EP0820559B1 - Process for finding the mass of air entering the cylinders of an internal combustion engine with the aid of a model - Google Patents

Process for finding the mass of air entering the cylinders of an internal combustion engine with the aid of a model Download PDF

Info

Publication number
EP0820559B1
EP0820559B1 EP96909021A EP96909021A EP0820559B1 EP 0820559 B1 EP0820559 B1 EP 0820559B1 EP 96909021 A EP96909021 A EP 96909021A EP 96909021 A EP96909021 A EP 96909021A EP 0820559 B1 EP0820559 B1 EP 0820559B1
Authority
EP
European Patent Office
Prior art keywords
model
air mass
variable
throttle valve
accordance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP96909021A
Other languages
German (de)
French (fr)
Other versions
EP0820559A1 (en
Inventor
Stefan Treinies
Maximilian Engl
Gerd RÖSEL
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP0820559A1 publication Critical patent/EP0820559A1/en
Application granted granted Critical
Publication of EP0820559B1 publication Critical patent/EP0820559B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/18Circuit arrangements for generating control signals by measuring intake air flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/18Circuit arrangements for generating control signals by measuring intake air flow
    • F02D41/182Circuit arrangements for generating control signals by measuring intake air flow for the control of a fuel injection device
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • F02D2041/001Controlling intake air for engines with variable valve actuation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D2041/1412Introducing closed-loop corrections characterised by the control or regulation method using a predictive controller
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D2041/1413Controller structures or design
    • F02D2041/1431Controller structures or design the system including an input-output delay
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D2041/1433Introducing closed-loop corrections characterised by the control or regulation method using a model or simulation of the system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/04Engine intake system parameters
    • F02D2200/0402Engine intake system parameters the parameter being determined by using a model of the engine intake or its components

Definitions

  • the invention relates to a method for model-based determination the flowing into the cylinders of an internal combustion engine Air mass according to the preamble of claim 1.
  • Engine control systems for internal combustion engines that work with fuel injection require the air mass m cyl drawn in by the engine as a measure of the engine load. This parameter forms the basis for realizing a required air-fuel ratio.
  • the precise load detection during the warm-up phase of the internal combustion engine offers considerable potential for reducing pollutants.
  • variable intake systems and variable valve controls are created for empirically derived models Obtaining the load size from measurement signals a very large variety of influencing variables, the corresponding model parameters influence.
  • Model-based calculation methods based on physical approaches represent a good starting point for the exact determination of the air mass in cyl .
  • DE 39 19 488 C2 describes a device for regulating and for the predetermination of the intake air quantity of an intake manifold pressure-guided Internal combustion engine is known in which the throttle valve opening degree and the engine speed as the basis for Calculation of the current value in the combustion chamber of the Machine sucked air can be used. This calculated, current intake air volume is then used as a basis to calculate the predetermined value for the intake air quantity, which in the combustion chamber of the machine at a certain Time from the point at which the calculation is performed was sucked in, used.
  • the pressure signal that downstream of the throttle valve is measured using corrected by theoretical relationships, making an improvement reached the determination of the intake air mass and so that a more precise calculation of the injection time is possible.
  • the invention has for its object to provide a method with which the actually in the cylinder of the internal combustion engine inflowing air mass with high accuracy can be determined.
  • system-related dead times that due to the fuel storage and the computing time can occur when calculating the injection time, be compensated.
  • a model description results, that on a nonlinear differential equation based.
  • the following is an approximation of this presented nonlinear equation.
  • the system behavior can be approximated using a bilinear Describe the equation that the quick fix of Relationship in the engine control unit of the motor vehicle under real-time conditions allowed.
  • the chosen model approach includes thereby the modeling of variable suction systems and systems with variable valve controls. The through this arrangement and by dynamic reloading, i.e. through reflections effects caused by pressure waves in the intake manifold exclusively through the selection of stationary determinable parameters of the model are taken into account very well. All model parameters are physically interpretable on the one hand and on the other hand exclusively from stationary measurements win.
  • the model-based calculation method according to the invention also offers the possibility of predicting the load signal by a selectable number of sampling steps, i.e. a Prediction of the load signal with a variable prediction horizon. If the prediction horizon at constant speed proportional prediction time not too long, so get a predicted load signal of high accuracy.
  • the prediction of the load size by the number of segments by which the fuel is stored is necessary in order to maintain the required air-fuel ratio in this case too.
  • the prediction of the load size thus contributes from a substantial improvement in compliance with the required fuel-air ratio in the transient engine operation.
  • This system for model-based load detection is used in the known engine control systems, i.e. in the case of engine control systems controlled by air mass or intake manifold pressure, a correction algorithm in the form of a model control loop is formulated below, which allows permanent accuracy improvement, i.e. a model comparison in stationary and transient operation, in the event of inaccuracies in model parameters.
  • Reference number 10 denotes an intake manifold of an internal combustion engine, in which a throttle valve 11 is arranged.
  • the throttle valve 11 is connected to a throttle valve position sensor 14 which determines the degree of opening of the throttle valve.
  • An air mass meter 12 is arranged upstream of the throttle valve 11 in an air mass-guided engine control system, while an intake manifold pressure sensor 13 is arranged in the intake manifold in an intake manifold pressure-guided engine control system.
  • an intake manifold pressure sensor 13 is arranged in the intake manifold in an intake manifold pressure-guided engine control system.
  • the outputs of the air mass meter 12, the throttle valve position sensor 14 and the intake manifold pressure sensor 13, which is available as an alternative to the air mass meter 12, are connected to inputs of an electronic control device of the internal combustion engine, which is not shown and is known per se.
  • an inlet valve 15, an outlet valve 16 and a piston 18 movable in a cylinder 17 are shown schematically in FIG.
  • the roof symbol means " ⁇ " over a size that it is a model size, while sizes without a roof symbol " ⁇ " represent measured values.
  • Sizes with a dot symbol indicate the first time derivative of the corresponding sizes.
  • m ⁇ DK is the air mass flow at the throttle valve and m ⁇ cyl is the air mass flow that actually flows into the cylinder of the internal combustion engine.
  • the basic task in the model-based calculation of the engine load condition now consists in solving the differential equation for the intake manifold pressure which can be derived from the equation of state of ideal gases under the condition of constant air temperature in the intake manifold T S.
  • R L denotes the general gas constant
  • the load size m and cyl is created by integration from the cylinder mass flow certainly.
  • the relationships described by (2.1) can be applied to multi-cylinder internal combustion engines with vibrating tube (switching intake manifold) and / or resonance intake systems without structural changes.
  • equation (2.1) gives the situation more accurately than for single-point injections, that is to say in injections in which the fuel is metered by means of a single fuel injector will, is the case.
  • the first-mentioned type of fuel metering almost the entire intake system is filled with air. There is a fuel-air mixture only in a small area in front of the intake valves.
  • the entire intake manifold from the throttle valve to the intake valve is filled with a fuel-air mixture, since the injection valve is arranged in front of the throttle valve.
  • the assumption of an ideal gas is a closer approximation than is the case with multi-point injection.
  • the fuel is metered accordingly with multi-point injection accordingly
  • Figure 2 shows the course of the flow function ⁇ and the approximation principle applied to it.
  • the flow function ⁇ is represented by a straight line.
  • m i describes the slope and n i the absolute term of the respective line segment.
  • the values for the slope and for the absolute member are stored in tables as a function of the ratio of intake manifold pressure to ambient pressure P and S / P and U.
  • the pressure ratio P and S / P and U is plotted on the abscissa of FIG. 2 and the function value (0-0.3) of the flow function ⁇ is plotted on the ordinate.
  • the slope ⁇ 1 and the absolute member ⁇ 0 of the relationship (2.4) are functions of the speed, the intake manifold geometry, the number of cylinders, the valve timing and the temperature of the air in the intake manifold T S , taking into account all essential influencing factors.
  • the dependency of the values of ⁇ 1 and ⁇ 0 on the influencing variables speed, intake manifold geometry, number of cylinders and the valve timing and valve lift curves can be determined using stationary measurements.
  • the influence of vibrating tube and / or resonance suction systems on the air mass sucked in by the internal combustion engine is also well reproduced via this value determination.
  • the values of ⁇ 1 and ⁇ 0 are stored in maps of the electronic engine control device.
  • the intake manifold pressure P S is selected as the determining variable for determining the engine load. With the help of the model differential equation, this quantity should be estimated as precisely and quickly as possible. The estimation of P and S requires the solution of equation (2.1).
  • (2.1) can be determined by the relationship be approximated. If, in accordance with the requirements for the derivation of equation (2.1), the temperature of the air in the intake manifold T S is regarded as a slowly changing measured variable and ⁇ RED as an input variable, the nonlinear form of the differential equation (2.1) can be determined by the bilinear equation (2.5 ) approximate.
  • Claim 1 can be met by an implicit calculation algorithm. Because of the approximation of the nonlinear differential equation (2.1) by a bilinear equation emerging implicit solution scheme without using iterative Method solvable, since the difference equation is explicit Form can be transferred.
  • [N] means the current segment or the current calculation step, [ N +1] the next following segment or the next calculation step.
  • the air mass flow can be calculated from the calculated intake manifold pressure P and S which flows into the cylinders can be determined using the relationship (2.4). If a simple integration algorithm is used, the relationship is obtained for the air mass sucked in by the internal combustion engine during an intake stroke
  • the values of ⁇ 1 and ⁇ 0 are associated with a certain degree of uncertainty.
  • the parameters of the equation for determining the mass flow in the cylinders are functions of various influencing variables, of which only the most important ones can be recorded.
  • the adjustment of essential parameters are the model for determining the load variable of the internal combustion engine by correcting the determined from the measured throttle valve angle reduced cross-section ⁇ RED by the correction quantity ⁇ ⁇ RED.
  • ⁇ RED is replaced by ⁇ REDKORR .
  • the reduced throttle valve cross section ⁇ RED derived from the measured value of the throttle valve angle is included in the model calculation.
  • the correction quantity ⁇ RED is formed by implementing a model control loop.
  • the air mass flow m ⁇ DK_LMM measured by means of the air mass meter on the throttle valve is the reference variable of this control loop, while the intake manifold pressure P S measured is used as the reference variable for intake manifold pressure-guided systems.
  • the value of ⁇ RED is determined via a follow-up control so that the control deviation between the reference variable and the corresponding control variable is minimized.
  • the measured value must be recorded be reproduced as closely as possible to the reference variable.
  • the dynamic behavior of the sensor i.e. either the air mass meter or the intake manifold pressure sensor and a subsequent averaging to consider.
  • the dynamic behavior of the respective sensor can be modeled as a system of the first order with any delay times T 1 that may be dependent on the operating point.
  • T 1 delay times
  • the value of the ambient pressure P and U is changed if the amount of the correction variable ⁇ A RED exceeds a certain threshold or if the pressure ratio P and S / P and U is greater than a selectable constant. This ensures that an ambient pressure adjustment can take place both in the partial and in the full-load range.
  • the throttle valve position sensor 14 (FIG. 1) supplies a signal corresponding to the degree of opening of the throttle valve 11, for example a throttle valve opening angle. Values associated with various values of this throttle valve opening angle for the reduced cross section of the throttle valve RED RED are stored in a map of the electronic engine control device. This assignment is represented by the block "static model” in FIG. 3 and in FIG. 4. The “intake manifold model” subsystem in FIGS. 3 and 4 represents the behavior described by (2.7). The reference variable of this model control loop is the measured value of the air mass flow at the throttle valve, averaged over a segment .
  • the remaining control deviation is zero, ie the model size and measured variable of the air mass flow at the throttle valve are identical.
  • the pulsation phenomena of the air mass flow at the throttle valve which can be observed especially in 4-cylinder engines, lead to considerable positive measurement errors in the case of air mass meters that form the amount, and thus to a command variable with a lot of errors.
  • By switching off the controller ie reducing the controller parameters, it is possible to switch to controlled model-based operation. Areas in which the pulsations mentioned can thus be treated with the same method, taking dynamic relationships into account, as those areas in which there is an almost undisturbed reference variable.
  • the system described remains operational almost without restrictions. If the air mass signal or the signal from the throttle valve position sensor fails, the system presented is able to generate a corresponding substitute signal. If the command variable fails, the controlled operation must be implemented, while in the other case the regulated operation guarantees the hardly impaired functionality of the system.
  • the "intake manifold model” block represents the relationships as described using equation (2.7) and therefore has the model size P and S and the time derivative as an output variable and the size .
  • the model size becomes averaged so that the averaged size and the average air mass flow measured by the air mass meter can be fed to a comparator.
  • the difference between the two signals causes a change ⁇ RED RED of the reduced flow cross section RED RED , so that a model comparison can be carried out in a stationary and non-stationary manner.
  • the model structure shown in FIG. 4 is given for intake manifold pressure-guided engine control systems, the same blocks as in FIG. 3 being given the same designations.
  • the "intake manifold model” subsystem represents the behavior described by the difference equation (2.7).
  • the reference variable of this model control loop is the measured value of the intake manifold pressure averaged over a segment P s_s . If a PI controller is also used, as in FIG. 3, the measured value of the pressure in the intake manifold is in the stationary case P s_s with the model size identical.
  • the present system also remains almost fully functional, since if the intake manifold pressure signal or the measured value for the throttle valve angle fails, a corresponding substitute signal can be generated.
  • the model sizes P and S obtained from the intake manifold model are fed to a block "prediction". Since the models also calculate the pressure changes in the intake manifold, these pressure changes can be used to estimate the future pressure curve in the intake manifold and thus the cylinder air mass for the next [ N +1] or for the next segments [ N + H].
  • the size m and cyl or the size m and cyl [ N +1] then serve for the exact calculation of the injection time during which fuel is injected.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Description

Die Erfindung betrifft ein Verfahren zum modellgestützten Bestimmen der in die Zylinder einer Brennkraftmaschine einströmenden Luftmasse nach dem Oberbegriff des Patentanspruches 1.The invention relates to a method for model-based determination the flowing into the cylinders of an internal combustion engine Air mass according to the preamble of claim 1.

Motorsteuerungssysteme für Brennkraftmaschinen, die mit Kraftstoffeinspritzung arbeiten, benötigen die vom Motor angesaugte Luftmasse mZyl als ein Maß für die Motorlast. Diese Größe bildet die Basis zur Realisierung eines geforderten Kraftstoff-Luft-Verhältnisses. Wachsende Anforderungen an Motorsteuerungssysteme, wie die Verringerung der Schadstoffemission von Kraftfahrzeugen, bedingen, daß die Lastgröße für stationäre und instationäre Vorgänge mit geringen zulässigen Fehlern bestimmt werden muß. Neben den genannten Betriebsfällen bietet die genaue Lasterfassung während der Warmlaufphase der Brennkraftmaschine ein erhebliches Potential zur Schadstoffreduktion.Engine control systems for internal combustion engines that work with fuel injection require the air mass m cyl drawn in by the engine as a measure of the engine load. This parameter forms the basis for realizing a required air-fuel ratio. Growing demands on engine control systems, such as the reduction of pollutant emissions from motor vehicles, mean that the load size for stationary and transient processes must be determined with low permissible errors. In addition to the above-mentioned operating cases, the precise load detection during the warm-up phase of the internal combustion engine offers considerable potential for reducing pollutants.

Bei luftmassengeführten Motorsteuerungssystemen stellt im Instationärbetrieb das als Lastsignal der Brennkraftmaschine dienende Signal des Luftmassenmessers, der stromaufwärts des Saugrohrs angeordnet ist, kein Maß für die tatsächliche Füllung der Zylinder dar, weil das Volumen des Saugrohrs stromabwärts der Drosselklappe als Luftspeicher wirkt, der befüllt und entleert werden muß. Die maßgebende Luftmasse für die Einspritzzeitberechnung ist aber diejenige Luftmasse, die aus dem Saugrohr heraus und in den jeweiligen Zylinder hineinströmt.In air-mass-controlled engine control systems, it is in non-stationary operation that as the load signal of the internal combustion engine serving signal of the air mass meter, the upstream of the Intake pipe is arranged, no measure of the actual filling the cylinder because the volume of the intake manifold is downstream the throttle valve acts as an air reservoir that fills and must be emptied. The decisive air mass for the Injection time calculation is the air mass that comes from out of the intake manifold and into the respective cylinder.

Bei saugrohrdruckgeführten Motorsteuerungssystemen gibt zwar das Ausgangssignal des Drucksensors die tatsächlichen Druckverhältnisse im Saugrohr wieder, die Meßgrößen stehen aber u.a. aufgrund der notwendigen Mittelung der Meßgröße erst relativ spät zur Verfügung.In intake manifold pressure-guided engine control systems there are the output signal of the pressure sensor the actual pressure conditions in the intake manifold again, but the parameters are there i.a. only relatively due to the necessary averaging of the measured variable available late.

Mit der Einführung variabler Ansaugsysteme und variabler Ventilsteuerungen entstehen für empirisch gewonnene Modelle zur Gewinnung der Lastgröße aus Meßsignalen eine sehr große Vielzahl von Einflußgrößen, die die entsprechenden Modellparameter beeinflussen.With the introduction of variable intake systems and variable valve controls are created for empirically derived models Obtaining the load size from measurement signals a very large variety of influencing variables, the corresponding model parameters influence.

Auf physikalischen Ansätzen basierende modellgestützte Berechnungsmethoden stellen einen guten Ausgangspunkt zur genauen Bestimmung der Luftmasse mZyl dar.Model-based calculation methods based on physical approaches represent a good starting point for the exact determination of the air mass in cyl .

Aus der DE 39 19 488 C2 ist eine Vorrichtung zur Regelung und zur Vorausbestimmung der Ansaugluftmenge einer saugrohrdruckgeführten Brennkraftmaschine bekannt, bei der der Drosselklappenöffnungsgrad und die Motordrehzahl als Grundlage zur Berechnung des derzeitigen Wertes der in den Brennraum der Maschine eingesaugten Luft verwendet werden. Diese berechnete, gegenwärtige Ansaugluftmenge wird dann als Grundlage zur Berechnung des vorausbestimmten Wertes für die Ansaugluftmenge, die in den Brennraum der Maschine zu einer bestimmten Zeit von dem Punkt an, an dem die Berechnung ausgeführt wurde, einzusaugen ist, benutzt. Das Drucksignal, das stromabwärts der Drosselklappe gemessen wird, wird mit Hilfe von theoretischen Beziehungen korrigiert, so daß eine Verbesserung der Bestimmung der angesaugten Luftmasse erreicht und damit eine genauere Berechnung der Einspritzzeit möglich ist.DE 39 19 488 C2 describes a device for regulating and for the predetermination of the intake air quantity of an intake manifold pressure-guided Internal combustion engine is known in which the throttle valve opening degree and the engine speed as the basis for Calculation of the current value in the combustion chamber of the Machine sucked air can be used. This calculated, current intake air volume is then used as a basis to calculate the predetermined value for the intake air quantity, which in the combustion chamber of the machine at a certain Time from the point at which the calculation is performed was sucked in, used. The pressure signal that downstream of the throttle valve is measured using corrected by theoretical relationships, making an improvement reached the determination of the intake air mass and so that a more precise calculation of the injection time is possible.

Im instationären Betrieb der Brennkraftmaschine ist es aber wünschenswert, die Bestimmung der in die Zylinder einströmenden Luftmasse noch genauer durchzuführen.However, it is in the transient operation of the internal combustion engine desirable to determine the inflow into the cylinder Perform air mass even more precisely.

Der Erfindung liegt die Aufgabe zugrunde ein Verfahren anzugeben, mit dem die tatsächlich in den Zylinder der Brennkraftmaschine einströmende Luftmasse mit hoher Genauigkeit bestimmt werden kann. Außerdem sollen systembedingte Totzeiten, die aufgrund der Kraftstoffvorlagerung und der Rechenzeit bei der Berechnung der Einspritzzeit auftreten können, kompensiert werden.The invention has for its object to provide a method with which the actually in the cylinder of the internal combustion engine inflowing air mass with high accuracy can be determined. In addition, system-related dead times, that due to the fuel storage and the computing time can occur when calculating the injection time, be compensated.

Diese Aufgabe wird gemäß den Merkmalen des Patentanspruches 1 gelöst.This object is achieved according to the features of patent claim 1 solved.

Vorteilhafte Weiterbildungen finden sich in den Unteransprüchen.Advantageous further developments can be found in the subclaims.

Ausgehend von einem bekannten Ansatz ergibt sich eine Modellbeschreibung, die auf einer nichtlinearen Differentialgleichung basiert. Im folgenden wird eine Approximation dieser nichtlinearen Gleichung vorgestellt. Im Ergebnis dieser Approximation läßt sich das Systemverhalten mittels einer bilinearen Gleichung beschreiben, die die schnelle Lösung der Beziehung im Motorsteuergerät des Kraftfahrzeugs unter Echtzeitbedingungen gestattet. Der gewählte Modellansatz beinhaltet dabei die Modellierung von variablen Saugsystemen und Systemen mit variablen Ventilsteuerungen. Die durch diese Anordnung und durch dynamische Nachladung, d.h. durch Reflexionen von Druckwellen im Saugrohr hervorgerufenen Effekte, können ausschließlich durch die Wahl stationär bestimmbarer Parameter des Modelles sehr gut berücksichtigt werden. Alle Modellparameter sind einerseits physikalisch interpretierbar und andererseits ausschließlich aus stationären Messungen zu gewinnen.Based on a known approach, a model description results, that on a nonlinear differential equation based. The following is an approximation of this presented nonlinear equation. As a result of this The system behavior can be approximated using a bilinear Describe the equation that the quick fix of Relationship in the engine control unit of the motor vehicle under real-time conditions allowed. The chosen model approach includes thereby the modeling of variable suction systems and systems with variable valve controls. The through this arrangement and by dynamic reloading, i.e. through reflections effects caused by pressure waves in the intake manifold exclusively through the selection of stationary determinable parameters of the model are taken into account very well. All model parameters are physically interpretable on the one hand and on the other hand exclusively from stationary measurements win.

Die meisten Algorithmen zur zeitdiskreten Lösung der Differentialgleichung, die das Verhalten des hier genutzten Modelles beschreibt, erfordern vor allem bei geringem Druckabfall über der Drosselklappe, d.h. bei Vollast eine sehr kleine Rechenschrittweite, um numerisch stabil zu arbeiten. Die Folge wäre ein unvertretbarer Rechenaufwand bei der Bestimmung der Lastgröße. Da Lasterfassungssysteme meist segmentsynchron arbeiten, d.h. für 4-Zylindermotoren wird alle 180° KW ein Meßwert abgetastet, muß die Modellgleichung ebenfalls segmentsynchron gelöst werden. Im nachfolgenden wird ein absolut stabiles Differenzenschema zur Lösung von Differentialgleichungen eingesetzt, das numerische Stabilität bei beliebiger Schrittweite garantiert.Most algorithms for discrete-time solving of the differential equation, the behavior of the model used here describes, especially with a low pressure drop above the throttle valve, i.e. a very small calculation step at full load, to work numerically stable. The consequence would be an unacceptable computing effort in determining the Load size. Since load detection systems usually work in segment synchronization, i.e. for 4-cylinder engines, a measurement value is taken every 180 ° KW sampled, the model equation must also be segment synchronous be solved. The following is an absolute stable difference scheme for solving differential equations used the numerical stability at any Guaranteed increment.

Das erfindungsgemäße modellgestützte Berechnungsverfahren bietet zudem die Möglichkeit einer Prädiktion des Lastsignales um eine wählbare Anzahl von Abtastschritten, d.h. eine Vorhersage des Lastsignales mit variablem Prädiktionshorizont. Wird die dem Prädiktionshorizont bei konstanter Drehzahl proportionale Prädiktionszeit nicht zu groß, so erhält man ein prädiziertes Lastsignal hoher Genauigkeit.The model-based calculation method according to the invention also offers the possibility of predicting the load signal by a selectable number of sampling steps, i.e. a Prediction of the load signal with a variable prediction horizon. If the prediction horizon at constant speed proportional prediction time not too long, so get a predicted load signal of high accuracy.

Eine solche Vorhersage ist notwendig, da zwischen der Erfassung relevanter Meßwerte und der Berechnung der Lastgröße eine Totzeit entsteht. Desweiteren muß aus Gründen der Gemischaufbereitung vor dem eigentlichen Beginn der Ansaugphase des jeweiligen Zylinders möglichst genau die Kraftstoffmasse über die Einspritzventile zugemessen werden, die im Verlauf der kommenden Ansaugphase im gewünschten Verhältnis zur Luftmasse mZyl steht. Ein variabler Prädiktionshorizont verbessert die Güte der Kraftstoffzumessung im instationären Motorbetrieb. Da bei steigender Drehzahl die Segmentzeit abnimmt, muß der Einspritzvorgang eine größere Anzahl von Segmenten eher beginnen, als dies bei einer niedrigeren Drehzahl der Fall ist. Um die zu dosierende Kraftstoffmasse möglichst exakt bestimmen zu können, ist die Prädiktion der Lastgröße um die Anzahl von Segmenten, um die die Kraftstoffvorlagerung vorgenommen wird, notwendig, um ein gefordertes Kraftstoff-Luft-Verhältnis auch in diesem Fall einzuhalten. Die Prädiktion der Lastgröße trägt somit aus einer wesentlichen Verbesserung der Einhaltung des gefordertene Kraftstoff-Luft-Verhältnisses im instationären Motorbetrieb bei. Dieses System zur modellgestützten Lasterfassung ist in den bekannten Motorsteuerungssystemen, d.h. bei luftmassengeführte bzw. saugrohrdruckgeführte Motorsteuerungssysteme wird im folgenden ein Korrekturalgorithmus in Form eines Modellregelkreises formuliert, der bei auftretenden Ungenauigkeiten von Modellparametern eine permanente Genauigkeitsverbesserung, d.h. einen Modellabgleich im stationären und instationären Betrieb gestattet.Such a prediction is necessary because there is a dead time between the acquisition of relevant measured values and the calculation of the load size. Furthermore, for reasons of mixture preparation, the fuel mass must be measured as precisely as possible via the injection valves before the actual start of the intake phase of the respective cylinder, which is in the desired ratio to the air mass m cyl in the course of the upcoming intake phase. A variable prediction horizon improves the quality of the fuel metering in transient engine operation. Since the segment time decreases as the speed increases, the injection process must start a larger number of segments earlier than is the case at a lower speed. In order to be able to determine the fuel mass to be metered as precisely as possible, the prediction of the load size by the number of segments by which the fuel is stored is necessary in order to maintain the required air-fuel ratio in this case too. The prediction of the load size thus contributes from a substantial improvement in compliance with the required fuel-air ratio in the transient engine operation. This system for model-based load detection is used in the known engine control systems, i.e. in the case of engine control systems controlled by air mass or intake manifold pressure, a correction algorithm in the form of a model control loop is formulated below, which allows permanent accuracy improvement, i.e. a model comparison in stationary and transient operation, in the event of inaccuracies in model parameters.

Ein Ausführungsbeispiel des erfindungsgemäßen Verfahrens wird anhand der nachfolgenden schematischen Zeichnungen beschrieben. Dabei zeigen:

Figur 1
eine Prinzipskizze zum Saugsystem einer Otto-Brennkraftmaschine einschließlich der entsprechenden Modell- und Meßgrößen,
Figur 2
die Durchflußfunktion und die dazugehörige Polygonzugapproximation,
Figur 3
eine Prinzipdarstellung zum Modellregelkreis für luftmassengeführte Motorsteuerungssysteme und
Figur 4
eine Prinzipdarstellung zum Modellregelkreis für saugrohrdruckgeführte Motorsteuerungssysteme.
An embodiment of the method according to the invention is described with reference to the following schematic drawings. Show:
Figure 1
a schematic diagram of the intake system of an Otto engine, including the corresponding model and measurement variables,
Figure 2
the flow function and the associated polygon approximation,
Figure 3
a schematic diagram of the model control loop for air mass-guided engine control systems and
Figure 4
a schematic diagram of the model control loop for intake manifold pressure-guided engine control systems.

Bei der modellgestützten Berechnung der Lastgröße m andZyl wird von der in Figur 1 dargestellten prinzipiellen Anordnung ausgegangen. Aus Gründen der Übersichtlichkeit wird dabei nur ein Zylinder der Brennkraftmaschine dargestellt. Mit dem Bezugzeichen 10 ist dabei ein Saugrohr einer Brennkraftmaschine bezeichnet, in dem eine Drosselklappe 11 angeordnet ist. Die Drosselklappe 11 ist mit einem, den Öffnungsgrad der Drosselklappe ermittelnden Drosselklappenstellungsfühler 14 verbunden. Stromaufwärts der Drosselklappe 11 ist bei einem luftmassengeführten Motorsteuerungssystem ein Luftmassenmesser 12 angeordnet, während bei einem saugrohrdruckgeführten Motorsteuerungssystem ein Saugrohrdruckfühler 13 im Saugrohr angeordnet ist. Je nach Art der Lasterfassung ist somit nur eine der beiden Komponenten 12, 13 vorhanden. Die Ausgänge des Luftmassenmessers 12, des Drosselklappenstellungsgebers 14 und des zum Luftmassenmesser 12 alternativ vorhandenen Saugrohrdrucksensors 13 sind mit Eingängen einer nicht dargestellten, an sich bekannten elektronischen Steuerungseinrichtung der Brennkraftmaschine verbunden. Außerdem sind in Figur 1 noch schematisch ein Einlaßventil 15, ein Auslaßventil 16, sowie ein in einem Zylinder 17 beweglichen Kolben 18 dargestellt.In the model-based calculation of the load size m and cyl , the basic arrangement shown in FIG. 1 is assumed. For reasons of clarity, only one cylinder of the internal combustion engine is shown. Reference number 10 denotes an intake manifold of an internal combustion engine, in which a throttle valve 11 is arranged. The throttle valve 11 is connected to a throttle valve position sensor 14 which determines the degree of opening of the throttle valve. An air mass meter 12 is arranged upstream of the throttle valve 11 in an air mass-guided engine control system, while an intake manifold pressure sensor 13 is arranged in the intake manifold in an intake manifold pressure-guided engine control system. Depending on the type of load detection, only one of the two components 12, 13 is therefore present. The outputs of the air mass meter 12, the throttle valve position sensor 14 and the intake manifold pressure sensor 13, which is available as an alternative to the air mass meter 12, are connected to inputs of an electronic control device of the internal combustion engine, which is not shown and is known per se. In addition, an inlet valve 15, an outlet valve 16 and a piston 18 movable in a cylinder 17 are shown schematically in FIG.

Außerdem sind in Figur 1 ausgewählte Größen bzw. Parameter des Saugsystems eingezeichnet. Dabei bedeutet das Dachsymbol "^" über einer Größe, daß es sich um eine Modellgröße handelt, während Größen ohne Dachsymbol "^" Meßgrößen repräsentieren. Im einzelnen bedeuten:In addition, selected variables or parameters are shown in FIG of the suction system. The roof symbol means "^" over a size that it is a model size, while sizes without a roof symbol "^" represent measured values. In particular:

PU Umgebungsdruck, PS Saugrohrdruck, TS Temperatur der Luft im Saugrohr, VS das Volumen des Saugrohrs.P U ambient pressure, P S intake manifold pressure, T S temperature of the air in the intake manifold, V S the volume of the intake manifold.

Größen mit einem Punktsymbol kennzeichnen die erste zeitliche Ableitung der entsprechenden Größen. m ˙DK ist somit der Luftmassenstrom an der Drosselklappe und m ˙Zyl ist der Luftmassenstrom der tatsächlich in den Zylinder der Brennkraftmaschine einströmt.Sizes with a dot symbol indicate the first time derivative of the corresponding sizes. m ˙ DK is the air mass flow at the throttle valve and m ˙ cyl is the air mass flow that actually flows into the cylinder of the internal combustion engine.

Die grundlegende Aufgabe bei der modellgestützten Berechnung des Motorlastzustandes besteht nun in der Lösung der Differentialgleichung für den Saugrohrdruck

Figure 00060001
die sich unter der Voraussetzung konstanter Temperatur der Luft im Saugrohr TS aus der Zustandsgleichung idealer Gase herleiten läßt.The basic task in the model-based calculation of the engine load condition now consists in solving the differential equation for the intake manifold pressure
Figure 00060001
which can be derived from the equation of state of ideal gases under the condition of constant air temperature in the intake manifold T S.

Mit RL ist dabei die allgemeine Gaskonstante bezeichnet.R L denotes the general gas constant.

Die Lastgröße m andZyl wird durch Integration aus dem Zylindermassenstrom

Figure 00060002
bestimmt. Die durch (2.1) beschriebenen Verhältnisse sind auf Mehrzylinder-Brennkraftmaschinen mit Schwingrohr- (Schaltsaugrohr-) und/oder Resonanzsaugsysteme ohne strukturelle Änderungen anwendbar.The load size m and cyl is created by integration from the cylinder mass flow
Figure 00060002
certainly. The relationships described by (2.1) can be applied to multi-cylinder internal combustion engines with vibrating tube (switching intake manifold) and / or resonance intake systems without structural changes.

Für Systeme mit Multi-Point-Einspritzungen, bei denen die Kraftstoffzumessung durch mehrere Einspritzventile erfolgt, gibt die Gleichung (2.1) die Verhältnisse genauer wieder als dies bei Single-Point-Einspritzungen, d.h. bei Einspritzungen, bei denen der Kraftstoff mittels eines einzigen Kraftstoffeinspritzventiles zugemessen wird, der Fall ist. Bei erstgenannter Art der Kraftstoffzumessung ist nahezu das gesamte Ansaugsystem mit Luft gefüllt. Lediglich in einem kleinen Bereich vor den Einlaßventilen befindet sich ein Kraftstoff-Luftgemisch. Im Gegensatz dazu ist bei Single-Point-Einspritzsystemen das gesamte Saugrohr von der Drosselklappe bis zum Einlaßventil mit Kraftstoff-Luft-Gemisch gefüllt, da das Einspritzventil vor der Drosselklappe angeordnet ist. In diesem Fall stellt die Annahme eines idealen Gases eine stärkere Näherung dar, als dies bei der Multi-Point-Einspritzung der Fall ist. Bei Single-Point-Einspritzung erfolgt die Kraftstoffzumessung entsprechend

Figure 00070001
bei Multi-Point-Einspritzung entsprechend
Figure 00070002
For systems with multi-point injections, in which the fuel is metered by several injectors, equation (2.1) gives the situation more accurately than for single-point injections, that is to say in injections in which the fuel is metered by means of a single fuel injector will, is the case. With the first-mentioned type of fuel metering, almost the entire intake system is filled with air. There is a fuel-air mixture only in a small area in front of the intake valves. In contrast, in single-point injection systems, the entire intake manifold from the throttle valve to the intake valve is filled with a fuel-air mixture, since the injection valve is arranged in front of the throttle valve. In this case, the assumption of an ideal gas is a closer approximation than is the case with multi-point injection. With single-point injection, the fuel is metered accordingly
Figure 00070001
with multi-point injection accordingly
Figure 00070002

Im folgenden wird die Berechnung der Massenströme und näher beschrieben.The following is the calculation of mass flows and described in more detail.

Die Modellgröße des Luftmassenstromes an der Drosselklappe wird durch die Durchflußgleichung idealer Gase durch Drosselstellen beschrieben. An der Drosselstelle auftretende Strömungsverluste werden durch den reduzierten Strömungsquerschnitt ÂRED berücksichtigt. Der Luftmassenstrom wird demnach durch die Beziehung

Figure 00070003
mit
Figure 00080001
für überkritische Druckverhältnisse bzw. ψ = const. für kritische Druckverhältnisse bestimmt.

:
Modellgröße des Luftmassenstromes an der Drosselklappe
ÂRED :
reduzierter Strömungsquerschnitt
κ:
Adiabatenexponent
RL:
allgemeine Gaskonstante
TS:
Temperatur der Luft im Saugrohr
P andU :
Modellgröße des Umgebungsdruckes
P andS :
Modellgröße des Saugrohrdruckes
ψ:
Durchflußfunktion.
The model size of the air mass flow at the throttle valve is described by the flow equation of ideal gases through throttling points. Flow losses occurring at the throttle point are taken into account by the reduced flow cross section  RED . The air mass flow is therefore through the relationship
Figure 00070003
With
Figure 00080001
for supercritical pressure conditions or ψ = const. for critical pressure conditions certainly.
:
Model size of the air mass flow at the throttle valve
 RED :
reduced flow cross-section
κ:
Adiabatic exponent
R L :
general gas constant
T S :
Air temperature in the intake manifold
P and U :
Model size of the ambient pressure
P and S :
Model size of the intake manifold pressure
ψ:
Flow function.

An der Drosselstelle, d.h. an der Drosselklappe auftretende Strömungsverluste werden über die geeignete Wahl von  RED berücksichtigt. Aus stationären Messungen kann bei bekannten Drücken vor und hinter der Drosselstelle und bekanntem Massenstrom durch die Drosselstelle eine Zuordnung zwischen dem vom Drosselklappenstellungsfühler 14 ermittelten Drosselklappenwinkel und dem entsprechendem reduzierten Querschnitt  RED angegeben werden.At the throttle point, that is to say flow losses occurring at the throttle valve, are taken into account by the suitable choice of  RED . From stationary measurements, at known pressures upstream and downstream of the throttle point and known mass flow through the throttle point, an association between the throttle valve angle determined by throttle valve position sensor 14 and the corresponding reduced cross section  RED can be specified.

Wird der Luftmassenstrom an der Drosselklappe durch die Beziehung (2.2) beschrieben, so entsteht ein komplizierter Algorithmus zur numerisch richtigen Lösung der Differentialgleichung (2.1). Zur Reduktion des Rechenaufwandes wird die Durchflußfunktion ψ durch einen Polygonzug approximiert.The air mass flow described by the relationship (2.2) on the throttle valve, a complex algorithm arises for the numerically correct solution of the differential equation (2.1). To reduce the computational effort, the flow function ψ is approximated by a polygon.

Figur 2 zeigt den Verlauf der Durchflußfunktion ψ und das darauf angewandte Approximationsprinzip. Innerhalb eines Abschnittes i (i = 1...k) wird die Durchflußfuntion ψ durch eine Gerade dargestellt. Mit einer vertretbaren Anzahl von Geradenabschnitten kann damit eine gute Approximation erreicht werden. Durch einen solchen Ansatz kann die Gleichung (2.2) zur Berechnung des Massenstromes an der Drosselklappe durch die Beziehung

Figure 00090001
für i = (1...k)
approximiert werden.Figure 2 shows the course of the flow function ψ and the approximation principle applied to it. Within a section i (i = 1 ... k) the flow function ψ is represented by a straight line. With a reasonable number of straight line sections, a good approximation can be achieved. With such an approach, equation (2.2) can be used to calculate the mass flow at the throttle valve through the relationship
Figure 00090001
for i = (1 ... k)
be approximated.

In dieser Form beschreibt mi die Steigung und ni das Absolutglied des jeweiligen Geradenabschnittes. Die Werte für die Steigung und für das Absolutglied werden in Tabellen als Funktion des Verhältnisses Saugrohrdruck zu Umgebungsdruck P andS / P andU abgelegt.In this form, m i describes the slope and n i the absolute term of the respective line segment. The values for the slope and for the absolute member are stored in tables as a function of the ratio of intake manifold pressure to ambient pressure P and S / P and U.

Auf der Abszisse von Figur 2 ist dabei das Druckverhältnis P andS / P andU und auf der Ordinate der Funktionswert (0 - 0.3) der Durchflußfunktion ψ aufgetragen.The pressure ratio P and S / P and U is plotted on the abscissa of FIG. 2 and the function value (0-0.3) of the flow function ψ is plotted on the ordinate.

Für Druckverhältnisse P S P U κκ-1 2κ+1 ist ψ = konstant, d.h. daß der Durchfluß an der Drosselstelle nur noch vom Querschnitt abhängig ist und nicht mehr von den Druckverhältnissen. Die in die jeweiligen Zylinder der Brennkraftmaschine einströmende Luftmasse läßt sich analytisch nur schwer bestimmen, da sie stark vom Ladungswechsel abhängt. Die Füllung der Zylinder wird weitestgehend durch den Saugrohrdruck, die Drehzahl und durch die Ventilsteuerzeiten bestimmt.For pressure conditions P S P U κ κ-1 2nd κ + 1 is ψ = constant, which means that the flow at the restriction is only dependent on the cross-section and no longer on the pressure conditions. The air mass flowing into the respective cylinders of the internal combustion engine is difficult to determine analytically, since it depends strongly on the gas exchange. The filling of the cylinders is largely determined by the intake manifold pressure, the speed and the valve timing.

Zur möglichst genauen Berechnung des Massenstroms in den jeweiligen Zylinder ist deshalb einerseits die Beschreibung der Verhältnisse im Ansaugtrakt der Brennkraftmaschine mittels partieller Differentialgleichungen und andererseits die Berechnung des Massenstromes am Einlaßventil nach der Durchflußgleichung als erforderliche Randbedingung notwendig. Erst dieser komplizierte Ansatz gestattet die Berücksichtigung dynamischer Nachladeeffekte, die von der Drehzahl, der Saugrohrgeometrie, der Zylinderzahl sowie den Ventilsteuerzeiten maßgeblich beeinflußt werden.For the most accurate calculation of the mass flow in the respective cylinder it is therefore necessary on the one hand to describe the conditions in the intake tract of the internal combustion engine by means of partial differential equations and on the other hand to calculate the mass flow at the inlet valve according to the flow equation as a necessary boundary condition. Only this complicated approach allows dynamic reloading effects to be taken into account, which are significantly influenced by the speed, the intake manifold geometry, the number of cylinders and the valve timing.

Da eine Berechnung nach oben genanntem Ansatz in der elektronischen Steuerungseinrichtung der Brennkraftmaschine nicht realisierbar ist, geht eine mögliche Näherung von einem einfachen Zusammenhang zwischen Saugrohrdruck P andS und Zyindermassenstrom aus. Für einen weiten Bereich der sinnvollen Ventilsteuerzeiten kann dafür in guter Näherung von einem linearen Ansatz der Form

Figure 00100001
ausgegangen werden.Since a calculation based on the above-mentioned approach cannot be implemented in the electronic control device of the internal combustion engine, a possible approximation is based on a simple relationship between intake manifold pressure P and S and cylinder mass flow out. For a wide range of useful valve timing, it can be approximated by a linear approach to the shape
Figure 00100001
be assumed.

Die Steigung γ1 und das Absolutglied γ0 der Beziehung (2.4) sind dabei, unter Berücksichtigung aller wesentlichen Einflußfaktoren Funktionen der Drehzahl, der Saugrohrgeometrie, der Zylinderzahl, der Ventilsteuerzeiten sowie der Temperatur der Luft im Saugrohr TS. Die Abhängigkeit der Werte von γ1 und γ0 von den Einflußgrößen Drehzahl, Saugrohrgeometrie, Zylinderzahl und den Ventilsteuerzeiten und Ventilerhebungskurven kann dabei über stationäre Messungen ermittelt werden. Über diese Wertebestimmung wird ebenfalls der Einluß von Schwingrohr- und/oder Resonanzsaugsystemen auf die von der Brennkraftmaschine angesaugte Luftmasse gut wiedergegeben. Die Werte von γ1 und γ0 sind in Kennfeldern der elektronischen Motorsteuerungseinrichtung abgelegt.The slope γ 1 and the absolute member γ 0 of the relationship (2.4) are functions of the speed, the intake manifold geometry, the number of cylinders, the valve timing and the temperature of the air in the intake manifold T S , taking into account all essential influencing factors. The dependency of the values of γ 1 and γ 0 on the influencing variables speed, intake manifold geometry, number of cylinders and the valve timing and valve lift curves can be determined using stationary measurements. The influence of vibrating tube and / or resonance suction systems on the air mass sucked in by the internal combustion engine is also well reproduced via this value determination. The values of γ 1 and γ 0 are stored in maps of the electronic engine control device.

Als bestimmende Größe zur Ermittlung der Motorlast wird der Saugrohrdruck PS ausgewählt. Mit Hilfe der Modell-Differentialgleichung soll diese Größe möglichst exakt und schnell geschätzt werden. Die Schätzung von P andS erfordert die Lösung der Gleichung (2.1).The intake manifold pressure P S is selected as the determining variable for determining the engine load. With the help of the model differential equation, this quantity should be estimated as precisely and quickly as possible. The estimation of P and S requires the solution of equation (2.1).

Mit den anhand der Formeln (2.2) und (2.3) eingeführten Vereinfachungen kann (2.1) durch die Beziehung

Figure 00110001
approximiert werden. Betrachtet man, entsprechend den Voraussetzungen zur Herleitung von Gleichung (2.1), die Temperatur der Luft im Saugrohr TS als eine langsam veränderliche Meßgröße sowie ÂRED als Eingangsgröße, so läßt sich die nichtlineare Form der Differentialgleichung (2.1) durch die bilineare Gleichung (2.5) approximieren.With the simplifications introduced using formulas (2.2) and (2.3), (2.1) can be determined by the relationship
Figure 00110001
be approximated. If, in accordance with the requirements for the derivation of equation (2.1), the temperature of the air in the intake manifold T S is regarded as a slowly changing measured variable and  RED as an input variable, the nonlinear form of the differential equation (2.1) can be determined by the bilinear equation (2.5 ) approximate.

Zur Lösung der Gleichung (2.5) wird diese Beziehung in eine geeignete Differenzengleichung übergeführt.To solve equation (2.5), this relationship is broken down into a suitable equation of difference transferred.

Als Kriterium zur Auswahl des geeigneten Differenzenschemas können die folgenden prinzipiellen Anforderungen an die Lösungseigenschaften der zur bildenden Differenzengleichung formuliert werden:

  • 1. Das Differenzenschema muß auch unter extremen dynamischen Anforderungen konservativ sein, d.h. die Lösung der Differenzengleichnung muß der Lösung der Differentialgleichung entsprechen,
  • 2. die numerische Stabilität muß zu Abtastzeiten, die den maximal möglichen Segmentzeiten entsprechen, im gesamten Arbeitsbereich das Saugrohrdruckes garantiert sein.
  • The following basic requirements for the solution properties of the difference equation to be formed can be formulated as a criterion for selecting the suitable difference scheme:
  • 1. The difference scheme must be conservative even under extreme dynamic requirements, ie the solution of the difference equation must correspond to the solution of the differential equation,
  • 2. The numerical stability must be guaranteed in the entire working area of the intake manifold pressure at sampling times that correspond to the maximum possible segment times.
  • Forderung 1 ist durch einen impliziten Rechenalgorithmus erfüllbar. Aufgrund der Approximation der nichtlinearen Differentialgleichung (2.1) durch eine bilineare Gleichung ist das entstehende implizite Lösungsschema ohne Einsatz iterativer Verfahren lösbar, da die Differenzengleichung in eine explizite Form überführt werden kann.Claim 1 can be met by an implicit calculation algorithm. Because of the approximation of the nonlinear differential equation (2.1) by a bilinear equation emerging implicit solution scheme without using iterative Method solvable, since the difference equation is explicit Form can be transferred.

    Die zweite Forderung ist aufgrund der Konditionierung der Differentialgleichung (2.1) und deren Approximation (2.5) nur durch eine Rechenvorschrift zur Bildung der Differenzengleichung erfüllbar, die absolut stabil arbeitet. Diese Verfahren werden auch als A-stabile Verfahren bezeichnet. Kennzeichnend für diese A-Stabilität ist die Eigenschaft des Algorithmus, bei einem stabilen Ausgangsproblem für beliebige Werte der Abtastzeit, d.h. Segmentzeit TA numerisch stabil zu sein. Eine mögliche Rechenvorschrift zur numerischen Lösung von Differentialgleichungen, die beiden Forderungen gerecht wird, ist die Trapezregel.Due to the conditioning of the differential equation (2.1) and its approximation (2.5), the second requirement can only be met by a calculation rule for the formation of the difference equation, which works absolutely stable. These methods are also known as A-stable methods. Characteristic of this A stability is the property of the algorithm to be numerically stable in the case of a stable output problem for any values of the sampling time, ie segment time T A. A possible calculation rule for the numerical solution of differential equations that meets both requirements is the trapezoidal rule.

    Die durch Anwendung der Trapezregel entstehende Differenzengleichung lautet im vorliegenden Fall

    Figure 00120001
    definiert. The difference equation resulting from the application of the trapezoid rule is in the present case
    Figure 00120001
    Are defined.

    Wird diese Vorschrift auf (2.5) angewandt, so ergibt sich die Beziehung

    Figure 00130001
    zur Berechnung des Saugrohrdruckes P andS [N] als Maß für die Motorlast.If this rule is applied to (2.5), the relationship results
    Figure 00130001
    to calculate the intake manifold pressure P and S [ N ] as a measure of the engine load.

    [N] bedeutet dabei das aktuelle Segment bzw. der aktuelle Rechenschritt, [N+1] das nächstfolgende Segment bzw. der nächstfolgende Rechenschritt.[N] means the current segment or the current calculation step, [ N +1] the next following segment or the next calculation step.

    Im folgenden wird die Berechnung des aktuellen und prädizierten Lastsignales beschrieben.The following is the calculation of the current and predicted Load signals described.

    Aus dem berechneten Saugrohrdruck P andS kann der Luftmassenstrom der in die Zylinder einströmt, durch die Beziehung (2.4) ermittelt werden. Wendet man einen einfachen Integrationsalgorithmus an, so erhält man für die während eines Ansaugtaktes von der Brennkraftmaschine angesaugte Luftmasse die Beziehung

    Figure 00130002
    The air mass flow can be calculated from the calculated intake manifold pressure P and S which flows into the cylinders can be determined using the relationship (2.4). If a simple integration algorithm is used, the relationship is obtained for the air mass sucked in by the internal combustion engine during an intake stroke
    Figure 00130002

    Dabei wird davon ausgegangen, daß der Anfangswert der Lastgröße null ist. Für die segmentsynchrone Lasterfassung sinkt mit steigender Drehzahl die Segmentzeit, während die Segmentanzahl, um die eine Kraftstoffvorlagerung vorgenommen wird, steigen muß. Aus diesem Grund ist es erforderlich, die Prädiktion des Lastsignals für einen veränderlichen Prädiktionshorizont H, d.h. für eine bestimmte, in erster Linie drehzahlabhängige Anzahl H von Segmenten, auszulegen. Berücksichtigt man diesen veränderlichen Prädiktionshorizont H, so kann Gleichung (2.8) in der Form

    Figure 00140001
    geschrieben werden.It is assumed that the initial value of the load size is zero. For segment-synchronous load detection, the segment time decreases with increasing speed, while the number of segments by which the fuel is stored must increase. For this reason, it is necessary to design the prediction of the load signal for a variable prediction horizon H, ie for a specific, primarily speed-dependent number H of segments. Taking into account this variable prediction horizon H, equation (2.8) can be in the form
    Figure 00140001
    to be written.

    Für die weiteren Überlegungen wird davon ausgegangen, daß sich die Segmentzeit TA und die Parameter γ1 und γ0 der Beziehung (2.4), die zur Bestimmung des Massenstromes aus dem Saugrohrdruck P andS erforderlich sind, über die Prädiktionszeit nicht ändern. Unter dieser Voraussetzung wird die Prädiktion eines Wertes für [N+H] durch die Prädiktion des entsprechenden Druckwertes P andS [N+H] erreicht. Dadurch nimmt die Gleichung (2.9) die Form

    Figure 00140002
    an.For the further considerations it is assumed that the segment time T A and the parameters γ 1 and γ 0 of the relationship (2.4), which are used to determine the mass flow from the intake manifold pressure P and S are required, do not change over the prediction time. Under this condition, the prediction of a value for [ N + H ] achieved by predicting the corresponding pressure value P and S [ N + H ]. As a result, equation (2.9) takes the form
    Figure 00140002
    on.

    Da bei dem beschriebenen Verfahren die zeitliche Änderung des Saugrohrdruckes P andS in analytischer Form vorliegt, wird im folgenden die Prädiktion des Druckwertes P andS [N+H] durch H-fache Anwendung der Trapezregel erreicht. In diesem Fall erhält man die Beziehung

    Figure 00150001
    Since the change in the intake manifold pressure P and S with time is present in an analytical form in the described method, the prediction of the pressure value P and S [ N + H ] is achieved in the following by applying the trapezoidal rule H times. In this case you get the relationship
    Figure 00150001

    Bestimmt man den Druck P andS [N+H-1] in analoger Weise, so kann für das prädizierte Lastsignal die Gleichung

    Figure 00150002
    angegeben werden.If one determines the pressure P and S [ N + H -1] in an analog manner, then the equation can be used for the predicted load signal
    Figure 00150002
    can be specified.

    Wählt man für den Prädiktionshorizont H Werte in der Größen-ordnung von 1...3 Segmenten, so kann mit der Formel (2.12) ein gut prädiziertes Lastsignal erhalten werden.One chooses values in the order of magnitude for the prediction horizon H of 1 ... 3 segments, with the formula (2.12) a well-predicted load signal can be obtained.

    Im folgenden wird das Prinzip des Modellabgleichs für luftmassen- und saugrohrdruckgeführte Motorsteuerungssysteme erklärt.In the following, the principle of model matching for air mass and intake manifold pressure-guided engine control systems explained.

    Bedingt durch den Einsatz von Motoren mit variabler Ventilsteuerung und/oder veränderlicher Saugrohrgeometrie, durch Fertigungstoleranzen und Alterungserscheinungen, sowie durch Temperatureinflüsse sind die Werte von γ1 und γ0 mit einer gewissen Unsicherheit behaftet. Die Parameter der Gleichung zur Bestimmung des Massenstromes in den Zylindern sind, wie oben beschrieben, Funktionen vielfältiger Einflußgrößen, von denen nur die wichtigsten erfaßt werden können.Due to the use of engines with variable valve control and / or variable intake manifold geometry, manufacturing tolerances and signs of aging, as well as temperature influences, the values of γ 1 and γ 0 are associated with a certain degree of uncertainty. As described above, the parameters of the equation for determining the mass flow in the cylinders are functions of various influencing variables, of which only the most important ones can be recorded.

    Bei der Berechnung des Massenstromes an der Drosselklappe wirken sich Meßfehler bei der Erfassung des Drosselklappenwinkels und Approximationsfehler bei der Polygonzugapproximation der Durchflußfunktion ψ auf die Modellgrößen aus. Besonders bei kleinen Drosselklappenwinkeln ist die Systemempfindlichkeit gegenüber erstgenannten Fehlern besonders hoch. Daraus ergibt sich, daß kleine Änderungen der Drosselklappenstellung einen gravierenden Einluß auf Massenstrom bzw. Saugrohrdruck haben. Um die Wirkung dieser Einflüsse zu reduzieren, wird im folgenden ein Verfahren vorgeschlagen, das es gestattet, bestimmte Größen, die Einfluß auf die Modellrechnung haben, so zu korrigieren, daß eine genauigkeitsverbessernde Modellanpassung für stationären und instationären Motorbetrieb durchgeführt werden kann.When calculating the mass flow at the throttle valve measurement errors affect the detection of the throttle valve angle and approximation errors in the polygon approximation the flow function ψ on the model sizes. Especially at small throttle valve angles the system sensitivity is especially against the first mentioned errors high. It follows that there are small changes in the throttle valve position a serious impact on mass flow or intake manifold pressure. To see the effect of these influences reduce, a method is proposed below which allows certain sizes to influence the model calculation have to correct so that an accuracy-enhancing Model adaptation for stationary and transient Engine operation can be performed.

    Die Anpassung wesentlicher Parameter des Modells zur Bestimmung der Lastgröße der Brennkraftmaschine erfolgt durch die Korrektur des aus dem gemessenen Drosselklappenwinkel bestimmten reduzierten Querschnitts  RED durch die Korrekturgröße Δ RED. The adjustment of essential parameters are the model for determining the load variable of the internal combustion engine by correcting the determined from the measured throttle valve angle reduced cross-section  RED by the correction quantity Δ Â RED.

    Die Eingangsgröße zur korrigierten Saugrohrdruckberechnung  RED wird damit durch die Beziehung ÂREDKORR = ÂRED + ΔÂRED beschrieben.The input variable for the corrected intake manifold pressure calculation  RED is thus given by the relationship  REDKORR =  RED + Δ RED described.

    In der Gleichung (2.2) und nachfolgenden Formeln wird dann  RED durch  REDKORR ersetzt. Zur Verbesserung des Folgeverhaltens des Regelkreises wird der aus dem Meßwert des Drosselklappenwinkels abgeleitete reduzierte Drosselklappenquerschnitt  RED in die Modellrechnung einbezogen. Die Korrekturgröße Δ RED wird durch Realisierung eines Modellregelkreises gebildet. In the equation (2.2) and the formulas below,  RED is replaced by  REDKORR . In order to improve the subsequent behavior of the control loop, the reduced throttle valve cross section  RED derived from the measured value of the throttle valve angle is included in the model calculation. The correction quantity Δ RED is formed by implementing a model control loop.

    Für luftmassengeführte Motorsteuerungssysteme ist der mittels des Luftmassenmessers an der Drosselklappe gemessene Luftmassenstrom m ˙DK_LMM die Führungsgröße dieses Regelkreises, während für saugrohrdruckgeführte Systeme der gemessene Saugrohrdruck PS als Führungsgröße genutzt wird. Über eine Folgeregelung wird der Wert von ΔÂ RED so bestimmt, daß die Regelabweichung zwischen Führungsgröße und der ensprechenden Regelgröße minimiert wird.For air mass- guided engine control systems, the air mass flow m ˙ DK_LMM measured by means of the air mass meter on the throttle valve is the reference variable of this control loop, while the intake manifold pressure P S measured is used as the reference variable for intake manifold pressure-guided systems. The value of ΔÂ RED is determined via a follow-up control so that the control deviation between the reference variable and the corresponding control variable is minimized.

    Um auch im dynamischen Betrieb Genauigkeitsverbesserungen mit der genannten Methode zu erreichen, muß die Meßwerterfassung der Führungsgröße möglichst exakt nachgebildet werden. In den meisten Fällen sind dabei das dynamische Verhalten des Sensors, d.h. entweder des Luftmassenmessers oder des Saugrohrdrucksensors und eine nachfolgend durchgeführte Mittelwertbildung zu berücksichtigen.To improve accuracy even in dynamic operation To achieve this method, the measured value must be recorded be reproduced as closely as possible to the reference variable. In the most cases are the dynamic behavior of the sensor, i.e. either the air mass meter or the intake manifold pressure sensor and a subsequent averaging to consider.

    Das dynamische Verhalten des jeweiligen Sensors kann in erster Näherung als ein System erster Ordnung mit eventuell arbeitspunktabhängigen Verzögerungszeiten T1 modelliert werden. Im Falle eines luftmassengeführten Systems lautet eine mögliche Gleichung zur Beschreibung des Sensorverhaltens

    Figure 00170001
    In a first approximation, the dynamic behavior of the respective sensor can be modeled as a system of the first order with any delay times T 1 that may be dependent on the operating point. In the case of an air mass-guided system, one possible equation is to describe the sensor behavior
    Figure 00170001

    Eine Größe, die beim gewählten Ansatz einen wesentlichen Einfluß auf den maximal möglichen Massenstrom besitzt, ist der Umgebungsdruck P andU . Aus diesem Grund kann nicht von einem konstanten Wert dieser Größe ausgegangen werden, sondern es erfolgt eine Anpassung in der nachfolgend beschriebenen Art und Weise.A quantity that has a significant influence on the maximum possible mass flow in the chosen approach the ambient pressure is P and U. For this reason, a constant value of this size cannot be assumed, but an adjustment is made in the manner described below.

    Der Wert des Umgebungsdruckes P andU wird verändert, wenn der Betrag der Korrekturgröße ΔARED eine bestimmte Schwelle überschreitet oder wenn das Druckverhältnis P andS / P andU größer als eine wählbare Konstante ist. Damit wird gewährleistet, daß sowohl im Teil- als auch im Vollastbereich eine Umgebungsdruckanpassung erfolgen kann.The value of the ambient pressure P and U is changed if the amount of the correction variable ΔA RED exceeds a certain threshold or if the pressure ratio P and S / P and U is greater than a selectable constant. This ensures that an ambient pressure adjustment can take place both in the partial and in the full-load range.

    Im folgenden wird ein Modellabgleich für luftmassengeführte Motorsteuerungssysteme erklärt. Für dieses System kann die in Figur 3 dargestellte Modellstruktur angegeben werden.The following is a model comparison for air mass guided Engine control systems explained. For this system, the in Figure 3 shown model structure can be specified.

    Der Drosselklappenstellungsfühler 14 (Figur 1) liefert ein dem Öffnungsgrad der Drosselklappe 11 entsprechendes Signal, z.B. einen Drosselklappenöffnungswinkel. In einem Kennfeld der elektronischen Motorsteuerungseinrichtung sind zu verschiedenen Werten dieses Drosselklappenöffnungswinkels zugehörige Werte für den reduzierten Querschnitt der Drosselklappe  RED abgespeichert. Diese Zuordnung wird durch den Block "statisches Modell" in Figur 3 und in Figur 4 repräsentiert. Das Teilsystem "Saugrohrmodell" in den Figuren 3 und 4 repräsentiert das durch (2.7) beschriebene Verhalten. Führungsgröße dieses Modellregelkreises ist der Meßwert des über ein Segment gemittelten Luftmassenstromes an der Drosselklappe

    Figure 00180001
    . Wird als Regler in diesem Modellregelkreis ein PI-Regler eingesetzt, so ist die bleibende Regelabweichung null, d.h. Modellgröße und Meßgröße des Luftmassenstromes an der Drosselklappe sind identisch. Die Pulsationserscheinungen des Luftmassenstromes an der Drosselklappe, die vor allem bei 4-Zylindermotoren zu beobachten sind, führen bei betragsbildenden Luftmassenmessern zu erheblichen positiven Meßfehlern und somit zu einer stark fehlerbehafteten Führungsgröße. Durch eine Abschaltung des Reglers, d.h. einer Verkleinerung der Reglerparameter kann zum gesteuerten modellgestützten Betrieb übergegangen werden. Bereiche, in denen die genannten Pulsationen auftreten, können somit mit dem selben Verfahren unter Berücksichtigung dynamischer Zusammenhänge behandelt werden, wie diejenigen Bereiche, in denen eine nahezu ungestörte Führungsgröße vorliegt. Im Gegensatz zu Verfahren, die relevante Meßwerte nur in stationären Betriebspunkten berücksichtigen, bleibt das beschriebene System nahezu uneingeschränkt arbeitsfähig. Bei Ausfall des Luftmassensignals oder des Signals des Drosselklappenstellungsfühlers ist das vorgestellte System in der Lage, ein entsprechendes Ersatzsignal zu bilden. Bei Ausfall der Führungsgröße muß der gesteuerte Betrieb realisiert werden, während im anderen Fall der geregelte Betrieb die kaum beeinträchtigte Funktionsfähigkeit des Systems garantiert.The throttle valve position sensor 14 (FIG. 1) supplies a signal corresponding to the degree of opening of the throttle valve 11, for example a throttle valve opening angle. Values associated with various values of this throttle valve opening angle for the reduced cross section of the throttle valve RED RED are stored in a map of the electronic engine control device. This assignment is represented by the block "static model" in FIG. 3 and in FIG. 4. The “intake manifold model” subsystem in FIGS. 3 and 4 represents the behavior described by (2.7). The reference variable of this model control loop is the measured value of the air mass flow at the throttle valve, averaged over a segment
    Figure 00180001
    . If a PI controller is used as the controller in this model control loop, the remaining control deviation is zero, ie the model size and measured variable of the air mass flow at the throttle valve are identical. The pulsation phenomena of the air mass flow at the throttle valve, which can be observed especially in 4-cylinder engines, lead to considerable positive measurement errors in the case of air mass meters that form the amount, and thus to a command variable with a lot of errors. By switching off the controller, ie reducing the controller parameters, it is possible to switch to controlled model-based operation. Areas in which the pulsations mentioned can thus be treated with the same method, taking dynamic relationships into account, as those areas in which there is an almost undisturbed reference variable. In contrast to methods that only take relevant measured values into account at stationary operating points, the system described remains operational almost without restrictions. If the air mass signal or the signal from the throttle valve position sensor fails, the system presented is able to generate a corresponding substitute signal. If the command variable fails, the controlled operation must be implemented, while in the other case the regulated operation guarantees the hardly impaired functionality of the system.

    Der Block "Saugrohrmodell" repräsentiert die Verhältnisse wie sie anhand der Gleichung (2.7) beschrieben sind und hat demzufolge als Ausgangsgröße die Modellgröße P andS sowie die zeitliche Ableitung

    Figure 00190001
    und die Größe . Nach der Modellierung des Sensorübertragungsverhaltens d.h. des Übertragungsverhaltens des Luftmassenmessers und der Abtastung wird die Modellgröße
    Figure 00190002
    einer Mittelung unterzogen, so daß die gemittelte Größe
    Figure 00190003
    und der vom Luftmassenmesser gemessene durchschnittliche Luftmassenstrom
    Figure 00190004
    einem Vergleicher zugeführt werden können. Die Differenz beider Signale bewirkt eine Änderung Δ RED des reduzierten Strömungsquer-schnittes  RED , so daß stationär und instationär ein Mo-dellabgleich erfolgen kann.The "intake manifold model" block represents the relationships as described using equation (2.7) and therefore has the model size P and S and the time derivative as an output variable
    Figure 00190001
    and the size . After modeling the sensor transmission behavior, ie the transmission behavior of the air mass meter and the sampling, the model size becomes
    Figure 00190002
    averaged so that the averaged size
    Figure 00190003
    and the average air mass flow measured by the air mass meter
    Figure 00190004
    can be fed to a comparator. The difference between the two signals causes a change Δ RED RED of the reduced flow cross section RED RED , so that a model comparison can be carried out in a stationary and non-stationary manner.

    Für saugrohrdruckgeführte Motorsteuerungssysteme wird die in Figur 4 dargestellte Modellstruktur angegeben, wobei gleiche Blöcke wie in Figur 3 gleiche Bezeichnungen tragen. Ebenso wie bei dem luftmassengeführten Motorsteuerungssystem repräsentiert das Teilsystem "Saugrohrmodell", das durch die Differenzengleichung (2.7) beschriebene Verhalten. Führungsgröße dieses Modellregelkreises ist der Meßwert des über ein Segment gemittelten Saugrohrdruckes P s_s . Wird ebenfalls wie in Figur 3 ein PI-Regler eingesetzt, so ist im stationären Fall der Meßwert des Druckes im Saugrohr P s_s mit der Modellgröße

    Figure 00200001
    identisch. Wie oben beschrieben, bleibt auch das vorliegende System nahezu uneingeschränkt arbeitsfähig, da bei Ausfall des Saugrohrdrucksignales oder des Meßwertes für den Drosselklappenwinkel ein entsprechendes Ersatzsignal gebildet werden kann.The model structure shown in FIG. 4 is given for intake manifold pressure-guided engine control systems, the same blocks as in FIG. 3 being given the same designations. As with the air mass-guided engine control system, the "intake manifold model" subsystem represents the behavior described by the difference equation (2.7). The reference variable of this model control loop is the measured value of the intake manifold pressure averaged over a segment P s_s . If a PI controller is also used, as in FIG. 3, the measured value of the pressure in the intake manifold is in the stationary case P s_s with the model size
    Figure 00200001
    identical. As described above, the present system also remains almost fully functional, since if the intake manifold pressure signal or the measured value for the throttle valve angle fails, a corresponding substitute signal can be generated.

    Die durch das Saugrohrmodell erhaltenen Modellgrößen P andS , werden einem Block "Prädiktion" zugeführt. Da mit den Modellen auch die Druckänderungen im Saugrohr berechnet werden, können diese Druckänderungen dazu verwendet werden, den zukünftigen Druckverlauf im Saugrohr und damit die Zylinderluftmasse für das nächste [N+1] oder für die nächsten Segmente [N+H] zu schätzen. Die Größe m andZyl bzw. die Größe m andZyl [N+1] dienen dann zur exakten Berechnung der Einspritzzeit, während derer Kraftstoff eingespritzt wird.The model sizes P and S obtained from the intake manifold model, are fed to a block "prediction". Since the models also calculate the pressure changes in the intake manifold, these pressure changes can be used to estimate the future pressure curve in the intake manifold and thus the cylinder air mass for the next [ N +1] or for the next segments [ N + H]. The size m and cyl or the size m and cyl [ N +1] then serve for the exact calculation of the injection time during which fuel is injected.

    Claims (11)

    1. Method for determining the air mass flowing into the cylinder or cylinders of an internal combustion engine with
      an induction system which comprises an induction manifold (10) and a throttle valve (11) arranged within it as well as a throttle valve position sensor (14) which detects the degree of opening of the throttle valve (19),
      a sensor (12; 13) which produces a load signal (
      Figure 00250001
      ; P S_S ) of the internal combustion engine,
      an electrical control device, which calculates a basic injection time on the basis of the measured load signal ( ; P S_S ) and the speed of the internal combustion engine, whereby
      the conditions in the induction system are simulated by an induction manifold charging model, wherein parameters representing the degree of opening of the throttle valve (11), the ambient pressure (PU ) and the valve position are used as input variables of the model,
      a model variable for the air mass flow (
      Figure 00250002
      ) at the throttle valve (11) is described by means of the flow-through equation of ideal gases through throttling points,
      a model variable for the air mass flow (
      Figure 00250003
      ) into the cylinder or cylinders (17) is described as a linear function of the induction manifold pressure (P andS ) by a mass balance of the air mass flows ( , ),
      these model variables are linked by a differential equation, the induction manifold pressure (P andS ) being calculated therefrom as a defining variable for determining the actual load of the internal combustion engine, and
      the air mass ( ) flowing into the cylinder or cylinders (17) is obtained from the linear relationship between calculated induction manifold pressure (P andS ) and the model variable for the air mass flow (m andZyl ) in the cylinder or cylinders (17) by integration.
    2. Method in accordance with claim 1, characterized in that the load signal (
      Figure 00260001
      ; P S_S ) measured by the load sensor (12; 13) is used to correct and therefore to adjust the model variables ( ) in a closed control circuit, the load signal ( ; P S_S ) serving as reference variable of the control circuit.
    3. Method in accordance with claim 2, characterized in that the adjustment is made in the steady-state and/or transient mode of the internal combustion engine, allowing for the transmission behaviour of the load sensor (12; 13).
    4. Method in accordance with claim 2, characterized in that a value of a reduced cross-section of the throttle valve (Â RED) is allocated to each measured variable of the degree of opening of the throttle valve and the model variables are adjusted by correcting the reduced cross-section (Â RED) by a correction variable (ΔÂ RED) such that the deviation between reference variable and corresponding model variable is minimized.
    5. Method in accordance with claim 4, characterized in that the reduced cross-section (Â RED) is determined from steady-state measurements on the engine test stand and is entered into a map in a memory in the electric control device.
    6. Method in accordance with claim 1, characterized in that, when portraying the model variable for the air mass flow ( ) at the throttle valve (11), a flow-through function (ψ) present in the flow-through equation (equation 2.2) is divided into individual sections (i = 1...k) and these sections are approximated by straight line sections, the respective straight line sections being determined as a function of the ratio of induction manifold pressure (P andS ) to ambient pressure (P andU ) for the gradient (mi) and for the absolute term (ni) and being entered into a map.
    7. Method in accordance with claim 1, characterized in that the gradient (γ1) and the absolute term (γ0) of the linear function for the model variable for the air mass flow into the cylinder or cylinders ( ) are established as a function of at least one of the parameters of speed of the internal combustion engine, number of cylinders, induction manifold geometry, temperature of the air (TS) in the induction manifold (10) and valve control symbol.
    8. Method in accordance with claim 7, characterized in that the parameters are determined by steady-state measurements on the engine test stand and are entered into maps.
    9. Method in accordance with claim 1, characterized in that the air mass (m andZyl ) flowing into the cylinders is calculated by the equation
      Figure 00270001
      where
      TA
      is the sampling interval or segment time
      [N]
      is the model variable of the air mass flow during the current sampling step or segment
      [N-1]
      is the model variable of the air mass flow during the previous sampling step or segment.
    10. Method in accordance with claim 1, characterized in that the air mass (m andZyl ) flowing into the cylinder or cylinders is estimated for a defined prediction horizon (H) located in the future with respect to the current load detection at the moment of sampling [N] by estimating the corresponding pressure value in accordance with the following equation:
      Figure 00280001
      where
      TA:
      sampling interval or segment time
      H:
      prediction horizon, number of sampling steps located in the future
      γ1 :
      gradient of the linear equation
      γ0:
      absolute term for determining
      N:
      current sampling step
    11. Method in accordance with claim 10, characterized in that the number (H) of segments for which the load signal is to be estimated for the future is established as a function of the speed.
    EP96909021A 1995-04-10 1996-04-09 Process for finding the mass of air entering the cylinders of an internal combustion engine with the aid of a model Expired - Lifetime EP0820559B1 (en)

    Applications Claiming Priority (3)

    Application Number Priority Date Filing Date Title
    DE19513601 1995-04-10
    DE19513601 1995-04-10
    PCT/DE1996/000615 WO1996032579A1 (en) 1995-04-10 1996-04-09 Process for finding the mass of air entering the cylinders of an internal combustion engine with the aid of a model

    Publications (2)

    Publication Number Publication Date
    EP0820559A1 EP0820559A1 (en) 1998-01-28
    EP0820559B1 true EP0820559B1 (en) 1999-09-15

    Family

    ID=7759410

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP96909021A Expired - Lifetime EP0820559B1 (en) 1995-04-10 1996-04-09 Process for finding the mass of air entering the cylinders of an internal combustion engine with the aid of a model

    Country Status (10)

    Country Link
    US (1) US5889205A (en)
    EP (1) EP0820559B1 (en)
    JP (1) JPH11504093A (en)
    KR (1) KR100413402B1 (en)
    CN (1) CN1073205C (en)
    BR (1) BR9604813A (en)
    CA (1) CA2217824C (en)
    CZ (1) CZ319497A3 (en)
    DE (1) DE59603079D1 (en)
    WO (1) WO1996032579A1 (en)

    Cited By (19)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    DE10224213C1 (en) * 2002-05-31 2003-10-09 Siemens Ag Regulating combustion air filling of internal combustion engine, involves tuning model using measurement and model values, deriving actuator element desired values using inverted version of tuned model
    DE10220141A1 (en) * 2002-05-06 2003-12-04 Siemens Ag Controlling combustion in internal combustion engine with at least 2 cylinder banks, uses model-assisted predictive regulation, involves computing engine filling model for selected cylinder banks
    DE10222137B3 (en) * 2002-05-17 2004-02-05 Siemens Ag Method for controlling an internal combustion engine
    WO2004016339A2 (en) * 2002-07-25 2004-02-26 Siemens Aktiengesellschaft Method for cleaning a particulate filter
    DE10234719B3 (en) * 2002-07-30 2004-04-15 Siemens Ag Method for regulating the filling of an internal combustion engine
    US6796293B2 (en) 2000-03-31 2004-09-28 Siemens Aktiengesellschaft Method for starting an internal combustion engine and starter device for an internal combustion engine
    DE102005046504A1 (en) * 2005-09-29 2007-04-05 Bayerische Motoren Werke Ag Device for determining the air mass flowing in the cylinder combustion chamber of an engine cylinder of a vehicle comprises a sensor arrangement for directly measuring the suction tube pressure and a calculating module
    DE102006010542B3 (en) * 2006-03-07 2007-08-23 Siemens Ag Fault variable-servo unit detecting method for internal combustion engine, involves comparing regulating signal with threshold value, so that defect of servo unit is recognized when regulating signal exceeds threshold value
    DE102006032493B3 (en) * 2006-07-13 2008-04-10 Siemens Ag Method for amending ambient pressure sensor for internal combustion (IC) engine, involves measuring pressure loss between air intake opening of intake pipe and reference location downstream of same opening
    DE102007022703B3 (en) * 2007-05-15 2008-11-20 Continental Automotive Gmbh Method for controlling a supercharged internal combustion engine
    DE102007060036A1 (en) * 2007-12-13 2009-07-30 Continental Automotive Gmbh Method for determining adapted measured values and / or model parameters for controlling the air path of internal combustion engines
    DE102008014069A1 (en) 2008-03-13 2009-09-17 Continental Automotive Gmbh Method and device for operating an internal combustion engine
    DE102008015909B3 (en) * 2008-03-27 2009-12-03 Continental Automotive Gmbh Internal combustion engine operating method for motor vehicle, involves classifying preset possible error as presumably available error, when amount of deviation of mean value from reference value of parameter is larger than threshold value
    DE102013213871A1 (en) 2013-07-16 2015-01-22 Continental Automotive Gmbh Method and device for operating an internal combustion engine
    DE102013216073A1 (en) 2013-08-14 2015-02-19 Continental Automotive Gmbh Method and device for operating an internal combustion engine
    DE102005045925B4 (en) * 2004-09-29 2015-03-05 General Motors Corp. Control system and method for air mass flow rate estimation based on the manifold absolute pressure and appropriately trained vehicle
    WO2015176930A1 (en) 2014-05-22 2015-11-26 Continental Automotive Gmbh Method and device for operating an internal combustion engine
    DE102015204155B3 (en) * 2015-03-09 2016-08-18 Continental Automotive Gmbh Method for torque-neutral switching of operating states of an actuator of an internal combustion engine
    DE102019211398A1 (en) * 2019-07-31 2021-02-04 Ford Global Technologies, Llc Determine an inner cylinder air mass

    Families Citing this family (94)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    DE59706694D1 (en) 1996-09-27 2002-04-25 Siemens Ag SECONDARY AIR SYSTEM FOR AN INTERNAL COMBUSTION ENGINE
    FR2758590B1 (en) * 1997-01-20 1999-04-16 Siemens Automotive Sa CONTROL DEVICE FOR AN INTERNAL COMBUSTION ENGINE WITH DIRECT IGNITION AND DIRECT INJECTION
    DE19705766C1 (en) * 1997-02-14 1998-08-13 Siemens Ag Method and device for monitoring a sensor which is assigned to an internal combustion engine
    DE19709955C2 (en) * 1997-03-11 2003-10-02 Siemens Ag Method and device for controlling an internal combustion engine
    DE19740970A1 (en) * 1997-04-01 1998-10-08 Bosch Gmbh Robert Operation of internal combustion engine
    WO1998044250A1 (en) * 1997-04-01 1998-10-08 Robert Bosch Gmbh Device for determining the volume of air entering the cylinder of an internal combustion engine with a supercharger
    DE19727866C2 (en) 1997-06-30 2003-03-20 Siemens Ag Device for controlling an internal combustion engine
    DE19740968B4 (en) * 1997-09-17 2007-11-29 Robert Bosch Gmbh Method for operating an internal combustion engine
    BR9812867A (en) 1997-10-07 2000-08-08 Siemens Ag Device process for monitoring an internal combustion engine
    DE19753873B4 (en) * 1997-12-05 2008-05-29 Robert Bosch Gmbh Method and device for operating an internal combustion engine
    DE19829483C2 (en) * 1998-07-01 2001-09-20 Siemens Ag Device for determining a size that characterizes the air mass in a cylinder of an internal combustion engine
    US6246950B1 (en) * 1998-09-01 2001-06-12 General Electric Company Model based assessment of locomotive engines
    DE19853410A1 (en) * 1998-11-19 2000-05-25 Bayerische Motoren Werke Ag Procedure for determining throttle valve angle
    US6089082A (en) * 1998-12-07 2000-07-18 Ford Global Technologies, Inc. Air estimation system and method
    DE19938260A1 (en) * 1999-08-12 2001-02-15 Volkswagen Ag Method and device for fresh air determination on an internal combustion engine
    DE19939973A1 (en) * 1999-08-24 2001-03-01 Volkswagen Ag Regulation of a gasoline engine
    JP2003522888A (en) * 2000-02-09 2003-07-29 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Method and apparatus for determining mass flow through a control valve and method and apparatus for determining modeled intake pipe pressure
    US6357430B1 (en) 2000-03-21 2002-03-19 Ford Global Technologies, Inc. Method and system for calculating engine load ratio during rapid throttle changes
    DE10017280A1 (en) * 2000-04-06 2001-10-11 Bosch Gmbh Robert Method and device for controlling an internal combustion engine
    DE10021132A1 (en) * 2000-04-29 2001-11-29 Bayerische Motoren Werke Ag Method and device for the electronic control of actuators of an internal combustion engine with variable gas exchange control
    AUPQ723800A0 (en) * 2000-05-01 2000-05-25 Orbital Engine Company (Australia) Proprietary Limited Engine airflow measurement
    US6460409B1 (en) * 2000-05-13 2002-10-08 Ford Global Technologies, Inc. Feed-forward observer-based control for estimating cylinder air charge
    DE10032103A1 (en) * 2000-07-01 2002-03-07 Bayerische Motoren Werke Ag Electronic control device for controlling actuators of an internal combustion engine in motor vehicles with means for changing the valve timing and / or with means for changing the valve strokes
    DE10039785B4 (en) * 2000-08-16 2014-02-13 Robert Bosch Gmbh Method and device for operating an internal combustion engine
    DE10039953C1 (en) 2000-08-16 2002-04-11 Siemens Ag Method and device for controlling an internal combustion engine
    DE10065122A1 (en) * 2000-12-28 2002-08-14 Bosch Gmbh Robert Method for detecting the state of the art mass flows to the intake manifold of an internal combustion engine
    DE10116932A1 (en) * 2001-04-05 2002-10-10 Bayerische Motoren Werke Ag Method for determining the air mass flow from the intake manifold into the cylinder of an internal combustion engine
    DE10123034A1 (en) * 2001-05-11 2002-11-14 Bosch Gmbh Robert Pressure determining method for the upstream of a choke in the inlet to a combustion engine whereby the pressure is determined based on a physical model the inputs to which are the downstream pressure and the choke's cross section
    DE10129035A1 (en) * 2001-06-15 2002-12-19 Bosch Gmbh Robert Inlet temperature measurement system for car engines, estimates effect of exhaust gas addition
    DE10140617A1 (en) * 2001-08-18 2003-03-06 Bosch Gmbh Robert Measuring system with ratiometric frequency output
    JP3963171B2 (en) 2001-10-15 2007-08-22 トヨタ自動車株式会社 Intake air amount estimation device for internal combustion engine
    DE10227064A1 (en) * 2002-06-18 2004-01-08 Robert Bosch Gmbh Method for determining the cylinder charge of an internal combustion engine with variable valve lift adjustment, control element and internal combustion engine
    DE10227466B4 (en) * 2002-06-20 2004-06-09 Bayerische Motoren Werke Ag Method for determining cylinder loading in an internal combustion engine
    US6810854B2 (en) * 2002-10-22 2004-11-02 General Motors Corporation Method and apparatus for predicting and controlling manifold pressure
    JP3898114B2 (en) * 2002-11-01 2007-03-28 本田技研工業株式会社 Intake air amount estimation method, estimation device, intake air amount control method and control device for internal combustion engine
    JP3901091B2 (en) * 2002-12-27 2007-04-04 トヨタ自動車株式会社 Intake air amount estimation device for internal combustion engine
    GB2397137B (en) * 2003-01-08 2005-12-07 Ford Global Tech Inc A control for an internal combustion engine
    US6851304B2 (en) * 2003-01-28 2005-02-08 Ford Global Technologies, Llc Air estimation approach for internal combustion engine control
    JP2004239128A (en) * 2003-02-05 2004-08-26 Mazda Motor Corp Predicting analyzing method of engine performance, predicting analyzing system and its control program
    DE10332608B3 (en) 2003-07-17 2005-05-04 Siemens Ag Method for controlling an internal combustion engine and a device for controlling an internal combustion engine
    DE10338628A1 (en) * 2003-08-22 2005-03-17 Daimlerchrysler Ag Method for operating an internal combustion engine with emission control system
    JP3985746B2 (en) * 2003-08-26 2007-10-03 トヨタ自動車株式会社 Control device for internal combustion engine
    JP4231419B2 (en) * 2004-01-08 2009-02-25 株式会社日立製作所 Intake air amount measuring device for internal combustion engine
    US6955080B1 (en) * 2004-03-25 2005-10-18 General Motors Corporation Evaluating output of a mass air flow sensor
    DE102004033845A1 (en) 2004-07-13 2006-02-09 Robert Bosch Gmbh Method and device for operating an internal combustion engine with exhaust gas recirculation
    DE102004041708B4 (en) * 2004-08-28 2006-07-20 Bayerische Motoren Werke Ag Method for the model-based determination of fresh air mass flowing into the cylinder combustion chamber of an internal combustion engine during an intake phase
    DE102004049737A1 (en) * 2004-10-13 2006-06-22 Bayerische Motoren Werke Ag Fresh air mass flow rate determining method for internal combustion engine, involves calculating rate using non-linear systems with differential equations, where one equation is based on equilibration of in and out streaming energy flows
    JP4143862B2 (en) * 2004-11-29 2008-09-03 トヨタ自動車株式会社 Air quantity estimation device for internal combustion engine
    DE102004062018B4 (en) * 2004-12-23 2018-10-11 Robert Bosch Gmbh Method for operating an internal combustion engine
    US7027910B1 (en) * 2005-01-13 2006-04-11 General Motors Corporation Individual cylinder controller for four-cylinder engine
    DE102005030535A1 (en) * 2005-06-30 2007-01-04 Robert Bosch Gmbh Combustion engine sensor diagnosis procedure constructs dynamic model of air flow based on throttle setting, air temperature and pressure
    DE112007000998B4 (en) * 2006-04-24 2012-02-09 Gm Global Technology Operations Llc (N.D.Ges.D. Staates Delaware) Air flow estimation method and apparatus for an internal combustion engine
    FI120472B (en) * 2006-06-06 2009-10-30 Metso Automation Oy Control method and control system for flow control valve
    US7380447B2 (en) * 2006-06-10 2008-06-03 Ford Global Technologies. Llc Method and system for transient airflow compensation in an internal combustion engine
    DE102006029969B3 (en) * 2006-06-29 2007-10-18 Siemens Ag Ambient pressure sensor data validating method for internal combustion engine, involves providing differences between actual air mass flow and air masses calculated based on measured ambient pressure and stored pressure, respectively
    DE102006035096B4 (en) 2006-07-28 2014-07-03 Continental Automotive Gmbh Method and device for operating an internal combustion engine
    JP4936439B2 (en) * 2006-10-11 2012-05-23 国立大学法人東京工業大学 Pressure regulator and vibration isolator
    DE102007008514A1 (en) * 2007-02-21 2008-09-04 Siemens Ag Method and device for neuronal control and / or regulation
    DE102007012506B4 (en) * 2007-03-15 2009-02-26 Continental Automotive Gmbh Method for determining and adjusting the air mass flow in the intake manifold of an internal combustion engine and associated control unit
    DE102007035314B4 (en) 2007-07-27 2019-04-11 Robert Bosch Gmbh Method and device for operating an internal combustion engine
    DE102007051873B4 (en) * 2007-10-30 2023-08-10 Robert Bosch Gmbh Method and device for operating an internal combustion engine
    DE102007063102B4 (en) * 2007-12-28 2022-02-10 Robert Bosch Gmbh Method for detecting a periodically pulsating operating parameter
    EP2098710B1 (en) * 2008-03-04 2016-07-27 GM Global Technology Operations LLC A method for estimating the oxygen concentration in internal combustion engines
    DE102008039559B4 (en) * 2008-04-23 2014-08-14 GM Global Technology Operations LLC (n. d. Ges. d. Staates Delaware) Method and control system for determining an air mass flow rate
    DE102008022214B3 (en) * 2008-05-06 2009-11-26 Continental Automotive Gmbh Throttle flap and circulating air flap controlling method for use in internal combustion engine, involves controlling throttle and circulating air flaps based on reference values of throttle and air flap pressure ratios, respectively
    DE102008022213A1 (en) 2008-05-06 2009-11-12 Continental Automotive Gmbh Method for determining pressure as model value according to throttle flap for volume limited by throttle valve, recirculating air flap and compressor, involves determining pressure according to throttle flap, and charge air pressure
    DE102008040633B4 (en) * 2008-07-23 2020-01-02 Robert Bosch Gmbh Method for operating an internal combustion engine
    DE102008043965B4 (en) * 2008-11-21 2022-03-31 Robert Bosch Gmbh Process for real-time capable simulation of an air system model of a combustion engine
    DE102009007808B4 (en) 2009-02-04 2022-02-10 Volkswagen Aktiengesellschaft Method for operating an internal combustion engine
    JP2011094561A (en) * 2009-10-30 2011-05-12 Hitachi Automotive Systems Ltd Engine control unit
    US8549900B2 (en) * 2010-01-18 2013-10-08 Toyota Jidosha Kabushiki Kaisha Gas state estimation device for internal combustion engine
    WO2012070100A1 (en) * 2010-11-22 2012-05-31 トヨタ自動車株式会社 Air-quantity estimation device for internal combustion engine with supercharger
    DE102010052644A1 (en) * 2010-11-29 2012-05-31 Audi Ag Method for operating an internal combustion engine, control element, internal combustion engine
    US8880321B2 (en) * 2011-03-07 2014-11-04 Toyota Motor Engineering & Manufacturing North America, Inc. Adaptive air charge estimation based on support vector regression
    DE102011014767B4 (en) 2011-03-21 2022-09-01 Volkswagen Aktiengesellschaft Method for operating an internal combustion engine
    JP5752517B2 (en) 2011-08-03 2015-07-22 トヨタ自動車株式会社 Control device for internal combustion engine
    DE102012212860B3 (en) * 2012-07-23 2013-12-12 Schaeffler Technologies AG & Co. KG Method for determining the filling of the cylinders of reciprocating internal combustion engines
    JP6140985B2 (en) * 2012-11-19 2017-06-07 トヨタ紡織株式会社 Intake pipe structure of internal combustion engine
    DE102012221311B4 (en) 2012-11-22 2014-07-10 Continental Automotive Gmbh Method for fresh air detection by evaluation of a cylinder internal pressure signal
    WO2014152701A1 (en) 2013-03-15 2014-09-25 United Technologies Corporation Compact aero-thermo model based control system
    JP2015080379A (en) * 2013-10-18 2015-04-23 タイコエレクトロニクスジャパン合同会社 Position detection sensor, and throttle device of internal combustion engine
    DE102014211162B4 (en) * 2014-06-11 2021-09-02 Volkswagen Aktiengesellschaft Method and device for filling detection in a cylinder of an internal combustion engine
    JP2016065484A (en) * 2014-09-24 2016-04-28 トヨタ自動車株式会社 Estimation device of throttle upstream pressure
    FR3027957A1 (en) * 2014-11-04 2016-05-06 Peugeot Citroen Automobiles Sa METHOD FOR ESTIMATING A GAS FLOW IN A CYLINDER FOR CONTROLLING AN INTERNAL COMBUSTION ENGINE
    DE102016204539A1 (en) * 2016-03-18 2017-09-21 Volkswagen Aktiengesellschaft Method and control device for determining an amount of a charge component in a cylinder of an internal combustion engine
    DE102016219584B4 (en) * 2016-10-10 2018-05-30 Continental Automotive Gmbh Method for the combined identification of phase differences of the intake valve lift and the exhaust valve lift of an internal combustion engine by means of lines of identical phase positions and amplitudes
    DE102016219582B3 (en) * 2016-10-10 2017-06-08 Continental Automotive Gmbh A method of combined identification of intake valve lift phase difference and exhaust valve lift phase difference of an internal combustion engine by means of equal amplitude lines
    JP6515903B2 (en) * 2016-11-02 2019-05-22 トヨタ自動車株式会社 Control device for internal combustion engine
    CN108005805B (en) * 2017-11-29 2020-04-07 奇瑞汽车股份有限公司 Engine load calculation method, engine and automobile
    CN111143980B (en) * 2019-12-17 2022-03-22 淮阴工学院 Method for calculating opening of check valve of high-pressure oil pipe
    US11790126B2 (en) * 2019-12-19 2023-10-17 Caterpillar Inc. Method and system for internal combustion engine simulation
    JP2022026885A (en) * 2020-07-31 2022-02-10 ナブテスコ株式会社 Engine characteristic estimation device, engine characteristic estimation method, and engine characteristic estimation program
    CN112985530B (en) * 2021-02-01 2022-04-22 南京航空航天大学 Method for adjusting design parameters of fuel metering device based on characteristic equation root track
    JP2023038764A (en) * 2021-09-07 2023-03-17 株式会社ニッキ Fuel injection control method of engine and device

    Family Cites Families (10)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    DE68904437D1 (en) * 1988-01-29 1993-03-04 Hitachi Ltd ENGINE FUEL INJECTION CONTROL.
    US5003950A (en) * 1988-06-15 1991-04-02 Toyota Jidosha Kabushiki Kaisha Apparatus for control and intake air amount prediction in an internal combustion engine
    JP2818805B2 (en) * 1988-12-08 1998-10-30 富士重工業株式会社 Engine fuel injection control device
    US5293553A (en) * 1991-02-12 1994-03-08 General Motors Corporation Software air-flow meter for an internal combustion engine
    US5270935A (en) * 1990-11-26 1993-12-14 General Motors Corporation Engine with prediction/estimation air flow determination
    US5377112A (en) * 1991-12-19 1994-12-27 Caterpillar Inc. Method for diagnosing an engine using computer based models
    US5497329A (en) * 1992-09-23 1996-03-05 General Motors Corporation Prediction method for engine mass air flow per cylinder
    EP0594114B1 (en) * 1992-10-19 1999-12-15 Honda Giken Kogyo Kabushiki Kaisha Fuel metering control system in internal combustion engine
    DE4325902C2 (en) * 1993-08-02 1999-12-02 Bosch Gmbh Robert Air charge calculation method for an internal combustion engine with variable gas exchange control
    US5714683A (en) * 1996-12-02 1998-02-03 General Motors Corporation Internal combustion engine intake port flow determination

    Cited By (32)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US6796293B2 (en) 2000-03-31 2004-09-28 Siemens Aktiengesellschaft Method for starting an internal combustion engine and starter device for an internal combustion engine
    DE10220141B4 (en) * 2002-05-06 2007-11-29 Siemens Ag A method of controlling the combustion of an internal combustion engine having at least two cylinder banks
    DE10220141A1 (en) * 2002-05-06 2003-12-04 Siemens Ag Controlling combustion in internal combustion engine with at least 2 cylinder banks, uses model-assisted predictive regulation, involves computing engine filling model for selected cylinder banks
    DE10222137B3 (en) * 2002-05-17 2004-02-05 Siemens Ag Method for controlling an internal combustion engine
    DE10224213C1 (en) * 2002-05-31 2003-10-09 Siemens Ag Regulating combustion air filling of internal combustion engine, involves tuning model using measurement and model values, deriving actuator element desired values using inverted version of tuned model
    WO2004016339A2 (en) * 2002-07-25 2004-02-26 Siemens Aktiengesellschaft Method for cleaning a particulate filter
    WO2004016339A3 (en) * 2002-07-25 2004-06-03 Siemens Ag Method for cleaning a particulate filter
    DE10233945B4 (en) * 2002-07-25 2005-09-22 Siemens Ag Process for cleaning a particulate filter
    US7077103B2 (en) 2002-07-30 2006-07-18 Siemens Aktiengesellschaft Method for regulating the filling of an internal combustion engine
    DE10234719B3 (en) * 2002-07-30 2004-04-15 Siemens Ag Method for regulating the filling of an internal combustion engine
    DE102005045925B4 (en) * 2004-09-29 2015-03-05 General Motors Corp. Control system and method for air mass flow rate estimation based on the manifold absolute pressure and appropriately trained vehicle
    DE102005046504A1 (en) * 2005-09-29 2007-04-05 Bayerische Motoren Werke Ag Device for determining the air mass flowing in the cylinder combustion chamber of an engine cylinder of a vehicle comprises a sensor arrangement for directly measuring the suction tube pressure and a calculating module
    US7546760B2 (en) 2005-09-29 2009-06-16 Bayerische Motoren Werke Aktiengesellschaft Device for pressure-based load detection
    DE102006010542B3 (en) * 2006-03-07 2007-08-23 Siemens Ag Fault variable-servo unit detecting method for internal combustion engine, involves comparing regulating signal with threshold value, so that defect of servo unit is recognized when regulating signal exceeds threshold value
    DE102006032493B3 (en) * 2006-07-13 2008-04-10 Siemens Ag Method for amending ambient pressure sensor for internal combustion (IC) engine, involves measuring pressure loss between air intake opening of intake pipe and reference location downstream of same opening
    DE102007022703B3 (en) * 2007-05-15 2008-11-20 Continental Automotive Gmbh Method for controlling a supercharged internal combustion engine
    DE102007060036B4 (en) * 2007-12-13 2010-01-07 Continental Automotive Gmbh Method for determining corrected measured values and / or model parameters for controlling the air path of internal combustion engines
    DE102007060036A1 (en) * 2007-12-13 2009-07-30 Continental Automotive Gmbh Method for determining adapted measured values and / or model parameters for controlling the air path of internal combustion engines
    DE102008014069A1 (en) 2008-03-13 2009-09-17 Continental Automotive Gmbh Method and device for operating an internal combustion engine
    DE102008014069B4 (en) * 2008-03-13 2009-11-26 Continental Automotive Gmbh Method and device for operating an internal combustion engine
    DE102008015909B3 (en) * 2008-03-27 2009-12-03 Continental Automotive Gmbh Internal combustion engine operating method for motor vehicle, involves classifying preset possible error as presumably available error, when amount of deviation of mean value from reference value of parameter is larger than threshold value
    DE102013213871A1 (en) 2013-07-16 2015-01-22 Continental Automotive Gmbh Method and device for operating an internal combustion engine
    DE102013213871B4 (en) * 2013-07-16 2021-02-11 Vitesco Technologies GmbH Method and device for operating an internal combustion engine
    US9739217B2 (en) 2013-08-14 2017-08-22 Continental Automotive Gmbh Method and device for operating an internal combustion engine
    DE102013216073A1 (en) 2013-08-14 2015-02-19 Continental Automotive Gmbh Method and device for operating an internal combustion engine
    DE102013216073B4 (en) * 2013-08-14 2015-08-13 Continental Automotive Gmbh Method and device for operating an internal combustion engine
    DE102014209793A1 (en) 2014-05-22 2015-11-26 Continental Automotive Gmbh Method and device for operating an internal combustion engine
    US10240546B2 (en) 2014-05-22 2019-03-26 Continental Automotive Gmbh Method and device for operating an internal combustion engine
    DE102014209793B4 (en) * 2014-05-22 2020-02-06 Continental Automotive Gmbh Method and device for operating an internal combustion engine
    WO2015176930A1 (en) 2014-05-22 2015-11-26 Continental Automotive Gmbh Method and device for operating an internal combustion engine
    DE102015204155B3 (en) * 2015-03-09 2016-08-18 Continental Automotive Gmbh Method for torque-neutral switching of operating states of an actuator of an internal combustion engine
    DE102019211398A1 (en) * 2019-07-31 2021-02-04 Ford Global Technologies, Llc Determine an inner cylinder air mass

    Also Published As

    Publication number Publication date
    JPH11504093A (en) 1999-04-06
    EP0820559A1 (en) 1998-01-28
    US5889205A (en) 1999-03-30
    CN1181124A (en) 1998-05-06
    CN1073205C (en) 2001-10-17
    CZ319497A3 (en) 1999-01-13
    KR100413402B1 (en) 2004-04-28
    CA2217824A1 (en) 1996-10-17
    KR19980703458A (en) 1998-11-05
    DE59603079D1 (en) 1999-10-21
    BR9604813A (en) 1998-06-09
    CA2217824C (en) 2006-01-24
    WO1996032579A1 (en) 1996-10-17

    Similar Documents

    Publication Publication Date Title
    EP0820559B1 (en) Process for finding the mass of air entering the cylinders of an internal combustion engine with the aid of a model
    EP0886725B1 (en) Process for model-assisted determination of fresh air mass flowing into the cylinder of an internal combustion engine with external exhaust-gas recycling
    EP0680556B1 (en) Process for calculating the air filling volume in an internal combustion engine with a variable gas exchange control
    DE102013211260B4 (en) Estimation device for the cylinder intake air amount in an internal combustion engine
    DE69630588T2 (en) ADAPTIVE TRANSITION COMPENSATION OF FUEL FOR AN ENGINE
    DE19741180B4 (en) Engine control system and method
    DE102015211808B4 (en) Control device for internal combustion engine
    DE102013209560B4 (en) Cylinder intake air quantity estimation device for an internal combustion engine
    EP3698032B1 (en) Method for the model-based control and regulation of an internal combustion engine
    DE10122456A1 (en) Pure feed-forward control based on an observer for estimating the cylinder intake air
    EP1147309A1 (en) Device for suppressing engine knocking in an internal combustion engine
    WO2006069853A1 (en) Method for the operation of an internal combustion engine
    DE102013202720A1 (en) Estimation device for a cylinder intake air quantity in an internal combustion engine
    DE102017005783B4 (en) Method for model-based control and regulation of an internal combustion engine
    DE19855493B4 (en) Motor controller
    DE19547496A1 (en) System for determining exact air induction of IC engine
    DE4013661A1 (en) INJECTION MONITORING DEVICE FOR A MOTOR VEHICLE INTERNAL COMBUSTION ENGINE
    DE3902303A1 (en) FUEL CONTROL FOR A COMBUSTION ENGINE
    DE102010046491A1 (en) Method for determining emission of pollutants in combustion chamber of diesel engine of motor vehicle, involves determining oxygen concentration, pressure, temperature, air and fuel mass of chamber using statistical model of engine
    EP0707685B1 (en) Method of adapting internal-combustion engine air values from a substitute characteristic diagram used to control, on the occurrence of pulsing in the air-aspiration line, the formation of the mixture to suit the currently prevailing outside-air conditions
    EP2019195B1 (en) Method for determining the amount of fuel injected
    DE19803689C1 (en) Fuel injection duration control method for direct fuel injection IC engine, e.g. vehicle deisel engine
    EP0407406A1 (en) Learning control process and device for internal combustion engines.
    DE102006053805B4 (en) Method for operating an internal combustion engine to determine a filling in a combustion chamber
    EP1506348B1 (en) Method and device for controlling the quantity of fuel to be injected into a self-igniting internal combustion engine

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    17P Request for examination filed

    Effective date: 19971006

    AK Designated contracting states

    Kind code of ref document: A1

    Designated state(s): DE FR GB

    GRAG Despatch of communication of intention to grant

    Free format text: ORIGINAL CODE: EPIDOS AGRA

    GRAG Despatch of communication of intention to grant

    Free format text: ORIGINAL CODE: EPIDOS AGRA

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    17Q First examination report despatched

    Effective date: 19990226

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    AK Designated contracting states

    Kind code of ref document: B1

    Designated state(s): DE FR GB

    GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

    Effective date: 19990921

    REF Corresponds to:

    Ref document number: 59603079

    Country of ref document: DE

    Date of ref document: 19991021

    ET Fr: translation filed
    PLBE No opposition filed within time limit

    Free format text: ORIGINAL CODE: 0009261

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

    26N No opposition filed
    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: IF02

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: FR

    Payment date: 20090414

    Year of fee payment: 14

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: GB

    Payment date: 20090421

    Year of fee payment: 14

    GBPC Gb: european patent ceased through non-payment of renewal fee

    Effective date: 20100409

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: ST

    Effective date: 20101230

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: GB

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20100409

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: FR

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20100430

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: DE

    Payment date: 20150430

    Year of fee payment: 20

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: R071

    Ref document number: 59603079

    Country of ref document: DE