EP0820559B1 - Procede pour determiner a l'aide d'un modele le volume d'air admis dans le cylindre d'un moteur a combustion interne - Google Patents

Procede pour determiner a l'aide d'un modele le volume d'air admis dans le cylindre d'un moteur a combustion interne Download PDF

Info

Publication number
EP0820559B1
EP0820559B1 EP96909021A EP96909021A EP0820559B1 EP 0820559 B1 EP0820559 B1 EP 0820559B1 EP 96909021 A EP96909021 A EP 96909021A EP 96909021 A EP96909021 A EP 96909021A EP 0820559 B1 EP0820559 B1 EP 0820559B1
Authority
EP
European Patent Office
Prior art keywords
model
air mass
variable
throttle valve
accordance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP96909021A
Other languages
German (de)
English (en)
Other versions
EP0820559A1 (fr
Inventor
Stefan Treinies
Maximilian Engl
Gerd RÖSEL
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP0820559A1 publication Critical patent/EP0820559A1/fr
Application granted granted Critical
Publication of EP0820559B1 publication Critical patent/EP0820559B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/18Circuit arrangements for generating control signals by measuring intake air flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/18Circuit arrangements for generating control signals by measuring intake air flow
    • F02D41/182Circuit arrangements for generating control signals by measuring intake air flow for the control of a fuel injection device
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • F02D2041/001Controlling intake air for engines with variable valve actuation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D2041/1412Introducing closed-loop corrections characterised by the control or regulation method using a predictive controller
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D2041/1413Controller structures or design
    • F02D2041/1431Controller structures or design the system including an input-output delay
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D2041/1433Introducing closed-loop corrections characterised by the control or regulation method using a model or simulation of the system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/04Engine intake system parameters
    • F02D2200/0402Engine intake system parameters the parameter being determined by using a model of the engine intake or its components

Definitions

  • the invention relates to a method for model-based determination the flowing into the cylinders of an internal combustion engine Air mass according to the preamble of claim 1.
  • Engine control systems for internal combustion engines that work with fuel injection require the air mass m cyl drawn in by the engine as a measure of the engine load. This parameter forms the basis for realizing a required air-fuel ratio.
  • the precise load detection during the warm-up phase of the internal combustion engine offers considerable potential for reducing pollutants.
  • variable intake systems and variable valve controls are created for empirically derived models Obtaining the load size from measurement signals a very large variety of influencing variables, the corresponding model parameters influence.
  • Model-based calculation methods based on physical approaches represent a good starting point for the exact determination of the air mass in cyl .
  • DE 39 19 488 C2 describes a device for regulating and for the predetermination of the intake air quantity of an intake manifold pressure-guided Internal combustion engine is known in which the throttle valve opening degree and the engine speed as the basis for Calculation of the current value in the combustion chamber of the Machine sucked air can be used. This calculated, current intake air volume is then used as a basis to calculate the predetermined value for the intake air quantity, which in the combustion chamber of the machine at a certain Time from the point at which the calculation is performed was sucked in, used.
  • the pressure signal that downstream of the throttle valve is measured using corrected by theoretical relationships, making an improvement reached the determination of the intake air mass and so that a more precise calculation of the injection time is possible.
  • the invention has for its object to provide a method with which the actually in the cylinder of the internal combustion engine inflowing air mass with high accuracy can be determined.
  • system-related dead times that due to the fuel storage and the computing time can occur when calculating the injection time, be compensated.
  • a model description results, that on a nonlinear differential equation based.
  • the following is an approximation of this presented nonlinear equation.
  • the system behavior can be approximated using a bilinear Describe the equation that the quick fix of Relationship in the engine control unit of the motor vehicle under real-time conditions allowed.
  • the chosen model approach includes thereby the modeling of variable suction systems and systems with variable valve controls. The through this arrangement and by dynamic reloading, i.e. through reflections effects caused by pressure waves in the intake manifold exclusively through the selection of stationary determinable parameters of the model are taken into account very well. All model parameters are physically interpretable on the one hand and on the other hand exclusively from stationary measurements win.
  • the model-based calculation method according to the invention also offers the possibility of predicting the load signal by a selectable number of sampling steps, i.e. a Prediction of the load signal with a variable prediction horizon. If the prediction horizon at constant speed proportional prediction time not too long, so get a predicted load signal of high accuracy.
  • the prediction of the load size by the number of segments by which the fuel is stored is necessary in order to maintain the required air-fuel ratio in this case too.
  • the prediction of the load size thus contributes from a substantial improvement in compliance with the required fuel-air ratio in the transient engine operation.
  • This system for model-based load detection is used in the known engine control systems, i.e. in the case of engine control systems controlled by air mass or intake manifold pressure, a correction algorithm in the form of a model control loop is formulated below, which allows permanent accuracy improvement, i.e. a model comparison in stationary and transient operation, in the event of inaccuracies in model parameters.
  • Reference number 10 denotes an intake manifold of an internal combustion engine, in which a throttle valve 11 is arranged.
  • the throttle valve 11 is connected to a throttle valve position sensor 14 which determines the degree of opening of the throttle valve.
  • An air mass meter 12 is arranged upstream of the throttle valve 11 in an air mass-guided engine control system, while an intake manifold pressure sensor 13 is arranged in the intake manifold in an intake manifold pressure-guided engine control system.
  • an intake manifold pressure sensor 13 is arranged in the intake manifold in an intake manifold pressure-guided engine control system.
  • the outputs of the air mass meter 12, the throttle valve position sensor 14 and the intake manifold pressure sensor 13, which is available as an alternative to the air mass meter 12, are connected to inputs of an electronic control device of the internal combustion engine, which is not shown and is known per se.
  • an inlet valve 15, an outlet valve 16 and a piston 18 movable in a cylinder 17 are shown schematically in FIG.
  • the roof symbol means " ⁇ " over a size that it is a model size, while sizes without a roof symbol " ⁇ " represent measured values.
  • Sizes with a dot symbol indicate the first time derivative of the corresponding sizes.
  • m ⁇ DK is the air mass flow at the throttle valve and m ⁇ cyl is the air mass flow that actually flows into the cylinder of the internal combustion engine.
  • the basic task in the model-based calculation of the engine load condition now consists in solving the differential equation for the intake manifold pressure which can be derived from the equation of state of ideal gases under the condition of constant air temperature in the intake manifold T S.
  • R L denotes the general gas constant
  • the load size m and cyl is created by integration from the cylinder mass flow certainly.
  • the relationships described by (2.1) can be applied to multi-cylinder internal combustion engines with vibrating tube (switching intake manifold) and / or resonance intake systems without structural changes.
  • equation (2.1) gives the situation more accurately than for single-point injections, that is to say in injections in which the fuel is metered by means of a single fuel injector will, is the case.
  • the first-mentioned type of fuel metering almost the entire intake system is filled with air. There is a fuel-air mixture only in a small area in front of the intake valves.
  • the entire intake manifold from the throttle valve to the intake valve is filled with a fuel-air mixture, since the injection valve is arranged in front of the throttle valve.
  • the assumption of an ideal gas is a closer approximation than is the case with multi-point injection.
  • the fuel is metered accordingly with multi-point injection accordingly
  • Figure 2 shows the course of the flow function ⁇ and the approximation principle applied to it.
  • the flow function ⁇ is represented by a straight line.
  • m i describes the slope and n i the absolute term of the respective line segment.
  • the values for the slope and for the absolute member are stored in tables as a function of the ratio of intake manifold pressure to ambient pressure P and S / P and U.
  • the pressure ratio P and S / P and U is plotted on the abscissa of FIG. 2 and the function value (0-0.3) of the flow function ⁇ is plotted on the ordinate.
  • the slope ⁇ 1 and the absolute member ⁇ 0 of the relationship (2.4) are functions of the speed, the intake manifold geometry, the number of cylinders, the valve timing and the temperature of the air in the intake manifold T S , taking into account all essential influencing factors.
  • the dependency of the values of ⁇ 1 and ⁇ 0 on the influencing variables speed, intake manifold geometry, number of cylinders and the valve timing and valve lift curves can be determined using stationary measurements.
  • the influence of vibrating tube and / or resonance suction systems on the air mass sucked in by the internal combustion engine is also well reproduced via this value determination.
  • the values of ⁇ 1 and ⁇ 0 are stored in maps of the electronic engine control device.
  • the intake manifold pressure P S is selected as the determining variable for determining the engine load. With the help of the model differential equation, this quantity should be estimated as precisely and quickly as possible. The estimation of P and S requires the solution of equation (2.1).
  • (2.1) can be determined by the relationship be approximated. If, in accordance with the requirements for the derivation of equation (2.1), the temperature of the air in the intake manifold T S is regarded as a slowly changing measured variable and ⁇ RED as an input variable, the nonlinear form of the differential equation (2.1) can be determined by the bilinear equation (2.5 ) approximate.
  • Claim 1 can be met by an implicit calculation algorithm. Because of the approximation of the nonlinear differential equation (2.1) by a bilinear equation emerging implicit solution scheme without using iterative Method solvable, since the difference equation is explicit Form can be transferred.
  • [N] means the current segment or the current calculation step, [ N +1] the next following segment or the next calculation step.
  • the air mass flow can be calculated from the calculated intake manifold pressure P and S which flows into the cylinders can be determined using the relationship (2.4). If a simple integration algorithm is used, the relationship is obtained for the air mass sucked in by the internal combustion engine during an intake stroke
  • the values of ⁇ 1 and ⁇ 0 are associated with a certain degree of uncertainty.
  • the parameters of the equation for determining the mass flow in the cylinders are functions of various influencing variables, of which only the most important ones can be recorded.
  • the adjustment of essential parameters are the model for determining the load variable of the internal combustion engine by correcting the determined from the measured throttle valve angle reduced cross-section ⁇ RED by the correction quantity ⁇ ⁇ RED.
  • ⁇ RED is replaced by ⁇ REDKORR .
  • the reduced throttle valve cross section ⁇ RED derived from the measured value of the throttle valve angle is included in the model calculation.
  • the correction quantity ⁇ RED is formed by implementing a model control loop.
  • the air mass flow m ⁇ DK_LMM measured by means of the air mass meter on the throttle valve is the reference variable of this control loop, while the intake manifold pressure P S measured is used as the reference variable for intake manifold pressure-guided systems.
  • the value of ⁇ RED is determined via a follow-up control so that the control deviation between the reference variable and the corresponding control variable is minimized.
  • the measured value must be recorded be reproduced as closely as possible to the reference variable.
  • the dynamic behavior of the sensor i.e. either the air mass meter or the intake manifold pressure sensor and a subsequent averaging to consider.
  • the dynamic behavior of the respective sensor can be modeled as a system of the first order with any delay times T 1 that may be dependent on the operating point.
  • T 1 delay times
  • the value of the ambient pressure P and U is changed if the amount of the correction variable ⁇ A RED exceeds a certain threshold or if the pressure ratio P and S / P and U is greater than a selectable constant. This ensures that an ambient pressure adjustment can take place both in the partial and in the full-load range.
  • the throttle valve position sensor 14 (FIG. 1) supplies a signal corresponding to the degree of opening of the throttle valve 11, for example a throttle valve opening angle. Values associated with various values of this throttle valve opening angle for the reduced cross section of the throttle valve RED RED are stored in a map of the electronic engine control device. This assignment is represented by the block "static model” in FIG. 3 and in FIG. 4. The “intake manifold model” subsystem in FIGS. 3 and 4 represents the behavior described by (2.7). The reference variable of this model control loop is the measured value of the air mass flow at the throttle valve, averaged over a segment .
  • the remaining control deviation is zero, ie the model size and measured variable of the air mass flow at the throttle valve are identical.
  • the pulsation phenomena of the air mass flow at the throttle valve which can be observed especially in 4-cylinder engines, lead to considerable positive measurement errors in the case of air mass meters that form the amount, and thus to a command variable with a lot of errors.
  • By switching off the controller ie reducing the controller parameters, it is possible to switch to controlled model-based operation. Areas in which the pulsations mentioned can thus be treated with the same method, taking dynamic relationships into account, as those areas in which there is an almost undisturbed reference variable.
  • the system described remains operational almost without restrictions. If the air mass signal or the signal from the throttle valve position sensor fails, the system presented is able to generate a corresponding substitute signal. If the command variable fails, the controlled operation must be implemented, while in the other case the regulated operation guarantees the hardly impaired functionality of the system.
  • the "intake manifold model” block represents the relationships as described using equation (2.7) and therefore has the model size P and S and the time derivative as an output variable and the size .
  • the model size becomes averaged so that the averaged size and the average air mass flow measured by the air mass meter can be fed to a comparator.
  • the difference between the two signals causes a change ⁇ RED RED of the reduced flow cross section RED RED , so that a model comparison can be carried out in a stationary and non-stationary manner.
  • the model structure shown in FIG. 4 is given for intake manifold pressure-guided engine control systems, the same blocks as in FIG. 3 being given the same designations.
  • the "intake manifold model” subsystem represents the behavior described by the difference equation (2.7).
  • the reference variable of this model control loop is the measured value of the intake manifold pressure averaged over a segment P s_s . If a PI controller is also used, as in FIG. 3, the measured value of the pressure in the intake manifold is in the stationary case P s_s with the model size identical.
  • the present system also remains almost fully functional, since if the intake manifold pressure signal or the measured value for the throttle valve angle fails, a corresponding substitute signal can be generated.
  • the model sizes P and S obtained from the intake manifold model are fed to a block "prediction". Since the models also calculate the pressure changes in the intake manifold, these pressure changes can be used to estimate the future pressure curve in the intake manifold and thus the cylinder air mass for the next [ N +1] or for the next segments [ N + H].
  • the size m and cyl or the size m and cyl [ N +1] then serve for the exact calculation of the injection time during which fuel is injected.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Claims (11)

  1. Procédé de détermination du débit massique d'air introduit dans le ou les cylindres d'un moteur à combustion interne, comprenant :
    un système d'admission comportant un collecteur d'admission (10) et un papillon des gaz (11) disposé dans celui-ci, ainsi qu'un dispositif capteur de position de papillon des gaz (14) détectant le degré d'ouverture du papillon des gaz (19),
    un capteur (12 ; 13) produisant un signal de charge (
    Figure 00300001
    ; P S_S ) du moteur à combustion interne,
    un dispositif de commande électronique qui calcule une durée d'injection de base à partir du signal de charge mesuré ( ; P S_S ) et de la vitesse de rotation du moteur à combustion interne,
       selon lequel :
    les conditions dans le système d'admission sont simulées au moyen d'un modèle de remplissage de collecteur d'admission, le degré d'ouverture du papillon des gaz (11), la pression ambiante (PU ) et des paramètres représentant la position de soupapes étant utilisés en tant que grandeurs d'entrée du modèle,
    une grandeur de modèle correspondant au débit massique d'air (
    Figure 00300002
    ) à l'endroit du papillon des gaz (11) est décrite au moyen de l'équation d'écoulement des gaz parfaits à travers des emplacements d'étranglement,
    une grandeur de modèle correspondant au débit massique d'air (
    Figure 00300003
    ) dans le ou les cylindres (17) est décrite comme fonction linéaire de la pression de collecteur d'admission (P andS ) au moyen d'un bilan des débits massiques d'air ( , ),
    ces grandeurs de modèle sont liées au moyen d'une équation différentielle et, à partir de celle-ci, la pression de collecteur d'admission (P ands ) est calculée comme grandeur décisive pour la détermination de la charge effective du moteur à combustion interne et
    à partir de la relation linéaire se présentant entre la pression de collecteur d'admission calculée (P andS ) et de la grandeur de modèle correspondant au débit massique d'air ( ) dans le ou les cylindres (17), le débit d'air (m andZyl ) introduit dans le ou les cylindres (17) est obtenu par intégration.
  2. Procédé suivant la revendication 1, caractérisé en ce que le signal de charge (
    Figure 00310001
    ; P S_S ) mesuré par le capteur de charge (12 ; 13) est utilisé dans un circuit de régulation fermé pour la correction et donc pour la compensation des grandeurs de modèle ( ), le signal de charge ( ; P S_S ) servant de grandeur de pilotage du circuit de régulation.
  3. Procédé suivant la revendication 2, caractérisé en ce que la compensation est effectuée en régime permanent et/ou en régime non permanent du moteur à combustion interne et qu'il est de ce fait tenu compte du comportement de transmission du capteur de charge (12 ; 13).
  4. Procédé suivant la revendication 2, caractérisé en ce qu'une valeur d'une section transversale réduite (ÂRED ) du papillon des gaz est associée à chaque valeur mesurée du degré d'ouverture de papillon des gaz et que la compensation des grandeurs de modèle par correction de la section transversale réduite (ÂRED ) au moyen d'une grandeur de correction (ΔÂRED ) est effectuée de façon telle que l'écart de régulation entre la grandeur de pilotage et la grandeur de modèle correspondante est rendu minimal.
  5. Procédé suivant la revendication 4, caractérisé en ce que la section transversale réduite (ÂRED ) est déterminée à partir de mesures effectuées en régime permanent sur banc d'essais de moteur et est rangée en mémoire dans une table caractéristique d'une mémoire du dispositif de commande électrique.
  6. Procédé suivant la revendication 1, caractérisé en ce que, pour la représentation de la grandeur de modèle correspondant au débit massique d'air ( ) à l'endroit du papillon des gaz (11), une fonction d'écoulement (ψ) existant dans l'équation d'écoulement (équation 2.2) est divisée en segments individuels (i = 1 . . . k) et ces segments font l'objet d'une approximation au moyen de segments de droite, la pente (mi) et l'abscisse à l'origine (ni) des segments de droite respectifs étant déterminés en fonction du rapport de la pression de collecteur d'admission (P andS ) et de la pression ambiante (P andU ) et étant rangées en mémoire dans une table caractéristique.
  7. Procédé suivant la revendication 1, caractérisé en ce que la pente (γ1) et l'abscisse à l'origine (γ0) de la fonction linéaire correspondant à la grandeur de modèle prévue pour le débit massique d'air (m ˙Zyl ) dans le ou les cylindres sont déterminées en fonction d'au moins l'un des paramètres que sont la vitesse de rotation du moteur à combustion interne, le nombre de cylindres, les paramètres géométriques du collecteur d'admission, la température (TS ) de l'air dans le collecteur d'admission (10) et les durées de commande de soupapes.
  8. Procédé suivant la revendication 7, caractérisé en ce que les paramètres sont déterminés au moyen de mesures effectuées en régime permanent sur banc d'essais de moteur et sont rangés en mémoire dans des tables caractéristiques.
  9. Procédé suivant la revendication 1, caractérisé en ce que le débit massique d'air (m andZyl ) pénétrant dans le cylindre est calculé au moyen de la relation,
    Figure 00320001
    TA
    désignant la durée d'analyse par échantillonnage ou segment de temps,
    [N]
    la grandeur de modèle du débit massique d'air pendant le pas d'analyse ou segment actuel,
    [N-1]
    la grandeur de modèle du débit massique d'air pendant le pas d'analyse ou segment passé.
  10. Procédé suivant la revendication 1, caractérisé en ce que le débit massique d'air (m andZyl ) pénétrant dans le ou les cylindres est estimé pour un horizon de prédiction (H) déterminé, situé dans le futur par rapport à la détermination de charge actuelle à l'instant d'analyse par échantillonnage [N], par estimation de la valeur de pression correspondante conformément à la relation suivante :
    Figure 00330001
    avec
    TA :
    durée d'analyse par échantillonnage ou segment de temps,
    H :
    horizon de prédiction, nombre des pas d'analyse par échantillonnage se trouvant dans le futur,
    γ1 :
    pente de l'équation linéaire,
    γ0 :
    abscisse à l'origine servant à la détermination de ,
    N :
    pas d'analyse par échantillonnage actuel.
  11. Procédé suivant la revendication 10, caractérisé en ce que le nombre (H) de segments pour lesquels le signal de charge doit être estimé dans le futur est déterminé en fonction de la vitesse de rotation.
EP96909021A 1995-04-10 1996-04-09 Procede pour determiner a l'aide d'un modele le volume d'air admis dans le cylindre d'un moteur a combustion interne Expired - Lifetime EP0820559B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19513601 1995-04-10
DE19513601 1995-04-10
PCT/DE1996/000615 WO1996032579A1 (fr) 1995-04-10 1996-04-09 Procede pour determiner a l'aide d'un modele le volume d'air admis dans le cylindre d'un moteur a combustion interne

Publications (2)

Publication Number Publication Date
EP0820559A1 EP0820559A1 (fr) 1998-01-28
EP0820559B1 true EP0820559B1 (fr) 1999-09-15

Family

ID=7759410

Family Applications (1)

Application Number Title Priority Date Filing Date
EP96909021A Expired - Lifetime EP0820559B1 (fr) 1995-04-10 1996-04-09 Procede pour determiner a l'aide d'un modele le volume d'air admis dans le cylindre d'un moteur a combustion interne

Country Status (10)

Country Link
US (1) US5889205A (fr)
EP (1) EP0820559B1 (fr)
JP (1) JPH11504093A (fr)
KR (1) KR100413402B1 (fr)
CN (1) CN1073205C (fr)
BR (1) BR9604813A (fr)
CA (1) CA2217824C (fr)
CZ (1) CZ319497A3 (fr)
DE (1) DE59603079D1 (fr)
WO (1) WO1996032579A1 (fr)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10224213C1 (de) * 2002-05-31 2003-10-09 Siemens Ag Verfahren zur Füllungsregelung einer Brennkraftmaschine
DE10220141A1 (de) * 2002-05-06 2003-12-04 Siemens Ag Verfahren zum Steuern der Verbrennung einer Brennkraftmaschine mit mindestens zwei Zylinderbänken
DE10222137B3 (de) * 2002-05-17 2004-02-05 Siemens Ag Verfahren zur Steuerung einer Brennkraftmaschine
WO2004016339A2 (fr) * 2002-07-25 2004-02-26 Siemens Aktiengesellschaft Procede de nettoyage de filtre a particules
DE10234719B3 (de) * 2002-07-30 2004-04-15 Siemens Ag Verfahren zur Füllungsregelung einer Brennkraftmaschine
US6796293B2 (en) 2000-03-31 2004-09-28 Siemens Aktiengesellschaft Method for starting an internal combustion engine and starter device for an internal combustion engine
DE102005046504A1 (de) * 2005-09-29 2007-04-05 Bayerische Motoren Werke Ag Vorrichtung zur druckbasierten Lasterfassung
DE102006010542B3 (de) * 2006-03-07 2007-08-23 Siemens Ag Verfahren zum Erkennen einer fehlerhaften Stelleinrichtung
DE102006032493B3 (de) * 2006-07-13 2008-04-10 Siemens Ag Verfahren zur Plausibilisierung eines Umgebungsdrucksensors für eine Brennkraftmaschine, Steuereinrichtung und Brennkraftmaschine
DE102007022703B3 (de) * 2007-05-15 2008-11-20 Continental Automotive Gmbh Verfahren zum Steuern einer aufgeladenen Brennkraftmaschine
DE102007060036A1 (de) * 2007-12-13 2009-07-30 Continental Automotive Gmbh Verfahren zur Bestimmung von adaptierten Messwerten und/oder Modellparametern zur Steuerung des Luftpfads von Verbrennungsmotoren
DE102008014069A1 (de) 2008-03-13 2009-09-17 Continental Automotive Gmbh Verfahren und Vorrichtung zum Betreiben einer Brennkraftmaschine
DE102008015909B3 (de) * 2008-03-27 2009-12-03 Continental Automotive Gmbh Verfahren und Vorrichtung zum Betreiben einer Brennkraftmaschine
DE102013213871A1 (de) 2013-07-16 2015-01-22 Continental Automotive Gmbh Verfahren und Vorrichtung zum Betreiben einer Brennkraftmaschine
DE102013216073A1 (de) 2013-08-14 2015-02-19 Continental Automotive Gmbh Verfahren und Vorrichtung zum Betreiben einer Brennkraftmaschine
DE102005045925B4 (de) * 2004-09-29 2015-03-05 General Motors Corp. Steuersystem und Verfahren zur Luftmassendurchflussschätzung anhand des Krümmerabsolutdrucks sowie entsprechend ausgebildetes Fahrzeug
DE102014209793A1 (de) 2014-05-22 2015-11-26 Continental Automotive Gmbh Verfahren und Vorrichtung zum Betreiben einer Brennkraftmaschine
DE102015204155B3 (de) * 2015-03-09 2016-08-18 Continental Automotive Gmbh Verfahren zur momentenneutralen Umschaltung von Betriebszuständen eines Aktuators einer Brennkraftmaschine
DE102019211398A1 (de) * 2019-07-31 2021-02-04 Ford Global Technologies, Llc Bestimmen einer Innenzylinderluftmasse

Families Citing this family (94)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE59706694D1 (de) 1996-09-27 2002-04-25 Siemens Ag Sekundärluftsystem für eine brennkraftmaschine
FR2758590B1 (fr) * 1997-01-20 1999-04-16 Siemens Automotive Sa Dispositif de commande d'un moteur a combustion interne a allumage commande et injection directe
DE19705766C1 (de) * 1997-02-14 1998-08-13 Siemens Ag Verfahren und Einrichtung zum Überwachen eines Sensors, der einer Brennkraftmaschine zugeordnet ist
DE19709955C2 (de) * 1997-03-11 2003-10-02 Siemens Ag Verfahren und Einrichtung zum Steuern einer Brennkraftmaschine
JP2001516421A (ja) * 1997-04-01 2001-09-25 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング 内燃機関のシリンダ内に過給器を用いて供給される空気量を決定するための装置
DE19740917B4 (de) * 1997-04-01 2008-11-27 Robert Bosch Gmbh Verfahren und Vorrichtung zur Bestimmung der Gastemperatur in einem Verbrennungsmotor
DE19727866C2 (de) 1997-06-30 2003-03-20 Siemens Ag Einrichtung zum Steuern einer Brennkraftmaschine
DE19740968B4 (de) * 1997-09-17 2007-11-29 Robert Bosch Gmbh Verfahren zum Betreiben einer Brennkraftmaschine
EP1021649B1 (fr) 1997-10-07 2002-05-15 Siemens Aktiengesellschaft Procede et dispositif pour controler un moteur a combustion interne
DE19753873B4 (de) * 1997-12-05 2008-05-29 Robert Bosch Gmbh Verfahren und Vorrichtung zum Betreiben einer Brennkraftmaschine
DE19829483C2 (de) * 1998-07-01 2001-09-20 Siemens Ag Einrichtung zum Bestimmen einer Größe, die die Luftmasse in einem Zylinder einer Brennkraftmaschine charakterisiert
US6246950B1 (en) * 1998-09-01 2001-06-12 General Electric Company Model based assessment of locomotive engines
DE19853410A1 (de) * 1998-11-19 2000-05-25 Bayerische Motoren Werke Ag Verfahren zur Bestimmung des Drosselklappenwinkels
US6089082A (en) * 1998-12-07 2000-07-18 Ford Global Technologies, Inc. Air estimation system and method
DE19938260A1 (de) * 1999-08-12 2001-02-15 Volkswagen Ag Verfahren und Vorrichtung für die Frischluftbestimmung an einer Brennkraftmaschine
DE19939973A1 (de) * 1999-08-24 2001-03-01 Volkswagen Ag Regelung eines Ottomotors
US20030075158A1 (en) * 2000-02-09 2003-04-24 Leonhard Milos Method and device for a mass flow determination via a control valve and for determining a modeled induction pipe pressure
US6357430B1 (en) 2000-03-21 2002-03-19 Ford Global Technologies, Inc. Method and system for calculating engine load ratio during rapid throttle changes
DE10017280A1 (de) * 2000-04-06 2001-10-11 Bosch Gmbh Robert Verfahren und Vorrichtung zur Steuerung einer Brennkraftmaschine
DE10021132A1 (de) * 2000-04-29 2001-11-29 Bayerische Motoren Werke Ag Verfahren und Vorrichtung zur elekronischen Steuerung von Aktuatoren einer Brennkraftmaschine mit variabler Gaswechselsteuerung
AUPQ723800A0 (en) * 2000-05-01 2000-05-25 Orbital Engine Company (Australia) Proprietary Limited Engine airflow measurement
US6460409B1 (en) * 2000-05-13 2002-10-08 Ford Global Technologies, Inc. Feed-forward observer-based control for estimating cylinder air charge
DE10032103A1 (de) * 2000-07-01 2002-03-07 Bayerische Motoren Werke Ag Elektronisches Steuergerät zur Steuerung von Aktuatoren einer Brennkraftmaschine in Kraftfahrzeugen mit Mitteln zur Änderung der Ventilsteuerzeiten und/oder mit Mitteln zur Änderung der Ventilhübe
DE10039785B4 (de) * 2000-08-16 2014-02-13 Robert Bosch Gmbh Verfahren und Vorrichtung zum Betreiben einer Brennkraftmaschine
DE10039953C1 (de) 2000-08-16 2002-04-11 Siemens Ag Verfahren und Vorrichtung zum Steuern einer Brennkraftmaschine
DE10065122A1 (de) * 2000-12-28 2002-08-14 Bosch Gmbh Robert Verfahren zur Erfassung von Stand der Technik Massenströmen zum Saugrohr einer Brennkraftmaschine
DE10116932A1 (de) * 2001-04-05 2002-10-10 Bayerische Motoren Werke Ag Verfahren zum Bestimmen des Luftmassenstroms vom Saugrohr in den Zylinder einer Brennkraftmaschine
DE10123034A1 (de) * 2001-05-11 2002-11-14 Bosch Gmbh Robert Verfahren und Vorrichtung zur Ermittlung des Drucks in einer Massenstromleitung vor einer Drosselstelle
DE10129035A1 (de) * 2001-06-15 2002-12-19 Bosch Gmbh Robert Verfahren und Vorrichtung zur Ermittlung einer Temperaturgröße in einer Massenstromleitung
DE10140617A1 (de) * 2001-08-18 2003-03-06 Bosch Gmbh Robert Messsystem mit ratiometrischem Frequenzausgang
JP3963171B2 (ja) * 2001-10-15 2007-08-22 トヨタ自動車株式会社 内燃機関の吸入空気量推定装置
DE10227064A1 (de) * 2002-06-18 2004-01-08 Robert Bosch Gmbh Verfahren zur Bestimmung der Zylinderfüllung einer Brennkraftmaschine mit variabler Ventilhubverstellung, Steuerelement sowie Brennkraftmaschine
DE10227466B4 (de) * 2002-06-20 2004-06-09 Bayerische Motoren Werke Ag Verfahren zum Bestimmen der Zylinderbeladung bei einer Brennkraftmaschine
US6810854B2 (en) * 2002-10-22 2004-11-02 General Motors Corporation Method and apparatus for predicting and controlling manifold pressure
JP3898114B2 (ja) * 2002-11-01 2007-03-28 本田技研工業株式会社 内燃機関の吸入空気量推定方法、推定装置、吸入空気量制御方法および制御装置
JP3901091B2 (ja) * 2002-12-27 2007-04-04 トヨタ自動車株式会社 内燃機関の吸入空気量推定装置
GB2397137B (en) * 2003-01-08 2005-12-07 Ford Global Tech Inc A control for an internal combustion engine
US6851304B2 (en) * 2003-01-28 2005-02-08 Ford Global Technologies, Llc Air estimation approach for internal combustion engine control
JP2004239128A (ja) * 2003-02-05 2004-08-26 Mazda Motor Corp エンジン性能の予測解析方法、予測解析システム及びその制御プログラム
DE10332608B3 (de) 2003-07-17 2005-05-04 Siemens Ag Verfahren zum Regeln einer Brennkraftmaschine sowie eine Vorrichtung zum Regeln einer Brennkraftmaschine
DE10338628A1 (de) * 2003-08-22 2005-03-17 Daimlerchrysler Ag Verfahren zum Betreiben einer Brennkraftmaschine mit Abgasreinigungsanlage
JP3985746B2 (ja) * 2003-08-26 2007-10-03 トヨタ自動車株式会社 内燃機関の制御装置
JP4231419B2 (ja) * 2004-01-08 2009-02-25 株式会社日立製作所 内燃機関の吸気量計測装置
US6955080B1 (en) * 2004-03-25 2005-10-18 General Motors Corporation Evaluating output of a mass air flow sensor
DE102004033845A1 (de) 2004-07-13 2006-02-09 Robert Bosch Gmbh Verfahren und Vorrichtung zum Betreiben einer Brennkraftmaschine mit Abgasrückführung
DE102004041708B4 (de) * 2004-08-28 2006-07-20 Bayerische Motoren Werke Ag Verfahren zur modellbasierten Bestimmung der während einer Ansaugphase in die Zylinderbrennkammer einer Brennkraftmaschine einströmenden Frischluftmasse
DE102004049737A1 (de) * 2004-10-13 2006-06-22 Bayerische Motoren Werke Ag Verfahren zur Bestimmung des Frischluftmassenstroms eines Verbrennungsmotors
JP4143862B2 (ja) * 2004-11-29 2008-09-03 トヨタ自動車株式会社 内燃機関の空気量推定装置
DE102004062018B4 (de) * 2004-12-23 2018-10-11 Robert Bosch Gmbh Verfahren zum Betreiben einer Brennkraftmaschine
US7027910B1 (en) * 2005-01-13 2006-04-11 General Motors Corporation Individual cylinder controller for four-cylinder engine
DE102005030535A1 (de) * 2005-06-30 2007-01-04 Robert Bosch Gmbh Verfahren zur Diagnose von Sensoren
WO2007127706A2 (fr) * 2006-04-24 2007-11-08 Gm Global Technology Operations, Inc. Procédé et appareil pour évaluer le débit d'air circulant vers un moteur à combustion interne
FI120472B (fi) * 2006-06-06 2009-10-30 Metso Automation Oy Ohjausmenetelmä ja ohjausjärjestelmä virtausta säätävää venttiiliä varten
US7380447B2 (en) * 2006-06-10 2008-06-03 Ford Global Technologies. Llc Method and system for transient airflow compensation in an internal combustion engine
DE102006029969B3 (de) * 2006-06-29 2007-10-18 Siemens Ag Verfahren zur Plausibilitätsprüfung von Messwerten eines Umgebungsdrucksensors einer Brennkraftmaschine
DE102006035096B4 (de) 2006-07-28 2014-07-03 Continental Automotive Gmbh Verfahren und Vorrichtung zum Betreiben einer Brennkraftmaschine
JP4936439B2 (ja) * 2006-10-11 2012-05-23 国立大学法人東京工業大学 圧力レギュレータ及び除振装置
DE102007008514A1 (de) * 2007-02-21 2008-09-04 Siemens Ag Verfahren und Vorrichtung zur neuronalen Steuerung und/oder Regelung
DE102007012506B4 (de) * 2007-03-15 2009-02-26 Continental Automotive Gmbh Verfahren zum Ermitteln und Einregeln des Luftmassenstroms im Saugrohr eines Verbrennungsmotors sowie zugehöriges Steuergerät
DE102007035314B4 (de) 2007-07-27 2019-04-11 Robert Bosch Gmbh Verfahren und Vorrichtung zum Betreiben einer Brennkraftmaschine
DE102007051873B4 (de) * 2007-10-30 2023-08-10 Robert Bosch Gmbh Verfahren und Vorrichtung zum Betreiben einer Brennkraftmaschine
DE102007063102B4 (de) * 2007-12-28 2022-02-10 Robert Bosch Gmbh Verfahren zur Erfassung eines periodisch pulsierenden Betriebsparameters
EP2098710B1 (fr) * 2008-03-04 2016-07-27 GM Global Technology Operations LLC Procédé pour estimer la concentration en oxygène dans des moteurs à combustion interne
DE102008039559B4 (de) * 2008-04-23 2014-08-14 GM Global Technology Operations LLC (n. d. Ges. d. Staates Delaware) Verfahren und Steuersystem zum Bestimmen eines Luftmassendurchsatzes
DE102008022214B3 (de) * 2008-05-06 2009-11-26 Continental Automotive Gmbh Verfahren und Vorrichtung zum Steuern eine Drosselklappe und einer Umluftklappe in einem Ansaugtrakt einer Brennkraftmaschine
DE102008022213A1 (de) 2008-05-06 2009-11-12 Continental Automotive Gmbh Verfahren und Vorrichtung
DE102008040633B4 (de) * 2008-07-23 2020-01-02 Robert Bosch Gmbh Verfahren zum Betreiben einer Brennkraftmaschine
DE102008043965B4 (de) * 2008-11-21 2022-03-31 Robert Bosch Gmbh Verfahren zur echtzeitfähigen Simulation eines Luftsystemmodells eines Verbrennungsmotors
DE102009007808B4 (de) 2009-02-04 2022-02-10 Volkswagen Aktiengesellschaft Verfahren zum Betrieb einer Verbrennungskraftmaschine
JP2011094561A (ja) * 2009-10-30 2011-05-12 Hitachi Automotive Systems Ltd エンジンの制御装置
WO2011086707A1 (fr) * 2010-01-18 2011-07-21 トヨタ自動車株式会社 Dispositif d'estimation de l'état des gaz pour moteur à combustion interne
CN103221662A (zh) * 2010-11-22 2013-07-24 丰田自动车株式会社 带增压器的内燃机的空气量推定装置
DE102010052644A1 (de) * 2010-11-29 2012-05-31 Audi Ag Verfahren zum Betreiben einer Brennkraftmaschine, Steuerelement, Brennkraftmaschine
US8880321B2 (en) * 2011-03-07 2014-11-04 Toyota Motor Engineering & Manufacturing North America, Inc. Adaptive air charge estimation based on support vector regression
DE102011014767B4 (de) 2011-03-21 2022-09-01 Volkswagen Aktiengesellschaft Verfahren zum Betrieb einer Verbrennungskraftmaschine
JP5752517B2 (ja) 2011-08-03 2015-07-22 トヨタ自動車株式会社 内燃機関の制御装置
DE102012212860B3 (de) * 2012-07-23 2013-12-12 Schaeffler Technologies AG & Co. KG Verfahren zur Ermittlung der Füllung der Zylinder von Hubkolbenbrennkraftmaschinen
JP6140985B2 (ja) * 2012-11-19 2017-06-07 トヨタ紡織株式会社 内燃機関の吸気管構造
DE102012221311B4 (de) * 2012-11-22 2014-07-10 Continental Automotive Gmbh Verfahren zur Frischlufterfassung durch Auswertung eines Zylinderinnendrucksignals
JP6466398B2 (ja) 2013-03-15 2019-02-06 ユナイテッド テクノロジーズ コーポレイションUnited Technologies Corporation コンパクトな空力熱モデルのリアルタイム線形化を用いた状態推定器
JP2015080379A (ja) * 2013-10-18 2015-04-23 タイコエレクトロニクスジャパン合同会社 位置検出センサ、および内燃機関のスロットル装置
DE102014211162B4 (de) * 2014-06-11 2021-09-02 Volkswagen Aktiengesellschaft Verfahren und Vorrichtung zur Füllungserfassung in einem Zylinder einer Verbrennungskraftmaschine
JP2016065484A (ja) * 2014-09-24 2016-04-28 トヨタ自動車株式会社 スロットル上流圧力の推定装置
FR3027957A1 (fr) * 2014-11-04 2016-05-06 Peugeot Citroen Automobiles Sa Procede d'estimation d'un debit de gaz dans un cylindre pour le controle d'un moteur a combustion interne
DE102016204539A1 (de) * 2016-03-18 2017-09-21 Volkswagen Aktiengesellschaft Verfahren und Steuervorrichtung zum Bestimmen einer Menge einer Füllungskomponente in einem Zylinder einer Verbrennungskraftmaschine
DE102016219582B3 (de) * 2016-10-10 2017-06-08 Continental Automotive Gmbh Verfahren zur kombinierten Identifizierung einer Einlassventilhub-Phasendifferenz und einer Auslassventilhub-Phasendifferenz eines Verbrennungsmotors mit Hilfe von Linien gleicher Amplitude
DE102016219584B4 (de) * 2016-10-10 2018-05-30 Continental Automotive Gmbh Verfahren zur kombinierten Identifizierung von Phasendifferenzen des Einlassventilhubs und des Auslassventilhubs eines Verbrennungsmotors mittels Linien gleicher Phasenlagen und Amplituden
JP6515903B2 (ja) * 2016-11-02 2019-05-22 トヨタ自動車株式会社 内燃機関の制御装置
CN108005805B (zh) * 2017-11-29 2020-04-07 奇瑞汽车股份有限公司 一种发动机负荷计算方法、发动机及汽车
CN111143980B (zh) * 2019-12-17 2022-03-22 淮阴工学院 一种高压油管的单向阀开启计算方法
US11790126B2 (en) * 2019-12-19 2023-10-17 Caterpillar Inc. Method and system for internal combustion engine simulation
JP2022026885A (ja) * 2020-07-31 2022-02-10 ナブテスコ株式会社 エンジン特性推定装置、エンジン特性推定方法、およびエンジン特性推定プログラム
CN112985530B (zh) * 2021-02-01 2022-04-22 南京航空航天大学 一种基于特征方程根轨迹的燃油计量装置设计参数调整方法
JP2023038764A (ja) * 2021-09-07 2023-03-17 株式会社ニッキ エンジンの燃料噴射制御方法および装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE68904437T4 (de) * 1988-01-29 1996-04-04 Hitachi Ltd Steuerung für Motor-Kraftstoffeinspritzung.
US5003950A (en) * 1988-06-15 1991-04-02 Toyota Jidosha Kabushiki Kaisha Apparatus for control and intake air amount prediction in an internal combustion engine
JP2818805B2 (ja) * 1988-12-08 1998-10-30 富士重工業株式会社 エンジンの燃料噴射制御装置
US5270935A (en) * 1990-11-26 1993-12-14 General Motors Corporation Engine with prediction/estimation air flow determination
US5293553A (en) * 1991-02-12 1994-03-08 General Motors Corporation Software air-flow meter for an internal combustion engine
WO1993012332A1 (fr) * 1991-12-19 1993-06-24 Caterpillar Inc. Procede de diagnostic de moteur a l'aide de modeles informatises
US5497329A (en) * 1992-09-23 1996-03-05 General Motors Corporation Prediction method for engine mass air flow per cylinder
DE69327294T2 (de) * 1992-10-19 2000-04-13 Honda Motor Co Ltd Regelungssystem für die Brennstoffdosierung eines Innenverbrennungsmotors
DE4325902C2 (de) * 1993-08-02 1999-12-02 Bosch Gmbh Robert Verfahren zur Berechnung der Luftfüllung für eine Brennkraftmaschine mit variabler Gaswechselsteuerung
US5714683A (en) * 1996-12-02 1998-02-03 General Motors Corporation Internal combustion engine intake port flow determination

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6796293B2 (en) 2000-03-31 2004-09-28 Siemens Aktiengesellschaft Method for starting an internal combustion engine and starter device for an internal combustion engine
DE10220141B4 (de) * 2002-05-06 2007-11-29 Siemens Ag Verfahren zum Steuern der Verbrennung einer Brennkraftmaschine mit mindestens zwei Zylinderbänken
DE10220141A1 (de) * 2002-05-06 2003-12-04 Siemens Ag Verfahren zum Steuern der Verbrennung einer Brennkraftmaschine mit mindestens zwei Zylinderbänken
DE10222137B3 (de) * 2002-05-17 2004-02-05 Siemens Ag Verfahren zur Steuerung einer Brennkraftmaschine
DE10224213C1 (de) * 2002-05-31 2003-10-09 Siemens Ag Verfahren zur Füllungsregelung einer Brennkraftmaschine
WO2004016339A2 (fr) * 2002-07-25 2004-02-26 Siemens Aktiengesellschaft Procede de nettoyage de filtre a particules
WO2004016339A3 (fr) * 2002-07-25 2004-06-03 Siemens Ag Procede de nettoyage de filtre a particules
DE10233945B4 (de) * 2002-07-25 2005-09-22 Siemens Ag Verfahren zur Reinigung eines Partikelfilters
US7077103B2 (en) 2002-07-30 2006-07-18 Siemens Aktiengesellschaft Method for regulating the filling of an internal combustion engine
DE10234719B3 (de) * 2002-07-30 2004-04-15 Siemens Ag Verfahren zur Füllungsregelung einer Brennkraftmaschine
DE102005045925B4 (de) * 2004-09-29 2015-03-05 General Motors Corp. Steuersystem und Verfahren zur Luftmassendurchflussschätzung anhand des Krümmerabsolutdrucks sowie entsprechend ausgebildetes Fahrzeug
DE102005046504A1 (de) * 2005-09-29 2007-04-05 Bayerische Motoren Werke Ag Vorrichtung zur druckbasierten Lasterfassung
US7546760B2 (en) 2005-09-29 2009-06-16 Bayerische Motoren Werke Aktiengesellschaft Device for pressure-based load detection
DE102006010542B3 (de) * 2006-03-07 2007-08-23 Siemens Ag Verfahren zum Erkennen einer fehlerhaften Stelleinrichtung
DE102006032493B3 (de) * 2006-07-13 2008-04-10 Siemens Ag Verfahren zur Plausibilisierung eines Umgebungsdrucksensors für eine Brennkraftmaschine, Steuereinrichtung und Brennkraftmaschine
DE102007022703B3 (de) * 2007-05-15 2008-11-20 Continental Automotive Gmbh Verfahren zum Steuern einer aufgeladenen Brennkraftmaschine
DE102007060036B4 (de) * 2007-12-13 2010-01-07 Continental Automotive Gmbh Verfahren zur Bestimmung von korrigierten Messwerten und/oder Modellparametern zur Steuerung des Luftpfads von Verbrennungsmotoren
DE102007060036A1 (de) * 2007-12-13 2009-07-30 Continental Automotive Gmbh Verfahren zur Bestimmung von adaptierten Messwerten und/oder Modellparametern zur Steuerung des Luftpfads von Verbrennungsmotoren
DE102008014069A1 (de) 2008-03-13 2009-09-17 Continental Automotive Gmbh Verfahren und Vorrichtung zum Betreiben einer Brennkraftmaschine
DE102008014069B4 (de) * 2008-03-13 2009-11-26 Continental Automotive Gmbh Verfahren und Vorrichtung zum Betreiben einer Brennkraftmaschine
DE102008015909B3 (de) * 2008-03-27 2009-12-03 Continental Automotive Gmbh Verfahren und Vorrichtung zum Betreiben einer Brennkraftmaschine
DE102013213871A1 (de) 2013-07-16 2015-01-22 Continental Automotive Gmbh Verfahren und Vorrichtung zum Betreiben einer Brennkraftmaschine
DE102013213871B4 (de) * 2013-07-16 2021-02-11 Vitesco Technologies GmbH Verfahren und Vorrichtung zum Betreiben einer Brennkraftmaschine
US9739217B2 (en) 2013-08-14 2017-08-22 Continental Automotive Gmbh Method and device for operating an internal combustion engine
DE102013216073A1 (de) 2013-08-14 2015-02-19 Continental Automotive Gmbh Verfahren und Vorrichtung zum Betreiben einer Brennkraftmaschine
DE102013216073B4 (de) * 2013-08-14 2015-08-13 Continental Automotive Gmbh Verfahren und Vorrichtung zum Betreiben einer Brennkraftmaschine
WO2015176930A1 (fr) 2014-05-22 2015-11-26 Continental Automotive Gmbh Procédé et dispositif pour faire fonctionner un moteur à combustion interne
US10240546B2 (en) 2014-05-22 2019-03-26 Continental Automotive Gmbh Method and device for operating an internal combustion engine
DE102014209793B4 (de) * 2014-05-22 2020-02-06 Continental Automotive Gmbh Verfahren und Vorrichtung zum Betreiben einer Brennkraftmaschine
DE102014209793A1 (de) 2014-05-22 2015-11-26 Continental Automotive Gmbh Verfahren und Vorrichtung zum Betreiben einer Brennkraftmaschine
DE102015204155B3 (de) * 2015-03-09 2016-08-18 Continental Automotive Gmbh Verfahren zur momentenneutralen Umschaltung von Betriebszuständen eines Aktuators einer Brennkraftmaschine
DE102019211398A1 (de) * 2019-07-31 2021-02-04 Ford Global Technologies, Llc Bestimmen einer Innenzylinderluftmasse

Also Published As

Publication number Publication date
CZ319497A3 (cs) 1999-01-13
KR19980703458A (ko) 1998-11-05
CN1073205C (zh) 2001-10-17
DE59603079D1 (de) 1999-10-21
CN1181124A (zh) 1998-05-06
CA2217824A1 (fr) 1996-10-17
US5889205A (en) 1999-03-30
BR9604813A (pt) 1998-06-09
WO1996032579A1 (fr) 1996-10-17
EP0820559A1 (fr) 1998-01-28
JPH11504093A (ja) 1999-04-06
KR100413402B1 (ko) 2004-04-28
CA2217824C (fr) 2006-01-24

Similar Documents

Publication Publication Date Title
EP0820559B1 (fr) Procede pour determiner a l'aide d'un modele le volume d'air admis dans le cylindre d'un moteur a combustion interne
EP0886725B1 (fr) Procede de determination assistee par un modele du volume d'air frais entrant dans le cylindre d'un moteur a combustion interne avec recyclage externe des gaz d'echappement
EP0680556B1 (fr) Procede de calcul du niveau d'air de remplissage dans un moteur a combustion interne a regulation variable de l'echange gazeux
DE102013211260B4 (de) Abschätzungsvorrichtung für die Zylindereinlassluftmenge in einem Verbrennungsmotor
DE69630588T2 (de) Adaptive übergangskompensation von kraftstoff für einen motor
DE19741180B4 (de) Motorsteuerungssystem und -Verfahren
DE102015211808B4 (de) Steuervorrichtung für Verbrennungskraftmaschine
DE102013209560B4 (de) Zylinderansaugluftmengen-Schätzvorrichtung für einen Verbrennungsmotor
EP3698032B1 (fr) Procédé de commande et de régulation d'un moteur à combustion interne sur la base de modèles
DE10122456A1 (de) Auf einem Beobachter beruhende reine (feed-forward) Steuerung zur Schätzung der Zylindersaugluft
EP1147309A1 (fr) Dispositif pour supprimer le cognement dans un moteur a combustion interne
DE102013202720A1 (de) Schätzvorrichtung für eine Zylinderansaugluftmenge in einem Verbrennungsmotor
DE102017005783B4 (de) Verfahren zur modellbasierten Steuerung und Regelung einer Brennkraftmaschine
DE19855493B4 (de) Motorsteuervorrichtung
DE19547496A1 (de) Verfahren zur Regelung von Verbrennungsmotoren
DE4013661A1 (de) Einspritzueberwachungseinrichtung fuer eine kraftfahrzeug-brennkraftmaschine
DE3902303A1 (de) Kraftstoffsteuerung fuer einen verbrennungsmotor
DE102010046491A1 (de) Verfahren zum Bestimmen einer Schadstoffemission im Brennraum eines Dieselmotors
EP0707685B1 (fr) Procede d'adaptation, aux variables en cours de l'air exterieur, des valeurs d'air d'un diagramme caracteristique de substitution utilise lorsqu'il se produit des pulsations de l'air dans la tubulure d'admission d'un moteur a combustion interne pour commander la formation du melange
EP2019195B1 (fr) Procédé de détermination de la quantité de carburant injectée
DE19803689C1 (de) Verfahren zum Bestimmen der Einspritzdauer bei einer direkteinspritzenden Brennkraftmaschine
EP0407406A1 (fr) Procede et dispositif autodidactique de regulation de moteurs a combustion interne.
DE102006053805B4 (de) Verfahren zum Betreiben einer Brennkraftmaschine zur Ermittlung einer in einem Brennraum befindlichen Füllung
EP1506348B1 (fr) Procede et dispositif permettant de commander la quantite de carburant a injecter dans un moteur a combustion interne a allumage automatique
DE4207159B4 (de) Motorsteuervorrichtung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19971006

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

17Q First examination report despatched

Effective date: 19990226

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19990921

REF Corresponds to:

Ref document number: 59603079

Country of ref document: DE

Date of ref document: 19991021

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20090414

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20090421

Year of fee payment: 14

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20100409

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20101230

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100409

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100430

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20150430

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59603079

Country of ref document: DE