EP0881305B1 - Procédé de fabrication de bandes minces d'acier inoxydable ferritique - Google Patents

Procédé de fabrication de bandes minces d'acier inoxydable ferritique Download PDF

Info

Publication number
EP0881305B1
EP0881305B1 EP98401090A EP98401090A EP0881305B1 EP 0881305 B1 EP0881305 B1 EP 0881305B1 EP 98401090 A EP98401090 A EP 98401090A EP 98401090 A EP98401090 A EP 98401090A EP 0881305 B1 EP0881305 B1 EP 0881305B1
Authority
EP
European Patent Office
Prior art keywords
strip
temperature
carbides
cooling
austenite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP98401090A
Other languages
German (de)
English (en)
Other versions
EP0881305A1 (fr
Inventor
Philippe Paradis
Philippe Martin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
USINOR SA
Original Assignee
USINOR SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by USINOR SA filed Critical USINOR SA
Publication of EP0881305A1 publication Critical patent/EP0881305A1/fr
Application granted granted Critical
Publication of EP0881305B1 publication Critical patent/EP0881305B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/021Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips involving a particular fabrication or treatment of ingot or slab
    • C21D8/0215Rapid solidification; Thin strip casting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/12Accessories for subsequent treating or working cast stock in situ
    • B22D11/124Accessories for subsequent treating or working cast stock in situ for cooling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/002Heat treatment of ferrous alloys containing Cr
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/02Hardening articles or materials formed by forging or rolling, with no further heating beyond that required for the formation
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • C21D1/19Hardening; Quenching with or without subsequent tempering by interrupted quenching
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite

Definitions

  • the invention relates to the metallurgy of stainless steels. More particularly, it relates to the casting of ferritic stainless steels directly from liquid metal in the form of strips a few mm thick.
  • the winding of the strip most often occurs at a temperature of the order of 700 to 900 ° C., depending on its thickness. and the casting speed.
  • the winding temperature also depends, of course, on the distance between the rolls and the winder.
  • the wound strip is then left to cool naturally, before subjecting it to metallurgical treatments comparable to those usually carried out on hot-rolled strips made from conventional continuous casting slabs.
  • the fragility of the metal is precisely attributed to these large carbides, the size of which is around 1 to 5 ⁇ m. They constitute sites of initiation for the ruptures which propagate by cleavage in the surrounding ferritic matrix: their harmful effect is added to that of the columnar structure with large grains.
  • Document JP-A-5293595 recommends carrying out the winding at a temperature of 700 to 200 ° C., while giving the steel low carbon and nitrogen contents (0.030% or less) and a niobium content of 0 , 1 to 1% acting as a stabilizer.
  • ⁇ p 420 x% C + 470 x% N + 23 x% Ni + 9 x% Cu + 7 x% Mn - 11.5 x% Cr - 11.5 x% Si - 12 x% Mo - 23 x% V - 47 x% Nb - 49 x% Ti - 52 x% Al + 189.
  • the object of the invention is to propose an economical mode of production of thin strips of ferritic stainless steel of the AISI 430 and related types by casting between cylinders, which provides said strips with sufficient ductility to allow operations of unwinding, shearing of edges and cold processing (pickling, rolling ...) to take place without incidents such as strip breakage or the appearance of cracks on the edges.
  • this process should not include steps requiring the addition of complex facilities to a standard cylinder casting machine. Neither should it make it necessary to carry out an elaboration of the liquid metal aimed at obtaining very low contents of elements such as carbon and nitrogen, as well as the addition of elements of expensive alloys.
  • the subject of the invention is a method of manufacturing ferritic stainless steel strips, according to which, directly from liquid metal, it is solidified between two close cylinders with horizontal axes, internally cooled and turning in direction contrary, a strip of ferritic stainless steel of the type containing at most 0.12% of carbon, at most 1% of manganese, at most 1% of silicon, at most 0.040% of phosphorus, at most 0.030% of sulfur and between 16 and 18% chromium, characterized in that the said strip is then cooled or allowed to cool while avoiding making it stay in the field of transformation of austenite into ferrite and carbides, in that the winding is carried out of said strip at a temperature between 600 ° C and the martensitic transformation temperature Ms, in that the wound strip is allowed to cool at a maximum speed of 300 ° C / h to a temperature between 200 ° C and ambient temperature, and in that a closed annealing of said strip is then carried out.
  • the invention consists, starting from a strip of ferritic stainless steel of standard composition cast between cylinders, to cool and to wind said strip under special conditions, before subjecting it to annealing. closed.
  • This treatment essentially aims to limit as much as possible the formation of large embrittling carbides. For this, it is necessary to limit the precipitation of carbides and to favor the transformation of austenite into martensite in the raw casting stage, while avoiding however that this transformation into martensite does not occur when the strip is not yet wound.
  • Treatment A consists, in accordance with the prior art described above, of allowing the strip to cool naturally in the open air after it leaves the casting rolls, and of winding it at around 800 ° C., while it is found in the precipitation zone of chromium carbides at ferritic joints and at ferrite-austenite interfaces. This winding causes, as has been said, a considerable slowing down of the cooling of the strip, which is then forced to remain for a long time in the zone for transforming austenite into ferrite and chromium carbides, before returning to ambient temperature. .
  • Treatment B consists in letting the strip cool naturally in the open air, allowing it to reach room temperature without winding it.
  • the strip does not remain in the zone of transformation of austenite into ferrite and chromium carbides, but it undergoes a significant martensitic transformation between the temperatures Ms and Mf. We will see why such a treatment cannot be included in the invention.
  • Treatment C which is representative of the invention, consists in first allowing the strip to cool naturally, without being wound, so as to avoid it staying in the zone for transforming austenite into ferrite and chromium carbides, and winding only at a temperature of around 600 ° C. During the cooling of the wound strip, this ends up substantially joining the final thermal path of treatment A.
  • Treatment D is in principle identical to treatment C, but the winding of the strip takes place only at a temperature of approximately 300 ° C. This temperature remains however imperatively higher than Ms (which depends on the chemical composition of the steel), and during the cooling of the coil this prevents the strip from staying in the area where the martensitic transformation would take place in a very significant way. Its final thermal path joins those of treatments A and C.
  • the picture in Figure 2 shows a portion of a sample of a reference strip which has followed the thermal path A in Figure 1 (therefore a winding at 800 ° C) to be brought in wound form at room temperature, then underwent closed annealing under usual conditions, namely a stay at approximately 800 ° C. for 6 hours.
  • the strip has the chemical composition specified above and a thickness of 3 mm. It is observed that the majority of the sample consists of large ferritic grains 3.
  • the zones 4 comprising small ferritic grains resulting from the transformation of martensite ⁇ 'during closed annealing represent only a minority fraction of l 'sample. We especially notice the presence, within the structure, of continuous films of chromium carbides 5.
  • FIG. 3 shows a portion of a sample of a strip according to the invention (of the same composition and thickness as that of FIG. 2) which has followed an intermediate thermal path between paths C and D in the figure 1 to room temperature (the strip was wound at 500 ° C.), then underwent closed cup annealing identical to that undergone by the reference sample of FIG. 2. It is observed that the large ferritic grains 3 are always present, but that the zones with small ferritic grains 6 resulting from the transformation of the martensite ⁇ 'are in greater proportion.
  • the winding temperature has no influence on the ductility at 20 ° C. of the raw casting strip, which has not yet undergone closed annealing.
  • This ductility is very poor, and it is not improved by closed cup annealing in the case of the reference strip, hot wound.
  • the closed cup annealing was, in this reference case, powerless to promote a structure of the metal matrix and a distribution of carbides favorable to good ductility.
  • the ductility of the wound strip under the conditions recommended by the invention could be considerably improved by closed cup annealing, and brought to a very satisfactory level.
  • a resilience of the order of 30 to 40 J / cm 2 is sufficient so that cold treatments (unwinding, shearing of the edges in particular) can be carried out without damage to the strip.
  • the first fundamental idea of the invention is to impose on the strip leaving the cylinders a cooling path which makes it possible to limit the precipitation of carbides, avoiding above all those which could come from the decomposition of austenite and which are likely to coalesce into large continuous films during closed annealing.
  • the second idea is to promote, at the same stage of development, the transformation of austenite into martensite so as to obtain as much as possible of fine-grained ferrite during closed annealing. These conditions are achieved if the time spent by the cast strip is limited in the area of precipitation of carbides and nitrides from ferrite, and especially if it is avoided from staying in the area of transformation of austenite into ferrite and carbides.
  • the imposition on the strip of a cooling speed greater than or equal to 10 ° C / s between its exit from the cylinders and the moment when it reaches the temperature of 600 ° C from which the winding can take place generally provides the desired results.
  • closed annealing should be carried out on a coil whose temperature is initially between ambient and 200 ° C. It is typically carried out at a temperature of 800-850 ° C for at least 4 hours.
  • the process according to the invention has the advantage of not requiring any particular and costly adaptations of the grade such as incorporation of stabilizers and / or lowering of carbon and nitrogen contents to unusually low levels. It can be carried out on a continuous casting machine between rolls which does not need to be equipped with a hot rolling installation of the strip leaving the rolls. It also does not require any special adaptations to the stages of the manufacturing cycle after casting (closed cup annealing, shearing of edges, pickling, etc.). The only modification to a standard roll-to-roll installation that its installation is likely to require is the possible addition of a device for cooling the strip under the rolls.
  • Such a device which could be of very simple design, would make it possible to ensure that the strip never stays in the field of transformation of austenite into ferrite and carbides and that the winding is always carried out at 600 ° C. or less, whatever the casting speed and the thickness of the strip, and even if the winder is located relatively close to the rolls (which on the other hand may be desirable for the casting of other types of steel).
  • This composition corresponds to a ⁇ p criterion of 46.5% and to an Ac1 temperature of 826 ° C.
  • a winding carried out at 500 ° C. provides the strip with energy absorbed at 20 ° C (after closed annealing) of 160 J / cm 2 , for test conditions similar to those of the tests in Table 1 above.
  • the winding is carried out at 800 ° C, the energy absorbed at 20 ° C is only 100 J / cm 2 .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Physics & Mathematics (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Continuous Casting (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)
  • Artificial Fish Reefs (AREA)
  • Heat Treatment Of Steel (AREA)
  • Metal Rolling (AREA)
  • Wrappers (AREA)
  • Catalysts (AREA)
  • Chemical Vapour Deposition (AREA)

Description

  • L'invention concerne la métallurgie des aciers inoxydables. Plus particulièrement, elle concerne la coulée d'aciers inoxydables ferritiques directement à partir de métal liquide sous forme de bandes de quelques mm d'épaisseur.
  • Depuis plusieurs années, des recherches sont conduites sur la coulée de bandes d'acier de quelques mm d'épaisseur (10 mm au maximum), directement à partir de métal liquide, sur des installations dites de "coulée continue entre cylindres". Ces installations comprennent principalement deux cylindres à axes horizontaux, disposés côte à côte, ayant chacun une surface externe bonne conductrice de la chaleur énergiquement refroidie intérieurement, et définissant entre eux un espace de coulée dont la largeur minimale correspond à l'épaisseur des bandes que l'on désire couler. Cet espace de coulée est obturé latéralement par deux parois en réfractaire appliquées contre les extrémités des cylindres. Les cylindres sont entraînés en rotation en sens contraires et l'espace de coulée est alimenté en acier liquide. Des "peaux" d'acier se-solidifient contre les surfaces des cylindres et se rejoignent au "col", c'est-à-dire au niveau où la distance entre les cylindres est minimale, pour former une bande solidifiée que l'on extrait en continu de l'installation. Cette bande se refroidit ensuite de manière naturelle ou forcée, avant d'être bobinée. L'objectif de ces recherches est de parvenir à couler par ce procédé des bandes d'acier de diverses nuances, notamment d'aciers inoxydables.
  • Dans les conditions de coulée les plus courantes, où la bande sortant des cylindres se refroidit naturellement à l'air libre, le bobinage de la bande intervient le plus souvent à une température de l'ordre de 700 à 900°C, selon son épaisseur et la vitesse de coulée. La température de bobinage dépend aussi, bien entendu, de la distance entre les cylindres et la bobineuse. On laisse ensuite la bande bobinée se refroidir naturellement, avant de lui faire subir des traitements métallurgiques comparables à ceux pratiqués habituellement sur les bandes laminées à chaud élaborées à partir de brames de coulée continue classique.
  • L'application de ce procédé de coulée aux aciers inoxydables ferritiques du type standard AISI 430, qui contiennent typiquement 17% de chrome, a montré que les bandes ainsi obtenues présentaient une mauvaise ductilité. En conséquence, les bandes les plus minces (dont l'épaisseur est de l'ordre de 2 à 3,5 mm) sont excessivement fragiles et ne supportent pas les manutentions ultérieures, effectuées à température ambiante, telles que le débobinage et le cisaillage des rives : pendant ces opérations, on constate l'apparition de fissures sur les rives des bandes, voire de casses de la bande lors du débobinage.
  • On explique habituellement cette mauvaise ductilité par plusieurs facteurs :
    • la bande brute de coulée présente essentiellement une structure colonnaire à gros grains ferritiques (la taille moyenne du grain est supérieure à 300 µm dans l'épaisseur de la bande), qui est une conséquence directe de la succession d'une solidification rapide sur les cylindres et d'un séjour de la bande à haute température après qu'elle a quitté les cylindres, lorsqu'elle ne subit pas de refroidissement forcé ;
    • les grains ferritiques présentent une dureté élevée, due à leur sursaturation en éléments interstitiels (carbone et azote) ;
    • la présence de martensite issue de la trempe de l'austénite présente à haute température.
  • Pour y remédier, on a imaginé d'effectuer sur les bobines, postérieurement à leur refroidissement, un recuit vase clos à une température inférieure à la température (dite Ac1) de transformation de la ferrite en austénite lors du réchauffage. Classiquement, ce recuit est effectué à environ 800°C pendant au moins 4 heures. On vise ainsi à précipiter des carbures à partir de la matrice ferritique, à transformer la martensite en ferrite et en carbures, et à coalescer les carbures de chrome, afin d'adoucir le métal. Ce traitement doit permettre une amélioration des caractéristiques mécaniques et de la ductilité, malgré la conservation de la structure colonnaire à gros grains ferritiques. Cependant les essais effectués à l'échelle industrielle ont montré que cette méthode était insuffisante pour obtenir une bande d'une ductilité convenable.
  • On explique cette fragilité persistante de la bande après le recuit vase clos par le fait que la bande brute de coulée, une fois bobinée, ne subit qu'un refroidissement très lent puisque ses deux faces sont en contact avec du métal chaud, et que seules ses tranches sont au contact de l'air ambiant et sont libres de rayonner. Ce refroidissement très lent conduit à une précipitation abondante de carbures à partir de la ferrite et à la transformation d'une partie de l'austénite en ferrite et en carbures, alors que le reste de l'austénite forme de la martensite au refroidissement. Le recuit vase clos permet d'achever la décomposition de la martensite en ferrite et carbures, mais il contribue surtout à la coalescence de gros carbures sous forme de films continus. La fragilité du métal est, précisément, attribuée à ces gros carbures dont la taille est de l'ordre de 1 à 5 µm. Ils constituent des sites d'amorçage pour les ruptures qui se propagent par clivage dans la matrice ferritique environnante : leur effet néfaste s'ajoute à celui de la structure colonnaire à gros grains.
  • En conséquence, diverses tentatives ont été effectuées pour mettre au point un procédé de coulée entre cylindres de bandes minces d'acier inoxydable ferritique présentant une bonne ductilité. Elles visaient à modifier la nature des précipités formés au cours du refroidissement de la bande, ou à "casser" la structure brute de coulée à gros grains ferritiques.
  • A cet égard, on peut citer le document JP-A-62247029, qui préconise un refroidissement en ligne à une vitesse supérieure ou égale à 300°C/s entre 1200 et 1000°C, suivi par le bobinage qui est effectué entre 1000 et 700°C.
  • Le document JP-A-5293595 recommande d'effectuer le bobinage à une température de 700 à 200°C, tout en conférant à l'acier de faibles teneurs en carbone et azote (0,030% ou moins) et une teneur en niobium de 0,1 à 1% agissant comme stabilisant.
  • D'autres documents proposent d'effectuer un laminage à chaud en ligne, qui vient s'ajouter aux contraintes analytiques précédentes sur le carbone et l'azote, et peut aussi se conjuguer à une stabilisation au niobium ou à l'azote (voir les documents JP-A-2232317, JP-A-6220545, JP-A-8283845, JP-A-8295943).
  • On peut également citer le document EP-A-0638653, qui propose, pour un acier à 13-25% de chrome, d'imposer un total des teneurs en niobium, titane, aluminium et vanadium de 0,05 à 1,0%, des teneurs en carbone et azote de 0,030% au maximum et une teneur en molybdène de 0,3 à 3%. La composition pondérale de l'acier doit, de plus, satisfaire la condition "γp ≤ 0%" .γp est un critère représentatif de la quantité d'austénite formée à la précipitation. On le calcule par la formule : γp = 420 x %C + 470 x %N + 23 x %Ni + 9 x %Cu + 7 x %Mn - 11,5 x %Cr - 11,5 x %Si - 12 x %Mo - 23 x %V - 47 x %Nb - 49 x %Ti - 52 x %Al + 189.
  • De plus, il est nécessaire d'effectuer un laminage à chaud de la bande dans la plage de températures 1150-900°C avec un taux de réduction de 5 à 50%, puis de la refroidir à une vitesse inférieure ou égale à 20°C/s ou de la maintenir dans le domaine de températures 1150-950°C pendant au moins 5 s, et enfin de la bobiner à une température inférieure ou égale à 700°C.
  • Pour mettre en oeuvre toutes ces méthodes, il faut donc combiner :
    • des élaborations coûteuses et difficiles du métal liquide destiné à la coulée de la bande, si on veut obtenir les basses teneurs en carbone et azote nécessaires, voire le cas échéant les teneurs souhaitées en éléments stabilisants ;
    • des traitements thermiques et thermomécaniques effectués sur la ligne de coulée au moyen d'installations lourdes (laminoir à chaud en ligne) ;
    • et la réalisation de cycles thermiques complexes nécessitant également des installations spécialement adaptées pour obtenir les vitesses de refroidissement élevées ou les temps de maintien à haute température nécessaires.
  • Le but de l'invention est de proposer un mode de production économique de bandes minces d'acier inoxydable ferritique de types AISI 430 et apparentés par coulée entre cylindres, qui procure auxdites bandes une ductilité suffisante pour permettre aux opérations de débobinage, de cisaillage des rives et de transformation à froid (décapage, laminage...) de se dérouler sans que surviennent des incidents tels que des casses de bande ou l'apparition de fissures en rives. Afin que l'objectif économique soit atteint, ce procédé ne devrait pas comporter d'étapes nécessitant l'ajout d'installations complexes à une machine de coulée entre cylindres standard. Il ne devrait pas, non plus, rendre nécessaire l'exécution d'une élaboration du métal liquide visant à l'obtention de très basses teneurs en éléments tels que le carbone et l'azote, ainsi que l'addition d'éléments d'alliages coûteux.
  • L'invention a pour objet un procédé de fabrication de bandes d'acier inoxydable ferritique, selon lequel, directement à partir de métal liquide, on solidifie entre deux cylindres rapprochés à axes horizontaux, refroidis intérieurement et tournant en sens contraires, une bande d'un acier inoxydable ferritique du type contenant au plus 0,12% de carbone, au plus 1% de manganèse, au plus 1% de silicium, au plus 0,040% de phosphore, au plus 0,030% de soufre et entre 16 et 18% de chrome, caractérisé en ce qu'on refroidit ou laisse se refroidir ensuite ladite bande en évitant de la faire séjourner dans le domaine de transformation de l'austénite en ferrite et carbures, en ce qu'on effectue le bobinage de ladite bande à une température comprise entre 600°C et la température de transformation martensitique Ms, en ce qu'on laisse la bande bobinée se refroidir à une vitesse maximale de 300°C/h jusqu'à une température comprise entre 200°C et la température ambiante, et en ce qu'on procède ensuite à un recuit vase clos de ladite bande.
  • Comme on l'aura compris, l'invention consiste, en partant d'une bande d'acier inoxydable ferritique de composition standard coulée entre cylindres, à refroidir et à bobiner ladite bande dans des conditions particulières, avant de lui faire subir un recuit vase clos. Ce traitement vise essentiellement à limiter autant que possible la formation de gros carbures fragilisants. Pour cela, il faut limiter la précipitation des carbures et favoriser la transformation de l'austénite en martensite au stade brut de coulée, en évitant toutefois que cette transformation en martensite ne se produise lorsque la bande n'est pas encore bobinée.
  • L'invention sera mieux comprise à la lecture de la description qui suit, faisant référence aux figures annexées suivantes :
    • la figure 1 qui situe sur un diagramme montrant les courbes de transformation au refroidissement de la nuance AISI 430 quatre exemples A, B, C, D de chemins thermiques suivis par la bande après sa sortie des cylindres de coulée, dont deux exemples C, D où elle subit un traitement selon l'invention ;
    • la figure 2 qui montre un cliché en microscopie électronique en transmission sur lame mince d'une bande ayant suivi le chemin thermique A de la figure 1, puis un recuit vase clos ;
    • la figure 3 qui montre un cliché en microscopie électronique en transmission sur lame mince d'une bande ayant, selon l'invention, suivi un chemin thermique intermédiaire entre les chemins C et D de la figure 1, puis un recuit vase clos.
  • Dans la suite de cette description, on raisonnera sur des aciers dont la composition satisfait aux critères habituels de la norme AISI 430 sur les aciers inoxydables ferritiques standard, donc contenant au plus 0,12% de carbone, au plus 1% de manganèse, au plus 1% de silicium, au plus 0,040% de phosphore, au plus 0,030% de soufre et entre 16 et 18% de chrome. Mais il va de soi que le domaine d'application de l'invention peut être étendu à des aciers contenant, de plus, des éléments d'alliage non forcément exigés par les standards habituels (par exemple des stabilisants tels que du titane, du niobium, du vanadium, de l'aluminium, du molybdène), dans la mesure où leurs teneurs ne seraient pas élevées au point de contrarier les processus métallurgiques qui seront décrits et sur lesquels l'invention est fondée. En particulier, la présence de ces éléments d'alliage ne devrait pas modifier l'allure des courbes de transformation de l'exemple de la figure 1 au point que les chemins thermiques que la bande doit suivre, selon l'invention, ne seraient plus accessibles sur une installation de coulée entre cylindres.
  • Les aciers qui ont fait l'objet des essais dont les résultats seront décrits et commentés en relation avec les figures 1 à 3 avaient la composition suivante, exprimée en pourcentages pondéraux :
    • carbone : 0,043% ;
    • silicium : 0,24% ;
    • soufre : 0,001% ;
    • phosphore : 0,023% ;
    • manganèse : 0,41% ;
    • chrome : 16,36% ;
    • nickel : 0,22% ;
    • molybdène : 0,043% ;
    • titane : 0,002% ;
    • niobium : 0,004% ;
    • cuivre : 0,042% ;
    • aluminium : 0,002% ;
    • vanadium : 0,064% ;
    • azote : 0,033% ;
    • oxygène : 0,0057% ;
    • bore : moins de 0,001% ;
    soit un total carbone + azote de 0,076% (ce qui est tout à fait habituel sur de telles nuances), un critère γp, calculé selon la formule habituelle citée plus haut, égal à 37,6% (ce qui n'est pas particulièrement bas, du fait notamment des relativement faibles teneurs en vanadium, molybdène, titane et niobium, et une température Ac1 de transformation de la ferrite en austénite lors du réchauffage de 851°C. Cette dernière température est calculée au' moyen de la formule classique : Ac1 = 35 x %Cr + 60 x %Mo + 73 x %Si + 170 x %Nb + 290 x %V + 620 x %Ti + 750 x %Al + 1400 x %B - 250 x %C - 280 x %N - 115 x %Ni - 66 x %Mn - 18 x %Cu + 310
  • Comme on l'a exposé précédemment, lorsqu'une telle bande brute de coulée est bobinée vers 700-900°C sans avoir été refroidie de manière forcée, puis est laissée se refroidir naturellement en bobine avant de subir un recuit vase clos, les performances de ductilité de la bande après ce recuit ne sont pas satisfaisantes. La raison en est que le refroidissement lent dans la bobine implique un passage du métal dans le domaine de précipitation des carbures de chrome de type Cr23C6 à partir de la ferrite (précipitation qui se produit aux joints ferritiques et aux interfaces ferrite-austénite), et surtout dans le domaine de décomposition de l'austénite en ferrite et carbures de chrome de type Cr23C6. Ce mécanisme favorise la croissance de gros carbures fragilisants, et le recuit vase clos qui suit accentue la coalescence de gros carbures sous forme de films continus. Les courbes de transformation de la figure 1, valables pour la nuance AISI 430 considérée, illustrent ce phénomène.
  • Sur cette figure 1, on a reporté notamment la température Ac5 représentative de la fin de la transformation de la ferrite α en austénite γ au réchauffage, la température Ac1 de début de cette même transformation, et les températures Ms et Mf de début et de fin de la transformation de l'austénite γ en martensite α' au refroidissement. On a aussi reporté la courbe 1 qui délimite la gamme de température où a lieu la précipitation de carbures de chrome de type Cr23C6 aux joints ferritiques et aux interfaces ferrite-austénite, ainsi que la courbe 2 qui délimite la zone de début de transformation de l'austénite en ferrite et carbures de chrome. Sont également reportés quatre exemples A, B, C, D de traitements thermiques que l'on fait subir à la bande coulée après sa sortie des cylindres, dont deux (C et D) sont représentatifs de l'invention.
  • Le traitement A consiste, conformément à l'art antérieur précédemment exposé, à laisser la bande se refroidir naturellement à l'air libre après sa sortie des cylindres de coulée, et à procéder à son bobinage à environ 800°C, alors qu'elle se trouve dans la zone de précipitation des carbures de chrome aux joints ferritiques et aux interfaces ferrite-austénite. Ce bobinage provoque, comme on l'a dit, un ralentissement considérable du refroidissement de la bande, qui est ensuite contrainte de séjourner longuement dans la zone de transformation de l'austénite en ferrite et carbures de chrome, avant de se retrouver à température ambiante.
  • Le traitement B consiste à laisser la bande se refroidir naturellement à l'air libre, en la laissant parvenir à la température ambiante sans la bobiner. La bande ne séjourne pas dans la zone de transformation de l'austénite en ferrite et carbures de chrome, mais elle subit une importante transformation martensitique entre les températures Ms et Mf. On verra pourquoi un tel traitement ne peut être inclus dans l'invention.
  • Le traitement C, représentatif de l'invention, consiste à laisser d'abord la bande se refroidir naturellement, sans être bobinée, de manière à lui éviter de séjourner dans la zone de transformation de l'austénite en ferrite et carbures de chrome, et à ne procéder au bobinage qu'à une température de 600°C environ. Au cours du refroidissement de la bande bobinée, celle-ci finit par rejoindre sensiblement le chemin thermique final du traitement A.
  • Le traitement D, également représentatif de l'invention, est dans son principe identique au traitement C, mais le bobinage de la bande n'a lieu qu'à une température de 300°C environ. Cette température demeure cependant impérativement supérieure à Ms (qui dépend de la composition chimique de l'acier), et au cours du refroidissement de la bobine on évite que la bande ne séjourne dans la zone où la transformation martensitique aurait lieu de manière très importante. Son chemin thermique final rejoint ceux des traitements A et C.
  • Le cliché de la figure 2 montre une portion d'un échantillon d'une bande de référence qui a suivi le chemin thermique A de la figure 1 (donc un bobinage à 800°C) pour être amenée sous forme bobinée à température ambiante, puis a subi un recuit vase clos dans des conditions habituelles, à savoir un séjour à 800°C environ pendant 6 heures. La bande a la composition chimique précisée plus haut et une épaisseur de 3 mm. On y observe que la majorité de l'échantillon est constituée par de gros grains ferritiques 3. Les zones 4 comportant de petits grains ferritiques issus de la transformation de la martensite α' lors du recuit vase clos ne représentent qu'une fraction minoritaire de l'échantillon. On remarque surtout la présence, au sein de la structure, de films continus de carbures de chrome 5. Ces films de carbures résultent du fait que, dans un premier temps, le refroidissement lent de la bande bobinée dans la zone de transformation de l'austénite en ferrite et carbures a provoqué une forte précipitation des carbures, et dans un deuxième temps, le recuit vase clos a accentué la coalescence de ces carbures. Comme on le verra, la présence de ces films continus de carbures est une cause de la mauvaise ductilité du métal.
  • Le cliché de la figure 3 montre une portion d'un échantillon d'une bande selon l'invention (de mêmes composition et épaisseur que celle de la figure 2) qui a suivi un chemin thermique intermédiaire entre les chemins C et D de la figure 1 jusqu'à la température ambiante (la bande a été bobinée à 500°C), puis a subi un recuit vase clos identique à celui subi par l'échantillon de référence de la figure 2. On observe que les gros grains ferritiques 3 sont toujours présents, mais que les zones à petits grains ferritiques 6 issus de la transformation de la martensite α' sont en proportion plus importante. Le fait d'avoir fait traverser rapidement à la bande le domaine de précipitation des carbures et nitrures et de lui avoir fait éviter le domaine de transformation de l'austénite en ferrite et carbures a d'abord conduit à une précipitation limitée de fins carbures dans la ferrite (ce qui est inévitable, vu la rapidité de leur précipitation). De plus, on a ainsi conservé d'importantes plages d'austénite, plus riche en carbone et azote que la ferrite, qui se sont ensuite transformées en martensite. Lors du recuit vase clos qui a suivi, de fins carbures ont précipité au sein de la ferrite, et la martensite s'est décomposée en ferrite et en fins carbures répartis de façon beaucoup plus homogène que dans l'échantillon de référence de la figure 2. On n'observe ainsi plus de films continus de carbures coalescés, mais tout au plus des chapelets discontinus 7 de carbures de faibles dimensions (moins de 0,5 µm) aux frontières entre les gros grains ferritiques et les zones à petits grains ferritiques parsemés de carbures. Ces petits carbures sont nettement moins sensibles à l'amorçage des fissures que les films continus de l'échantillon de référence. L'apparition notable des zones à petits grains ferritiques lors du recuit vase clos est due à la relaxation des contraintes emmagasinées lors de la formation de la martensite, qui donne lieu à un phénomène de restauration. Ces plages de petits grains ferritiques sont beaucoup plus ductiles que la matrice à gros grains ferritiques, et permettent de limiter la fragilité du métal, notamment en freinant la propagation des fissures par clivage.
  • Les ductilités des bandes obtenues par le procédé de référence et par le procédé selon l'invention ont été évaluées par des essais de flexion par choc sur des éprouvettes Charpy avec entaille en "V", au cours desquels on a évalué leur résilience par mesure de l'énergie absorbée à 20°C par les échantillons. Les essais ont été conduits sur des échantillons de bandes prélevés avant et après le recuit vase clos. Leurs résultats sont exposés dans le tableau 1 suivant
  • On voit que la température de bobinage n'a pas d'influence sur la ductilité à 20°C de la bande brute de coulée, qui n'a pas encore subi le recuit vase clos. Cette ductilité est très médiocre, et elle n'est pas améliorée par le recuit vase clos dans le cas de la bande de référence, bobinée chaude. Comme on l'a vu sur le cliché de la figure 2, le recuit vase clos a, dans ce cas de référence, été impuissant à promouvoir une structure de la matrice métallique et une répartition des carbures favorables à une bonne ductilité. En revanche, la ductilité de la bande bobinée dans les conditions préconisées par l'invention a pu être considérablement améliorée par le recuit vase clos, et amenée à un niveau très satisfaisant. L'expérience montre, en effet, qu'une résilience de l'ordre de 30 à 40 J/cm2 est suffisante pour que les traitements à froid (débobinage, cisaillage des rives notamment) puissent être effectués sans dommages pour la bande.
  • Le fait d'avoir évité à la bande bobinée de traverser la zone de transformation de l'austénite en ferrite et carbures a conduit, lors du refroidissement de la bande, à la formation de fins carbures dans la ferrite, dont la morphologie et la répartition sont sensiblement plus favorables à l'obtention, après le recuit vase clos, de carbures fins et régulièrement répartis. Ceux-ci sont donc beaucoup moins gênants pour la ductilité de la bande que les films continus de carbures observés sur l'échantillon de référence. La matrice métallique obtenue après le refroidissement de la bande bobinée à basse température, qui est plus riche en martensite, est également plus favorable à une bonne ductilité de la bande finale, car le recuit vase clos agit efficacement sur la martensite pour la décomposer essentiellement en ferrite à petits grains.
  • Un autre test représentatif de la ductilité de ces mêmes bandes après le recuit vase clos a été effectué. Il consiste à réaliser des pliages alternés à 90° d'une éprouvette dont les bords sont bruts de cisaillage ou ont été usinés. Un pliage correspond à une opération consistant à couder l'échantillon à 90°, puis à le ramener à sa configuration droite initiale. On évalue le nombre de pliages qu'il est possible d'effectuer avant que l'échantillon ne se rompe ou présente des fissures au niveau de la zone de pliage. Le tableau 2 suivant regroupe la moyenne des résultats de ces expériences:
  • Un nombre de pliages égal à 0 signifie que la bande ne supporte même pas d'être pliée une seule fois avant que n'apparaissent les premières fissures ou la rupture pure et simple. Là encore, il est net que la bande qui a été élaborée conformément à l'invention se comporte beaucoup mieux que la bande de référence, pour les raisons qui ont été données précédemment.
  • En résumé, la première idée fondamentale de l'invention est d'imposer à la bande sortant des cylindres un chemin de refroidissement qui permette de limiter la précipitation des carbures, en évitant surtout ceux qui pourraient provenir de la décomposition de l'austénite et qui seraient susceptibles de coalescer en gros films continus lors du recuit vase clos. La seconde idée est de promouvoir, au même stade de l'élaboration, la transformation de l'austénite en martensite de manière à obtenir le plus possible de ferrite à grains fins pendant le recuit vase clos. Ces conditions sont réalisées si on limite le temps passé par la bande coulée dans le domaine de précipitation des carbures et nitrures à partir de la ferrite, et surtout si on lui évite de séjourner dans le domaine de la transformation de l'austénite en ferrite et carbures. Dans la pratique, la réalisation de ces conditions sur les nuances AISI 430 et celles qui lui sont apparentées nécessite que le bobinage de la bande soit effectué à 600°C ou moins pour éviter que la bande ne séjourne dans le domaine de la transformation de l'austénite en ferrite et carbures pendant qu'elle est bobinée. En fonction des conditions de coulée particulières telles que l'épaisseur de la bande, la vitesse de coulée et la distance séparant les cylindres et la bobineuse, ces conditions pourront être remplies par un simple refroidissement naturel à l'air de la bande, ou pourront nécessiter l'utilisation d'une installation de refroidissement forcé de la bande, par exemple au moyen d'une projection d'un fluide refroidissant tel que de l'eau ou un mélange eau-air. On considère que l'imposition à la bande d'une vitesse de refroidissement supérieure ou égale à 10°C/s entre sa sortie des cylindres et le moment où elle atteint la température de 600°C à partir de laquelle peut avoir lieu le bobinage procure généralement les résultats souhaités.
  • Il faut cependant que la formation de martensite lors du refroidissement de la bande soit contrôlée de façon qu'elle ne devienne pas elle-même nuisible. En premier lieu, il est impératif d'éviter que de la martensite ne se forme avant le bobinage, car elle entraînerait de gros risques de casse de la bande lors du bobinage. Pour cela, il est nécessaire que le bobinage soit effectué à une température supérieure à la température Ms de transformation de l'austénite en martensite, soit environ 300°C. D'autre part, un refroidissement trop rapide de la bobine (supérieur à 300°C/h) conduirait à une formation excessive de martensite très dure. Celle-ci rendrait la bande trop fragile pour supporter sans incidents les manipulations de la bobine précédant le recuit. L'exemple de traitement B de la figure 1 est représentatif des défauts auxquels pourrait conduire un refroidissement trop rapide de la bande: l'absence de bobinage a conduit à une vitesse de refroidissement moyenne d'environ 1000°C/h. Après ce refroidissement, la bande présentait une dureté de 192 Hv, ce qui est trop élevé, alors que la bande de référence ayant suivi le chemin A avait une dureté de 155 Hv. Les bandes selon l'invention ayant subi un traitement intermédiaire entre les chemins C et D ont des duretés de l'ordre de 180 Hv. Il faut considérer que la bande bobinée ne doit pas se refroidir à une vitesse supérieure à 300°C/h. Dans la pratique, cette condition est généralement satisfaite sur les installations de format industriel lorsqu'on ne prend pas de mesures particulières pour accélérer le refroidissement des bobines (une vitesse de refroidissement naturel à l'air de l'ordre de 100°C/h est habituellement constatée).
  • D'autre part, pour obtenir de bons résultats, il faut attendre pour procéder au recuit vase clos que la bande bobinée se soit suffisamment refroidie pour que les transformations souhaitées aient eu le temps de s'accomplir, notamment la transformation de l'austénite en martensite. Dans la pratique, le recuit vase clos doit être effectué sur une bobine dont la température est initialement comprise entre l'ambiante et 200°C. Il est typiquement réalisé à une température de 800-850°C pendant au moins 4 heures.
  • Par rapport aux autres procédés existants visant à améliorer la ductilité des bandes d'acier inoxydable ferritique contenant environ 17% de chrome, le procédé selon l'invention présente l'avantage de ne pas nécessiter d'adaptations particulières et coûteuses de la nuance telles que l'incorporation de stabilisants et/ou l'abaissement des teneurs en carbone et azote jusqu'à des niveaux inhabituellement bas. Il peut être exécuté sur une machine de coulée continue entre cylindres qui n'a pas besoin d'être équipée d'une installation de laminage à chaud de la bande sortant des cylindres. Il ne nécessite pas, non plus, d'adaptations particulières des étapes du cycle de fabrication postérieures à la coulée (recuit vase clos, cisaillage de rives, décapage...). La seule modification à une installation de coulée entre cylindres standard que son implantation est susceptible d'exiger est l'addition éventuelle d'un dispositif de refroidissement de la bande sous les cylindres. Un tel dispositif, qui pourra être de conception très simple, permettrait d'assurer que la bande ne séjourne jamais dans le domaine de transformation de l'austénite en ferrite et carbures et que le bobinage s'effectue toujours à 600°C ou moins, quelles que soient la vitesse de coulée et l'épaisseur de la bande, et même si la bobineuse est située relativement près des cylindres (ce qui peut être a contrario souhaitable pour la coulée d'autres types d'aciers).
  • Il demeure dans l'étendue de l'invention définie par les revendications, d'appliquer le procédé précédemment décrit à des bandes coulées entre cylindres qui subissent un laminage à chaud sous les cylindres, lorsque par ailleurs les conditions requises sur le refroidissement et le bobinage de la bande sont remplies. On peut désirer effectuer un tel laminage à chaud pour améliorer la santé interne de la bande en refermant ses éventuelles porosités, et pour améliorer sa qualité de surface. De plus, un laminage à chaud, effectué à des températures de 900 à 1150°C avec un taux de réduction d'au moins 5%, a un effet bénéfique sur la ductilité de la bande dont l'expérience montre qu'il se cumule avec l'effet du procédé selon l'invention, sans qu'il soit nécessaire de respecter les conditions analytiques très strictes exposées dans le document EP-A-0638653 déjà cité. On peut ainsi obtenir des ductilités de la bande plus élevées que celles que permettraient d'atteindre la seule application d'un laminage à chaud ou la seule application de la version de base du procédé selon l'invention.
  • A titre d'exemple, on a effectué des essais sur une bande d'acier d'épaisseur 2,7 mm coulée entre cylindres, de composition (exprimée en pourcentages pondéraux) :
    • carbone: 0,040% ;
    • silicium: 0,23% ;
    • soufre: 0,001% ;
    • phosphore: 0,024% ;
    • manganèse: 0,40% ;
    • chrome: 16,50% ;
    • nickel: 0,57% ;
    • molybdène: 0,030% ;
    • titane: 0,002% ;
    • niobium: 0,001% ;
    • cuivre: 0,060% ;
    • aluminium: 0,003% ;
    • vanadium: 0,060% ;
    • azote: 0,042% ;
    • oxygène: 0,0090% ;
    • bore: moins de 0,001%.
  • Cette composition correspond à un critère γp de 46,5% et à une température Ac1 de 826°C.
  • En l'absence de laminage à chaud, lorsque le bobinage de la bande est effectué à 800°C (conformément au traitement A de la figure 1) avant le recuit vase clos, la bande ne supporte pas un seul pliage sur bords cisaillés et la rupture survient immédiatement. Dans le cas d'un bobinage à 670°C, la bande ne supporte qu'un seul pliage sur bords cisaillés. Mais si on effectue le bobinage à 500°C selon le procédé de l'invention, la bande peut supporter 4 pliages sur bords cisaillés. Ces essais confirment donc ceux de l'exemple illustré sur les figures 1 à 3.
  • Lorsque de plus ladite bande subit un laminage à chaud à une température de 1000°C avec un taux de réduction de son épaisseur égal à 30%, un bobinage effectué à 500°C selon l'invention procure à la bande une énergie absorbée à 20°C (après recuit vase clos) de 160 J/cm2, pour des conditions d'essai similaires à celles des essais du tableau 1 précédent. Par comparaison, si le bobinage est effectué à 800°C, l'énergie absorbée à 20°C est seulement de 100 J/cm2.
  • Les bandes susceptibles d'être produites par le procédé selon l'invention combinent :
    • une structure colonnaire à gros grains ferritiques coexistant avec de nombreuses zones à petits grains ferritiques parsemés de carbures ;
    • l'absence de films continus de gros carbures, remplacés par des chapelets de petits carbures discontinus, présents aux frontières entre les gros grains ferritiques et les zones à petits grains ferritiques ;
    • dans le cas, selon la version de base de l'invention, où on n'a pas procédé à un laminage à chaud de la bande avant son bobinage, l'absence des structures dénotant classiquement qu'on a procédé à un tel laminage à chaud ;
    • et, généralement, l'absence de teneurs significatives en éléments stabilisants tels que le niobium, le vanadium, le titane, l'aluminium, le molybdène ; comme on l'a dit, de tels éléments peuvent éventuellement être présents pour diverses raisons, mais ils n'exercent pas d'influence notable sur la ductilité de la bande.
  • Leur bonne ductilité rend ces bandes aptes à subir ensuite sans dommages les opérations métallurgiques habituelles qui les transformeront en produits finis utilisables par un client, notamment un laminage à froid.

Claims (5)

  1. Procédé de fabrication de bandes minces d'acier inoxydable ferritique d'épaisseur inférieure à 10 mm, selon lequel, directement à partir de métal liquide, on solidifie entre deux cylindres rapprochés à axes horizontaux, refroidis intérieurement et tournant en sens contraires, une bande d'un acier inoxydable ferritique du type contenant au plus 0,12% de carbone, au plus 1% de manganèse, au plus 1% de silicium, au plus 0,040% de phosphore, au plus 0,030% de soufre et entre 16 et 18% de chrome, caractérisé en ce qu'on refroidit ou on laisse se refroidir ensuite ladite bande en évitant de la faire séjourner dans le domaine de transformation de l'austénite en ferrite et carbures, en ce qu'on effectue le bobinage de ladite bande à une température comprise entre 600°C et la température de transformation martensitique Ms, en ce qu'on laisse la bande bobinée se refroidir à une vitesse maximale de 300°C/h jusqu'à une température comprise entre 200°C et la température ambiante, et en ce qu'on procède ensuite à un recuit vase clos de ladite bande.
  2. Procédé selon la revendication 1, caractérisé en ce que ledit recuit vase clos est réalisé à une température de 800 à 850°C pendant au moins 4 heures.
  3. Procédé selon la revendication 1 ou 2, caractérisé en ce qu'on évite de faire séjourner la bande dans le domaine de transformation de l'austénite en ferrite et carbures en lui conférant une vitesse de refroidissement supérieure ou égale à 10°C/s au moins entre le moment où la bande solidifiée quitte les cylindres et le moment où elle atteint la température de 600°C.
  4. Procédé selon la revendication 3, caractérisé en ce qu'on confère ladite vitesse de refroidissement à ladite bande par projection sur la surface de la bande d'un fluide refroidissant.
  5. Procédé selon l'une des revendications 1 à 4, caractérisé en ce qu'on effectue de plus un laminage à chaud de la bande préalablement à son bobinage, à une température comprise entre 900 et 1150°C et avec un taux de réduction de l'épaisseur de la bande de 5% au moins.
EP98401090A 1997-05-29 1998-05-06 Procédé de fabrication de bandes minces d'acier inoxydable ferritique Expired - Lifetime EP0881305B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9706576A FR2763960B1 (fr) 1997-05-29 1997-05-29 Procede de fabrication de bandes minces d'acier inoxydable ferritique, et bandes minces ainsi obtenues
FR9706576 1997-05-29

Publications (2)

Publication Number Publication Date
EP0881305A1 EP0881305A1 (fr) 1998-12-02
EP0881305B1 true EP0881305B1 (fr) 2003-01-29

Family

ID=9507357

Family Applications (1)

Application Number Title Priority Date Filing Date
EP98401090A Expired - Lifetime EP0881305B1 (fr) 1997-05-29 1998-05-06 Procédé de fabrication de bandes minces d'acier inoxydable ferritique

Country Status (24)

Country Link
US (1) US6106638A (fr)
EP (1) EP0881305B1 (fr)
JP (1) JP4224733B2 (fr)
KR (1) KR100538683B1 (fr)
CN (1) CN1078113C (fr)
AT (1) ATE231925T1 (fr)
AU (1) AU706022B2 (fr)
BR (1) BR9801552A (fr)
CA (1) CA2238803C (fr)
CZ (1) CZ291528B6 (fr)
DE (1) DE69810988T2 (fr)
DK (1) DK0881305T3 (fr)
ES (1) ES2191263T3 (fr)
FR (1) FR2763960B1 (fr)
ID (1) ID20384A (fr)
MX (1) MXPA98004218A (fr)
PL (1) PL187133B1 (fr)
RO (1) RO120322B1 (fr)
RU (1) RU2192483C2 (fr)
SK (1) SK284091B6 (fr)
TR (1) TR199800976A2 (fr)
TW (1) TW369446B (fr)
UA (1) UA55398C2 (fr)
ZA (1) ZA984147B (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005063058B3 (de) * 2005-12-29 2007-05-24 Thyssenkrupp Nirosta Gmbh Verfahren zum Herstellen eines Kaltbands mit ferritischem Gefüge
CN101607266A (zh) * 2009-07-20 2009-12-23 山东泰山钢铁集团有限公司 一种适用于炉卷轧机生产铁素体不锈钢热轧钢带的方法

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6500284B1 (en) * 1998-06-10 2002-12-31 Suraltech, Inc. Processes for continuously producing fine grained metal compositions and for semi-solid forming of shaped articles
FR2790485B1 (fr) * 1999-03-05 2002-02-08 Usinor Procede de coulee continue entre cylindres de bandes d'acier inoxydable ferritique a haute ductilite, et bandes minces ainsi obtenues
DE60025703T2 (de) 1999-03-30 2006-08-31 Jfe Steel Corp. Ferritische rostfreie stahlplatte
JP4518645B2 (ja) * 2000-01-21 2010-08-04 日新製鋼株式会社 高強度高靱性マルテンサイト系ステンレス鋼板並びに冷延耳切れ抑止方法および鋼板製造法
DE10046181C2 (de) * 2000-09-19 2002-08-01 Krupp Thyssen Nirosta Gmbh Verfahren zum Herstellen eines überwiegend aus Mn-Austenit bestehenden Stahlbands oder -blechs
US6675869B2 (en) * 2000-09-29 2004-01-13 Nucor Corporation Production of thin steel strip
CA2378934C (fr) 2002-03-26 2005-11-15 Ipsco Inc. Acier micro-allie a haute resistance et methode de fabrication dudit produit
US7220325B2 (en) * 2002-04-03 2007-05-22 Ipsco Enterprises, Inc. High-strength micro-alloy steel
US7981561B2 (en) 2005-06-15 2011-07-19 Ati Properties, Inc. Interconnects for solid oxide fuel cells and ferritic stainless steels adapted for use with solid oxide fuel cells
US8158057B2 (en) 2005-06-15 2012-04-17 Ati Properties, Inc. Interconnects for solid oxide fuel cells and ferritic stainless steels adapted for use with solid oxide fuel cells
US7842434B2 (en) * 2005-06-15 2010-11-30 Ati Properties, Inc. Interconnects for solid oxide fuel cells and ferritic stainless steels adapted for use with solid oxide fuel cells
JP4514032B2 (ja) * 2004-06-10 2010-07-28 新日鐵住金ステンレス株式会社 塗装密着性の良好なフェライト系ステンレス鋼帯の製造方法
US8852356B2 (en) 2009-03-11 2014-10-07 Salzgitter Glachstahl GmbH Method for producing a hot rolled strip and hot rolled strip produced from ferritic steel
KR101312776B1 (ko) * 2009-12-21 2013-09-27 주식회사 포스코 마르텐사이트계 스테인리스강 및 그 제조방법
CN102211179B (zh) * 2010-04-09 2013-01-02 中国科学院金属研究所 一种应用于大型马氏体不锈钢铸件的高温打箱工艺
KR101614614B1 (ko) * 2014-10-22 2016-04-22 주식회사 포스코 고강도, 고연성의 페라이트계 스테인리스 강판 및 그의 제조방법
RU2615426C1 (ru) * 2015-12-03 2017-04-04 Федеральное Государственное Унитарное Предприятие "Центральный научно-исследовательский институт черной металлургии им. И.П. Бардина" (ФГУП "ЦНИИчермет им. И.П. Бардина") Способ производства горячекатаной высокопрочной коррозионно-стойкой стали
CN107142364A (zh) * 2017-04-27 2017-09-08 酒泉钢铁(集团)有限责任公司 一种超纯铁素体不锈钢双辊薄带铸轧生产工艺
CN114959466B (zh) * 2022-05-17 2023-06-13 天津太钢天管不锈钢有限公司 一种低铬铁素体不锈钢及其制造方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57155326A (en) * 1981-03-23 1982-09-25 Nippon Steel Corp Production of ferritic stainless steel sheet excellent in workability
ES2021211A6 (es) * 1990-03-01 1991-10-16 Acerinox Sa Procedimiento mejorado de laminacion en caliente en un tren steckel.
FR2665652A1 (fr) * 1990-08-13 1992-02-14 Usinor Sacilor Procede et dispositif de fabrication d'une bande en acier inoxydable semi-ferritique a partir de metal en fusion.
JP3141120B2 (ja) * 1992-02-21 2001-03-05 株式会社トプコン 位相測定装置及び距離測定装置
JP3001718B2 (ja) * 1992-04-17 2000-01-24 新日本製鐵株式会社 フェライト系ステンレス鋼薄肉鋳片の製造方法
JP2682335B2 (ja) * 1992-06-01 1997-11-26 住友金属工業株式会社 フェライト系ステンレス鋼熱延鋼帯の製造法
JPH06220545A (ja) * 1993-01-28 1994-08-09 Nippon Steel Corp 靱性の優れたCr系ステンレス鋼薄帯の製造方法
EP0691412B1 (fr) * 1994-01-26 2000-04-19 Kawasaki Steel Corporation Procede de production de tole d'acier inoxydable a haute resistance a la corrosion
JPH08295943A (ja) * 1995-04-27 1996-11-12 Nippon Steel Corp 冷延表面性状の優れたフェライト系ステンレス鋼薄板の製造方法
JP3879164B2 (ja) * 1997-03-18 2007-02-07 Jfeスチール株式会社 冷間圧延性に優れたフェライト系ステンレス熱延鋼帯の製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005063058B3 (de) * 2005-12-29 2007-05-24 Thyssenkrupp Nirosta Gmbh Verfahren zum Herstellen eines Kaltbands mit ferritischem Gefüge
CN101607266A (zh) * 2009-07-20 2009-12-23 山东泰山钢铁集团有限公司 一种适用于炉卷轧机生产铁素体不锈钢热轧钢带的方法

Also Published As

Publication number Publication date
DE69810988D1 (de) 2003-03-06
CZ165898A3 (cs) 1999-08-11
CA2238803A1 (fr) 1998-11-29
TR199800976A3 (tr) 1999-10-21
RO120322B1 (ro) 2005-12-30
JPH10330842A (ja) 1998-12-15
SK284091B6 (sk) 2004-09-08
CN1212189A (zh) 1999-03-31
JP4224733B2 (ja) 2009-02-18
TR199800976A2 (xx) 1999-10-21
ES2191263T3 (es) 2003-09-01
PL187133B1 (pl) 2004-05-31
US6106638A (en) 2000-08-22
KR19980087462A (ko) 1998-12-05
UA55398C2 (uk) 2003-04-15
EP0881305A1 (fr) 1998-12-02
ID20384A (id) 1998-12-03
DK0881305T3 (da) 2003-05-26
AU6483598A (en) 1998-12-03
SK67898A3 (en) 1998-12-02
ZA984147B (en) 1998-11-25
FR2763960A1 (fr) 1998-12-04
PL326582A1 (en) 1998-12-07
KR100538683B1 (ko) 2006-03-23
TW369446B (en) 1999-09-11
AU706022B2 (en) 1999-06-03
DE69810988T2 (de) 2003-11-27
CA2238803C (fr) 2007-02-20
ATE231925T1 (de) 2003-02-15
CZ291528B6 (cs) 2003-03-12
BR9801552A (pt) 1999-06-01
CN1078113C (zh) 2002-01-23
RU2192483C2 (ru) 2002-11-10
FR2763960B1 (fr) 1999-07-16
MXPA98004218A (es) 2004-09-10

Similar Documents

Publication Publication Date Title
EP0881305B1 (fr) Procédé de fabrication de bandes minces d'acier inoxydable ferritique
EP1067203B1 (fr) "Procédé de fabrication de bandes en alliage fer-carbone-manganèse, et bandes ainsi produites"
EP1913169B1 (fr) Procede de fabrication de tôles d'acier presentant une haute resistance et une excellente ductilite, et tôles ainsi produites
EP1899490B1 (fr) Bande en acier inoxydable austenitique presentant un aspect de surface brillant et d'excellentes caracteristiques mecaniques.
EP2855725B1 (fr) Acier lamine a chaud ou a froid a faible densite, son procede de mise en oeuvre et son utilisation
EP1228254B1 (fr) Procede de fabrication de bandes d'acier au carbone, notamment d'acier pour emballages
EP2245203B1 (fr) Tôle en acier inoxydable austenitique et procede d'obtention de cette tôle
EP1466024B1 (fr) Procede de fabrication d un produit siderurgique en acier au carbone riche en cuivre, et produit siderurgique ainsi obtenu
EP1427866B1 (fr) Procede de fabrication de tubes soudes et tube ainsi obtenu
FR2643650A1 (fr) Tole d'acier allie laminee a chaud
CA2243495C (fr) Procede d'elaboration d'une tole mince en acier a ultra bas carbone pour la realisation de produits emboutis pour emballage et tole mince obtenue
EP1061139B1 (fr) Procédé de fabrication de tôles d'acier aptes à l'emboutissage par coulée directe de bandes
EP1354070B1 (fr) Acier isotrope a haute resistance, procede de fabrication de toles et toles obtenues
WO2001027340A1 (fr) Procede de fabrication d'une bande d'acier laminee a froid pour emboutissage profond
BE1015018A3 (fr) Procede pour le traitement thermique d'une bande d'acier laminee a froid, procede de fabrication d'une bande d'acier adaptee au fromage et bande d'acier ainsi obtenue.
JP4283687B2 (ja) 無方向性電磁鋼板の製造方法
BE893814A (fr) Procede de fabrication d'un feuillard d'acier au silicium a grains orientes et contenant de l'aluminium
BE1011557A4 (fr) Acier a haute limite d'elasticite montrant une bonne ductilite et procede de fabrication de cet acier.
FR2544333A1 (fr) Procede pour l'obtention de toles laminees a froid et recuites
BE570815A (fr)
BE858549A (fr) Procede pour traiter des brames d'acier coulees en continu

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 19990602

AKX Designation fees paid

Free format text: AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU NL PT SE

17Q First examination report despatched

Effective date: 20010921

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

RTI1 Title (correction)

Free format text: PROCESS FOR MANUFACTURING FERRITIC STAINLESS STEEL THIN STRIPS

RTI1 Title (correction)

Free format text: PROCESS FOR MANUFACTURING FERRITIC STAINLESS STEEL THIN STRIPS

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU NL PT SE

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: FRENCH

REF Corresponds to:

Ref document number: 69810988

Country of ref document: DE

Date of ref document: 20030306

Kind code of ref document: P

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030506

REG Reference to a national code

Ref country code: GR

Ref legal event code: EP

Ref document number: 20030401302

Country of ref document: GR

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20030515

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2191263

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20031030

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20110617

Year of fee payment: 14

Ref country code: FR

Payment date: 20110523

Year of fee payment: 14

Ref country code: CH

Payment date: 20110512

Year of fee payment: 14

Ref country code: LU

Payment date: 20110531

Year of fee payment: 14

Ref country code: GR

Payment date: 20110412

Year of fee payment: 14

Ref country code: IE

Payment date: 20110511

Year of fee payment: 14

Ref country code: PT

Payment date: 20110506

Year of fee payment: 14

Ref country code: SE

Payment date: 20110512

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20110526

Year of fee payment: 14

Ref country code: FI

Payment date: 20110511

Year of fee payment: 14

Ref country code: AT

Payment date: 20110427

Year of fee payment: 14

Ref country code: DK

Payment date: 20110512

Year of fee payment: 14

Ref country code: GB

Payment date: 20110504

Year of fee payment: 14

Ref country code: BE

Payment date: 20110511

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20110505

Year of fee payment: 14

Ref country code: IT

Payment date: 20110517

Year of fee payment: 14

REG Reference to a national code

Ref country code: PT

Ref legal event code: MM4A

Free format text: LAPSE DUE TO NON-PAYMENT OF FEES

Effective date: 20121106

BERE Be: lapsed

Owner name: *USINOR

Effective date: 20120531

REG Reference to a national code

Ref country code: NL

Ref legal event code: V1

Effective date: 20121201

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 231925

Country of ref document: AT

Kind code of ref document: T

Effective date: 20120506

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20120506

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120531

Ref country code: FI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120506

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120506

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120531

REG Reference to a national code

Ref country code: GR

Ref legal event code: ML

Ref document number: 20030401302

Country of ref document: GR

Effective date: 20121204

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121106

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120506

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120507

Ref country code: GR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121204

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120531

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20130131

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 69810988

Country of ref document: DE

Effective date: 20121201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120506

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120506

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120531

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121201

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20130821

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120507

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120506