EP0922924B1 - Dicht- und Führungseinrichtung für hochdynamisch beschleunigte, abstandswirksame Schutzelemente - Google Patents
Dicht- und Führungseinrichtung für hochdynamisch beschleunigte, abstandswirksame Schutzelemente Download PDFInfo
- Publication number
- EP0922924B1 EP0922924B1 EP98122777A EP98122777A EP0922924B1 EP 0922924 B1 EP0922924 B1 EP 0922924B1 EP 98122777 A EP98122777 A EP 98122777A EP 98122777 A EP98122777 A EP 98122777A EP 0922924 B1 EP0922924 B1 EP 0922924B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- protection system
- defensive
- elements
- defense
- threat
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F41—WEAPONS
- F41H—ARMOUR; ARMOURED TURRETS; ARMOURED OR ARMED VEHICLES; MEANS OF ATTACK OR DEFENCE, e.g. CAMOUFLAGE, IN GENERAL
- F41H5/00—Armour; Armour plates
- F41H5/007—Reactive armour; Dynamic armour
Definitions
- the invention relates to a protective device with effective distance Protective elements to ward off threats from impact (KE) projectiles, Hollow charge ammunition (HL) and explosive-shaped projectiles (EFP) in the Front, side or roof area of armored and unarmored objects.
- KE ward off threats from impact
- HL Hollow charge ammunition
- EFP explosive-shaped projectiles
- a protective device is described in document DE 20 31 658 A, which has an armor wall with bulkhead-like chambers, of which each partially filled with explosives and externally through one Cover is closed.
- Each chamber there is at least one made of a metal part and explosive explosive existing layered body provided Metal part can be formed by the lid of the chamber itself.
- the metal part can be plate-shaped or disk-shaped. When entering An enemy projectile in the armored room becomes the explosive ignited and the lid flung outwards.
- the chambers can be used as independent components can be arranged on or in the armor.
- DE 44 26 014 A1 describes a system for protecting a target against missiles described that a launching container with a launch tube for an associated Splinter grenade.
- the approaching missile is by means of a Sensor system detects, the frag grenade is shot at him and exploded shortly before the meeting.
- EP-A-0 379 080 describes a reactive armor element in which plates consisting of a sandwich structure in the direction of the approaching ones Threat is thrown out.
- the mentioned reactive armor with a larger surface area are with favorable end ballistic dimensioning over that with inert special materials achievable values, however, it should be for a realistic estimate at least some of those specifically required for the use of reactive elements Masses (fasteners, webs, etc.) are taken into account. This condition depending on the point of view, reduces the Em factor for large-area elements or unfavorable interpretations such that a mass-efficient and therefore meaningful use is questioned.
- Another important aspect for the use of such systems is in their sensitivity to interference or targeted countermeasures. These can, for example, be fired at with smaller threats (machine gun) with the aim of a flat trigger or in the fire with Tandem - shot.
- TLP propellant powder
- a combination of electromagnetic acceleration is also a hybrid drive and additional chemical energy, e.g. by using pressure sensitive substances such as perchlorates (e.g. potassium perchlorate).
- pressure sensitive substances such as perchlorates (e.g. potassium perchlorate).
- perchlorates e.g. potassium perchlorate
- the perchlorate powder on the ground (in Pot) of the protective element or between the two coils initiated spontaneously: This generates a large amount of gas, which is also the defense element in the exhaust pot accelerated.
- Future-oriented hybrid drives are also conceivable where, for example, a plasma as a drive medium through electrical energy is produced.
- the shock load can be mitigated when using explosives by adding "thinning" components (inert powder, PU foam Etc.).
- thinning inert powder, PU foam Etc.
- the plastic deformation in the near area can be particularly effective higher speeds of the defense elements can hardly be prevented, however is this with optimal design and coordination of speeds and Limit masses clearly. With such measures, however, the ignition of the explosive mixture difficult.
- the basic principle here is that relatively solid bodies, such as balancing projectiles, by shaped charges, cutting charges or by the explosion of explosives can hardly be adversely affected and can in no way be significantly destroyed.
- a second class of such proposals can be summarized by that to defend against KE threats in relation to the penetrator diameter relatively large areas (armor plates) laterally against penetrating Projectiles are accelerated.
- the acceleration such large masses is associated with the greatest problems the protective balance (efficiency) even against the simplest inert protective structures in any case worse if they are required for such constructions Dead masses are taken into account.
- an acceleration with Explosives do not avoid the impacted edges of the moving Plates are significantly plastically deformed.
- disruptive elements should be positioned as far as possible from the space or object to be protected, since the subsequent flight path (deflection path) of the disturbed penetrator is of great importance for efficiency due to the continued lateral movement.
- the invention has for its object to provide a protective device through which a very effective defense against the threat with relatively little effort can be achieved by KE, HL and EFP projectiles.
- FIG. 1A, 1B and 1C in Figure 1 show schematic side views of an armored Vehicle 1 with the different areas of application more effective distance Protection elements inside and outside the structure.
- Fig. 1A the inner working area of distance-effective devices, e.g. within of the vehicle bow area 2, shown a bow sensor 5a for the inner area or by contact.
- 1B characterizes the immediate detection close range 3 of armor with distance-effective elements and sensors 5b (roof sensor for the Close range) and 5c (close range bow sensor).
- 1C shows the adjoining area 4 remote from the vehicle, which here of a suitable roof sensor 5d is scanned.
- a suitable roof sensor 5d is scanned.
- the task can also be performed by several sensors.
- Figure 1.1 is the possible threat area of a vehicle in the roof area indicated by EFP or shaped charge missile. The release takes place here via correspondingly arranged sensors 5e.
- the bow area 6 is determined by the upper front surface 7a and lower front surface 7b.
- the conclusion to the combat area in which the team is located forms an oblique or vertical passive (inert) basic protection 13.
- the possible paths 12 of the inner defense elements 11 are due to the geometry the front surfaces 7a, 7b and the base protection 13 are determined and can be inclined run according to the respective contour or vertically.
- the arrangement in The bow area can be designed very variably and so the needs can be optimally adapted to the respective passive base armor.
- At the bow side area 9 or tower front area 8 or tower side area 10 is the basic arrangement of effective protective elements 14 with their possible lanes 15 to ward off a threat in the near-vehicle area 3 or area 4 remote from the vehicle.
- the threat from projectiles Missiles or warheads can be directly from the front 16a, from the Page 16b or from above 16c.
- Figure 2.1 shows the possible defense against an explosive-shaped projectile (arrow 16c in the sketch) by a distance-effective defense element 14 or the external defense trajectory 15 outlined.
- a distance-effective protection system can also missiles that are in the so-called Top Attack, (the object of attack), fight very well.
- FIG. 3 there is a vertical interaction between defense element 20 and a KE penetrator 18 (threat). Actual angles (inclination or inclination of the armor) are in a first approximation through transmission using the cosine law too to treat. According to FIG. 3A, there are two times three possibilities with regard to the Interaction angle.
- the defense element 20 moves in the direction of the threat 18 with one component in flight direction 21 of the threat (17ac from above, 17bc from below) or with a component against the flight direction 21 of the threat (17aa from above, 17ba from below).
- the third possibility is to hit it vertically (17ab from above, 17bb from below).
- 3B shows the case for a vertical interaction (17bb) in which the speed at which the defense element 20 runs laterally into the penetrator 18 is set too high (greater than 0.2 to 0.3 v penetrator ). Therefore, only a certain penetrator length 18b is punched out. Due to the inertia of the residual penetrator, the remaining pieces of the projectile 18a / 18c remain in their original flight axis. The end ballistic performance is only reduced approximately according to the punched-out penetrator length 18b.
- FIG. 3C shows the case in which the transverse speed of the defense element 20 is too low (less than 0.1 to 0.15 v penetrator ). There is only a slight distraction (19, ⁇ ). Depending on the direction of movement of the defense element 20, the penetrator 18 can even be set in the direction of the target normal of a downstream inclined armor, so that the slight gain in protection performance could be compensated for by the slightly inclined position of the penetrator due to a somewhat improved penetration performance.
- the vector diagrams in FIG. 4 show this relationship for a moving one Protection element and a counter-rotating protection element each for a system "resting defense element" and a system “resting floor”.
- the defense element acts immediately after contact with the penetrator. It must be taken into account here that a sufficient deflection force (lateral force) is generated becomes. It is particularly important to ensure that a penetrator to be disturbed as quickly as possible, i.e. in the front area, is disturbed or distracted, so its greatest possible transient deformation or deflection and thus reduction the breakthrough performance is achieved.
- the area and density of the defense element is decisive.
- the The length of the AR can be limited to avoid dead mass. To achieve one good ratio of effort to effect (efficiency) or a large em factor only masses that are intended for direct distraction or Damage to the penetrator may be required.
- the geometric elements shown in FIG. 5 are preferred as active elements (AWE) To use bodies that basically meet these conditions.
- FIG. 5A an AWE as a flat cuboid 30 with width B Qua 30a, height H Qua 30b and length L Qua 30C.
- a bar 31 as AWE with width B Ba 31a, height H Ba 31b and length L Ba 32C.
- a cylinder 32 according to FIG. 5C as AWE has the diameter D cyl 32a and the length L cyl 32b.
- the penetrator position is the decisive defense criterion, one must sufficiently large lateral deflection distance after the exposure to the defense element are available. Under the diversion line is the Understand distance that the deflecting element perpendicular after the start of contact to the direction of movement of the threat as it passes. If a sufficient cross-sectional load is observed, this is A crucial point for the performance of a protective or defense element.
- Ensuring a given collision point depends equally of a sufficiently precise detection as well as of a precise and sufficient Acceleration of the active body.
- the detection should be sufficient are precisely presupposed and is not the subject of this invention. Very however, it is important that the defense elements reach a certain speed at the collision point.
- 5.1A is the case for a certain, optimally set transverse speed, in this case 200 m / s, and a cylinder 32 as a defense element at the moment the interaction as a starting point for the 3D simulation calculation, which is in the ISL was carried out.
- the pentrator speed is 1800 m / s.
- the mass of the cylindrical AR corresponds to the mass of the projectile.
- the appropriate ones Materials for the distance-effective protective elements (AR) can be selected. This is due to the fixed drive parameters such as pressure and drive area or acceleration path the density of the materials with the achievable exit speed closely linked.
- Endballistically very effective materials such as tungsten heavy metal (WS), depleted Uranium (DU) or armored steel, on the other hand, achieve slower speeds Speeds, but achieve high due to their mass or density Shear forces and are therefore used to ward off massive threats such as KE bullets of high performance are particularly suitable.
- WS tungsten heavy metal
- DU depleted Uranium
- armored steel on the other hand, achieve slower speeds Speeds, but achieve high due to their mass or density Shear forces and are therefore used to ward off massive threats such as KE bullets of high performance are particularly suitable.
- the conditions for the drive unit of the AWE and the required material are narrowly limited.
- the volume required for a defense element e.g. cuboid, bar, cylinder, disc
- the low-density materials are therefore ruled out if you want to give preference to the smallest possible defense elements.
- Hard tempered steel is probably the most suitable material for the defense elements (price).
- the first diagram 5.2A shows the exit speed v of a defense element as a function of a constant working pressure p in the drive system.
- the course of the AWE speed v shown in diagram 5.2A results as a function of the constant drive pressure p and as a function of the disk diameter D Sch .
- the respective acceleration times are of the order of 0.4 to 0.5 ms at the necessary minimum speed of 100 m / s and 0.1 to 0.2 ms in the high speed range.
- the required minimum densities ⁇ for the end-ballistic material of the disk-shaped defense elements are between 5.6 and 12.5 g / cm 3 , depending on the disk diameter.
- the second diagram 5.2B shows the values for different AWE materials with different densities.
- WS tungsten heavy metal
- FIG. 6 shows the basic structure of various acceleration units with the different drive media shown.
- FIG. 6A shows an AR 20 in the defense unit 34. Serves as the drive medium Explosives, in this case a thin foil 35. Between AWE and this film is a transmission or damping layer 36. Die Ignition device 37 receives the ignition signal via the transmission line 38.
- FIG. 6B shows a future technological solution, for example a working medium 39 as plasma from a corresponding energy supplier 44 is generated.
- FIG. 6C shows the case of electromagnetic acceleration with a primary coil 40 and the secondary coil 41. Between the two coils 40, 41 could if necessary, a pressure-sensitive chemical drive medium 45 is additionally arranged be (hybrid drive).
- FIG. 6D A structure is sketched in FIG. 6D in which chemical energy suppliers 42 have a Implementation rate below the detonation rate of Explosives (deflagrating explosives, very fast powder mixtures) in the drive room are arranged. The rapid energy conversion takes place after the Ignition by means of a transfer or booster charge 43.
- chemical energy suppliers 42 have a Implementation rate below the detonation rate of Explosives (deflagrating explosives, very fast powder mixtures) in the drive room are arranged.
- Explosives deflagrating explosives, very fast powder mixtures
- FIG. 7A is the case of a stepped or piston-shaped defense element 51 outlined.
- the piston part 52 is located in the base plate 49a, the drive chamber 53 of them.
- the entire AWE 51 sits in a sensor 50 on the outer surface the defense unit.
- FIG. 7B there is a disk-shaped defense element 54 in the corresponding base plate 49b and pickup device 50 outlined.
- Fig. 8A the volume increase 56 is after a small movement of the AR Working space outlined in FIG. 7A. However, the upper volume is still without Gas pressure and therefore does not contribute to the drive. Only after passing the lower one The actual spontaneous volume increase takes place at the edge of the piston part 52 on the transducer 50 with the corresponding effects on gas pressure and drive power.
- Such a stepped piston concept is over the length of the piston part 52 and the diameter ratio of defense element 51 to piston 52 is very variable in terms of working pressure and drive power.
- volume increase 57 runs during the movement of the disk-shaped Defense element 54 linear with its movement, as in Figure 8B shown.
- FIG. 9 shows an acceleration unit according to the invention with a sealing zone and Covering examples shown.
- the AWE 20 is located in the defense module 60 and is surrounded by a sealing and guiding element 61.
- the Drive room 53 is located below the AWE 20.
- the AWE 20 can with one Cover / cover 62 may be provided, which by means of screw fastening 63 on Defense module 60 has its housing fastened and has two holes 64 in the AWE 20 is centered.
- cover options are also conceivable, for example a flat cover 65, which also acts as a seal and is glued or vulcanized.
- FIG. 10 shows examples of sealing concepts from AWE according to the invention.
- FIG. 10A shows a defense module 70 with a sealing strip 69 on the AR
- FIG. 10B shows a module 71 with sealing rings 76, 77 on the AWE.
- FIG. 10C solutions exist in a defense module 72, in which the AWE has a lateral sealing surface 78 or, as shown in FIG. 10D, a Defense module 73 with an AWE and sealing lip 79.
- Further sealing concepts are a floor seal 80 on the AWE according to FIG. 10E in the defense module 74 or a combined side-floor seal according to FIG. 10F and defense module 75.
- FIG. 11 Other examples of sealing concepts and rotationally symmetrical defense elements, for example cylinders, are outlined in FIG. 11.
- the sealing is carried out, for example, by a Sealing strip 86 in the case of a cylindrical defense element or by means of a sealing ring with a rotationally shaped AR (ball).
- FIG. 11B the sealing takes place via a flat floor seal adapted to the contour of the defense element 87.
- FIG. 11C lateral flat seal 88 outlined.
- Figure 11D shows the case of a revolving Seal 89 through which any position of the cylindrical defense element is made possible.
- FIG. 12 there are various drive options, for example depending on the drive concept and the resulting structural load Lead designs.
- FIG. 12A there is a defense element 91 with a flat drive unit 97 and for comparison an AWE 92 with 3 cup-shaped drive units 95th
- the defense element 92 is outlined in a multiple arrangement in FIG. 12B, at which was indicated that the respective left or right neighboring region 93 of the AWE 92 can be made shock-proof by means of webs or buffer elements 94 could.
- FIG. 12C Analogous to FIG. 12B, a multiple arrangement is sketched in FIG. 12C in which a defense element 98 is accelerated by 6 cup-shaped drive units.
- FIG. 13 shows examples of options for designing the direct recording of Defense modules in an armor or structure.
- the simplest way is to accommodate a defense element 20 or the corresponding one Defense module in a sack lock, a hole or a milling 100 in part of the armor structure 99 according to FIG. 13A.
- Particularly advantageous is the arrangement in a shock-absorbing material, for example GRP or rubber.
- FIG. 13B An inexpensive arrangement is shown in Figure 13B, in which the inclusion of Defense modules 102 takes place in a perforated plate 101.
- This perforated plate 101 is in this case, for example, arranged in front of or on a base armor 103.
- FIG. 13C Another design option is shown in Figure 13C, in which the defense element 20 is laterally supported or buffered by a sleeve 104. Also with such measures, the reactions can be selected with a suitable choice of materials limit strongly locally during the highly dynamic acceleration process.
- FIG. 14 shows views of planar defense units shown.
- the round receptacles 102 are each through the round sleeve 104
- the mounting plate for the accelerator unit and AWE can also through a perforated plate 106 with quadrangular Holes or, for example, be formed from webs and strips.
- FIG. 15 there is a bar with integrated defense elements as the defense element 31 shown.
- an active body 20a is inserted, which relates to its properties as much as possible from the material of the support beam 31 should distinguish.
- the middle arrangement there are two active bodies 20b in the Carrier beam 31 integrated so that the overflowing penetrator 18 of the two inserted bodies 20 b hit practically simultaneously but in different places becomes.
- the bar contains two consecutive ones Defense elements 20c.
- FIG. 1 Another very interesting defense is the one shown in FIG Arrangement of two or more mutually inclined drive units, which can be ignited individually or together, so that the defense elements 20 accelerated individually or together in different directions become. With such an arrangement, the most varied can be done without any directional effort Threats, e.g. combat tandem bullets effectively.
- Threats e.g. combat tandem bullets effectively.
- a single penetrator can also be used with an appropriately coordinated firing order and Defense elements can be subjected to multiple angular positions.
- the deflection of a cylindrical penetrator made of tungsten heavy metal was calculated by interacting with a bar-shaped defense element, which at 200 m / s at a distance corresponding to the beam width in front of a homogeneous one Armor is moved at three different times.
- the impact speed of the WS penetrator is 1800 m / s.
- the values for height, width and length of the AWE made of high-hard steel are 2 and 8 storey diameters, respectively.
- the RHA armor is 5 penetrator thick.
- the position of the AWE is of particular importance. Because from the Sequences and representations according to FIGS. 17A to 17C follow that the defense element in this calculation example all its energy to the penetrator has given up and has practically come to rest. This is in view the structural load caused by the AWE is in an optimal condition executed, moving protective elements can never be reached.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Aiming, Guidance, Guns With A Light Source, Armor, Camouflage, And Targets (AREA)
- Knitting Machines (AREA)
- Burglar Alarm Systems (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
- Devices Affording Protection Of Roads Or Walls For Sound Insulation (AREA)
- Buildings Adapted To Withstand Abnormal External Influences (AREA)
Description
- Figur 1
- schematisierte Ansicht eines Fahrzeuges mit den Einsatzbereichen für abstandswirksame Schutzelemente gegen KE und HL;
- Figur 1.1
- schematisierte Ansicht eines Fahrzeuges mit dem Einsatzbereich für abstandswirksame Schutzelemente gegen EFP;
- Figur 2
- Anordnung und Bahnen der Abwehrelemente gegen HL und KE;
- Figur 2.1
- Anordnung und Bahnen der Abwehrelemente gegen EFP;
- Figur 3
- schematische Darstellung der Interaktion zwischen Abwehrelement und einem KE-Projektil;
- Figur 4
- Vektordiagramme für mitlaufende und gegenlaufende Schutzelemente;
- Figur 5
- geometrische Formen möglicher AWE;
- Figur 5.1A
- numerische 3D-Simulation von einem zylindrischen Abwehrelement und einem KE-Penetrator zum Beginn der Interaktion;
- Figur 5.1B
- numerische 3D-Simulation von dem zylindrischen Abwehrelement und KE-Penetrator nach der Interaktion von AWE und Penetrator;
- Figur 5.2A
- Diagramm zum Druck-Geschwindigkeitsverlauf am Beispiel eines scheibenförmigen Abwehrelementes bei Variation des Scheibendurchmessers,
- Figur 5.2B
- Diagramm zum Druck-Geschwindigkeitsverlauf am Beispiel eines scheibenförmigen Abwehrelementes bei Variation des Materials vom Abwehrelement (Dichte),
- Figur 6
- prinzipieller Aufbau diverser Beschleunigungseinheiten;
- Figur 7
- prinzipielle Führung von Abwehrelementen bei der Beschleunigung;
- Figur 8
- prinzipielle Darstellung der Volumenerhöhung bei der Bewegung eines AWE;
- Figur 9
- Beschleunigungseinheit mit Dichtzone und Abdeckbeispielen;
- Figur 10
- prinzipielle Darstellung von Dichtkonzepten für flächenhafte Abwehrelemente;
- Figur 11
- Dichtkonzepte für Rotationskörper;
- Figur 12
- prinzipielle Darstellung für modulare Antriebselemente;
- Figur 13
- prinzipielle Darstellung von ein- oder mehrfachen Ausstoßsystemen;
- Figur 14
- Ansichten von Mehrfachausstoßsystemen;
- Figur 15
- Prinzipdarstellung eines Abwehrelementes mit integrierten Elementen;
- Figur 16
- Prinzipdarstellung eines wahlweise schaltbaren Abwehrsystems.
- Figur 17
- numerische 3D-Simulation einer Interaktion von einem balkenförmigen Abwehrelement und einem KE-Penetrator bei einem kurzen Abstand des AWE vor einer massiven Panzerstahlplatte.
- Beim Quader 30
- HQua ≈ 1,5 - 2 * DPenetrator
HQua < LQua, BQua
z.B. HQua ≈ L/2, B/2 bis L/4, B/4
LQua, BQua ≈ 3 - 8 * DPenetrator - Beim Balken 31
- LBa ≈ 5 - 10 * DPenetrator
BBa, HBa ≈ 2 * DPenetrator - Beim Zylinder 32
- DZyl ≈ 1,5 - 2 * DPenetrator
LZyl ≈ 4 - 6 * DPenetrator - Bei der Scheibe 33
- DSch ≈ 4 - 6 * DPenetrator
HSch ≈ 1,5 - 2 * DPenetrator
Claims (31)
- Schutzeinrichtung mit abstandswirksamen Schutzelementen zur Abwehr von Bedrohungen (18) durch KE, HL- oder EFP-Munitionen im Front-, Seiten- oder Dachbereich von gepanzerten und ungepanzerten Objekten (1), bei der Abwehrelemente (11, 14, 20, 30-33, 51) jeweils aus einem Behälter oder Gehäuse (34, 50, 60, 70-75, 82-85, 99) einer Beschleunigungsvorrichtung gesteuert abgeschossen und dabei beschleunigt werden, wobei jede Beschleunigungsvorrichtung eine abgeschlossene Einheit bildet und bei der die als quader-(20, 30), balken-(31), zylinder-(32) oder scheibenförmige (33) Körper ausgebildeten Abwehrelemente eine im Verhältnis zur abzuwehrenden Bedrohung (18) geringstmögliche Masse aufweisen, die in der Größenordnung der Masse der abzuwehrenden Bedrohung (18) liegt und insbesondere das ein- bis zweifache dieser Masse beträgt, und die Beschleunigungsvorrichtung so ausgebildet ist, daß die Abwehrelemente auf eine jeweils angepaßte optimale Abwehrgeschwindigkeit im Bereich zwischen etwa 100m/s bis 500m/s beschleunigt werden.
- Schutzeinrichtung nach Anspruch 1, dadurch gekennzeichnet, daß die Höhe eines quaderförmigen Abwehrelements (30) bevorzugt den 0,5 bis 2fachen Wert und die Länge und Breite des Quaders jeweils in etwa den 4 bis 6fachen Wert vom Durchmesser der Bedrohung (18) besitzt.
- Schutzeinrichtung nach Anspruch 1, dadurch gekennzeichnet, daß die Länge eines balkenformigen Abwehrelements (31) bevorzugt den 5 bis 10fachen Wert und die Breite und Höhe des Balkens jeweils in etwa den 2fachen Wert vom Durchmesser der Bedrohung (18) besitzt.
- Schutzeinrichtung nach Anspruch 1, dadurch gekennzeichnet, daß die Länge eines zylinderförmigen Abwehrelements (32) bevorzugt den 4 bis 6fachen Wert und der Durchmesser des Zylinders in etwa den 0,5 bis 2fachen Wert vom Durchmesser der Bedrohung (18) besitzt.
- Schutzeinrichtung nach Anspruch 1, dadurch gekennzeichnet, daß die Höhe eines scheibenförmigen Abwehrelements (33) bevorzugt den 0,5 bis 2fachen Wert und der Durchmesser der Scheibe in etwa den 4 bis 6fachen Wert vom Durchmesser der Bedrohung (18) besitzt.
- Schutzeinrichtung nach einem der Ansprüche 2 bis 5, dadurch gekennzeichnet, daß die zur Interaktion kommende Flächenmasse eines Abwehrelementes (30 bis 33) in der Größenordnung der Flächenmasse der Bedrohung liegt.
- Schutzeinrichtung nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß ein Abwehrelement (11, 14, 20, 30 bis 33, 51) ganz oder teilweise aus einem gesinterten oder reinen Metall hoher Dichte besteht.
- Schutzeinrichtung nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß ein Abwehrelement (11, 14, 20, 30 bis 33, 51) ganz oder teilweise aus einem spröden Metall oder einer spröden Metallverbindung hoher Dichte besteht.
- Schutzeinrichtung nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß ein Abwehrelement (11, 14, 20, 30 bis 33, 51) ganz oder teilweise aus einem Leichtmetall oder dessen Legierung besteht.
- Schutzeinrichtung nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß ein Abwehrelement (11, 14, 20, 30 bis 33, 51) ganz oder teilweise aus Titan oder dessen Legierung besteht.
- Schutzeinrichtung nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß ein Abwehrelement (11, 14, 20, 30 bis 33, 51) ganz oder teilweise aus einem Stahl hoher Härte besteht.
- Schutzeinrichtung nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß ein Abwehrelement (11, 14, 20, 30 bis 33, 51) ganz oder teilweise aus faserverstärkten Kunststoffen besteht.
- Schutzeinrichtung nach Anspruch 12, dadurch gekennzeichnet, daß ein Abwehrelement aus einem lamellierten oder faserartigen Aufbau besteht.
- Schutzeinrichtung nach einem der Ansprüche 1 bis 13, dadurch gekennzeichnet, daß ein Abwehrelement mehrteilig aufgebaut ist.
- Schutzeinrichtung nach einem der Ansprüche 1 bis 14, dadurch gekennzeichnet, daß ein Abwehrelement ganz oder teilweise aus Einzelelementen oder Splittern aufgebaut ist.
- Schutzeinrichtung nach einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, daß ein Abwehrelement aus einer Struktur besteht, bei der in einen Trägerbalken (31) ein oder mehrere Schutzelemente (20a, 20b) integriert sind, wobei sich die Dichte und/oder Festigkeit der Schutzelemente (20a, 20b) stark von den entsprechenden Materialeigenschaften des Trägerbalkens (31) unterscheidet.
- Schutzeinrichtung nach einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, daß die Abwehrelemente (51) mehrstufig bzw. mit wechselndem Durchmesser ausgeführt sind.
- Schutzeinrichtung nach einem der Ansprüche 1 bis 17, dadurch gekennzeichnet, daß die Abdichtung der Abwehrelemente innerhalb des Behälters oder Gehäuses (70 bis 75) der Beschleunigungsvorrichtung mittels Dichtungsleiste (69), Dichtring (76, 77), Dichtflächen (78) oder Dichtlippen (79) erfolgt.
- Schutzeinrichtung nach einem der Ansprüche 1 bis 18, dadurch gekennzeichnet, daß der Behälter oder das Gehäuse (60) der Beschleunigungsvorrichtung jeweils mit einer Abdeckung (62) versehen ist.
- Schutzeinrichtung nach den Ansprüchen 18 und 19, dadurch gekennzeichnet, daß die Dichtung und Führung der Abwehrelemente im Behälter oder im Gehäuse (70 bis 75) der Beschleunigungsvorrichtung im Abdeckungsbereich, Seitenbereich, Bodenbereich oder kombiniert im Seiten- und Bodenbereich erfolgt.
- Schutzeinrichtung nach einem der Ansprüche 1 bis 20, dadurch gekennzeichnet, daß sich zwischen Arbeitsmedium und Abwehrelement eine Übertragungs- oder Dämpfungsschicht befindet.
- Schutzeinrichtung nach einem der Ansprüche 1 bis 21, dadurch gekennzeichnet, daß die Abwehrelemente (11, 14, 20, 30 bis 33, 51) in der Beschleunigungsvorrichtung durch Hybridantriebe beschleunigt werden.
- Schutzeinrichtung nach einem der Ansprüche 1 bis 22, dadurch gekennzeichnet, daß zwei oder mehr Abwehrelemente (20) durch mindestens zwei gegeneinander einen Winkel einschließende Antriebssysteme der Beschleunigungsvorrichtung in unterschiedliche Richtungen beschleunigt werden.
- Schutzeinrichtung nach einem der Ansprüche 1 bis 23, dadurch gekennzeichnet, daß die Auslösung der Antriebe der Beschleunigungsvorrichtung ein oder mehrfach in Abhängigkeit von der Bedrohung kontakt- oder detektorgesteuert erfolgt.
- Schutzeinrichtung nach einem der Ansprüche 1 bis 24, dadurch gekennzeichnet, daß die Beschleunigungsvorrichtung für die Abwehrelemente (11, 14) vor bzw. auf der zu schützenden Hauptstruktur (Hauptpanzerung) angebracht sind.
- Schutzeinrichtung nach einem der Ansprüche 1 bis 24, dadurch gekennzeichnet, daß die Beschleunigungsvorrichtungen für die Abwehrelemente (11, 14) innerhalb einer zu schützenden shukturierten Gesamtpanzerung angebracht sind.
- Schutzeinrichtung nach einem der Ansprüche 1 bis 24, dadurch gekennzeichnet, daß die Beschleunigungsvorrichtungen für die Abwehrelemente (11, 14) direkt in die zu schützende Struktur integriert sind.
- Schutzeinrichtung nach einem der Ansprüche 1 bis 24, dadurch gekennzeichnet, daß die Beschleunigungsvorrichtungen für die Abwehrelemente (11, 14) als Einsetzteil für die zu schützende Struktur ausgeführt sind.
- Schutzeinrichtung nach einem der Ansprüche 1 bis 24, dadurch gekennzeichnet, daß die Beschleunigungsvorrichtungen für die Abwehrelemente (11, 14) mit der Folgestruktur eine abgestimmte und wirkungsoptimierte Einheit bilden.
- Schutzeinrichtung nach einem der Ansprüche 1 bis 29, dadurch gekennzeichnet, daß die Beschleunigungsvorrichtungen für die Abwehrelemente (11, 14) dreh-, schwenk-, oder kippbar ausgebildet sind.
- Schutzeinrichtung nach einem der Ansprüche 1 bis 30, dadurch gekennzeichnet, daß die Beschleunigungsvorrichtungen für die Abwehrelemente (11, 14) richtbar angeordnet sind und durch Detektoren (5a, 5b, 5c, 5d, 5e) gesteuert werden.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19754936A DE19754936A1 (de) | 1997-12-10 | 1997-12-10 | Dicht- und Führungseinrichtung für hochdynamisch beschleunigte, abstandswirksame Schutzelemente |
DE19754936 | 1997-12-10 |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0922924A1 EP0922924A1 (de) | 1999-06-16 |
EP0922924B1 true EP0922924B1 (de) | 2002-07-24 |
Family
ID=7851469
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP98122777A Expired - Lifetime EP0922924B1 (de) | 1997-12-10 | 1998-12-01 | Dicht- und Führungseinrichtung für hochdynamisch beschleunigte, abstandswirksame Schutzelemente |
Country Status (4)
Country | Link |
---|---|
EP (1) | EP0922924B1 (de) |
AT (1) | ATE221185T1 (de) |
DE (2) | DE19754936A1 (de) |
ES (1) | ES2180113T3 (de) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2004081486A1 (de) | 2003-03-11 | 2004-09-23 | Krauss-Maffei Wegmann Gmbh & Co. Kg | Schutzvorrichtung für gepanzerte fahrzeuge, insbesondere gegen hohlladungsgeschosse |
EP1517110A1 (de) | 2003-09-16 | 2005-03-23 | GEKE Technologie GmbH | Kombinierte Schutzanordnung |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2805037B1 (fr) | 2000-02-10 | 2002-04-05 | Giat Ind Sa | Dispositif de protections d'une paroi |
FR2860065B1 (fr) * | 2003-09-22 | 2006-03-17 | Giat Ind Sa | Systeme de protection d'une cible |
CZ300472B6 (cs) | 2004-09-10 | 2009-05-27 | Vojenský technický ústav ochrany BRNO | Prostredek aktivní balistické ochrany |
FR2898968B1 (fr) * | 2006-03-24 | 2010-06-04 | Jean Jacques Vial | Amelioration de la protection des vehicules blindes |
US8302161B2 (en) | 2008-02-25 | 2012-10-30 | Emc Corporation | Techniques for anonymous internet access |
IL194090A (en) | 2008-09-15 | 2013-09-30 | Rafael Advanced Defense Sys | Method and Device for Compound Protection |
DE102010019475A1 (de) * | 2010-05-05 | 2011-11-10 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Vorrichtung zum Schutz eines Objektes wenigstens gegen Hohlladungsstrahlen |
DE102011001809B4 (de) * | 2011-04-05 | 2013-04-25 | Krauss-Maffei Wegmann Gmbh & Co. Kg | Schutzelement und Verfahren zur Beschleunigung von Wirkelelementen |
DE102012106746C5 (de) * | 2012-07-25 | 2019-08-29 | Krauss-Maffei Wegmann Gmbh & Co. Kg | Schutzausstattung, Fahrzeug sowie Verfahren zum Schutz eines Objekts |
Family Cites Families (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE978036C (de) | 1976-04-22 | Messerschmitt-Bölkow-Blohm GmbH, 8000 München | Schutzvorrichtung für ortsfeste oder bewegliche Ziele gegen Zerstörung durch Geschosse oder ähnliche Kampfmittel | |
AT45421B (de) * | 1909-05-12 | 1910-12-10 | Johann Artmann | Schüttelrost mit ineinandergreifenden Querroststäben. |
DE977984C (de) | 1963-09-19 | 1974-09-26 | ||
DE2031658C3 (de) * | 1970-06-26 | 1979-07-12 | Krauss-Maffei Ag, 8000 Muenchen | Panzerungswand mit schottähnlichen Kammern |
US3895368A (en) | 1972-08-09 | 1975-07-15 | Sensormatic Electronics Corp | Surveillance system and method utilizing both electrostatic and electromagnetic fields |
DE2636595A1 (de) * | 1976-08-13 | 1978-02-16 | Jung Gmbh Lokomotivfab Arn | Panzerung |
DE2719150C1 (de) * | 1977-04-29 | 1987-03-05 | Industrieanlagen Betriebsges | Schutzvorrichtung gegen Geschosse hoher Energie |
DE2831415C1 (de) * | 1978-07-18 | 1996-07-25 | Daimler Benz Aerospace Ag | Aktive Schicht aus Explosivstoffen für Schutzanordnungen gegen Hohlladungs- und Wuchtgeschosse |
DE2906378C1 (de) * | 1979-02-20 | 1990-11-15 | Helmut Dipl-Phys Nussbaum | Aktive Schutzvorrichtung fuer feste oder bewegliche Objekte |
FR2498312A1 (fr) * | 1981-01-22 | 1982-07-23 | Bruge Jean | Blindage dynamique |
US5206451A (en) * | 1983-09-28 | 1993-04-27 | Rheinmetall Gmbh | Armor-protection for a wall, for example a bombshelter or an armored vehicle |
IL70914A (en) * | 1984-02-09 | 1988-08-31 | Israel State | Elements for an add-on reactive armour for land vehicles |
GB2200437B (en) * | 1986-06-04 | 1990-01-17 | Royal Ordnance Plc | Reactive armour constructions and explosive packages suitable therefor |
DE3842677C1 (de) * | 1988-12-19 | 1996-07-18 | Rheinmetall Ind Gmbh | Aktive Vorpanzerung vor einer zu schützenden Panzerwand |
IL88986A (en) * | 1989-01-18 | 1994-06-24 | Ministry Of Defence Rafael Arm | Combined reactive and passive armour |
DD301842B5 (de) * | 1989-02-20 | 1996-04-04 | Bundesrep Deutschland | Schutzeinrichtung gegenueber Hohlladungsgeschossen |
US5025707A (en) * | 1990-03-19 | 1991-06-25 | The United States Of America As Represented By The Secretary Of The Army | High pressure gas actuated reactive armor |
DE4034401A1 (de) * | 1990-10-29 | 1992-04-30 | Deutsch Franz Forsch Inst | Elektromagnetische panzerung |
DE4122622C2 (de) * | 1991-07-09 | 1994-04-21 | Diehl Gmbh & Co | Auslöse-Sensor für aktive Schutzeinrichtung |
RU2064650C1 (ru) * | 1993-03-04 | 1996-07-27 | Научно-исследовательский институт стали | Устройство для защиты преграды от снарядов |
DE4426014B4 (de) * | 1994-07-22 | 2004-09-30 | Diehl Stiftung & Co.Kg | System zum Schutz eines Zieles gegen Flugkörper |
DE4440120C2 (de) | 1994-11-10 | 1998-03-19 | Rheinmetall Ind Ag | Schutzvorrichtung mit einer reaktiven Panzerung |
FR2727506B1 (fr) * | 1994-11-30 | 1997-01-24 | Giat Ind Sa | Dispositif de protection d'un vehicule ou d'une structure |
DE19505629B4 (de) * | 1995-02-18 | 2004-04-29 | Diehl Stiftung & Co.Kg | Schutzeinrichtung gegen ein anfliegendes Projektil |
-
1997
- 1997-12-10 DE DE19754936A patent/DE19754936A1/de not_active Withdrawn
-
1998
- 1998-12-01 ES ES98122777T patent/ES2180113T3/es not_active Expired - Lifetime
- 1998-12-01 DE DE59804870T patent/DE59804870D1/de not_active Expired - Lifetime
- 1998-12-01 AT AT98122777T patent/ATE221185T1/de active
- 1998-12-01 EP EP98122777A patent/EP0922924B1/de not_active Expired - Lifetime
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2004081486A1 (de) | 2003-03-11 | 2004-09-23 | Krauss-Maffei Wegmann Gmbh & Co. Kg | Schutzvorrichtung für gepanzerte fahrzeuge, insbesondere gegen hohlladungsgeschosse |
EP1517110A1 (de) | 2003-09-16 | 2005-03-23 | GEKE Technologie GmbH | Kombinierte Schutzanordnung |
WO2005033615A1 (de) | 2003-09-16 | 2005-04-14 | Geke Technologie Gmbh | Kombinierte schutzanordnung |
Also Published As
Publication number | Publication date |
---|---|
EP0922924A1 (de) | 1999-06-16 |
ES2180113T3 (es) | 2003-02-01 |
DE19754936A1 (de) | 1999-07-01 |
DE59804870D1 (de) | 2002-08-29 |
ATE221185T1 (de) | 2002-08-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1316774B1 (de) | Geschosse hoher Penetrations- und Lateralwirkung mit integrierter Zerlegungseinrichtung | |
EP1846723B1 (de) | Reaktive schutzvorrichtung | |
EP1000311B1 (de) | Geschoss oder gefechtskopf | |
EP2455701B1 (de) | Objektschutz vor Hohlladungen | |
EP1516153B1 (de) | Geschoss oder gefechtskopf | |
EP2603765B1 (de) | Reaktive schutzanordnung | |
DE4426014A1 (de) | System zum Schutz eines Zieles gegen Flugkörper | |
EP1893935A1 (de) | Geschoss oder gefechtskopf | |
EP0922924B1 (de) | Dicht- und Führungseinrichtung für hochdynamisch beschleunigte, abstandswirksame Schutzelemente | |
EP1517110B1 (de) | Kombinierte Schutzanordnung | |
DE102010008612A1 (de) | Stoss- und Impulsuebertragungsvorrichtung | |
DE2452942C1 (de) | Kombiniertes Geschoß mit mehreren achsgleich hintereinander angeordneten Vor- und Nachgeschossen zur Bekämpfung gepanzerter Ziele | |
DE3525147C1 (de) | Sturz-Flugkoerper zum Bekaempfen von insbesondere Radarstellungen | |
DE69413675T2 (de) | Reaktiv-Pauzerung gegen senkrechte oder schräge Einschläge | |
DE978036C (de) | Schutzvorrichtung für ortsfeste oder bewegliche Ziele gegen Zerstörung durch Geschosse oder ähnliche Kampfmittel | |
DE102019007104B3 (de) | Splittergefechtskopf für einen Flugkörper | |
DE69422639T2 (de) | Munitionseinheit zum selbstschutz für einen panzer | |
DE4114145C1 (de) | Gefechtskopf zur Bekämpfung von reaktiven Panzerungen | |
DE1578077C2 (de) | Gefechtskopf fuer ein Panzerabwehrgeschoss | |
DE2811732C1 (de) | Schutzeinrichtung gegen Geschosse, insbesondere Hohlladungsgeschosse | |
DE102019110031A1 (de) | Wirkmittelanordnung gegen entfernte gepanzerte Ziele | |
DE3619127C1 (de) | Hohlladungsgeschoß | |
DE102020002461B3 (de) | Gefechtskopf zum Erzeugen zumindest eines Projektils und Verfahren zum Ausformen eines Projektils mit einem Gefechtskopf | |
EP4198445A1 (de) | Multi-effekt precursor-ladung | |
DE10151573A1 (de) | Splitterschutz zur Minimierung von Kollateralschäden |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT CH DE ES FR GB GR LI NL SE |
|
AX | Request for extension of the european patent |
Free format text: AL;LT;LV;MK;RO;SI |
|
17P | Request for examination filed |
Effective date: 19991022 |
|
AKX | Designation fees paid |
Free format text: AT CH DE ES FR GB GR LI NL SE |
|
17Q | First examination report despatched |
Effective date: 20000828 |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: KRAUSS-MAFFEI WEGMANN GMBH & CO. KG |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT CH DE ES FR GB GR LI NL SE |
|
REF | Corresponds to: |
Ref document number: 221185 Country of ref document: AT Date of ref document: 20020815 Kind code of ref document: T |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: NV Representative=s name: A. BRAUN, BRAUN, HERITIER, ESCHMANN AG PATENTANWAE |
|
REF | Corresponds to: |
Ref document number: 59804870 Country of ref document: DE Date of ref document: 20020829 |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 20020813 |
|
REG | Reference to a national code |
Ref country code: GR Ref legal event code: EP Ref document number: 20020403478 Country of ref document: GR |
|
ET | Fr: translation filed | ||
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2180113 Country of ref document: ES Kind code of ref document: T3 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20030425 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PFA Owner name: KRAUSS-MAFFEI WEGMANN GMBH & CO. KG Free format text: KRAUSS-MAFFEI WEGMANN GMBH & CO. KG#KRAUSS-MAFFEI STR. 11#80997 MUENCHEN (DE) -TRANSFER TO- KRAUSS-MAFFEI WEGMANN GMBH & CO. KG#KRAUSS-MAFFEI STR. 11#80997 MUENCHEN (DE) |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PCAR Free format text: NEW ADDRESS: HOLBEINSTRASSE 36-38, 4051 BASEL (CH) |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 18 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 19 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 20161222 Year of fee payment: 19 Ref country code: NL Payment date: 20161221 Year of fee payment: 19 Ref country code: GB Payment date: 20161222 Year of fee payment: 19 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 20161222 Year of fee payment: 19 Ref country code: ES Payment date: 20161221 Year of fee payment: 19 Ref country code: AT Payment date: 20161219 Year of fee payment: 19 Ref country code: GR Payment date: 20161221 Year of fee payment: 19 Ref country code: FR Payment date: 20161221 Year of fee payment: 19 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20161231 Year of fee payment: 19 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 59804870 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MM Effective date: 20180101 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 221185 Country of ref document: AT Kind code of ref document: T Effective date: 20171201 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20171201 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20171202 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180101 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20180831 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180703 Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180102 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180705 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20171231 Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20171201 Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20171201 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20171231 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20171202 |