EP0820559A1 - Process for finding the mass of air entering the cylinders of an internal combustion engine with the aid of a model - Google Patents

Process for finding the mass of air entering the cylinders of an internal combustion engine with the aid of a model

Info

Publication number
EP0820559A1
EP0820559A1 EP96909021A EP96909021A EP0820559A1 EP 0820559 A1 EP0820559 A1 EP 0820559A1 EP 96909021 A EP96909021 A EP 96909021A EP 96909021 A EP96909021 A EP 96909021A EP 0820559 A1 EP0820559 A1 EP 0820559A1
Authority
EP
European Patent Office
Prior art keywords
air mass
model
intake manifold
equation
throttle valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP96909021A
Other languages
German (de)
French (fr)
Other versions
EP0820559B1 (en
Inventor
Stefan Treinies
Maximilian Engl
Gerd RÖSEL
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP0820559A1 publication Critical patent/EP0820559A1/en
Application granted granted Critical
Publication of EP0820559B1 publication Critical patent/EP0820559B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/18Circuit arrangements for generating control signals by measuring intake air flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/18Circuit arrangements for generating control signals by measuring intake air flow
    • F02D41/182Circuit arrangements for generating control signals by measuring intake air flow for the control of a fuel injection device
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • F02D2041/001Controlling intake air for engines with variable valve actuation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D2041/1412Introducing closed-loop corrections characterised by the control or regulation method using a predictive controller
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D2041/1413Controller structures or design
    • F02D2041/1431Controller structures or design the system including an input-output delay
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D2041/1433Introducing closed-loop corrections characterised by the control or regulation method using a model or simulation of the system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/04Engine intake system parameters
    • F02D2200/0402Engine intake system parameters the parameter being determined by using a model of the engine intake or its components

Definitions

  • the invention relates to a method for model-based determination of the air mass flowing into the cylinders of an internal combustion engine according to the preamble of claim 1.
  • the signal of the air mass meter which is used as the load signal of the internal combustion engine, and which is arranged upstream of the intake manifold, does not represent a measure of the actual filling of the cylinders in stationary operation because the volume of the intake manifold acts downstream of the throttle valve as an air reservoir that has to be filled and emptied.
  • the decisive air mass for the injection time calculation is that air mass which flows out of the intake manifold and into the respective cylinder.
  • the output signal of the pressure sensor reflects the actual pressure conditions in the intake manifold, but the measured variables are available Due to the necessary averaging of the measured variable, inter alia, it is available relatively late.
  • variable intake systems and variable valve controls With the introduction of variable intake systems and variable valve controls, a very large number of influencing variables which influence the corresponding model parameters arise for empirically obtained models for obtaining the load size from measurement signals.
  • DE 39 19 488 C2 discloses a device for regulating and predicting the intake air quantity of an internal combustion engine guided by intake manifold pressure, in which the degree of throttle valve opening and the engine speed are used as the basis for calculating the current value of the air drawn into the combustion chamber of the engine . This calculated, current amount of intake air is then used as the basis for calculating the predetermined value for the amount of intake air to be drawn into the combustion chamber of the engine at a specific time from the point at which the calculation was carried out , used.
  • the pressure signal which is measured downstream of the throttle valve is corrected with the aid of theoretical relationships, so that an improvement in the determination of the intake air mass is achieved and a more precise calculation of the injection time is possible.
  • the invention is based on the object of specifying a method with which the air mass actually flowing into the cylinder of the internal combustion engine can be determined with high accuracy.
  • system-related dead time Ten which can occur due to the fuel storage and the computing time when calculating the injection time, are compensated.
  • the selected model approach includes the modeling of variable suction systems and systems with variable valve controls.
  • the by this arrangement and by dynamic reloading, i.e. Effects caused by reflections of pressure waves in the intake manifold can only be very well taken into account solely by the choice of stationary parameters of the model.
  • all model parameters can be interpreted physically and, on the other hand, they can only be obtained from stationary measurements.
  • the model-based calculation method according to the invention also offers the possibility of predicting the load signal by a selectable number of sampling steps, i.e. a prediction of the load signal with a variable prediction horizon. If the prediction time proportional to the prediction horizon at constant speed does not become too long, a predicted load signal of high accuracy is obtained.
  • FIG. 1 shows a schematic diagram of the intake system of an Otto engine, including the corresponding model and measurement variables
  • FIG. 2 shows the flow function and the associated polygonal approximation, Intake manifold pressure-controlled engine control systems.
  • the model-based calculation of the load variable mzyi is based on the basic arrangement shown in FIG. 1. For reasons of clarity, only one cylinder of the internal combustion engine is shown.
  • the reference numeral 10 denotes an intake manifold of an internal combustion engine, in which a throttle valve 11 is arranged.
  • the throttle valve 11 is connected to a throttle valve position sensor 14 which determines the degree of opening of the throttle valve.
  • An air mass meter 12 is arranged upstream of the throttle valve 11 in an air mass-guided engine control system, while an intake manifold pressure sensor 13 is arranged in the intake manifold in an intake manifold pressure-guided engine control system. Depending on the type of load detection, only one of the two components 12, 13 is therefore present.
  • FIG. 1 An inlet valve 15, an outlet valve 16 and a piston 18 movable in a cylinder 17 are shown schematically in FIG.
  • Y ⁇ DK is thus the air mass flow at the throttle valve and mzyi is the air mass flow that actually flows into the cylinder of the internal combustion engine.
  • the basic task in the model-based calculation of the engine load state now consists in solving the differential equation for the intake manifold pressure
  • the general gas constant is denoted by RL.
  • the load size mzyi is determined by integration from the cylinder
  • equation (2.1) gives the conditions more accurately than with single-point injections, i.e. in the case of injections in which the fuel is metered by means of a single fuel injection valve.
  • the first-mentioned type of fuel metering almost the entire intake system is filled with air. There is only a fuel-air mixture in a small area in front of the inlet valves.
  • the entire intake manifold from the throttle valve to the intake valve is filled with a fuel-air mixture, since the injection valve is arranged in front of the throttle valve.
  • the assumption of an ideal gas represents a closer approximation than is the case with multi-point injection.
  • the fuel is metered accordingly
  • ⁇ mDK is described by the flow equation of ideal gases through throttling points. Flow losses occurring at the throttle point are reduced by the reduced flow cross
  • T S temperature of the air in the intake manifold
  • ⁇ A RED can be specified.
  • FIG. 2 shows the course of the flow function ⁇ and the approximation principle applied to it.
  • the flow function ⁇ is represented by a straight line. With a reasonable number of straight line sections, a good approximation can be achieved. With such an approach, equation (2.2) can be used to calculate the mass flow at the throttle valve
  • mj_ describes the slope and nj_ the absolute term of the respective line segment.
  • the values for the slope and for the absolute member are shown in tables as a function of the ratio of intake manifold pressure to ambient pressure
  • the slope ⁇ ] and the absolute member ⁇ 0 of the relationship (2.4) are functions of the speed, the intake manifold geometry, the number of cylinders, the valve timing and the temperature of the air in the intake manifold Tg, taking into account all essential influencing factors.
  • the dependence of the values on ⁇ j and ⁇ 0 from the influencing variables speed, intake manifold geometry, The number of linders and the valve timing and valve lift curves can be determined using stationary measurements.
  • the influence of vibrating tube and / or resonance suction systems on the air mass sucked in by the internal combustion engine is also well reproduced via this value determination.
  • the values of> and ⁇ 0 are stored in characteristic diagrams of the electronic engine control device.
  • the intake manifold pressure Pg is selected as the determining variable for determining the engine load. With the help of the model differential equation, this quantity should be as precise and fast as possible
  • the non-linear form of the differential equation (2.1) can be approximated by the biliary equation (2.5).
  • the following basic requirements for the solution properties of the difference equation to be formed can be formulated as a criterion for selecting the suitable difference scheme: 1.
  • the difference scheme must be conservative even under extreme dynamic requirements, ie the solution of the difference equation must correspond to the solution of the differential equation,
  • Claim 1 can be met by an implicit calculation algorithm. Due to the approximation of the nonlinear differential equation (2.1) by means of a bilinear equation, the resulting implicit solution scheme can be solved without using iterative methods, since the difference equation can be converted into an explicit form.
  • [N] means the current segment or the current arithmetic step
  • [N + l] the next following segment or the next arithmetic step.
  • ⁇ flow mzyi that flows into the cylinders can be determined using the relationship (2.4). If a simple integration algorithm is used, the relationship is obtained for the air mass sucked in by the internal combustion engine during an intake stroke
  • the values of y ⁇ and ⁇ 0 are subject to a certain degree of uncertainty.
  • the parameters of the equation for determining the mass flow in the cylinders are functions of various influencing variables, of which only the most important ones can be recorded.
  • Essential parameters of the model for determining the load size of the internal combustion engine are adjusted by correcting the throttle valve angle measured from the
  • a REDKORR ARED + A A RED (3.11)
  • Door size AARED is formed by implementing a model control loop.
  • the air mass flow mDK_LMM measured by means of the air mass meter on the throttle valve is the reference variable of this control loop, while the intake manifold pressure P s measured is used as the reference variable for intake manifold pressure-guided systems.
  • the air mass flow mDK_LMM measured by means of the air mass meter on the throttle valve is the reference variable of this control loop, while the intake manifold pressure P s measured is used as the reference variable for intake manifold pressure-guided systems.
  • the value of AARED is determined in such a way that the control deviation between the reference variable and the corresponding control variable is minimized.
  • the measured value acquisition of the reference variable must be reproduced as precisely as possible.
  • the dynamic behavior of the sensor i.e. either the air mass meter or the intake manifold pressure sensor and a subsequent averaging.
  • the dynamic behavior of the respective sensor can be modeled in a first approximation as a first-order system with possibly working point-dependent delay times T_.
  • T_ possibly working point-dependent delay times
  • rriD ⁇ _LMM [N] e ⁇ > ⁇ T ⁇ DK [N - rTlDK_LMM [N - 1] (3. 12]
  • the value of the ambient pressure P ⁇ is changed when the amount of the correction variable A ARED reaches a certain threshold ⁇ or if the pressure ratio - Ps is greater than
  • P ⁇ is a selectable constant. This ensures that an ambient pressure adjustment can take place both in the partial and in the full-load range.
  • FIG. 3 A model comparison for air mass-guided engine control systems is explained below.
  • the model structure shown in FIG. 3 can be specified for this system.
  • the throttle position sensor 14 ( Figure 1) provides a signal corresponding to the degree of opening of the throttle valve 11, e.g. a throttle opening angle.
  • a throttle opening angle e.g. a throttle opening angle.
  • values for the reduced cross section of the throttle valve opening are associated with various values of this throttle valve opening angle.
  • flap mDK_LMM If a PI controller is used as a controller in this model control loop, the remaining control deviation is zero, i.e. Model size and measured quantity of the air mass flow at the throttle valve are identical.
  • Controller ie a reduction in the controller parameters can be switched to controlled model-based operation. Areas in which the pulsations mentioned can thus be treated with the same method, taking into account dynamic relationships, as those rich, in which there is an almost undisturbed leader. In contrast to methods that only take relevant measured values into account at stationary operating points, the system described remains operational almost without restrictions. If the air mass signal or the signal from the throttle valve position sensor fails, the system presented is able to generate a corresponding replacement signal. If the command variable fails, the controlled operation must be implemented, while in the other case the regulated operation guarantees the hardly impaired functionality of the system.
  • the "intake manifold model” block represents the conditions as described using equation (2.7) and has therefore
  • the middle variable mDK_LMM and the average air mass flow mDK_LMM measured by the air mass meter can be fed to a comparator. The difference between the two signals causes
  • the model structure shown in FIG. 4 is given for intake manifold pressure-guided engine control systems, the same blocks as in FIG. 3 being given the same designations.
  • the “intake manifold model” subsystem represents the behavior described by the differential equation (2.7).
  • the reference variable of this model control loop is the measured value of the intake manifold pressure Ps_s averaged over a segment. If a PI controller is also used, as in FIG. 3, then in the stationary case 96/32579 PCIYDE96 / 00615
  • the model variables P s , P s obtained by the intake manifold model are fed to a "prediction" block. Since the models also calculate the pressure changes in the intake manifold, these pressure changes can be used to determine the future pressure curve in the intake manifold and thus the cylinder air mass for the next [N + 1] or for the next segments [ N + H] TO APPRECIATE.
  • the size mz y ⁇ and the size mz y ⁇ [N + ⁇ ] then serve for the exact calculation of the injection time during which fuel is injected.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

Calculating the mass of air actually flowing into the cylinder with the aid of an inlet pipe filling model which, from the factor angle of throttle valve aperture, environmental pressure and parameters representing the valve control, provides a load value on the basis of which the injection time is determined. In addition, this load value is used in predictions for estimating the load value at a time at least one sampling step later than the actual calculation of the injection time.

Description

Beschreibungdescription
Verfahren zum modellgestützten Bestimmen der in die Zylinder einer Brennkraftmaschine einströmenden LuftmasseMethod for model-based determination of the air mass flowing into the cylinders of an internal combustion engine
Die Erfindung betrifft ein Verfahren zum modellgestützten Be¬ stimmen der in die Zylinder einer Brennkraftmaschine einströ¬ menden Luftmasse nach dem Oberbegriff des Patentanspruches 1.The invention relates to a method for model-based determination of the air mass flowing into the cylinders of an internal combustion engine according to the preamble of claim 1.
Motorsteuerungssysteme für Brennkraftmaschinen, die mitEngine control systems for internal combustion engines using
Kraftstoffeinspritzung arbeiten, benötigen die vom Motor an¬ gesaugte Luftmasse mzyi als ein Maß für die Motorlast. Diese Größe bildet die Basis zur Realisierung eines geforderten Kraftstoff-Luft-Verhältnisses. Wachsende Anforderungen an Mo- torsteuerungssysteme, wie die Verringerung der Schadstoff¬ emission von Kraftfahrzeugen, bedingen, daß die Lastgröße für stationäre und instationäre Vorgänge mit geringen zulässigen Fehlern bestimmt werden muß. Neben den genannten Betriebsfäl¬ len bietet die genaue Lasterfassung während der Warmlaufphase der Brennkraftmaschine ein erhebliches Potential zur Schad¬ stoffreduktion.Working fuel injection, require the air mass mzyi sucked in by the engine as a measure of the engine load. This parameter forms the basis for realizing a required air-fuel ratio. Growing demands on engine control systems, such as the reduction in pollutant emissions from motor vehicles, mean that the load size for stationary and unsteady-state processes must be determined with low permissible errors. In addition to the mentioned operational cases, the precise load detection during the warm-up phase of the internal combustion engine offers considerable potential for reducing pollutants.
Bei luftmassengeführten Motorsteuerungssystemen stellt im In- stationärbetrieb das als Lastsignal der Brennkraftmaschine dienende Signal des Luftmassenmessers, der stromaufwärts des Saugrohrs angeordnet ist, kein Maß für die tatsächliche Fül¬ lung der Zylinder dar, weil das Volumen des Saugrohrs strom¬ abwärts der Drosselklappe als Luftspeicher wirkt, der befüllt und entleert werden muß. Die maßgebende Luftmasse für die Einspritzzeitberechnung ist aber diejenige Luftmasse, die aus dem Saugrohr heraus und in den jeweiligen Zylinder hinein¬ strömt.In air mass-guided engine control systems, the signal of the air mass meter, which is used as the load signal of the internal combustion engine, and which is arranged upstream of the intake manifold, does not represent a measure of the actual filling of the cylinders in stationary operation because the volume of the intake manifold acts downstream of the throttle valve as an air reservoir that has to be filled and emptied. The decisive air mass for the injection time calculation is that air mass which flows out of the intake manifold and into the respective cylinder.
Bei saugrohrdruckgeführten Motorsteuerungssystemen gibt zwar das Ausgangssignal des Drucksensors die tatsächlichen Druck¬ verhältnisse im Saugrohr wieder, die Meßgrößen stehen aber u.a. aufgrund der notwendigen Mittelung der Meßgröße erst re¬ lativ spät zur Verfügung.In intake manifold pressure-guided engine control systems, the output signal of the pressure sensor reflects the actual pressure conditions in the intake manifold, but the measured variables are available Due to the necessary averaging of the measured variable, inter alia, it is available relatively late.
Mit der Einführung variabler Ansaugsysteme und variabler Ven- tilsteuerungen entstehen für empirisch gewonnene Modelle zur Gewinnung der Lastgröße aus Meßsignalen eine sehr große Viel¬ zahl von Einflußgrößen, die die entsprechenden Modellparame¬ ter beeinflussen.With the introduction of variable intake systems and variable valve controls, a very large number of influencing variables which influence the corresponding model parameters arise for empirically obtained models for obtaining the load size from measurement signals.
Auf physikalischen Ansätzen basierende modellgestützte Be¬ rechnungsmethoden stellen einen guten Ausgangspunkt zur ge¬ nauen Bestimmung der Luftmasse mzyi dar.Model-based calculation methods based on physical approaches represent a good starting point for the precise determination of the air mass mzyi.
Aus der DE 39 19 488 C2 ist eine Vorrichtung zur Regelung und zur Vorausbestimmung der Ansaugluftmenge einer saugrohrdruck- geführten Brennkraftmaschine bekannt, bei der der Drossel¬ klappenöffnungsgrad und die Motordrehzahl als Grundlage zur Berechnung des derzeitigen Wertes der in den Brennraum der Maschine eingesaugten Luft verwendet werden. Diese berech- nete, gegenwärtige Ansaugluftmenge wird dann als Grundlage zur Berechnung des vorausbestimmten Wertes für die An- saugluftmenge, die in den Brennraum der Maschine zu einer be¬ stimmten Zeit von dem Punkt an, an dem die Berechnung ausge¬ führt wurde, einzusaugen ist, benutzt. Das Drucksignal, das stromabwärts der Drosselklappe gemessen wird, wird mit Hilfe von theoretischen Beziehungen korrigiert, so daß eine Verbes¬ serung der Bestimmung der angesaugten Luftmasse erreicht und damit eine genauere Berechnung der Einspritzzeit möglich ist.DE 39 19 488 C2 discloses a device for regulating and predicting the intake air quantity of an internal combustion engine guided by intake manifold pressure, in which the degree of throttle valve opening and the engine speed are used as the basis for calculating the current value of the air drawn into the combustion chamber of the engine . This calculated, current amount of intake air is then used as the basis for calculating the predetermined value for the amount of intake air to be drawn into the combustion chamber of the engine at a specific time from the point at which the calculation was carried out , used. The pressure signal which is measured downstream of the throttle valve is corrected with the aid of theoretical relationships, so that an improvement in the determination of the intake air mass is achieved and a more precise calculation of the injection time is possible.
Im instationären Betrieb der Brennkraftmaschine ist es aber wünschenswert, die Bestimmung der in die Zylinder einströmen¬ den Luftmasse noch genauer durchzuführen.In transient operation of the internal combustion engine, however, it is desirable to carry out the determination of the air mass flowing into the cylinders even more precisely.
Der Erfindung liegt die Aufgabe zugrunde ein Verfahren anzu- geben, mit dem die tatsächlich in den Zylinder der Brenn¬ kraftmaschine einströmende Luftmasse mit hoher Genauigkeit bestimmt werden kann. Außerdem sollen systembedingte Totzei- ten, die aufgrund der Kraftstoffvorlagerung und der Rechen¬ zeit bei der Berechnung der Einspritzzeit auftreten können, kompensiert werden.The invention is based on the object of specifying a method with which the air mass actually flowing into the cylinder of the internal combustion engine can be determined with high accuracy. In addition, system-related dead time Ten, which can occur due to the fuel storage and the computing time when calculating the injection time, are compensated.
Diese Aufgabe wird gemäß den Merkmalen des Patentanspruches 1 gelöst.This object is achieved according to the features of patent claim 1.
Vorteilhafte Weiterbildungen finden sich in den Unteransprü¬ chen.Advantageous further developments can be found in the subclaims.
Ausgehend von einem bekannten Ansatz ergibt sich eine Modell- beschreibung, die auf einer nichtlinearen Differential¬ gleichung basiert. Im folgenden wird eine Approximation die¬ ser nichtlinearen Gleichung vorgestellt. Im Ergebnis dieser Approximation läßt sich das Systemverhalten mittels einer bi- linearen Gleichung beschreiben, die die schnelle Lösung der Beziehung im Motorsteuergerät des Kraftfahrzeugs unter Echt- zeitbedingungen gestattet. Der gewählte Modellansatz beinhal¬ tet dabei die Modellierung von variablen Saugsystemen und Sy- stemen mit variablen Ventilsteuerungen. Die durch diese An¬ ordnung und durch dynamische Nachladung, d.h. durch Reflexio¬ nen von Druckwellen im Saugrohr hervorgerufenen Effekte, kön¬ nen ausschließlich durch die Wahl stationär bestimmbarer Pa¬ rameter des Modelies sehr gut berücksichtigt werden. Alle Mo- dellparameter sind einerseits physikalisch interpretierbar und andererseits ausschließlich aus stationären Messungen zu gewinnen.Starting from a known approach, a model description results which is based on a nonlinear differential equation. An approximation of this nonlinear equation is presented below. As a result of this approximation, the system behavior can be described by means of a bilinear equation which allows the relationship in the engine control unit of the motor vehicle to be quickly resolved under real-time conditions. The selected model approach includes the modeling of variable suction systems and systems with variable valve controls. The by this arrangement and by dynamic reloading, i.e. Effects caused by reflections of pressure waves in the intake manifold can only be very well taken into account solely by the choice of stationary parameters of the model. On the one hand, all model parameters can be interpreted physically and, on the other hand, they can only be obtained from stationary measurements.
Die meisten Algorithmen zur zeitdiskreten Lösung der Diffe- rentialgleichung, die das Verhalten des hier genutzten Model- les beschreibt, erfordern vor allem bei geringem Druckabfall über der Drosselklappe, d.h. bei Vollast eine sehr kleine Re¬ chenschrittweite, um numerisch stabil zu arbeiten. Die Folge wäre ein unvertretbarer Rechenaufwand bei der Bestimmung der Lastgröße. Da Lasterfassungssysteme meist segmentsynchron ar¬ beiten, d.h. für 4-Zylindermotoren wird alle 180° KW ein Me߬ wert abgetastet, muß die Modellgleichung ebenfalls segment- synchron gelöst werden. Im nachfolgenden wird ein absolut stabiles Differenzenschema zur Lösung von Differentialglei¬ chungen eingesetzt, das numerische Stabilität bei beliebiger Schrittweite garantiert.Most algorithms for the time-discrete solution of the differential equation, which describes the behavior of the model used here, require a very small computing step size, in particular if the pressure drop across the throttle valve is low, ie at full load, in order to work numerically stable. The consequence would be an unacceptable computing effort when determining the load size. Since load detection systems mostly work segment-synchronously, ie for 4-cylinder engines a measured value is sampled every 180 ° KW, the model equation must also be segment be solved synchronously. In the following, an absolutely stable difference scheme is used to solve differential equations, which guarantees numerical stability with any step size.
Das erfindungsgemäße modellgestützte Berechnungsverfahren bietet zudem die Möglichkeit einer Prädiktion des Lastsigna¬ les um eine wählbare Anzahl von Abtastschritten, d.h. eine Vorhersage des Lastsignales mit variablem Prädiktionshori- zont. Wird die dem Prädiktionshorizont bei konstanter Dreh¬ zahl proportionale Prädiktionszeit nicht zu groß, so erhält man ein prädiziertes Lastsignal hoher Genauigkeit.The model-based calculation method according to the invention also offers the possibility of predicting the load signal by a selectable number of sampling steps, i.e. a prediction of the load signal with a variable prediction horizon. If the prediction time proportional to the prediction horizon at constant speed does not become too long, a predicted load signal of high accuracy is obtained.
Eine solche Vorhersage ist notwendig, da zwischen der Erfas- sung relevanter Meßwerte und der Berechnung der Lastgröße ei¬ ne Totzeit entsteht. Desweiteren muß aus Gründen der Ge¬ mischaufbereitung vor dem eigentlichen Beginn der Ansaugphase des jeweiligen Zylinders möglichst genau die Kraftstoffmasse über die Einspritzventile zugemessen werden, die im Verlauf der kommenden Ansaugphase im gewünschten Verhältnis zur Luft- masse mZyl steht. Ein variabler Prädiktionshorizont verbessert die Güte der Kraftstoffzumessung im instationären Motorbe¬ trieb. Da bei steigender Drehzahl die Segmentzeit abnimmt, muß der Einspritzvorgang eine größere Anzahl von Segmenten eher beginnen, als dies bei einer niedrigeren Drehzahl derSuch a prediction is necessary because a dead time arises between the acquisition of relevant measured values and the calculation of the load size. Furthermore, for reasons of mixture preparation, the fuel mass must be metered as precisely as possible via the injection valves before the actual start of the intake phase of the respective cylinder, which is in the desired ratio to the air mass m cyl in the course of the upcoming intake phase. A variable prediction horizon improves the quality of the fuel metering in transient engine operation. Since the segment time decreases with increasing speed, the injection process must start a larger number of segments sooner than at a lower speed
Fall ist. Um die zu dosierende Kraftstoffmasse möglichst ex¬ akt bestimmen zu können, ist die Prädiktion der Lastgröße um die Anzahl von Segmenten, um die die Kraftstoffvorlagerung vorgenommen wird, notwendig, um ein gefordertes Kraftstoff- Luft-Verhältnis auch in diesem Fall einzuhalten. Die Prädik¬ tion der Lastgröße trägt somit aus einer wesentlichen Verbes¬ serung der Einhaltung des gefordertene Kraftstoff-Luft-Ver¬ hältnisses im instationären Motorbetrieb bei. Dieses System zur modellgestützten Lasterfassung ist in den bekannten Mo- torSteuerungssystemen, d.h. bei luftmassengeführte bzw. saug- rohrdruckgeführte Motorsteuerungssysteme wird im folgenden ein Korrekturalgorithmus in Form eines Modellregelkreises formuliert, der bei auftretenden Ungenauigkeiten von Modell- Parametern eine permanente Genauigkeitsverbesserung, d.h. ei¬ nen Modellabgleich im stationären und instationären Betrieb gestattet.Case is. In order to be able to determine the fuel mass to be metered as precisely as possible, the prediction of the load size by the number of segments by which the fuel is stored is necessary in order to maintain the required air-fuel ratio in this case too. The prediction of the load size thus contributes from a substantial improvement in compliance with the required fuel-air ratio in transient engine operation. This system for model-based load detection is in the known engine control systems, that is to say in the case of air mass-guided or intake-pipe pressure-guided engine control systems, a correction algorithm in the form of a model control loop is described below formulated, which allows permanent accuracy improvement, ie a model comparison in stationary and transient operation, when inaccuracies of model parameters occur.
Ein Ausführungsbeispiel des erfindungsgemäßen Verfahrens wird anhand der nachfolgenden schematischen Zeichnungen beschrie¬ ben. Dabei zeigen:An embodiment of the method according to the invention is described with reference to the following schematic drawings. Show:
Figur 1 eine Prinzipskizze zum Saugsystem einer Otto-Brenn¬ kraftmaschine einschließlich der entsprechenden Mo¬ dell- und Meßgrößen, Figur 2 die Durchflußfunktion und die dazugehörige Polygon¬ zugapproximation, Figur 3 eine Prinzipdarstellung zum Modellregelkreis für luftmassengeführte Motorsteuerungssysteme und Figur 4 eine Prinzipdarstellung zum Mode11rege1kreis für saugrohrdruckgeführte Motorsteuerungssysteme.1 shows a schematic diagram of the intake system of an Otto engine, including the corresponding model and measurement variables, FIG. 2 shows the flow function and the associated polygonal approximation, Intake manifold pressure-controlled engine control systems.
Λ Bei der modellgestützten Berechnung der Lastgröße mzyi wird von der in Figur 1 dargestellten prinzipiellen Anordnung aus¬ gegangen. Aus Gründen der Übersichtlichkeit wird dabei nur ein Zylinder der Brennkraf maschine dargestellt. Mit dem Be¬ zugzeichen 10 ist dabei ein Saugrohr einer Brennkraftmaschine bezeichnet, in dem eine Drosselklappe 11 angeordnet ist. Die Drosselklappe 11 ist mit einem, den Öffnungsgrad der Drossel¬ klappe ermittelnden Drosselklappenstellungsfühler 14 verbun¬ den. Stromaufwärts der Drosselklappe 11 ist bei einem luft- massengeführten Motorsteuerungssystem ein Luftmassenmesser 12 angeordnet, während bei einem saugrohrdruckgeführten Motor¬ steuerungssystem ein Saugrohrdruckfühler 13 im Saugrohr ange¬ ordnet ist. Je nach Art der Lasterfassung ist somit nur eine der beiden Komponenten 12, 13 vorhanden. Die Ausgänge des Luftmassenmessers 12, des Drosselklappenstellungsgebers 14 und des zum Luftmassenmesser 12 alternativ vorhandenen Saug- rohrdrucksensors 13 sind mit Eingängen einer nicht darge¬ stellten, an sich bekannten elektronischen Steuerungseinrich- 96/32579 PCI7DE96/00615Λ The model-based calculation of the load variable mzyi is based on the basic arrangement shown in FIG. 1. For reasons of clarity, only one cylinder of the internal combustion engine is shown. The reference numeral 10 denotes an intake manifold of an internal combustion engine, in which a throttle valve 11 is arranged. The throttle valve 11 is connected to a throttle valve position sensor 14 which determines the degree of opening of the throttle valve. An air mass meter 12 is arranged upstream of the throttle valve 11 in an air mass-guided engine control system, while an intake manifold pressure sensor 13 is arranged in the intake manifold in an intake manifold pressure-guided engine control system. Depending on the type of load detection, only one of the two components 12, 13 is therefore present. The outputs of the air mass meter 12, the throttle valve position sensor 14 and the intake pipe pressure sensor 13, which is available as an alternative to the air mass meter 12, are provided with inputs of an electronic control device, which is not shown and is known per se. 96/32579 PCI7DE96 / 00615
tung der Brennkraftmaschine verbunden. Außerdem sind in Figur 1 noch schematisch ein Einlaßventil 15, ein Auslaßventil 16, sowie ein in einem Zylinder 17 beweglichen Kolben 18 darge¬ stellt.tion of the internal combustion engine connected. In addition, an inlet valve 15, an outlet valve 16 and a piston 18 movable in a cylinder 17 are shown schematically in FIG.
Außerdem sind in Figur 1 ausgewählte Größen bzw. Parameter des Saugsystems eingezeichnet. Dabei bedeutet das Dachsymbol "Λ" über einer Größe, daß es sich um eine Modellgröße han¬ delt, während Größen ohne Dachsymbol "Λ" Meßgrößen repräsen- tieren. Im einzelnen bedeuten:In addition, selected sizes or parameters of the suction system are shown in FIG. The roof symbol "Λ" above a size means that it is a model size, while sizes without a roof symbol "Λ" represent measured values. In particular:
Pu Umgebungsdruck, Pg Saugrohrdruck, Tg Temperatur der Luft im Saugrohr, Vg das Volumen des Saugrohrs.Pu ambient pressure, Pg intake manifold pressure, Tg temperature of the air in the intake manifold, Vg the volume of the intake manifold.
Größen mit einem Punktsymbol kennzeichnen die erste zeitlicheSizes with a dot symbol indicate the first time
Ableitung der entsprechenden Größen, YΠDK ist somit der Luft- massenstrom an der Drosselklappe und mzyi ist der Luftmassen¬ strom der tatsächlich in den Zylinder der Brennkraftmaschine einströmt.Derivation of the corresponding quantities, YΠDK is thus the air mass flow at the throttle valve and mzyi is the air mass flow that actually flows into the cylinder of the internal combustion engine.
Die grundlegende Aufgabe bei der modellgestützten Berechnung des Motorlastzustandes besteht nun in der Lösung der Diffe¬ rentialgleichung für den SaugrohrdruckThe basic task in the model-based calculation of the engine load state now consists in solving the differential equation for the intake manifold pressure
die sich unter der Voraussetzung konstanter Temperatur der Luft im Saugrohr Tg aus der Zustandsgieichung idealer Gase herleiten läßt. which can be derived from the condition of ideal gases under the condition of constant air temperature in the intake manifold Tg.
Mit RL ist dabei die allgemeine Gaskonstante bezeichnet.The general gas constant is denoted by RL.
ΛΛ
Die Lastgröße mzyi wird durch Integration aus dem Zylinder-The load size mzyi is determined by integration from the cylinder
Λ massenstrom mzyi bestimmt. Die durch (2.1) beschriebenen Verhältnisse sind auf Mehrzylinder-Brennkraftmaschinen mit Schwingrohr- (Schaltsaugrohr-) und/oder Resonanzsaugsysteme ohne strukturelle Änderungen anwendbar.Λ mass flow mzyi determined. The relationships described by (2.1) are common to multi-cylinder internal combustion engines Vibrating tube (switching suction tube) and / or resonance suction systems applicable without structural changes.
Für Systeme mit Multi-Point-Einspritzungen, bei denen die Kraftstoffzumessung durch mehrere Einspritzventile erfolgt, gibt die Gleichung (2.1) die Verhältnisse genauer wieder als dies bei Single-Point-Einspritzungen, d.h. bei Einspritzun¬ gen, bei denen der Kraftstoff mittels eines einzigen Kraft- Stoffeinspritzventiles zugemessen wird, der Fall ist. Bei erstgenannter Art der Kraftstoffzumessung ist nahezu das ge¬ samte Ansaugsystem mit Luft gefüllt. Lediglich in einem klei¬ nen Bereich vor den Einlaßventilen befindet sich ein Kraft¬ stoff-Luftgemisch. Im Gegensatz dazu ist bei Single-Point- Einspritzsystemen das gesamte Saugrohr von der Drosselklappe bis zum Einlaßventil mit Kraftstoff-Luft-Gemisch gefüllt, da das Einspritzventil vor der Drosselklappe angeordnet ist. In diesem Fall stellt die Annahme eines idealen Gases eine stär¬ kere Näherung dar, als dies bei der Multi-Point-Einspritzung der Fall ist. Bei Single-Point-Einspritzung erfolgt die Kraftstoffzumessung entsprechendFor systems with multi-point injections, in which the fuel is metered through several injection valves, equation (2.1) gives the conditions more accurately than with single-point injections, i.e. in the case of injections in which the fuel is metered by means of a single fuel injection valve. With the first-mentioned type of fuel metering, almost the entire intake system is filled with air. There is only a fuel-air mixture in a small area in front of the inlet valves. In contrast, in single-point injection systems, the entire intake manifold from the throttle valve to the intake valve is filled with a fuel-air mixture, since the injection valve is arranged in front of the throttle valve. In this case, the assumption of an ideal gas represents a closer approximation than is the case with multi-point injection. With single-point injection, the fuel is metered accordingly
Λ Λ mDK , bei Multi-Point-Einspritzung entsprechend mzyi .Λ Λ mDK, corresponding to mzyi for multi-point injection.
ΛΛ
Im folgenden wird die Berechnung der Massenströme IΠDK undThe calculation of the mass flows IΠDK and
Λ mzyi näher beschrieben.Λ mzyi described in more detail.
Die Modellgröße des Luftmassenstromes an der DrosselklappeThe model size of the air mass flow at the throttle valve
Λ mDK wird durch die Durchflußgleichung idealer Gase durch Drosselstellen beschrieben. An der Drosselstelle auftretende Strömungsverluste werden durch den reduzierten Strömungsquer-Λ mDK is described by the flow equation of ideal gases through throttling points. Flow losses occurring at the throttle point are reduced by the reduced flow cross
Λ Λ schnitt ARED berücksichtigt. Der Luftmassenstrom mDK wird demnach durch die BeziehungΛ Λ section ARED considered. The air mass flow mDK is therefore determined by the relationship
mit With
für überkritische Druckverhältnisse for supercritical pressure conditions
bzw.respectively.
ψ = const . für kritische Druckverhältnisse (2.2)ψ = const. for critical pressure conditions (2.2)
bestimmt .certainly .
Λ mDK : Modellgröße des Luftmassenstromes an der Drossel¬ klappeΛ mDK: model size of the air mass flow at the throttle valve
ΛΛ
A RED reduzierter StrömungsquerschnittA RED reduced flow cross section
K : AdiabatenexponentK: Adiabatic exponent
RL: allgemeine GaskonstanteR L : general gas constant
TS= Temperatur der Luft im SaugrohrT S = temperature of the air in the intake manifold
ΛΛ
Pu : Mode11große des UmgebungsdruckesPu: Mode11 size of the ambient pressure
ΛΛ
Ps : Modellgröße des SaugrohrdruckesPs: model size of the intake manifold pressure
Ψ : Durchflußfunktion.Ψ: flow function.
An der Drosselstelle, d.h. an der Drosselklappe auftretendeAt the throttle point, i.e. occurring on the throttle valve
ΛΛ
Strömungsverluste werden über die geeignete Wahl von ARED berücksichtigt. Aus stationären Messungen kann bei bekannten Drücken vor und hinter der Drosselstelle und bekanntem Mas¬ senstrom durch die Drosselstelle eine Zuordnung zwischen dem vom Drosselklappenstellungsfühler 14 ermittelten Drosselklap¬ penwinkel und dem entsprechendem reduzierten QuerschnittFlow losses are taken into account through the appropriate choice of ARED. With known pressures in front of and behind the throttle point and known mass flow through the throttle point, an assignment between the throttle valve angle determined by the throttle valve position sensor 14 and the corresponding reduced cross section can be made from stationary measurements
Λ A RED angegeben werden.Λ A RED can be specified.
Wird der Luftmassenstrom mDK an der Drosselklappe durch die Beziehung (2.2) beschrieben, so entsteht ein komplizierter Algorithmus zur numerisch richtigen Lösung der Differential¬ gleichung (2.1). Zur Reduktion des Rechenaufwandes wird die Durchflußfunktion ψ durch einen Polygonzug approximiert.If the air mass flow mDK at the throttle valve is described by the relationship (2.2), a more complex one arises Algorithm for the numerically correct solution of the differential equation (2.1). To reduce the computational effort, the flow function ψ is approximated by a polygon.
Figur 2 zeigt den Verlauf der Durchflußf nktion ψ und das darauf angewandte Approximationsprinzip. Innerhalb eines Ab¬ schnittes i (i = l...k) wird die Durchflußfuntion ψ durch eine Gerade dargestellt. Mit einer vertretbaren Anzahl von Geradenabschnitten kann damit eine gute Approximation er- reicht werden. Durch einen solchen Ansatz kann die Gleichung (2.2) zur Berechnung des Massenstromes an der DrosselklappeFIG. 2 shows the course of the flow function ψ and the approximation principle applied to it. Within a section i (i = l ... k) the flow function ψ is represented by a straight line. With a reasonable number of straight line sections, a good approximation can be achieved. With such an approach, equation (2.2) can be used to calculate the mass flow at the throttle valve
Λ mDK durch die BeziehungΛ mDK through the relationship
mDK APPROX mDK APPROX
für i = (l...k) approximiert werden.can be approximated for i = (l ... k).
In dieser Form beschreibt mj_ die Steigung und nj_ das Absolut- glied des jeweiligen Geradenabschnittes. Die Werte für die Steigung und für das Absolutglied werden in Tabellen als Funktion des Verhältnisses Saugrohrdruck zu UmgebungsdruckIn this form, mj_ describes the slope and nj_ the absolute term of the respective line segment. The values for the slope and for the absolute member are shown in tables as a function of the ratio of intake manifold pressure to ambient pressure
Auf der Abszisse von Figur 2 ist dabei das DruckverhältnisThe abscissa of Figure 2 is the pressure ratio
Λ pΛ p
— Λ und auf der Ordinate der Funktionswert (0 - 0.3) der- Λ and on the ordinate the function value (0 - 0.3) of the
Durchflußfunktion ψ aufgetragen.Flow function ψ plotted.
Λ KΛ K
P 2 "1κ-lP 2 "1κ-l
Für Druckverhältnisse —— < ist ψ = konstant, d.h,For pressure conditions —— <ψ = constant, i.e.
P +u daß der Durchfluß an der Drosselstelle nur noch vom Quer¬ schnitt abhängig ist und nicht mehr von den Druckverhältnis- sen. Die in die jeweiligen Zylinder der Brennkraftmaschine einströmende Luftmasse läßt sich analytisch nur schwer be¬ stimmen, da sie stark vom Ladungswechsel abhängt. Die Füllung der Zylinder wird weitestgehend durch den Saugrohrdruck, die Drehzahl und durch die Ventilsteuerzeiten bestimmt. P + u that the flow at the throttle point is only dependent on the cross-section and no longer on the pressure ratio sen. The air mass flowing into the respective cylinders of the internal combustion engine is difficult to determine analytically, since it is strongly dependent on the gas exchange. The filling of the cylinders is largely determined by the intake manifold pressure, the speed and the valve timing.
Zur möglichst genauen Berechnung des Massenstroms in den je-To calculate the mass flow in the respective
Λ weiligen Zylinder mzyi ist deshalb einerseits die Beschrei¬ bung der Verhältnisse im Ansaugtrakt der Brennkraftmaschine mittels partieller Differentialgleichungen und andererseits die Berechnung des Massenstromes am Einlaßventil nach der Durchflußgleichung als erforderliche Randbedingung notwendig. Erst dieser komplizierte Ansatz gestattet die Berücksichti¬ gung dynamischer Nachladeeffekte, die von der Drehzahl, der Saugrohrgeometrie, der Zylinderzahl sowie den Ventilsteuer¬ zeiten maßgeblich beeinflußt werden.Because of the cylinder mzyi, it is necessary on the one hand to describe the conditions in the intake tract of the internal combustion engine by means of partial differential equations and on the other hand to calculate the mass flow at the inlet valve according to the flow equation as a necessary boundary condition. It is only this complicated approach that allows dynamic reloading effects to be taken into account, which are significantly influenced by the speed, the intake manifold geometry, the number of cylinders and the valve control times.
Da eine Berechnung nach oben genanntem Ansatz in der elektro¬ nischen Steuerungseinrichtung der Brennkraftmaschine nicht realisierbar ist, geht eine mögliche Näherung von einem ein-Since a calculation based on the above-mentioned approach cannot be implemented in the electronic control device of the internal combustion engine, a possible approximation is based on a
Λ fachen Zusammenhang zwischen Saugrohrdruck Ps und Zyinder as-Achen multiple relationship between intake manifold pressure P s and cylinder as-
Λ senstrom mzyi aus. Für einen weiten Bereich der sinnvollen Ventilsteuerzeiten kann dafür in guter Näherung von einem li¬ nearen Ansatz der FormStrom senstrom mzyi. For a wide range of useful valve timing, a linear approach to this can be taken as a good approximation
ausgegangen werden.be assumed.
Die Steigung γ] und das Absolutglied γ0 der Beziehung (2.4) sind dabei, unter Berücksichtigung aller wesentlichen Ein¬ flußfaktoren Funktionen der Drehzahl, der Saugrohrgeometrie, der Zylinderzahl, der Ventilsteuerzeiten sowie der Temperatur der Luft im Saugrohr Tg. Die Abhängigkeit der Werte von γj und γ0 von den Einflußgrößen Drehzahl, Saugrohrgeometrie, Zy- linderzahl und den Ventilsteuerzeiten und Ventilerhebungskur¬ ven kann dabei über stationäre Messungen ermittelt werden. Über diese Wertebestimmung wird ebenfalls der Einluß von Schwingrohr- und/oder Resonanzsaugsystemen auf die von der Brennkraftmaschine angesaugte Luftmasse gut wiedergegeben. Die Werte von > und γ0 sind in Kennfeldern der elektroni¬ schen Motorsteuerungseinrichtung abgelegt.The slope γ ] and the absolute member γ 0 of the relationship (2.4) are functions of the speed, the intake manifold geometry, the number of cylinders, the valve timing and the temperature of the air in the intake manifold Tg, taking into account all essential influencing factors. The dependence of the values on γj and γ 0 from the influencing variables speed, intake manifold geometry, The number of linders and the valve timing and valve lift curves can be determined using stationary measurements. The influence of vibrating tube and / or resonance suction systems on the air mass sucked in by the internal combustion engine is also well reproduced via this value determination. The values of> and γ 0 are stored in characteristic diagrams of the electronic engine control device.
Als bestimmende Größe zur Ermittlung der Motorlast wird der Saugrohrdruck Pg ausgewählt. Mit Hilfe der Modell-Differen¬ tialgleichung soll diese Größe möglichst exakt und schnellThe intake manifold pressure Pg is selected as the determining variable for determining the engine load. With the help of the model differential equation, this quantity should be as precise and fast as possible
Λ geschätzt werden. Die Schätzung von Ps erfordert die Lösung der Gleichung (2.1).Λ can be estimated. The estimation of Ps requires the solution of equation (2.1).
Mit den anhand der Formeln (2.2) und (2.3) eingeführten Ver¬ einfachungen kann (2.1) durch die BeziehungWith the simplifications introduced using formulas (2.2) and (2.3), (2.1) can be determined by the relationship
für i = (1...k) (2.5) for i = (1 ... k) (2.5)
approximiert werden. Betrachtet man, entsprechend den Voraus¬ setzungen zur Herleitung von Gleichung (2.1), die Temperatur der Luft im Saugrohr Tg als eine langsam veränderliche Meß-be approximated. If, in accordance with the requirements for deriving equation (2.1), the temperature of the air in the intake manifold Tg is considered to be a slowly changing measurement
Λ große sowie ARED als Eingangsgröße, so läßt sich die nicht- lineare Form der Differentialgleichung (2.1) durch die bili¬ neare Gleichung (2.5) approximieren.Λ large and ARED as the input variable, the non-linear form of the differential equation (2.1) can be approximated by the biliary equation (2.5).
Zur Lösung der Gleichung (2.5) wird diese Beziehung in eine geeignete Differenzengleichung übergeführt.To solve equation (2.5), this relationship is converted into a suitable difference equation.
Als Kriterium zur Auswahl des geeigneten Differenzenschemas können die folgenden prinzipiellen Anforderungen an die Lö¬ sungseigenschaften der zur bildenden Differenzengleichung formuliert werden: 1. Das Differenzenschema muß auch unter extremen dynamischen Anforderungen konservativ sein, d.h. die Lösung der Diffe- renzengleichnung muß der Lösung der Differentialgleichung entsprechen,The following basic requirements for the solution properties of the difference equation to be formed can be formulated as a criterion for selecting the suitable difference scheme: 1. The difference scheme must be conservative even under extreme dynamic requirements, ie the solution of the difference equation must correspond to the solution of the differential equation,
2. die numerische Stabilität muß zu Abtastzeiten, die den ma¬ ximal möglichen Segmentzeiten entsprechen, im gesamten Ar¬ beitsbereich das Saugrohrdruckes garantiert sein.2. The numerical stability must be guaranteed in the entire working range of the intake manifold pressure at sampling times which correspond to the maximum possible segment times.
Forderung 1 ist durch einen impliziten Rechenalgorithmus er¬ füllbar. Aufgrund der Approximation der nichtlinearen Diffe¬ rentialgleichung (2.1) durch eine bilineare Gleichung ist das entstehende implizite Lösungsschema ohne Einsatz iterativer Verfahren lösbar, da die Differenzengleichung in eine expli- zite Form überführt werden kann.Claim 1 can be met by an implicit calculation algorithm. Due to the approximation of the nonlinear differential equation (2.1) by means of a bilinear equation, the resulting implicit solution scheme can be solved without using iterative methods, since the difference equation can be converted into an explicit form.
Die zweite Forderung ist aufgrund der Konditionierung der Differentialgleichung (2.1) und deren Approximation (2.5) nur durch eine Rechenvorschrift zur Bildung der Differenzen- gleichung erfüllbar, die absolut stabil arbeitet. Diese Ver¬ fahren werden auch als A-stabile Verfahren bezeichnet. Kenn¬ zeichnend für diese A-Stabilität ist die Eigenschaft des Al¬ gorithmus, bei einem stabilen Ausgangsproblem für beliebige Werte der Abtastzeit, d.h. Segmentzeit T^ numerisch stabil zu sein. Eine mögliche Rechenvorschrift zur numerischen Lösung von Differentialgleichungen, die beiden Forderungen gerecht wird, ist die Trapezregel.Due to the conditioning of the differential equation (2.1) and its approximation (2.5), the second requirement can only be met by a calculation rule for the formation of the difference equation, which works absolutely stable. These processes are also referred to as A-stable processes. Characteristic of this A-stability is the property of the algorithm, with a stable output problem for any values of the sampling time, i.e. Segment time T ^ to be numerically stable. A possible calculation rule for the numerical solution of differential equations that meets both requirements is the trapezoidal rule.
Die durch Anwendung der Trapezregel entstehende Diffe- renzengleichung lautet im vorliegenden FallThe difference equation resulting from the application of the trapezoid rule is in the present case
p s w= s [tf-ι]+γ- Ps [ΛT-I]+ P; w p s w = s [tf-ι] + γ- Ps [ ΛT - I ] + P ; w
für N = ( 1. . cP) ( 2 . 6 )for N = (1.. cP) (2. 6)
definiert Wird diese Vorschrift auf (2 . 5 ) angewandt , so ergibt sich die BeziehungAre defined If this rule is applied to (2. 5), the relationship results
für N = (1...0P) und i = (l...k) (2.7)for N = (1 ... 0P) and i = (l ... k) (2.7)
Λ zur Berechnung des Saugrohrdruckes Ps [N] als Maß für die Mo¬ torlast.Λ for calculating the intake manifold pressure P s [N] as a measure of the engine load.
[N] bedeutet dabei das aktuelle Segment bzw. der aktuelle Re- chenschritt, [N+ l] das nächstfolgende Segment bzw. der nächstfolgende Rechenschritt.[N] means the current segment or the current arithmetic step, [N + l] the next following segment or the next arithmetic step.
Im folgenden wird die Berechnung des aktuellen und prädizier- ten Lastsignales beschrieben.The calculation of the current and predicted load signal is described below.
ΛΛ
Aus dem berechneten Saugrohrdruck Ps kann der Luftmassen-From the calculated intake manifold pressure Ps, the air mass
Λ ström mzyi der in die Zylinder einströmt, durch die Beziehung (2.4) ermittelt werden. Wendet man einen einfachen Integra¬ tionsalgorithmus an, so erhält man für die während eines An¬ saugtaktes von der Brennkraftmaschine angesaugte Luftmasse die BeziehungΛ flow mzyi that flows into the cylinders can be determined using the relationship (2.4). If a simple integration algorithm is used, the relationship is obtained for the air mass sucked in by the internal combustion engine during an intake stroke
für N = ( 1 . . Xfi ) ( 2 . 8 ) Dabei wird davon ausgegangen, daß der Anfangswert der Last- größe null ist. Für die segmentsynchrone Lasterfassung sinkt mit steigender Drehzahl die Segmentzeit, während die Segment- anzahl, um die eine Kraftstoffvorlagerung vorgenommen wird, steigen muß. Aus diesem Grund ist es erforderlich, die Prä¬ diktion des Lastsignals für einen veränderlichen Prädiktions- horizont H, d.h. für eine bestimmte, in erster Linie dreh¬ zahlabhängige Anzahl H von Segmenten, auszulegen. Berücksich¬ tigt man diesen veränderlichen Prädiktionshorizont H, so kann Gleichung (2.8) in der Formfor N = (1.. Xfi) (2. 8) It is assumed that the initial value of the load size is zero. For segment-synchronous load detection, the segment time decreases with increasing speed, while the number of segments by which the fuel is stored must increase. For this reason, it is necessary to design the prediction of the load signal for a variable prediction horizon H, ie for a specific number H of segments, which is primarily speed-dependent. If this variable prediction horizon H is taken into account, equation (2.8) can be in the form
für N = ( l . . CP ) ( 2 . 9 ) for N = (1st CP) (2nd 9)
geschrieben werden.to be written.
Für die weiteren Überlegungen wird davon ausgegangen, daß sich die Segmentzeit T^ und die Parameter γ, und γ0 der Be-For further considerations, it is assumed that the segment time T ^ and the parameters γ, and γ 0 of the loading
Λ ziehung (2.4), die zur Bestimmung des Massenstromes mzyι ausΛ drawing (2.4) used to determine the mass flow mz y ι
Λ dem Saugrohrdruck Ps erforderlich sind, über die Prädiktions- zeit nicht ändern. Unter dieser Voraussetzung wird die Prädiktion eines WertesΛ the intake manifold pressure P s are required, do not change over the prediction time. Under this condition, the prediction of a value
Λ für mzyι [N + H durch die Prädiktion des entsprechenden Druck-Λ for mz y ι [N + H by predicting the corresponding pressure
Λ wertes Ps [N + H] erreicht . Dadurch nimmt die Gleichung (2 . 9 ) die FormΛ reached Ps [N + H]. As a result, the equation (2.9) takes the form
mz [N] m- + 2 -y0 für N = (l... P) (2.10)mz [N] m- + 2 -y 0 for N = (l ... P) (2.10)
an.on.
Da bei dem beschriebenen Verfahren die zeitliche Änderung desSince in the described method the time change of the
ΛΛ
Saugrohrdruckes Ps in analytischer Form vorliegt, wird imIntake manifold pressure Ps is in analytical form, is in
Λ folgenden die Prädiktion des Druckwertes Ps [N + H] durch H- fache Anwendung der Trapezregel erreicht. In diesem Fall er¬ hält man die BeziehungΛ are followed by the prediction of the pressure value Ps [N + H] by H- multiple application of the trapezoidal rule achieved. In this case the relationship is obtained
Ps [N + H] = Ps [N] + ^- - H - s [N - \] + Ps [N]Ps [N + H] = Ps [N] + ^ - - H - s [N - \] + P s [N]
für N = (!..<») (2.11)for N = (! .. <») (2.11)
Bestimmt man den Druck Ps [N + H- l] in analoger Weise, so kann für das prädizierte Lastsignal die GleichungIf the pressure Ps [N + H- l] is determined in an analogous manner, the equation can be used for the predicted load signal
mzy,[N + H] = TA - γ, s [N] + (H-Q.5)- Ps [N - l]+ Ps W +Yomzy, [N + H] = T A - γ, s [ N ] + (HQ.5) - Ps [N - l] + Ps W + Yo
für N = (1..«00) (2.12)for N = (1 .. «00) (2.12)
angegeben werden.can be specified.
Wählt man für den Prädiktionshorizont H Werte in der Größen¬ ordnung von 1...3 Segmenten, so kann mit der Formel (2.12) ein gut prädiziertes Lastsignal erhalten werden.If values of the order of 1 to 3 segments are selected for the prediction horizon H, a well-predicted load signal can be obtained with the formula (2.12).
Im folgenden wird das Prinzip des Modellabgleichs für luft- massen- und saugrohrdruckgeführte Motorsteuerungssysteme er¬ klärt.The principle of model matching for air mass and intake manifold pressure-guided engine control systems is explained below.
Bedingt durch den Einsatz von Motoren mit variabler Ventil- Steuerung und/oder veränderlicher Saugrohrgeometrie, durchDue to the use of engines with variable valve control and / or variable intake manifold geometry
Fertigungstoleranzen und Alterungserscheinungen, sowie durch Temperatureinflüsse sind die Werte von y < und γ0 mit einer gewissen Unsicherheit behaftet. Die Parameter der Gleichung zur Bestimmung des Massenstromes in den Zylindern sind, wie oben beschrieben, Funktionen vielfältiger Einflußgrößen, von denen nur die wichtigsten erfaßt werden können.Manufacturing tolerances and signs of aging, as well as temperature influences, the values of y <and γ 0 are subject to a certain degree of uncertainty. As described above, the parameters of the equation for determining the mass flow in the cylinders are functions of various influencing variables, of which only the most important ones can be recorded.
Bei der Berechnung des Massenstromes an der Drosselklappe wirken sich Meßfehler bei der Erfassung des Drosselklappen¬ winkels und Approximationsfehler bei der Polygonzugapproxima- tion der Durchflußfunktion ψ auf die Modellgrößen aus. Be¬ sonders bei kleinen Drosselklappenwinkeln ist die System¬ empfindlichkeit gegenüber erstgenannten Fehlern besonders hoch. Daraus ergibt sich, daß kleine Änderungen der Drossel- klappenstellung einen gravierenden Einluß auf Massenstrom bzw. Saugrohrdruck haben. Um die Wirkung dieser Einflüsse zu reduzieren, wird im folgenden ein Verfahren vorgeschlagen, das es gestattet, bestimmte Größen, die Einfluß auf die Mo¬ dellrechnung haben, so zu korrigieren, daß eine genauigkeits- verbessernde Modellanpassung für stationären und instationä¬ ren Motorbetrieb durchgeführt werden kann.When calculating the mass flow at the throttle valve, measurement errors affect the detection of the throttle valve angle and approximation errors in the polygon approximation tion of the flow function ψ on the model sizes. In the case of small throttle valve angles in particular, the system sensitivity to the first-mentioned errors is particularly high. It follows from this that small changes in the throttle valve position have a serious influence on the mass flow or intake manifold pressure. In order to reduce the effect of these influences, a method is proposed below which makes it possible to correct certain variables which have an influence on the model calculation in such a way that an accuracy-improving model adaptation for stationary and unsteady engine operation is carried out can.
Die Anpassung wesentlicher Parameter des Modells zur Bestim¬ mung der Lastgröße der Brennkraftmaschine erfolgt durch die Korrektur des aus dem gemessenen Drosselklappenwinkel be-Essential parameters of the model for determining the load size of the internal combustion engine are adjusted by correcting the throttle valve angle measured from the
Λ stimmten reduzierten Querschnitts ARED durch die Korrektur-Λ agreed reduced cross-section ARED through the correction
Λ große AA RED ■AA large AA RED ■
Die Eingangsgröße zur korrigierten SaugrohrdruckberechnungThe input variable for the corrected intake manifold pressure calculation
Λ ARED wird damit durch die BeziehungΛ ARED becomes through the relationship
A REDKORR = ARED + A A RED (3.11)A REDKORR = ARED + A A RED (3.11)
beschrieben.described.
In der Gleichung (2.2) und nachfolgenden Formeln wird dannThen in equation (2.2) and the following formulas
Λ ΛΛ Λ
ARED durch AREDKORR ersetzt. Zur Verbesserung des Folgever¬ haltens des Regelkreises wird der aus dem Meßwert des Dros- selklappenwinkels abgeleitete reduzierte Drosselklappenquer-ARED replaced by AREDKORR. To improve the follow-up behavior of the control loop, the reduced throttle valve cross-section derived from the measured value of the throttle valve angle is
Λ schnitt ARED in die Modellrechnung einbezogen. Die Korrek-Λ ARED included in the model calculation. The corrective
Λ turgröße AARED wird durch Realisierung eines Modellregel¬ kreises gebildet. Für luftmassengeführte Motorsteuerungssysteme ist der mittels des Luftmassenmessers an der Drosselklappe gemessene Luft- massenstrom mDK_LMM die Führungsgröße dieses Regelkreises, während für saugrohrdruckgeführte Systeme der gemessene Saug- rohrdruck Ps als Führungsgröße genutzt wird. Über eine Fol-Door size AARED is formed by implementing a model control loop. For air mass-guided engine control systems, the air mass flow mDK_LMM measured by means of the air mass meter on the throttle valve is the reference variable of this control loop, while the intake manifold pressure P s measured is used as the reference variable for intake manifold pressure-guided systems. About a fol-
Λ geregelung wird der Wert von AARED so bestimmt, daß die Re¬ gelabweichung zwischen Führungsgröße und der ensprechenden Regelgröße minimiert wird.Λ control, the value of AARED is determined in such a way that the control deviation between the reference variable and the corresponding control variable is minimized.
Um auch im dynamischen Betrieb Genauigkeitsverbesserungen mit der genannten Methode zu erreichen, muß die Meßwerterfassung der Führungsgröße möglichst exakt nachgebildet werden. In den meisten Fällen sind dabei das dynamische Verhalten des Sen¬ sors, d.h. entweder des Luftmassenmessers oder des Saugrohr- drucksensors und eine nachfolgend durchgeführte Mittelwert- bildung zu berücksichtigen.In order to achieve accuracy improvements with the aforementioned method even in dynamic operation, the measured value acquisition of the reference variable must be reproduced as precisely as possible. In most cases, the dynamic behavior of the sensor, i.e. either the air mass meter or the intake manifold pressure sensor and a subsequent averaging.
Das dynamische Verhalten des jeweiligen Sensors kann in er¬ ster Näherung als ein System erster Ordnung mit eventuell ar- beitspunktabhängigen Verzögerungszeiten T_ modelliert werden. Im Falle eines luftmassengeführten Systems lautet eine mög¬ liche Gleichung zur Beschreibung des SensorverhaltensThe dynamic behavior of the respective sensor can be modeled in a first approximation as a first-order system with possibly working point-dependent delay times T_. In the case of an air mass-guided system, one possible equation is to describe the sensor behavior
rriDκ_LMM [N] = e τ> ■ TΠDK [N - rTlDK_LMM [N — 1] ( 3 . 12 ] rriDκ_LMM [N] = e τ> ■ TΠDK [N - rTlDK_LMM [N - 1] (3. 12]
Eine Größe, die beim gewählten Ansatz einen wesentlichen Ein-A size that is essential in the chosen approach
Λ fluß auf den maximal möglichen Massenstrom mzyi besitzt, istΛ flow to the maximum possible mass flow mzyi is
Λ der Umgebungsdruck Pυ . Aus diesem Grund kann nicht von einem konstanten Wert dieser Größe ausgegangen werden, sondern es erfolgt eine Anpassung in der nachfolgend beschriebenen Art und Weise.Λ the ambient pressure Pυ. For this reason, a constant value of this size cannot be assumed, but an adjustment is made in the manner described below.
ΛΛ
Der Wert des Umgebungsdruckes Pυ wird verändert, wenn der Betrag der Korrekturgröße A ARED eine bestimmte Schwelle Λ überschreitet oder wenn das Druckverhältnis — Ps größer alsThe value of the ambient pressure Pυ is changed when the amount of the correction variable A ARED reaches a certain threshold Λ or if the pressure ratio - Ps is greater than
Pυ eine wählbare Konstante ist. Damit wird gewährleistet, daß sowohl im Teil- als auch im Vollastbereich eine Umgebungs¬ druckanpassung erfolgen kann.Pυ is a selectable constant. This ensures that an ambient pressure adjustment can take place both in the partial and in the full-load range.
Im folgenden wird ein Modellabgleich für luftmassengeführte Motorsteuerungssysteme erklärt. Für dieses System kann die in Figur 3 dargestellte Modellstruktur angegeben werden.A model comparison for air mass-guided engine control systems is explained below. The model structure shown in FIG. 3 can be specified for this system.
Der Drosselklappenstellungsfühler 14 (Figur 1) liefert ein dem Öffnungsgrad der Drosselklappe 11 entsprechendes Signal, z.B. einen Drosselklappenöffnungswinkel. In einem Kennfeld der elektronischen Motorsteuerungseinrichtung sind zu ver¬ schiedenen Werten dieses Drosselklappenöffnungswinkels zuge- hörige Werte für den reduzierten Querschnitt der Drossel-The throttle position sensor 14 (Figure 1) provides a signal corresponding to the degree of opening of the throttle valve 11, e.g. a throttle opening angle. In a map of the electronic engine control device, values for the reduced cross section of the throttle valve opening are associated with various values of this throttle valve opening angle.
Λ klappe ARED abgespeichert. Diese Zuordnung wird durch den Block "statisches Modell" in Figur 3 und in Figur 4 repräsen¬ tiert. Das Teilsystem "Saugrohrmodell" in den Figuren 3 und 4 repräsentiert das durch (2.7) beschriebene Verhalten. Füh- rungsgröße dieses Modellregelkreises ist der Meßwert des über ein Segment gemittelten Luftmassenstromes an der Drossel¬Λ flap ARED saved. This assignment is represented by the block "static model" in FIG. 3 and in FIG. 4. The “intake manifold model” subsystem in FIGS. 3 and 4 represents the behavior described by (2.7). The leading variable of this model control loop is the measured value of the air mass flow at the throttle averaged over a segment
klappe mDK_LMM • Wird als Regler in diesem Modellregelkreis ein PI-Regler eingesetzt, so ist die bleibende Regelab¬ weichung null, d.h. Modellgröße und Meßgröße des Luftmassen- Stromes an der Drosselklappe sind identisch.flap mDK_LMM • If a PI controller is used as a controller in this model control loop, the remaining control deviation is zero, i.e. Model size and measured quantity of the air mass flow at the throttle valve are identical.
Die Pulsationserscheinungen des Luftmassenstromes an der Drosselklappe, die vor allem bei 4-Zylindermotoren zu be¬ obachten sind, führen bei betragsbildenden Luftmassenmessern zu erheblichen positiven Meßfehlern und somit zu einer stark fehlerbehafteten Führungsgröße. Durch eine Abschaltung desThe pulsation phenomena of the air mass flow at the throttle valve, which can be observed especially in 4-cylinder engines, lead to considerable positive measurement errors in the case of air mass meters which form the amount, and thus to a command variable which is severely faulty. By switching off the
Reglers, d.h. einer Verkleinerung der Reglerparameter kann zum gesteuerten modellgestützten Betrieb übergegangen werden. Bereiche, in denen die genannten Pulsationen auftreten, kön¬ nen somit mit dem selben Verfahren unter Berücksichtigung dy- namischer Zusammenhänge behandelt werden, wie diejenigen Be- reiche, in denen eine nahezu ungestörte Führungsgröße vor¬ liegt. Im Gegensatz zu Verfahren, die relevante Meßwerte nur in stationären Betriebspunkten berücksichtigen, bleibt das beschriebene System nahezu uneingeschränkt arbeitsfähig. Bei Ausfall des Luftmassensignals oder des Signals des Drossel¬ klappenstellungsfühlers ist das vorgestellte System in der Lage, ein entsprechendes Ersatzsignal zu bilden. Bei Ausfall der Führungsgrδße muß der gesteuerte Betrieb realisiert wer¬ den, während im anderen Fall der geregelte Betrieb die kaum beeinträchtigte Funktionsfähigkeit des Systems garantiert.Controller, ie a reduction in the controller parameters can be switched to controlled model-based operation. Areas in which the pulsations mentioned can thus be treated with the same method, taking into account dynamic relationships, as those rich, in which there is an almost undisturbed leader. In contrast to methods that only take relevant measured values into account at stationary operating points, the system described remains operational almost without restrictions. If the air mass signal or the signal from the throttle valve position sensor fails, the system presented is able to generate a corresponding replacement signal. If the command variable fails, the controlled operation must be implemented, while in the other case the regulated operation guarantees the hardly impaired functionality of the system.
Der Block "Saugrohrmodell" repräsentiert die Verhältnisse wie sie anhand der Gleichung (2.7) beschrieben sind und hat dem-The "intake manifold model" block represents the conditions as described using equation (2.7) and has therefore
Λ zufolge als Ausgangsgröße die Modellgröße Ps sowie die zeit-Λ the model size P s and the time
Λ Λ liehe Ableitung Ps und die Größe mDK ■ Nach der Modellierung des Sensorübertragungsverhaltens d.h. des Übertragungsverhal¬ tens des Luftmassenmessers und der Abtastung wird die Modell-Λ Λ the derivative P s and the size mDK. ■ After modeling the sensor transmission behavior, ie the transmission behavior of the air mass meter and the scanning, the model
Λ große mDκ_LMM einer Mittelung unterzogen, so daß die gemit-Λ large mDκ_LMM subjected to averaging so that the
Λ telte Größe mDK_LMM und der vom Luftmassenmesser gemessene durchschnittliche Luftmassenstrom mDK_LMM einem Vergleicher zugeführt werden können. Die Differenz beider Signale bewirktΛ the middle variable mDK_LMM and the average air mass flow mDK_LMM measured by the air mass meter can be fed to a comparator. The difference between the two signals causes
Λ eine Änderung AARED des reduzierten Strömungsquer-schnittesΛ AARED change in the reduced flow cross-section
ΛΛ
ARED , SO daß stationär und instationär ein Mo-dellabgleich erfolgen kann.ARED, SO that a model comparison can be made stationary and unsteady.
Für saugrohrdruckgeführte Motorsteuerungssysteme wird die in Figur 4 dargestellte Modellstruktur angegeben, wobei gleiche Blöcke wie in Figur 3 gleiche Bezeichnungen tragen. Ebenso wie bei dem luftmassengeführten Motorsteuerungssystem reprä- sentiert das Teilsystem "Saugrohrmodell", das durch die Dif¬ ferenzengleichung (2.7) beschriebene Verhalten. Führungsgröße dieses Modellregelkreises ist der Meßwert des über ein Seg¬ ment gemittelten Saugrohrdruckes Ps_s . Wird ebenfalls wie in Figur 3 ein PI-Regler eingesetzt, so ist im stationären Fall 96/32579 PCIYDE96/00615The model structure shown in FIG. 4 is given for intake manifold pressure-guided engine control systems, the same blocks as in FIG. 3 being given the same designations. As with the air mass-guided engine control system, the “intake manifold model” subsystem represents the behavior described by the differential equation (2.7). The reference variable of this model control loop is the measured value of the intake manifold pressure Ps_s averaged over a segment. If a PI controller is also used, as in FIG. 3, then in the stationary case 96/32579 PCIYDE96 / 00615
20 der Meßwert des Druckes im Saugrohr Ps_s mit der Modellgröße20 the measured value of the pressure in the intake manifold Ps_s with the model size
ΛΛ
Ps_s identisch. Wie oben beschrieben, bleibt auch das vorlie¬ gende System nahezu uneingeschränkt arbeitsfähig, da bei Aus¬ fall des Saugrohrdrucksignales oder des Meßwertes für den Drosselklappenwinkel ein entsprechendes Ersatzsignal gebildet werden kann.Ps_s identical. As described above, the present system also remains fully operational, since a corresponding substitute signal can be generated if the intake manifold pressure signal or the measured value for the throttle valve angle fails.
Die durch das Saugrohrmodell erhaltenen Modellgrößen Ps , Ps werden einem Block "Prädiktion" zugeführt. Da mit den Model- len auch die Druckänderungen im Saugrohr berechnet werden, können diese Druckänderungen dazu verwendet werden, den zu¬ künftigen Druckverlauf im Saugrohr und damit die Zylinder- luftmasse für das nächste [N + l] oder für die nächsten Seg¬ mente [N + H] ZU schätzen. Die Größe mzyι bzw. die Größe mzyι [N + \] dienen dann zur exakten Berechnung der Einspritz- zeit, während derer Kraftstoff eingespritzt wird. The model variables P s , P s obtained by the intake manifold model are fed to a "prediction" block. Since the models also calculate the pressure changes in the intake manifold, these pressure changes can be used to determine the future pressure curve in the intake manifold and thus the cylinder air mass for the next [N + 1] or for the next segments [ N + H] TO APPRECIATE. The size mz y ι and the size mz y ι [N + \] then serve for the exact calculation of the injection time during which fuel is injected.

Claims

Patentansprüche claims
1. Verfahren zum Bestimmen der einströmenden Luftmasse in den bzw. die Zylinder einer Brennkraftmaschine mit - einem Ansaugsystem, das ein Saugrohr (10) und eine darin angeordnete Drosselklappe (11) , sowie einen den Öffnungs- grad der Drosselklappe (19) erfassenden Drosselklappenstel¬ lungsfühler (14) aufweist,1. Method for determining the inflowing air mass into the cylinder or cylinders of an internal combustion engine with an intake system which has an intake manifold (10) and a throttle valve (11) arranged therein, and a throttle valve position which detects the degree of opening of the throttle valve (19) lungs sensor (14),
- einem, ein Lastsignal (mDK_LMM\Ps_s) der Brennkraftmaschine erzeugenden Sensor (12; 13)- A sensor (12; 13) generating a load signal (mDK_LMM \ Ps_s) from the internal combustion engine
- einer elektrischen Steuerungseinrichtung, die auf der- An electrical control device on the
Grundlage des gemessenen Lastsignals (mDκ_LMM',Ps_s) und der Drehzahl der Brennkraftmaschine eine Grundeinspritzzeit be¬ rechnet, d a d u r c h g e k e n n z e i c h n e t , daßOn the basis of the measured load signal (mDκ_LMM ', Ps_s) and the speed of the internal combustion engine, a basic injection time is calculated, that is to say that
- die Verhältnisse im Ansaugsystem mittels eines Saugrohrfül- lungsmodells nachgebildet werden, wobei als Eingangsgrößen des Modells der Öffnungsgrad der Drosselklappe (11) , der Umgebungsdruck (Pv) und die Ventilstellung repräsentieren- de Parameter herangezogen werden,- the conditions in the intake system are simulated by means of an intake manifold filling model, the parameters representing the opening degree of the throttle valve (11), the ambient pressure (P v ) and the valve position being used as input variables of the model,
ΛΛ
- eine Modellgröße für den Luftmassenstrom (*wz)A.-)an der Dros¬ selklappe (11) mit Hilfe der Durchflußgleichung idealer Ga¬ se durch Drosselstellen beschrieben wird (Gleichung 2.2),a model size for the air mass flow ( * wz) A .-) at the throttle valve (11) is described using the flow equation of ideal gas through throttle points (equation 2.2),
ΛΛ
- eine Modellgröße für den Luftmassenstrom (mzyi) in den bzw. in die Zylinder (17) als lineare Funktion des Saugrohr-- A model size for the air mass flow (mzyi) in or into the cylinder (17) as a linear function of the intake manifold
Λ drucks (Ps) durch eine Massenbilanz der LuftmassenströmeΛ pressure (Ps) by a mass balance of the air mass flows
Λ ΛΛ Λ
(mDK, mzyi) beschrieben wird (Gleichung 2.1)(mDK, mzyi) is described (Equation 2.1)
- diese Modellgrößen über eine Differentialgleichung ver¬ knüpft werden (Gleichung 2.5), daraus als bestimmende Größe zur Ermittlung der tatsächlic Λhen Last der Brennkraft- maschine der Saugrohrdruck (Ps) berechnet wird (Gleichung 2.7) und- These model variables are linked via a differential equation (equation 2.5), from which the intake manifold pressure (Ps) is calculated as a determining variable for determining the actual load of the internal combustion engine (equation 2.7) and
- aus dem linearen Zusammenhang (Gleichung 2.4) zwischen be-- from the linear relationship (equation 2.4) between
Λ rechnetem Saugrohrdruck (Ps) und der Modellgröße für den ΛΛ calculated intake manifold pressure (Ps) and the model size for the Λ
Lu massenstrom (mzyι) in den bzw. in die Zylinder (17) durch Integration die in Λ den bzw. in die Zylinder (17) einströ- mende Luftmasse (mzyι) erhalten wird.Lu mass flow (mz y ι) into or into the cylinders (17) is obtained by integrating the air mass (mz y ι) flowing into Λ or into the cylinders (17).
2. Verfahren nach Anspruch 1, d a d u r c h g e k e n n z e i c h n e t , daß das vom Lastsensor (12; 13) gemessene Lastsignal2. The method of claim 1, d a d u r c h g e k e n n z e i c h n e t that the load signal measured by the load sensor (12; 13)
(mDK_LMM ; Ps_s) zur Korrektur und damit zum Abgleich der Mo-(mDK_LMM; Ps_s) for correction and thus for comparison of the mo-
Λ dellgrößen (mzyι) in einem geschlossenen Rgelkreis herangezo- gen wird, wobei das Lastsignal (moκ_LMM ; Ps_s) als Führungs¬ größe des Regelkreises dient.Λ dell variables (mz y ι) are used in a closed control loop, the load signal (moκ_LMM; Ps_s) serving as the command variable of the control loop.
3. Verfahren nach Anspruch 2, d a d u r c h g e k e n n z e i c h n e t , daß der Abgleich im stationären und/oder instationären Be¬ trieb der Brennkraftmaschine durchgeführt wird und dabei das Übertragungsverhalten des Lastsensors (12; 13) berücksichtigt wird.3. The method of claim 2, d a d u r c h g e k e n n z e i c h n e t that the adjustment is carried out in the stationary and / or transient operation of the internal combustion engine and taking into account the transmission behavior of the load sensor (12; 13).
4. Verfahren nach Anspruch 2, d a d u r c h g e k e n n z e i c h n e t , daß jedem gemessenen Wert des Drosselklappenöffnungsgrades ei Λn Wert eines reuzierten Querschnitts der Drosselklappe4. The method of claim 2, d a d u r c h g e k e n n z e i c h n e t that each measured value of the throttle valve opening degree ei Λn value of a reduced cross section of the throttle valve
(ARED) zugeordnet ist und der Abgleich de Λr Modellgrößen durch Korrektur des reduzierten Querschnitts (ARED)(ARED) and the comparison of the model sizes by correcting the reduced cross-section (ARED)
Λ durch eine Kor- rekturgröße (AARED) derart erfolgt, daß die Regelabweichung zwischen Führungsgröße und entsprechender Modellgröße mini¬ miert wird.Λ by means of a correction variable (AARED) such that the control deviation between the reference variable and the corresponding model variable is minimized.
5. Verfahren nach Anspruch 4, d a d u r c h g e k e n n z e i Λ c h n e t , daß der reduzierte Querschnitt (ARED) aus stationären Messun¬ gen am Motorprüfstand ermittelt wird und in einem Kennfeld eines Speichers der elektrischen Steuerungseinrichtung abge- legt ist.5. The method according to claim 4, so that the reduced cross-section (ARED) is determined from stationary measurements on the engine test bench and is stored in a map of a memory of the electrical control device.
6. Verfahren nach Anspruch 1, 96/32579 PCI7DE96/006156. The method according to claim 1, 96/32579 PCI7DE96 / 00615
23 d a d u r c h g e k e n n z e i c h n e t , daß bei de Darstellung der Modellgröße für den Luftmas¬ senstrom (mDK) an der Drosselklappe (11) eine in der Durch¬ flußgleichung (Gleichung 2.2) vorhandene Durchflußfunktion (ψ) in einzelne Abschnitte (i = l...k) unterteilt wird und diese Abschnitte durch Geradenabschnitte angenähert werden, wobei für die Steigung (m^) und für das Absolutglied (n-^) der jeweiligen Geradenabschnitte als Funktion des Verhältnisses23 characterized in that when the model size for the air mass flow (mDK) is represented on the throttle valve (11), a flow function (ψ) existing in the flow equation (equation 2.2) into individual sections (i = l ... k) is divided and these sections are approximated by straight line sections, the slope (m ^) and the absolute term (n- ^) of the respective straight line sections as a function of the ratio
Λ Λ von Saugrohrdruck (Ps) und Umgebungsdruck (Pυ) bestimmt sind und in einem Kennfeld abgelegt sind.Λ Λ are determined by intake manifold pressure (Ps) and ambient pressure (Pυ) and are stored in a map.
7. Verfahren nach Anspruch 1, d a d u r c h g e k e n n z e i c h n e t , daß die Steigung (γ,) und das Absolutglied (γ0) der linearen Funktion für die Modellgröße für den Luftmassenstrom in den bzw. ind die Zylinder (mzyι) abhängig von mindestens einem der Parameter, Drehzahl der Brennkraftmaschine, Zylinderzahl, Saugrohrgeometrie, Temperatur der Luft (Tg) im Ansaugrohr (10) und Ventilsteuerzeichen festgelegt sind.7. The method according to claim 1, characterized in that the slope (γ,) and the absolute member (γ 0 ) of the linear function for the model size for the air mass flow in or ind the cylinder (mz y ι) depending on at least one of the parameters , Speed of the internal combustion engine, number of cylinders, intake manifold geometry, temperature of the air (Tg) in the intake manifold (10) and valve control characters.
8. Verfahren nach Anspruch 7, d a d u r c h g e k e n n z e i c h n e t , daß die Parameter duch stationäre Messungen am Motorprüfstand ermittelt werden und in Kennfelder abgelegt sind.8. The method of claim 7, d a d u r c h g e k e n n z e i c h n e t that the parameters are determined by stationary measurements on the engine test bench and are stored in maps.
9. Verfahren nach Anspruch 1, d a d u r c h g e k e n n z e i c h n e t , daß die in den Zylinder einströmende Luftmasse (mzyι) durch die Beziehung9. The method according to claim 1, characterized in that the air mass flowing into the cylinder (mz y ι) by the relationship
berechnet wird, mitis calculated with
T}\: Abtastzeit oder Segmentzeit mzyι[N] Modellgröße des Luftmassenstromes während des aktuellen Abtastschrittes oder Segments mzyt[N -\] Modellgröße des Luftmassenstromes während des vergangenen Abtastschrittes oder Segmentes.T } \ : sampling time or segment time mz y ι [N] model size of the air mass flow during the current sampling step or segment mz y t [N - \] model size of the air mass flow during the previous sampling step or segment.
10. Verfahren nach Anspruch 1, d a d u r c h g e k e n n z e i c h n e t , daß die in den bzw. in die Zylinder einströmende Luftmasse10. The method of claim 1, d a d u r c h g e k e n n z e i c h n e t that the air mass flowing into or into the cylinder
(mzyi) für einen, bezüglich der aktuellen Lasterfassung zum Abtastzeitpunkt [N] in der Zukunft liegenden, bestimmten Prä¬ diktionshorizont (H) geschätzt wird durch Schätzung des ent¬ sprechenden Druckwertes nach folgender Beziehung:(mzyi) for a certain prediction horizon (H), which lies in the future with respect to the current load detection at the sampling time [N], is estimated by estimating the corresponding pressure value according to the following relationship:
mzyi[N + H] mzyi [N + H]
mitWith
T^: Abtastzeit oder SegmentzeitT ^: sampling time or segment time
H: Prädiktionshorizont, Anzahl der in der Zukunft liegenden Abtastschritte γ, : Steigung der linearen Gleichung γ0: Absolutglied zur Bestimmung von mzιH: prediction horizon, number of sampling steps γ in the future,: slope of the linear equation γ 0 : absolute term for determining mzι
N: aktueller AbtastschrittN: current sampling step
11. Verfahren nach Anspruch 10, d a d u r c h g e k e n n z e i c h n e t , daß die Anzahl (H) von Segmenten, für die das Lastsignal für die Zukunft geschätzt werden soll, drehzahlabhängig festge¬ legt ist. 11. The method according to claim 10, so that the number (H) of segments for which the load signal is to be estimated for the future is defined as a function of the speed.
EP96909021A 1995-04-10 1996-04-09 Process for finding the mass of air entering the cylinders of an internal combustion engine with the aid of a model Expired - Lifetime EP0820559B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19513601 1995-04-10
DE19513601 1995-04-10
PCT/DE1996/000615 WO1996032579A1 (en) 1995-04-10 1996-04-09 Process for finding the mass of air entering the cylinders of an internal combustion engine with the aid of a model

Publications (2)

Publication Number Publication Date
EP0820559A1 true EP0820559A1 (en) 1998-01-28
EP0820559B1 EP0820559B1 (en) 1999-09-15

Family

ID=7759410

Family Applications (1)

Application Number Title Priority Date Filing Date
EP96909021A Expired - Lifetime EP0820559B1 (en) 1995-04-10 1996-04-09 Process for finding the mass of air entering the cylinders of an internal combustion engine with the aid of a model

Country Status (10)

Country Link
US (1) US5889205A (en)
EP (1) EP0820559B1 (en)
JP (1) JPH11504093A (en)
KR (1) KR100413402B1 (en)
CN (1) CN1073205C (en)
BR (1) BR9604813A (en)
CA (1) CA2217824C (en)
CZ (1) CZ319497A3 (en)
DE (1) DE59603079D1 (en)
WO (1) WO1996032579A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1076166A3 (en) * 1999-08-12 2003-05-07 Volkswagen Aktiengesellschaft Method and apparatus for the determination of the intake air in an internal combustion engine
DE10227466B4 (en) * 2002-06-20 2004-06-09 Bayerische Motoren Werke Ag Method for determining cylinder loading in an internal combustion engine
US8224556B2 (en) 2008-03-13 2012-07-17 Continental Automotive Gmbh Method and device for operating an internal combustion engine
US8239088B2 (en) 2006-03-07 2012-08-07 Continental Automotive Gmbh Method for identifying a defective control device
US8489307B2 (en) 2006-07-28 2013-07-16 Continental Automotive Gmbh Method and device for operating an internal combustion engine
US9285786B2 (en) 2007-12-13 2016-03-15 Continental Automotive Gmbh Method for determining adapted measuring values and/or model parameters for controlling the air flow path of internal combustion engines

Families Citing this family (107)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE59706694D1 (en) 1996-09-27 2002-04-25 Siemens Ag SECONDARY AIR SYSTEM FOR AN INTERNAL COMBUSTION ENGINE
FR2758590B1 (en) * 1997-01-20 1999-04-16 Siemens Automotive Sa CONTROL DEVICE FOR AN INTERNAL COMBUSTION ENGINE WITH DIRECT IGNITION AND DIRECT INJECTION
DE19705766C1 (en) * 1997-02-14 1998-08-13 Siemens Ag Method and device for monitoring a sensor which is assigned to an internal combustion engine
DE19709955C2 (en) * 1997-03-11 2003-10-02 Siemens Ag Method and device for controlling an internal combustion engine
DE19740970A1 (en) * 1997-04-01 1998-10-08 Bosch Gmbh Robert Operation of internal combustion engine
WO1998044250A1 (en) * 1997-04-01 1998-10-08 Robert Bosch Gmbh Device for determining the volume of air entering the cylinder of an internal combustion engine with a supercharger
DE19727866C2 (en) 1997-06-30 2003-03-20 Siemens Ag Device for controlling an internal combustion engine
DE19740968B4 (en) * 1997-09-17 2007-11-29 Robert Bosch Gmbh Method for operating an internal combustion engine
BR9812867A (en) 1997-10-07 2000-08-08 Siemens Ag Device process for monitoring an internal combustion engine
DE19753873B4 (en) * 1997-12-05 2008-05-29 Robert Bosch Gmbh Method and device for operating an internal combustion engine
DE19829483C2 (en) * 1998-07-01 2001-09-20 Siemens Ag Device for determining a size that characterizes the air mass in a cylinder of an internal combustion engine
US6246950B1 (en) * 1998-09-01 2001-06-12 General Electric Company Model based assessment of locomotive engines
DE19853410A1 (en) * 1998-11-19 2000-05-25 Bayerische Motoren Werke Ag Procedure for determining throttle valve angle
US6089082A (en) * 1998-12-07 2000-07-18 Ford Global Technologies, Inc. Air estimation system and method
DE19939973A1 (en) * 1999-08-24 2001-03-01 Volkswagen Ag Regulation of a gasoline engine
JP2003522888A (en) * 2000-02-09 2003-07-29 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Method and apparatus for determining mass flow through a control valve and method and apparatus for determining modeled intake pipe pressure
US6357430B1 (en) 2000-03-21 2002-03-19 Ford Global Technologies, Inc. Method and system for calculating engine load ratio during rapid throttle changes
DE50108310D1 (en) 2000-03-31 2006-01-12 Siemens Ag METHOD FOR STARTING AN INTERNAL COMBUSTION ENGINE AND STARING DEVICE FOR AN INTERNAL COMBUSTION ENGINE
DE10017280A1 (en) * 2000-04-06 2001-10-11 Bosch Gmbh Robert Method and device for controlling an internal combustion engine
DE10021132A1 (en) * 2000-04-29 2001-11-29 Bayerische Motoren Werke Ag Method and device for the electronic control of actuators of an internal combustion engine with variable gas exchange control
AUPQ723800A0 (en) * 2000-05-01 2000-05-25 Orbital Engine Company (Australia) Proprietary Limited Engine airflow measurement
US6460409B1 (en) * 2000-05-13 2002-10-08 Ford Global Technologies, Inc. Feed-forward observer-based control for estimating cylinder air charge
DE10032103A1 (en) * 2000-07-01 2002-03-07 Bayerische Motoren Werke Ag Electronic control device for controlling actuators of an internal combustion engine in motor vehicles with means for changing the valve timing and / or with means for changing the valve strokes
DE10039785B4 (en) * 2000-08-16 2014-02-13 Robert Bosch Gmbh Method and device for operating an internal combustion engine
DE10039953C1 (en) 2000-08-16 2002-04-11 Siemens Ag Method and device for controlling an internal combustion engine
DE10065122A1 (en) * 2000-12-28 2002-08-14 Bosch Gmbh Robert Method for detecting the state of the art mass flows to the intake manifold of an internal combustion engine
DE10116932A1 (en) * 2001-04-05 2002-10-10 Bayerische Motoren Werke Ag Method for determining the air mass flow from the intake manifold into the cylinder of an internal combustion engine
DE10123034A1 (en) * 2001-05-11 2002-11-14 Bosch Gmbh Robert Pressure determining method for the upstream of a choke in the inlet to a combustion engine whereby the pressure is determined based on a physical model the inputs to which are the downstream pressure and the choke's cross section
DE10129035A1 (en) * 2001-06-15 2002-12-19 Bosch Gmbh Robert Inlet temperature measurement system for car engines, estimates effect of exhaust gas addition
DE10140617A1 (en) * 2001-08-18 2003-03-06 Bosch Gmbh Robert Measuring system with ratiometric frequency output
JP3963171B2 (en) 2001-10-15 2007-08-22 トヨタ自動車株式会社 Intake air amount estimation device for internal combustion engine
DE10220141B4 (en) * 2002-05-06 2007-11-29 Siemens Ag A method of controlling the combustion of an internal combustion engine having at least two cylinder banks
DE10222137B3 (en) * 2002-05-17 2004-02-05 Siemens Ag Method for controlling an internal combustion engine
DE10224213C1 (en) * 2002-05-31 2003-10-09 Siemens Ag Regulating combustion air filling of internal combustion engine, involves tuning model using measurement and model values, deriving actuator element desired values using inverted version of tuned model
DE10227064A1 (en) * 2002-06-18 2004-01-08 Robert Bosch Gmbh Method for determining the cylinder charge of an internal combustion engine with variable valve lift adjustment, control element and internal combustion engine
DE10233945B4 (en) * 2002-07-25 2005-09-22 Siemens Ag Process for cleaning a particulate filter
DE10234719B3 (en) * 2002-07-30 2004-04-15 Siemens Ag Method for regulating the filling of an internal combustion engine
US6810854B2 (en) * 2002-10-22 2004-11-02 General Motors Corporation Method and apparatus for predicting and controlling manifold pressure
JP3898114B2 (en) * 2002-11-01 2007-03-28 本田技研工業株式会社 Intake air amount estimation method, estimation device, intake air amount control method and control device for internal combustion engine
JP3901091B2 (en) * 2002-12-27 2007-04-04 トヨタ自動車株式会社 Intake air amount estimation device for internal combustion engine
GB2397137B (en) * 2003-01-08 2005-12-07 Ford Global Tech Inc A control for an internal combustion engine
US6851304B2 (en) * 2003-01-28 2005-02-08 Ford Global Technologies, Llc Air estimation approach for internal combustion engine control
JP2004239128A (en) * 2003-02-05 2004-08-26 Mazda Motor Corp Predicting analyzing method of engine performance, predicting analyzing system and its control program
DE10332608B3 (en) 2003-07-17 2005-05-04 Siemens Ag Method for controlling an internal combustion engine and a device for controlling an internal combustion engine
DE10338628A1 (en) * 2003-08-22 2005-03-17 Daimlerchrysler Ag Method for operating an internal combustion engine with emission control system
JP3985746B2 (en) * 2003-08-26 2007-10-03 トヨタ自動車株式会社 Control device for internal combustion engine
JP4231419B2 (en) * 2004-01-08 2009-02-25 株式会社日立製作所 Intake air amount measuring device for internal combustion engine
US6955080B1 (en) * 2004-03-25 2005-10-18 General Motors Corporation Evaluating output of a mass air flow sensor
DE102004033845A1 (en) 2004-07-13 2006-02-09 Robert Bosch Gmbh Method and device for operating an internal combustion engine with exhaust gas recirculation
DE102004041708B4 (en) * 2004-08-28 2006-07-20 Bayerische Motoren Werke Ag Method for the model-based determination of fresh air mass flowing into the cylinder combustion chamber of an internal combustion engine during an intake phase
US7027905B1 (en) * 2004-09-29 2006-04-11 General Motors Corporation Mass air flow estimation based on manifold absolute pressure
DE102004049737A1 (en) * 2004-10-13 2006-06-22 Bayerische Motoren Werke Ag Fresh air mass flow rate determining method for internal combustion engine, involves calculating rate using non-linear systems with differential equations, where one equation is based on equilibration of in and out streaming energy flows
JP4143862B2 (en) * 2004-11-29 2008-09-03 トヨタ自動車株式会社 Air quantity estimation device for internal combustion engine
DE102004062018B4 (en) * 2004-12-23 2018-10-11 Robert Bosch Gmbh Method for operating an internal combustion engine
US7027910B1 (en) * 2005-01-13 2006-04-11 General Motors Corporation Individual cylinder controller for four-cylinder engine
DE102005030535A1 (en) * 2005-06-30 2007-01-04 Robert Bosch Gmbh Combustion engine sensor diagnosis procedure constructs dynamic model of air flow based on throttle setting, air temperature and pressure
DE102005046504A1 (en) * 2005-09-29 2007-04-05 Bayerische Motoren Werke Ag Device for determining the air mass flowing in the cylinder combustion chamber of an engine cylinder of a vehicle comprises a sensor arrangement for directly measuring the suction tube pressure and a calculating module
DE112007000998B4 (en) * 2006-04-24 2012-02-09 Gm Global Technology Operations Llc (N.D.Ges.D. Staates Delaware) Air flow estimation method and apparatus for an internal combustion engine
FI120472B (en) * 2006-06-06 2009-10-30 Metso Automation Oy Control method and control system for flow control valve
US7380447B2 (en) * 2006-06-10 2008-06-03 Ford Global Technologies. Llc Method and system for transient airflow compensation in an internal combustion engine
DE102006029969B3 (en) * 2006-06-29 2007-10-18 Siemens Ag Ambient pressure sensor data validating method for internal combustion engine, involves providing differences between actual air mass flow and air masses calculated based on measured ambient pressure and stored pressure, respectively
DE102006032493B3 (en) * 2006-07-13 2008-04-10 Siemens Ag Method for amending ambient pressure sensor for internal combustion (IC) engine, involves measuring pressure loss between air intake opening of intake pipe and reference location downstream of same opening
JP4936439B2 (en) * 2006-10-11 2012-05-23 国立大学法人東京工業大学 Pressure regulator and vibration isolator
DE102007008514A1 (en) * 2007-02-21 2008-09-04 Siemens Ag Method and device for neuronal control and / or regulation
DE102007012506B4 (en) * 2007-03-15 2009-02-26 Continental Automotive Gmbh Method for determining and adjusting the air mass flow in the intake manifold of an internal combustion engine and associated control unit
DE102007022703B3 (en) * 2007-05-15 2008-11-20 Continental Automotive Gmbh Method for controlling a supercharged internal combustion engine
DE102007035314B4 (en) 2007-07-27 2019-04-11 Robert Bosch Gmbh Method and device for operating an internal combustion engine
DE102007051873B4 (en) * 2007-10-30 2023-08-10 Robert Bosch Gmbh Method and device for operating an internal combustion engine
DE102007063102B4 (en) * 2007-12-28 2022-02-10 Robert Bosch Gmbh Method for detecting a periodically pulsating operating parameter
EP2098710B1 (en) * 2008-03-04 2016-07-27 GM Global Technology Operations LLC A method for estimating the oxygen concentration in internal combustion engines
DE102008015909B3 (en) * 2008-03-27 2009-12-03 Continental Automotive Gmbh Internal combustion engine operating method for motor vehicle, involves classifying preset possible error as presumably available error, when amount of deviation of mean value from reference value of parameter is larger than threshold value
DE102008039559B4 (en) * 2008-04-23 2014-08-14 GM Global Technology Operations LLC (n. d. Ges. d. Staates Delaware) Method and control system for determining an air mass flow rate
DE102008022214B3 (en) * 2008-05-06 2009-11-26 Continental Automotive Gmbh Throttle flap and circulating air flap controlling method for use in internal combustion engine, involves controlling throttle and circulating air flaps based on reference values of throttle and air flap pressure ratios, respectively
DE102008022213A1 (en) 2008-05-06 2009-11-12 Continental Automotive Gmbh Method for determining pressure as model value according to throttle flap for volume limited by throttle valve, recirculating air flap and compressor, involves determining pressure according to throttle flap, and charge air pressure
DE102008040633B4 (en) * 2008-07-23 2020-01-02 Robert Bosch Gmbh Method for operating an internal combustion engine
DE102008043965B4 (en) * 2008-11-21 2022-03-31 Robert Bosch Gmbh Process for real-time capable simulation of an air system model of a combustion engine
DE102009007808B4 (en) 2009-02-04 2022-02-10 Volkswagen Aktiengesellschaft Method for operating an internal combustion engine
JP2011094561A (en) * 2009-10-30 2011-05-12 Hitachi Automotive Systems Ltd Engine control unit
US8549900B2 (en) * 2010-01-18 2013-10-08 Toyota Jidosha Kabushiki Kaisha Gas state estimation device for internal combustion engine
WO2012070100A1 (en) * 2010-11-22 2012-05-31 トヨタ自動車株式会社 Air-quantity estimation device for internal combustion engine with supercharger
DE102010052644A1 (en) * 2010-11-29 2012-05-31 Audi Ag Method for operating an internal combustion engine, control element, internal combustion engine
US8880321B2 (en) * 2011-03-07 2014-11-04 Toyota Motor Engineering & Manufacturing North America, Inc. Adaptive air charge estimation based on support vector regression
DE102011014767B4 (en) 2011-03-21 2022-09-01 Volkswagen Aktiengesellschaft Method for operating an internal combustion engine
JP5752517B2 (en) 2011-08-03 2015-07-22 トヨタ自動車株式会社 Control device for internal combustion engine
DE102012212860B3 (en) * 2012-07-23 2013-12-12 Schaeffler Technologies AG & Co. KG Method for determining the filling of the cylinders of reciprocating internal combustion engines
JP6140985B2 (en) * 2012-11-19 2017-06-07 トヨタ紡織株式会社 Intake pipe structure of internal combustion engine
DE102012221311B4 (en) 2012-11-22 2014-07-10 Continental Automotive Gmbh Method for fresh air detection by evaluation of a cylinder internal pressure signal
WO2014152701A1 (en) 2013-03-15 2014-09-25 United Technologies Corporation Compact aero-thermo model based control system
DE102013213871B4 (en) 2013-07-16 2021-02-11 Vitesco Technologies GmbH Method and device for operating an internal combustion engine
DE102013216073B4 (en) 2013-08-14 2015-08-13 Continental Automotive Gmbh Method and device for operating an internal combustion engine
JP2015080379A (en) * 2013-10-18 2015-04-23 タイコエレクトロニクスジャパン合同会社 Position detection sensor, and throttle device of internal combustion engine
DE102014209793B4 (en) 2014-05-22 2020-02-06 Continental Automotive Gmbh Method and device for operating an internal combustion engine
DE102014211162B4 (en) * 2014-06-11 2021-09-02 Volkswagen Aktiengesellschaft Method and device for filling detection in a cylinder of an internal combustion engine
JP2016065484A (en) * 2014-09-24 2016-04-28 トヨタ自動車株式会社 Estimation device of throttle upstream pressure
FR3027957A1 (en) * 2014-11-04 2016-05-06 Peugeot Citroen Automobiles Sa METHOD FOR ESTIMATING A GAS FLOW IN A CYLINDER FOR CONTROLLING AN INTERNAL COMBUSTION ENGINE
DE102015204155B3 (en) * 2015-03-09 2016-08-18 Continental Automotive Gmbh Method for torque-neutral switching of operating states of an actuator of an internal combustion engine
DE102016204539A1 (en) * 2016-03-18 2017-09-21 Volkswagen Aktiengesellschaft Method and control device for determining an amount of a charge component in a cylinder of an internal combustion engine
DE102016219584B4 (en) * 2016-10-10 2018-05-30 Continental Automotive Gmbh Method for the combined identification of phase differences of the intake valve lift and the exhaust valve lift of an internal combustion engine by means of lines of identical phase positions and amplitudes
DE102016219582B3 (en) * 2016-10-10 2017-06-08 Continental Automotive Gmbh A method of combined identification of intake valve lift phase difference and exhaust valve lift phase difference of an internal combustion engine by means of equal amplitude lines
JP6515903B2 (en) * 2016-11-02 2019-05-22 トヨタ自動車株式会社 Control device for internal combustion engine
CN108005805B (en) * 2017-11-29 2020-04-07 奇瑞汽车股份有限公司 Engine load calculation method, engine and automobile
DE102019211398A1 (en) * 2019-07-31 2021-02-04 Ford Global Technologies, Llc Determine an inner cylinder air mass
CN111143980B (en) * 2019-12-17 2022-03-22 淮阴工学院 Method for calculating opening of check valve of high-pressure oil pipe
US11790126B2 (en) * 2019-12-19 2023-10-17 Caterpillar Inc. Method and system for internal combustion engine simulation
JP2022026885A (en) * 2020-07-31 2022-02-10 ナブテスコ株式会社 Engine characteristic estimation device, engine characteristic estimation method, and engine characteristic estimation program
CN112985530B (en) * 2021-02-01 2022-04-22 南京航空航天大学 Method for adjusting design parameters of fuel metering device based on characteristic equation root track
JP2023038764A (en) * 2021-09-07 2023-03-17 株式会社ニッキ Fuel injection control method of engine and device

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE68904437D1 (en) * 1988-01-29 1993-03-04 Hitachi Ltd ENGINE FUEL INJECTION CONTROL.
US5003950A (en) * 1988-06-15 1991-04-02 Toyota Jidosha Kabushiki Kaisha Apparatus for control and intake air amount prediction in an internal combustion engine
JP2818805B2 (en) * 1988-12-08 1998-10-30 富士重工業株式会社 Engine fuel injection control device
US5293553A (en) * 1991-02-12 1994-03-08 General Motors Corporation Software air-flow meter for an internal combustion engine
US5270935A (en) * 1990-11-26 1993-12-14 General Motors Corporation Engine with prediction/estimation air flow determination
US5377112A (en) * 1991-12-19 1994-12-27 Caterpillar Inc. Method for diagnosing an engine using computer based models
US5497329A (en) * 1992-09-23 1996-03-05 General Motors Corporation Prediction method for engine mass air flow per cylinder
EP0594114B1 (en) * 1992-10-19 1999-12-15 Honda Giken Kogyo Kabushiki Kaisha Fuel metering control system in internal combustion engine
DE4325902C2 (en) * 1993-08-02 1999-12-02 Bosch Gmbh Robert Air charge calculation method for an internal combustion engine with variable gas exchange control
US5714683A (en) * 1996-12-02 1998-02-03 General Motors Corporation Internal combustion engine intake port flow determination

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9632579A1 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1076166A3 (en) * 1999-08-12 2003-05-07 Volkswagen Aktiengesellschaft Method and apparatus for the determination of the intake air in an internal combustion engine
DE10227466B4 (en) * 2002-06-20 2004-06-09 Bayerische Motoren Werke Ag Method for determining cylinder loading in an internal combustion engine
US8239088B2 (en) 2006-03-07 2012-08-07 Continental Automotive Gmbh Method for identifying a defective control device
US8489307B2 (en) 2006-07-28 2013-07-16 Continental Automotive Gmbh Method and device for operating an internal combustion engine
US9285786B2 (en) 2007-12-13 2016-03-15 Continental Automotive Gmbh Method for determining adapted measuring values and/or model parameters for controlling the air flow path of internal combustion engines
US8224556B2 (en) 2008-03-13 2012-07-17 Continental Automotive Gmbh Method and device for operating an internal combustion engine

Also Published As

Publication number Publication date
JPH11504093A (en) 1999-04-06
EP0820559B1 (en) 1999-09-15
US5889205A (en) 1999-03-30
CN1181124A (en) 1998-05-06
CN1073205C (en) 2001-10-17
CZ319497A3 (en) 1999-01-13
KR100413402B1 (en) 2004-04-28
CA2217824A1 (en) 1996-10-17
KR19980703458A (en) 1998-11-05
DE59603079D1 (en) 1999-10-21
BR9604813A (en) 1998-06-09
CA2217824C (en) 2006-01-24
WO1996032579A1 (en) 1996-10-17

Similar Documents

Publication Publication Date Title
EP0820559B1 (en) Process for finding the mass of air entering the cylinders of an internal combustion engine with the aid of a model
EP0886725B1 (en) Process for model-assisted determination of fresh air mass flowing into the cylinder of an internal combustion engine with external exhaust-gas recycling
DE4325902C2 (en) Air charge calculation method for an internal combustion engine with variable gas exchange control
EP3698032B1 (en) Method for the model-based control and regulation of an internal combustion engine
WO2006069853A1 (en) Method for the operation of an internal combustion engine
EP3308007B1 (en) Air charge determination, engine control unit and internal combustion engine
DE10122456A1 (en) Pure feed-forward control based on an observer for estimating the cylinder intake air
DE102017005783B4 (en) Method for model-based control and regulation of an internal combustion engine
EP0966600B1 (en) Process and device for controlling the mixture in an internal combustion engine
DE102005022691A1 (en) Method for operating internal combustion engine entails carrying out correction for operating point modelling differently for different operating points of engine
DE102013202720A1 (en) Estimation device for a cylinder intake air quantity in an internal combustion engine
DE102004052429B4 (en) Injection control device for an engine
EP1264227A1 (en) Method and device for mass flow determination via a control valve and for determining a modeled induction pipe pressure
WO1998037321A9 (en) Process and device for controlling the mixture in an internal combustion engine
DE102007053719B3 (en) Internal combustion engine e.g. flat engine, operating device for motor vehicle, involves determining mass of gas in cylinder as parameter for quantity of gas, and determining oxygen concentration of gas as parameter for quality of gas
DE10213138B4 (en) Method, computer program, control and / or regulating device for operating an internal combustion engine
DE102020100413A1 (en) METHODS AND SYSTEMS FOR CONTROLLING FUEL INJECTION IN A HIGH PRESSURE COMMON RAIL ENGINE
DE102010046491B4 (en) Method for determining pollutant emissions in the combustion chamber of a diesel engine
DE10227466A1 (en) Determining cylinder charge in internal combustion engine, involves computing first and second cylinder charge values with first and second models, adapting first model according to comparison of results
DE102016205241A1 (en) Method and device for operating an internal combustion engine with a variable injection profile
DE10356713A1 (en) Regulating or controlling internal combustion engine working in circular process involves using computer models for individual sub-processes starting from different assumptions and/or simplifications
DE19803689C1 (en) Fuel injection duration control method for direct fuel injection IC engine, e.g. vehicle deisel engine
DE102007012340B3 (en) Air-mass flow rate determining and adjusting method for e.g. petrol engine, involves transforming adaptation target value of generalized adaptation into physical parameter of suction tube by using successive adaptation value transformation
EP0407406A1 (en) Learning control process and device for internal combustion engines.
DE4239842A1 (en) Control of IC engine - controlling motorised throttle flap to account for air back flow caused by system resonances

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19971006

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

17Q First examination report despatched

Effective date: 19990226

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19990921

REF Corresponds to:

Ref document number: 59603079

Country of ref document: DE

Date of ref document: 19991021

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20090414

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20090421

Year of fee payment: 14

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20100409

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20101230

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100409

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100430

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20150430

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59603079

Country of ref document: DE