EP0941989B1 - Process for the preparation of 2,4-diaryl-6-o-hydroxyphenyl-1,3,5-triazine derivatives in the presence of a protic acid catalyst - Google Patents

Process for the preparation of 2,4-diaryl-6-o-hydroxyphenyl-1,3,5-triazine derivatives in the presence of a protic acid catalyst Download PDF

Info

Publication number
EP0941989B1
EP0941989B1 EP99810156A EP99810156A EP0941989B1 EP 0941989 B1 EP0941989 B1 EP 0941989B1 EP 99810156 A EP99810156 A EP 99810156A EP 99810156 A EP99810156 A EP 99810156A EP 0941989 B1 EP0941989 B1 EP 0941989B1
Authority
EP
European Patent Office
Prior art keywords
formula
compound
carbon atoms
alkyl
alkoxy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP99810156A
Other languages
German (de)
English (en)
French (fr)
Other versions
EP0941989A3 (en
EP0941989A2 (en
Inventor
Tyler Arthur Stevenson
Michael Ackerman
Pascal Hayoz
Roger Meuwly
John Francis Oswald
Christian Schregenberger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF SE
Original Assignee
Ciba Holding AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ciba Holding AG filed Critical Ciba Holding AG
Publication of EP0941989A2 publication Critical patent/EP0941989A2/en
Publication of EP0941989A3 publication Critical patent/EP0941989A3/en
Application granted granted Critical
Publication of EP0941989B1 publication Critical patent/EP0941989B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D251/00Heterocyclic compounds containing 1,3,5-triazine rings
    • C07D251/02Heterocyclic compounds containing 1,3,5-triazine rings not condensed with other rings
    • C07D251/12Heterocyclic compounds containing 1,3,5-triazine rings not condensed with other rings having three double bonds between ring members or between ring members and non-ring members
    • C07D251/14Heterocyclic compounds containing 1,3,5-triazine rings not condensed with other rings having three double bonds between ring members or between ring members and non-ring members with hydrogen or carbon atoms directly attached to at least one ring carbon atom
    • C07D251/24Heterocyclic compounds containing 1,3,5-triazine rings not condensed with other rings having three double bonds between ring members or between ring members and non-ring members with hydrogen or carbon atoms directly attached to at least one ring carbon atom to three ring carbon atoms

Definitions

  • This invention pertains to novel methods for the preparation of tris-aryl-o-hydroxyphenyl-s-triazines using cyanuric chloride as a starting material.
  • Particular o-hydroxyphenyl-s-triazines which can be made by these new methods are: bis-aryl-resorcinol based s-triazines; mono-aryl-bis-resorcinol based s-triazines; and tris-resorcinol-s-triazines.
  • Tris-aryl-o-hydroxyphenyl-s-triazines are intermediates for or are themselves UV absorbers useful for the protection of natural or synthetic materials from the adverse action of actinic radiation. There are many methods described for the preparation of such s-triazines as seen from the publications of S. Tanimoto and M. Yamagata, Senryo to Yakuhim, 1995, 40(12), 325-339 and of H. Brunetti and G. E. Luethi, Helv. Chim. Acta, 1972, 55(5), 1566-1595 .
  • the most versatile method is to employ one or more Friedel-Crafts reactions starting from cyanuric chloride.
  • a major obstacle in this approach is the fact that Friedel-Crafts reactions of aryl groups and cyanuric chloride are non-selective. This is a problem when the goal is to prepare an asymmetric tris-aryl-s-triazine. This is explained in the Tanimoto and Brunetti publications mentioned above and in United States Patent Nos. 5,084,570 and 5,106,972 .
  • substitution reactions between nucleophiles and cyanuric chloride are selective as taught by E. M. Smolin and L. Rapoport, s-Triazines and Derivatives in The Chemistry of Heterocyclic Compounds, A. Weissberger Ed., Interscience Publishers, New York, 1959, pp. 53-57 .
  • Japanese Hei 9-59263 discloses a three-step synthetic approach for the preparation of asymmetric tris-aryl-hydroxyphenyl-s-triazines.
  • the preferred method of the Japanese reference is a one-pot process using a Lewis acid to mediate all three steps. This reference will be discussed in more detail later in this application.
  • One object of the invention is a process in which protic acids may be employed as Friedel-Crafts catalysts for the reaction between aryl groups and s-triazines.
  • Another object of the invention is a method for the preparation of asymmetric tris-aryl-s-triazines in less than four synthetic steps.
  • a third object of the invention is a process combining the two processes mentioned above.
  • Strong protic acids such as hydrogen halides, sulfuric or sulfonic acids, nitric acid etc. as well as solid-supported protic acids such as AMBERLYST ® (Rohm & Haas),AMBERLITE ® (Rohm & Haas) and NAFION ® (duPont) catalysts, may be employed as effective Friedel-Crafts catalysts to form carbon-carbon bonds between aryl groups and s-triazines.
  • Active leaving groups are halogen, especially Cl or F, or alkoxy and aryloxy. Preferred leaving groups are chlorine, phenoxy and substituted phenoxy moieties.
  • X in these formulae is hydrogen, alkyl, phenylalkyl or halogen.
  • An effective temperature range is from 70°C to 200°C. The most effective temperature range is 100°C to 170°C.
  • This reaction may also be performed on mono-aryl-bis-chloro-s-triazines and bis-aryl-mono-chloro-s-triazines as seen below.
  • R 1 , R 2 and R 3 are each independently hydrogen, alkyl of 1 to 12 carbon atoms, hydroxy, alkoxy of 1 to 12 carbon atoms, halogen, phenyl or phenyl substituted by alkyl of 1 to 12 carbon atoms, hydroxy, alkoxy of 1 to 12 carbon atoms or halogen.
  • the solvents and temperature ranges are those given supra.
  • O-Attached resorcinol groups on the s-triazine ring are observed as transient intermediates during the course of these reactions.
  • R 1 , R 2 and R 3 are as defined above.
  • the temperature ranges used are as above using chlorine as the leaving group.
  • the instant process also pertains to the preparation of asymmetric tris-aryl-s-triazines in only three steps while avoiding the selectivity problem of Friedel-Crafts reactions with cyanuric chloride.
  • United States Patent Nos. 5,084,570 and 5,106,972 describe a four-step process to overcome this selectivity problem.
  • the key to the new three step process is to take advantage of a nucleophilic substitution step on cyanuric chloride which is selective (E. M. Smolin et al., loc cit).
  • the nucleophile introduced into the triazine ring will also perform as a leaving group under Friedel-Crafts conditions. It is a poor leaving group compared to chlorine. In this way selectivity under Friedel-Crafts condition is achieved.
  • Effective nucleophiles which also serve as Friedel-Crafts leaving groups are alkoxy and aryloxy groups. Especially effective are phenoxy and substituted phenoxy.
  • cyanuric chloride is reacted with one mole of phenol or substituted phenol under nucleophilic (basic) conditions.
  • R 1 , R 2 and R 3 are defined as above.
  • the phenoxy group is an active Friedel-Crafts leaving group. It is a weaker one than chlorine thus allowing for the introduction of a relatively weak Friedel-Crafts substrate such as m-xylene, toluene, benzene, chlorobenzene or biphenyl while leaving the phenol group intact.
  • the phenoxide may be replaced with a strong Friedel-Crafts substrate such as resorcinol.
  • X, R 1 , R 2 and R 3 are as defined above.
  • Japanese Hei 9-59263 discloses this three-step synthetic approach for the preparation of asymmetric tris-aryl-hydroxyphenyl-s-triazines.
  • the preferred method of the Japanese reference is a one-pot process using a Lewis acid to mediate all three steps.
  • the Japanese reference does not describe that step 3 can be mediated successfully by protic acids and that resorcinol itself may be used as a blocking group as is discussed further infra. This reference does not suggest the general applicability of the three-step synthesis.
  • asymmetric tris-aryl-s-triazines which contain one weak and two strong Friedel-Crafts substrates may be prepared in three steps from cyanuric chloride.
  • Examples are bis-resorcinol-mono-aryl-s-triazines where the aryl group is m-xylene, toluene, benzene, chlorobenzene or biphenyl. These materials are prepared by reacting cyanuric chloride with two moles of a phenol or substituted phenol under basic conditions to form a mono-chloro-bis-phenoxy-s-triazine.
  • the remaining chlorine atom may be replaced with a weak Friedel-Crafts substrate such as m-xylene, toluene, benzene, chlorobenzene or biphenyl leaving the phenoxy groups intact.
  • the phenoxy groups may then be replaced by a strong Friedel-Crafts substrate such as resorcinol.
  • a special embodiment of this approach to prepare mono-resorcinol-bis-aryl-s-triazine would be to use resorcinol itself as the blocking phenol in step 1.
  • a bis-triazine-resorcinol adduct is formed and is carried through steps 2 and 3 as seen above. This method is especially advantageous if excess resorcinol is used. In an industrial process only one phenol (namely resorcinol) would need to be recovered and recycled instead of two thus allowing for substantial cost savings.
  • This embodiment is outlined below.
  • the nucleophilic first step in the special embodiment above may be performed in a variety of solvents such as acetone, acetone/water mixtures and xylene. It may also be carried out by means of a two-phase reaction with water and a hydrocarbon solvent such as xylene.
  • Bases which can be used include hydroxide, carbonate and bicarbonate salts of sodium, potassium and calcium. Effective temperatures range from -20°C to 100°C. The most effective temperatures range from -20°C to 50°C.
  • Especially effective condition are the use of 10 % water in acetone as solvent and sodium hydroxide as the base at a temperature range of -20°C to 5°C. Also especially effective is the use of a two-phase system of water/xylene with sodium bicarbonate as the base and a quaternary ammonium salt such as benzyltrimethylammonium chloride as phase-transfer catalyst at temperatures of -5°C to 10°C. Also especially effective is the use of benzyltrimethylammonium chloride as a catalyst in xylene at temperatures of -10°C to 10°C with potassium carbonate base under anhydrous conditions.
  • the second step in which chlorine is displaced by the weaker Friedel-Crafts substrate requires a Lewis acid catalyst.
  • Aluminum chloride is the Lewis acid of choice and may be used in the range of 0.2 to 1.5 equivalents per equivalent of s-triazine.
  • the reaction is best performed neat using an excess of the Friedel-Crafts substrate as solvent. Effective amounts of neat Friedel-Crafts reactant range from 2 to 20 molar equivalents. Examples of solvents which may be employed in this way include m-xylene, toluene, benzene, chlorobenzene and biphenyl.
  • An effective temperature range for this reaction is from 0°C to 170°C; especially from 70°C to 150°C.
  • Step two may then be performed without isolation of the product of step one.
  • Lewis acids usable within present process are mainly those known in the art as Friedel-Crafts catalysts; examples are AlCl 3 , FeCl 3 , ZnCl 2 , TiCl 4 , SnCl 2 ; especially preferred is AlCl 3 .
  • Step three in which the phenol is replaced by a strong Friedel-Crafts substrate such as resorcinol, may be performed with a protic acid catalyst.
  • the preferred protic acids are hydrogen chloride gas and methanesulfonic acid.
  • the reaction may be performed in the neat molten resorcinol.
  • the amount of resorcinol may range from 1.2 to 10 molar equivalents per phenoxy group being displaced.
  • the most effective range is from 1.2 to 4 molar equivalents of resorcinol per phenoxy moiety.
  • the reaction may be performed e.g. with a catalyst level of 0.33 to 1.5 molar equivalents per triazine.
  • the temperature for the reaction may range from 25°C to 200°C.
  • the most effective temperature range is from 120°C to 170°C.
  • Present invention may be carried out according to process variants A-F.
  • the most general form corresponds to variants D, E and F, corresponding to a process for preparing a compound of formula A wherein
  • the protic acid is the only acid catalyst used, or it is used in combination with a Lewis acid potentiator, which is added in an amount of 0-0.25 equivalents Lewis acid per equivalent leaving group (such as chloride) or phenolic compound. If the leaving group is halogen, the amount of protic acid formed thereby can be sufficient so that no further addition of protic acid is needed.
  • the total amount of protic acid is preferably 0.8 to about 20 equivalents, preferably about 1 to 2 equivalents per equivalent leaving group.
  • B and C X is hydrogen; alkyl of 1 to 12 carbon atoms; phenylalkyl of 7 to 15 carbon atoms or halogen; Y is hydrogen; Z is hydroxy; R 1 , R 2 and R 3 are each independently hydrogen; alkyl of 1 to 12 carbon atoms; hydroxy; alkoxy of 1 to 12 carbon atoms; halogen; phenyl or phenyl substituted by alkyl of 1 to 12 carbon atoms, hydroxy, alkoxy of 1 to 12 carbon atoms or halogen; E 1 , E 2 and/or E 3 as a leaving group in formula B are Cl.
  • R 1 , R 2 and R 3 each independently as hydrogen; alkyl of 1 to 4 carbon atoms; alkoxy of 1 to 12 carbon atoms; Cl; phenyl or phenyl substituted by alkyl of 1 to 4 carbon atoms, alkoxy of 1 to 12 carbon atoms; R 12 and R 13 defined for X and Y, and R 11 as defined for Z or R 11 is a residue of the formula
  • a preferred process leads to a compound of formula I from a starting compound of formula XIII or to a compound of formula VII from the starting compound of formula XIV or to a compound of formula XII from the starting compound of the formula B where E 1 , E 2 and E 3 each is a leaving group selected from F, Cl and where R 11 , R 12 and R 13 are as defined for R 1 , R 2 and R 3 , and R 11 also may be a residue of the formula
  • the amount of resorcinol of formula VI preferably is one to ten equivalents per equivalent of the compound of formula XIII for the preparation of a compound of the formula I or two to twenty equivalents per equivalent of the compound of formula XIV for the preparation of a compound of the formula VII or three to thirty equivalents per equivalent of the compound of formula B for the preparation of a compound of the formula XII.
  • the amount of protic acid is usually 0.5 to 10, often 0.7 to 5, especially ca. 0.8 to 1.5 equivalents per equivalent of the formula C or VI; the protic acid is preferably a hydrogen halide, sulfuric or sulfonic acid, especially hydrogen chloride or methanesulfonic acid.
  • the protic acid can also be used along with a Lewis acid potentiator at the level of less than 0.25, e.g. 0.01 to 0.2, equivalents of Lewis acid per equivalent of chloride formed.
  • the leaving group E 1 , E 2 and E 3 is preferably Cl or F or especially Cl; thus a preferred starting material of formula b is cyanuric chloride
  • the process can be carried out in the melt or in a solvent, e.g. an aromatic hydrocarbon or tetramethylene sulfone. With the leaving group halogen, no extra acid catalyst is needed.
  • Variants A, B and C of present process pertain to a 3 step process for preparing a compound of formula A wherein
  • step 1 is run at -20°C to 100°C, and at least two equivalents of the compound of formula IV are used in step 2, and 1.2 to ten equivalents of compound of formula VI are used per one equivalent of triazine in step 3, and when none of R 1 , R 2 or R 3 in formula II is hydroxy, in step 1 one equivalent of the phenolic compound of formula II (variant A), and when one of R 1 , R 2 or R 3 is hydroxy, in step 1 half an equivalent of the phenolic compound of formula II (variant B) is used to form a compound of formula III and when G' in formula A is a residue of the formula two equivalents of the phenolic compound of formula II used in step 1 to form a compound of formula VIII and step 1 run at -20°C to 200°C; at least one equivalent of the compound of formula IV is used in step 2, and 2.4 to twenty equivalents of compound of formula VI are used per one equivalent of triazin
  • a process for preparing a compound of formula A wherein all 3 phenyl moieties bonded to the triazine ring are the same and are or wherein each of G and G' are 4-phenylphenyl or 4-phenylphenyl substituted by alkyl of 1 to 12 carbon atoms, alkoxy of 1 to 12 carbon atoms or halogen.
  • a process wherein the phenolic compounds of formulae C, II and VI are identical and are of the formula
  • the aromatic compound of the formula IV is not a phenol, i.e. none of R 1 , R 2 and R 3 in formula IV is hydroxy; the compound of formula IV is especially preferred as a pure hydrocarbon of 6-20 carbon atoms.
  • process of present invention may be carried out according to the embodiments A, B, C, D, E or F as follows:
  • step 1 is carried out in the presence of a base, said base is preferably a hydroxide, carbonate or bicarbonate of sodium, potassium or calcium. most preferably sodium hydroxide, sodium bicarbonate or potassium carbonate.
  • step 1 is preferably run in acetone, acetone/water or a hydrocarbon.
  • step 1 is run in a two-phase system of water and a hydrocarbon solvent, preferably xylene and where the phase transfer agent is a quaternary ammonium salt, a polyether or a poly(ethylene glycol), most preferably a quaternary ammonium salt, which is benzyltrimethylammonium chloride.
  • step 1 is run in xylene with a phase transfer catalyst and potassium carbonate base under anhydrous conditions.
  • step 1 is usually run at -20°C to 100°C; preferably at - 20°C to 50°C.
  • step 1 is usually run at -20°C to 200°C; preferably at -20°C to 130°C.
  • step 1 is preferably run in 10 % water in acetone with sodium hydroxide as base at a temperature of -20°C to 5°C.
  • step 1 is preferably run in 10 % water in acetone with sodium hydroxide as base at a temperature of -20°C to 60°C.
  • step 1 is run in a two-phase system of aromatic hydrocarbon/water with sodium bicarbonate as the base and benzyltrimethylammonium chloride as a phase transfer catalyst at a temperature of -5°C to 10°C.
  • step 1 is run in a two-phase system of aromatic hydrocarbon/water with sodium bicarbonate as the base and benzyltrimethylammonium chloride as phase transfer catalyst at a temperature of -5°C to 110°C.
  • step 1 is run in xylene with benzyltrimethylammonium chloride as catalyst and potassium carbonate as base under anhydrous conditions at a temperature of -10°C to 10°C.
  • step 1 is run in xylene with benzyltrimethylammonium chloride as catalyst and potassium carbonate as base under anhydrous conditions at a temperature of -10°C to 110°C.
  • the Lewis acid usually is aluminum chloride, preferably wherein the aluminum chloride is used in the range of 0.2 to 1.5 equivalents per one equivalent of s-triazine.
  • step 2 is usually run at a temperature of 0°C to 170°C; especially 70°C to 150°C.
  • step 2 is conveniently run neat in an excess of aromatic compound of formula IV, preferably where the aromatic compound of formula IV is m-xylene, toluene, benzene, chlorobenzene or biphenyl.
  • the compound of formula IV is often used in the range of from 2 to 20 molar equivalents per equivalent of triazine of the compound of formula III, X or VIII.
  • a protic acid is used, which is preferably hydrogen chloride gas or methanesulfonic acid.
  • step 3 is conveniently carried out using 1.2 to ten equivalents of the compound of formula C or VI, most preferably a resorcinol, per each phenoxy-triazine bond.
  • step 3 is usually carried out at a temperature of from 25°C to 200°C, preferably from 120°C to 170°C.
  • step 3 four equivalents of C or VI, especially a resorcinol, and 1 to 1.5 equivalents of methanesulfonic acid are preferably used per each phenoxy-triazine bond; or four to ten equivalents of C or VI, especially resorcinol, are used per each phenoxy-triazine bond; or 1.2 to 1.5 equivalents of compounds of formulae C or VI, especially resorcinol, and 0.8 to 1.5 equivalents of Lewis acid are used per each phenoxy-triazine bond.
  • step 3 conveniently may be performed neat.
  • D is preferably a process for preparing a compound of formula XII where
  • a protic acid catalyst is added which is preferably hydrogen chloride or methanesulfonic acid.
  • the protic acid catalyst may also be used along with a Lewis acid potentiator at a level of less than 0.25 equivalents of Lewis acid per equivalent of leaving group or phenol.
  • reaction is usually carried out at a temperature of from 70°C to 200°C; and most preferably at 100°C to 170°C.
  • the mixture is then warmed to 50°C and the phases are separated.
  • the organic phases is returned to the reaction flask and 32.5 g (0.244 mol) of aluminum chloride are added at 35°C.
  • the mixture is then heated at about 130°C for three hours.
  • the contents are cooled below 120°C and poured into 500 mL of cold 2N hydrochloric acid.
  • the phases are separated and the organic phases is washed twice with water and one with saturated sodium bicarbonate solution. After drying over anhydrous potassium carbonate, the solvent is removed under reduced pressure to afford an oil which crystallized upon cooling.
  • the crude solid is recrystallized from isopropanol to afford 57.7 g (75 % yield) of the title compounds melting at 96-98°C.
  • Examples 3 and 4 below represent some of the various novel methods which can be used to prepare 4,6-bis-(2,4-dimethylphenyl)-2-(2,4-dihydroxyphenyl)-s-triazine.
  • a 300 mL three-necked, round-bottomed flask fitted with a magnetic stirrer, an acid trap, a gas inlet and a heat lamp to prevent sublimation is charged with 29.9 g (0.272 mol) of resorcinol and 2.00 g (0.00525 mol) of the product of Example 2.
  • the mixture is heated to 150°C and hydrogen chloride gas is bubbled slowly through the molten mixture for 25 minutes.
  • the mixture is stirred at this temperature for another 4.5 hours and then allowed to cool to room temperature. Portions of water and toluene are added and the mixture is refluxed till the solids are dissolved.
  • the mixture is allowed to cool to room temperature and the layers separated.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Plural Heterocyclic Compounds (AREA)
EP99810156A 1998-03-02 1999-02-22 Process for the preparation of 2,4-diaryl-6-o-hydroxyphenyl-1,3,5-triazine derivatives in the presence of a protic acid catalyst Expired - Lifetime EP0941989B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US3326698A 1998-03-02 1998-03-02
US33266 1998-03-02

Publications (3)

Publication Number Publication Date
EP0941989A2 EP0941989A2 (en) 1999-09-15
EP0941989A3 EP0941989A3 (en) 2000-01-12
EP0941989B1 true EP0941989B1 (en) 2009-07-08

Family

ID=21869434

Family Applications (1)

Application Number Title Priority Date Filing Date
EP99810156A Expired - Lifetime EP0941989B1 (en) 1998-03-02 1999-02-22 Process for the preparation of 2,4-diaryl-6-o-hydroxyphenyl-1,3,5-triazine derivatives in the presence of a protic acid catalyst

Country Status (9)

Country Link
US (1) US6242598B1 (ja)
EP (1) EP0941989B1 (ja)
JP (1) JP4629814B2 (ja)
KR (1) KR100555072B1 (ja)
CN (1) CN1202090C (ja)
CA (1) CA2263090A1 (ja)
DE (1) DE69941073D1 (ja)
IN (1) IN188425B (ja)
TW (1) TWI236472B (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015113043A1 (en) * 2014-01-27 2015-07-30 Vertellus Specialties Inc. Process for making 2-chloro-5-methylpyridine

Families Citing this family (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI259182B (en) 1998-11-17 2006-08-01 Cytec Tech Corp Process for preparing triazines using a combination of Lewis acids with reaction promoters
BR0011766A (pt) * 1999-06-18 2002-03-05 Ciba Sc Holding Ag Misturas de micropigmentos
ATE353353T1 (de) 2000-02-01 2007-02-15 Ciba Sc Holding Ag Verfahren zum inhaltschutz mit dauerhaften uv- absorber
CN100384943C (zh) 2001-03-22 2008-04-30 西巴特殊化学品控股有限公司 芳族化合物作为喹吖啶酮颜料的相引导剂和颗粒尺寸减小剂的用途
US6632944B2 (en) 2001-06-22 2003-10-14 Cytec Technology Corp. Process for isolation of monophenolic-bisaryl triazines
TWI318208B (en) * 2001-07-02 2009-12-11 Ciba Sc Holding Ag Highly compatible hydroxyphenyltriazine uv-absorbers
US7015227B2 (en) 2002-06-21 2006-03-21 Cgi Pharmaceuticals, Inc. Certain amino-substituted monocycles as kinase modulators
CA2517334A1 (en) 2003-02-26 2004-09-10 Ciba Specialty Chemicals Holding Inc. Water compatible sterically hindered alkoxyamines and hydroxy substituted alkoxyamines
WO2004085412A2 (en) 2003-03-24 2004-10-07 Ciba Specialty Chemicals Holding Inc. Symmetrical triazine derivatives
US7595011B2 (en) 2004-07-12 2009-09-29 Ciba Specialty Chemicals Corporation Stabilized electrochromic media
EP1893707B1 (en) 2005-06-10 2014-12-10 Basf Se Automotive coating compositions comprising tris(hydroxyphenyl) triazines
WO2008110487A1 (en) 2007-03-15 2008-09-18 Basf Se Heat-sensitive coating compositions based on resorcinyl triazine derivatives
EP2167570A1 (en) 2007-06-29 2010-03-31 Basell Poliolefine Italia S.R.L. An irradiated polyolefin composition comprising a non - phenolic stabilizer
ATE538185T1 (de) 2007-08-22 2012-01-15 Datalase Ltd Laserempfindliche beschichtungszusammensetzung
KR20100074334A (ko) 2007-11-07 2010-07-01 바스프 에스이 신규한 섬유 생성물
BR122017025417B1 (pt) * 2008-06-04 2018-09-04 Adeka Corp Método para produção do composto 2,4,6-tri (hidroxifenil)-1,3,5-triazina
EP2450401B1 (de) 2008-09-05 2013-04-17 THOR GmbH Flammschutzzusammensetzung enthaltend ein Phosphonsäurederivat
JP5645832B2 (ja) 2008-10-27 2014-12-24 データレース リミテッドDatalase Ltd. 基材にマーキングするためのレーザー感受性水性組成物
CA2745372C (en) 2008-12-22 2015-05-05 Basf Se Method of improving scratch resistance and related products and uses
US8691002B2 (en) 2009-01-19 2014-04-08 Basf Se Organic black pigments and their preparation
JP5719528B2 (ja) 2009-06-09 2015-05-20 富士フイルム株式会社 新規なトリアジン誘導体、紫外線吸収剤及び樹脂組成物
JP5422269B2 (ja) 2009-06-23 2014-02-19 富士フイルム株式会社 紫外線吸収剤組成物及び樹脂組成物
JP6317880B2 (ja) 2009-07-07 2018-04-25 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se カリウム・セシウム・タングステンブロンズ粒子
JP5613481B2 (ja) 2009-07-29 2014-10-22 富士フイルム株式会社 新規なトリアジン誘導体、紫外線吸収剤
US8748520B2 (en) 2009-09-28 2014-06-10 Fujifilm Corporation Polycarbonate resin composition containing triazine compound and molded article using the same
JP5647872B2 (ja) 2010-01-19 2015-01-07 富士フイルム株式会社 ポリエステル樹脂組成物
JP2012072125A (ja) 2010-08-31 2012-04-12 Fujifilm Corp トリアジン系化合物、及び紫外線吸収剤
US9481670B2 (en) * 2011-01-25 2016-11-01 Sphaera Pharma Pte. Ltd. Triazine compounds
US8663457B2 (en) 2011-11-23 2014-03-04 General Electric Company Methods and compounds for improving sulfide scavenging activity
US9108899B2 (en) 2011-12-30 2015-08-18 General Electric Company Sulfide scavengers, methods for making and methods for using
JP6246223B2 (ja) 2012-10-23 2017-12-13 ビーエーエスエフ エスイー ポリマー安定剤基を含有するエチレン性不飽和オリゴマー
BR112016006528B1 (pt) 2013-09-27 2021-07-27 Basf Se Artigo extrudado compreendendo uma composição de poliolefina
WO2015077635A2 (en) 2013-11-22 2015-05-28 Polnox Corporation Macromolecular antioxidants based on dual type moiety per molecule: structures methods of making and using the same
TWI685524B (zh) 2013-12-17 2020-02-21 美商畢克美國股份有限公司 預先脫層之層狀材料
WO2017013028A1 (en) 2015-07-20 2017-01-26 Basf Se Flame retardant polyolefin articles
KR102641048B1 (ko) * 2017-06-26 2024-02-27 메르크 파텐트 게엠베하 치환된 질소 함유 복소환을 제조하는 방법
PL3841166T3 (pl) 2018-08-22 2022-09-26 Basf Se Stabilizowana poliolefina formowana rotacyjnie
EP3941970A1 (en) 2019-03-18 2022-01-26 Basf Se Uv curable compositions for dirt pick-up resistance
US20220282064A1 (en) 2019-07-30 2022-09-08 Basf Se Stabilizer composition
CN112647319B (zh) * 2020-11-24 2022-11-01 长胜纺织科技发展(上海)有限公司 转移染色活性染料墨水及其应用
CN116143715B (zh) * 2023-02-28 2023-11-24 江苏极易新材料有限公司 一种2-(4,6-二苯基-1,3,5-三嗪-2-基)-5-正己烷氧基苯酚合成方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3118887A (en) * 1961-03-06 1964-01-21 American Cyanamid Co O-hydroxy substituted tris aryl-s-triazines
NL299880A (ja) * 1962-10-30
NL130993C (ja) * 1963-02-07
CH473818A (de) * 1964-03-18 1969-06-15 Ciba Geigy Verfahren zur Herstellung von neuen Hydroxyphenyl-1,3,5-triazinen und deren Verwendung
CH473604A (de) * 1965-02-19 1969-06-15 Ciba Geigy Verwendung von neuen Aryl-1,3,5-triazinen als Stabilisierungsmittel für nicht-textile organische Materialien
EP0165608B1 (de) * 1984-06-22 1991-01-02 Ilford Ag Hydroxyphenyltriazine, Verfahren zu ihrer Herstellung und ihre Verwendung als UV-Absorber
DE59010061D1 (de) 1989-04-21 1996-02-29 Ciba Geigy Ag Verfahren zur Herstellung von 2-(2',4'-Dihydroxyphenyl)-4,6-diaryl-s-triazinen
US5556973A (en) * 1994-07-27 1996-09-17 Ciba-Geigy Corporation Red-shifted tris-aryl-s-triazines and compositions stabilized therewith
JP3844307B2 (ja) * 1995-08-11 2006-11-08 株式会社Adeka 2−(2’,4’−ジヒドロキシフェニル)−4,6−ジアリール−s−トリアジン誘導体の製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015113043A1 (en) * 2014-01-27 2015-07-30 Vertellus Specialties Inc. Process for making 2-chloro-5-methylpyridine

Also Published As

Publication number Publication date
TWI236472B (en) 2005-07-21
US6242598B1 (en) 2001-06-05
CN1202090C (zh) 2005-05-18
JPH11315072A (ja) 1999-11-16
JP4629814B2 (ja) 2011-02-09
DE69941073D1 (de) 2009-08-20
KR100555072B1 (ko) 2006-02-24
EP0941989A3 (en) 2000-01-12
IN188425B (ja) 2002-09-21
CN1232823A (zh) 1999-10-27
CA2263090A1 (en) 1999-09-02
KR19990077522A (ko) 1999-10-25
EP0941989A2 (en) 1999-09-15

Similar Documents

Publication Publication Date Title
EP0941989B1 (en) Process for the preparation of 2,4-diaryl-6-o-hydroxyphenyl-1,3,5-triazine derivatives in the presence of a protic acid catalyst
EP0624577B1 (en) Process for the preparation of 1,3,5-triazine carbamates, at least biscarbamate functional 1,3,5-triazines
US5106972A (en) 2-methyl-thio-4,6-diaryl-triazines
US20070015920A1 (en) Process for Making Trisaryl Triazine UV Absorbers Using Lewis Acids and Reaction Promoters
US5438138A (en) Process for the preparation of mono- and diaryltriazines
CA1042912A (en) Process for the preparation of diaryl carbonates
EP0945446A1 (en) Cyanoethylmelamine derivatives and process for producing the same
US4179461A (en) Process for the preparation of diphenyl ethers
JP2002524451A (ja) 2−(2−ヒドロキシ−4−アルコキシフェニル)−4、6−ビスアリール−1、3、5−トリアジンの製造方法
MXPA99001978A (en) Novedous methods for the preparation of tris-aril-o-hydroxypenyl-s-triaci
US4220765A (en) Process for the preparation of 4,6-dihalogeno-triazines
EP2835368B1 (en) Process for Isolation of Monophenolic-Bisaryl Triazines
CA2175420C (en) Process for the preparation of optionally 2-substituted 5-chloroimidazole-4-carbaldehydes
US5936103A (en) Process for the preparation of aromatic compounds containing a heterocyclic system
KR100555053B1 (ko) 비대칭4,6-비스(아릴옥시)피리미딘화합물의개량된제조방법
US3296259A (en) 3, 4-dihydro-4-hydroxy-2h-1, 3-benzoxazin-2-ones and a process for their preparation
US3763206A (en) 4-hydroxy-2,6-di-tert.alkylphenyl-cyanates
CA2022052A1 (en) Method of condensing n-phenyl carbamates
HU212909B (en) Process for producing sulfonylurea derivatives
DK143025B (da) Fremgangsmaade til fremstilling af 4-phenyl2(1h)-quinazoliner
JPS5825662B2 (ja) グアニジノカプロン酸エステルの製法
CS226627B1 (en) Method of freparing 2-alkylamino-4-chloro-6-methylthio-
PL114083B1 (en) Process for preparing 4-phenylo-2/1h/-quinazolinones

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): BE DE ES FR GB IT NL

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

RTI1 Title (correction)

Free format text: PROCESS FOR THE PREPARATION OF 2,4-DIARYL-6-O-HYDROXYPHENYL-1,3,5-TRIAZINE DERIVATIVES IN THE PRESENCE OF A PROTIC ACID CATALYST

17P Request for examination filed

Effective date: 20000207

AKX Designation fees paid

Free format text: BE DE ES FR GB IT NL

17Q First examination report despatched

Effective date: 20030403

17Q First examination report despatched

Effective date: 20030403

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: CIBA HOLDING INC.

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE DE ES FR GB IT NL

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: BASF SE

REF Corresponds to:

Ref document number: 69941073

Country of ref document: DE

Date of ref document: 20090820

Kind code of ref document: P

NLT2 Nl: modifications (of names), taken from the european patent patent bulletin

Owner name: BASF SE

Effective date: 20090812

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091019

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090708

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090708

26N No opposition filed

Effective date: 20100409

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20100222

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20101029

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100222

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090708

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20180430

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 69941073

Country of ref document: DE