder gasfoermige brennstoffe
DE3602285A1 (de) Warmluftofen fuer feste brennstoffe
EP0798510B1 (de) Heizkessel
DE3329777C2 (de)
DE4012363C2 (de) Vorrichtung zum Verbrennen fester Brennstoffe, insbesondere Holz
AT406507B (de) Brenner mit separater zufuhr von brennstoff
EP0867658B1 (de) Verfahren und Vorrichtung zur Verbrennung von flüssigem Brennstoff
DE3503554C2 (de)
DE3927803C2 (de) Heizvorrichtung für feste Brennstoffe, insbesondere Kachelofeneinsatz
DE19729506C2 (de) Heizkessel zur Feuerung von festen Brennstoffen
DE2162139A1 (de) Waermetauscher
DE10158299A1 (de) Wasserrohrkessel
AT271805B (de) Niederdruckkessel, insbesondere für Warmwasser Zentralheizungsanlagen
DE3504225A1 (de) Atmosphaerischer warmwasserkessel mit unten angeordnetem verbrennungsraum, insbesondere fuer gasfeuerung
DE19819139C2 (de) Heizkessel für eine Feuerungsanlage und einen solchen Heizkessel umfassende Feuerungsanlage
DE29504255U1 (de) Heizgerät, insbesondere für Wassererhitzer
CH236956A (de) Kessel zum Erhitzen von Wasser.
DE4101101C2 (de) Heizvorrichtung für feste Brennstoffe mit Zusatzluftzuführung
AT211937B (de) Heizölbrenner mit einer in der Form eines endlosen Kanales ausgebildeten geschlossenen Verdampfungskammer
DE854086C (de) Heizofen
DE102010051601A1 (de) Heizkessel
EP0078526A1 (de) Flachflammen-Gasbrenner

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19991011

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE ES FR GB GR IE IT LI LU SE

AX Request for extension of the european patent

Free format text: AL PAYMENT 19991011;LT PAYMENT 19991011;LV PAYMENT 19991011;RO PAYMENT 19991011;SI PAYMENT 19991011

17Q First examination report despatched

Effective date: 20000613

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE ES FR GB GR IE IT LI LU SE

AX Request for extension of the european patent

Free format text: AL PAYMENT 19991011;LT PAYMENT 19991011;LV PAYMENT 19991011;RO PAYMENT 19991011;SI PAYMENT 19991011

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20011205

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20011205

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20011205

Ref country code: GB

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20011205

Ref country code: FR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20011205

REF Corresponds to:

Ref document number: 210266

Country of ref document: AT

Date of ref document: 20011215

Kind code of ref document: T

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: GERMAN

REF Corresponds to:

Ref document number: 59802337

Country of ref document: DE

Date of ref document: 20020117

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20020305

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020323

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020331

GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]

Effective date: 20011205

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20020627

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: PATENTBUERO PAUL ROSENICH AG

BERE Be: lapsed

Owner name: *VTH VERFAHRENTECHNIK FUR HEIZUNG A.G.

Effective date: 20020331

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

EN Fr: translation not filed
26N No opposition filed
REG Reference to a national code

Ref country code: CH

Ref legal event code: PK

Free format text: DIE LOESCHUNG DES VERTRETEREINTRAGS FUER DEN GESETZLICHEN VERTRETER ERFOLGTE IRRTUEMLICH.

Ref country code: CH

Ref legal event code: NV

Representative=s name: ROSENICH PAUL; GISLER CHRISTIAN PATENTBUERO PAUL R

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20110930

Year of fee payment: 14

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 210266

Country of ref document: AT

Kind code of ref document: T

Effective date: 20120323

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120331

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120331

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120323

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59802337

Country of ref document: DE

Effective date: 20121002

REG Reference to a national code

Ref country code: DE

Ref legal event code: R073

Ref document number: 59802337

Country of ref document: DE

PGRI Patent reinstated in contracting state [announced from national office to epo]

Ref country code: AT

Effective date: 20130620

REG Reference to a national code

Ref country code: DE

Ref legal event code: R074

Ref document number: 59802337

Country of ref document: DE

Effective date: 20130714

Ref country code: DE

Ref legal event code: R074

Ref document number: 59802337

Country of ref document: DE

Effective date: 20130711

REG Reference to a national code

Ref country code: AT

Ref legal event code: PC

Ref document number: 210266

Country of ref document: AT

Kind code of ref document: T

Owner name: SWISS E-TECHNIC AG, CH

Effective date: 20140205

Ref country code: AT

Ref legal event code: NFJG

Ref document number: 210266

Country of ref document: AT

Kind code of ref document: T

Effective date: 20140205

REG Reference to a national code

Ref country code: DE

Ref legal event code: R008

Ref document number: 59802337

Country of ref document: DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 59802337

Country of ref document: DE

Representative=s name: KOHLER SCHMID MOEBUS PATENTANWAELTE PARTNERSCH, DE

Effective date: 20140626

Ref country code: DE

Ref legal event code: R082

Ref document number: 59802337

Country of ref document: DE

Representative=s name: KOHLER SCHMID MOEBUS PATENTANWAELTE, DE

Effective date: 20140626

Ref country code: DE

Ref legal event code: R081

Ref document number: 59802337

Country of ref document: DE

Owner name: SWISS E-TECHNIC AG, CH

Free format text: FORMER OWNER: SWISS E-TECHNIC AG, MASTRILS, CH

Effective date: 20140626

Ref country code: DE

Ref legal event code: R039

Ref document number: 59802337

Country of ref document: DE

Effective date: 20140429

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20170322

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20170712

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59802337

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK07

Ref document number: 210266

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180323

REG Reference to a national code

Ref country code: DE

Ref legal event code: R040

Ref document number: 59802337

Country of ref document: DE