EP1264227A1 - Method and device for mass flow determination via a control valve and for determining a modeled induction pipe pressure - Google Patents

Method and device for mass flow determination via a control valve and for determining a modeled induction pipe pressure

Info

Publication number
EP1264227A1
EP1264227A1 EP01913510A EP01913510A EP1264227A1 EP 1264227 A1 EP1264227 A1 EP 1264227A1 EP 01913510 A EP01913510 A EP 01913510A EP 01913510 A EP01913510 A EP 01913510A EP 1264227 A1 EP1264227 A1 EP 1264227A1
Authority
EP
European Patent Office
Prior art keywords
exhaust gas
valve
mass flow
partial pressure
modeled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
EP01913510A
Other languages
German (de)
French (fr)
Inventor
Leonhard Milos
Ernst Wild
Jochen Gross
Oliver Schlesiger
Kristina Eberle
Roland Herynek
Patrick Janin
Manfred Pfitz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE10041073A external-priority patent/DE10041073A1/en
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP1264227A1 publication Critical patent/EP1264227A1/en
Ceased legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/0047Controlling exhaust gas recirculation [EGR]
    • F02D41/0065Specific aspects of external EGR control
    • F02D41/0072Estimating, calculating or determining the EGR rate, amount or flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/04Engine intake system parameters
    • F02D2200/0402Engine intake system parameters the parameter being determined by using a model of the engine intake or its components
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/04Engine intake system parameters
    • F02D2200/0406Intake manifold pressure
    • F02D2200/0408Estimation of intake manifold pressure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the present invention relates to a method and a device for determining a mass flow via a control valve and for determining a modeled intake manifold pressure in an internal combustion engine with exhaust gas recirculation, the sum being formed from the partial pressure of the fresh gas and the partial pressure of the recirculated exhaust gas.
  • An external exhaust gas recirculation system is particularly necessary for Otto engines with gasoline direct injection in order to comply with the legally required limit values for NOx emissions in the exhaust gas.
  • Increased raw NOx emissions in the exhaust gas occur predominantly in stratified engine operation with an air / fuel ratio ⁇ > 1.
  • the exhaust gas recirculation in which an exhaust gas mass flow is removed from the exhaust system and fed back to the internal combustion engine in metered quantities via an exhaust gas recirculation valve, reduces the peak temperature of the combustion process and thus reduces the raw NOx emission.
  • the partial pressure of the recirculated exhaust gas cannot be measured in the exhaust gas recirculation line. Therefore, only a model of the recirculated exhaust gas can be determined. In order to be able to implement a robust intake manifold pressure model which is as error-free as possible and which depends on the partial pressure of the recirculated exhaust gas, it is crucial to form a model for the partial pressure of the recirculated exhaust gas which is as free from errors as possible.
  • the valve flow characteristic from which the mass flow over the valve is determined as a function of the valve position, is adapted to improve accuracy by means of an offset value which is related to the valve position of the valve.
  • This offset value is constant over the valve position with different degrees of contamination of the valve.
  • an offset value related to the mass flow on the other hand, a decrease in the offset value for a certain degree of contamination can be observed as the valve opening becomes smaller.
  • a modeled partial pressure of the recirculated exhaust gas is derived from a flow characteristic of a valve located in an exhaust gas recirculation line depending on the valve position and that the modeled partial pressure of the recirculated exhaust gas derived from the flow characteristic is adaptive, depending on the difference from the modeled intake manifold pressure and a measured intake manifold pressure is corrected.
  • the mass flow via the exhaust gas recirculation valve is determined as a function of the flow characteristic of the exhaust gas recirculation valve, that a relative charge in the intake manifold is then calculated from the mass flow by dividing it by the engine speed, and finally from the relative one Filling in the intake pipe the partial pressure of the recirculated exhaust gas is derived.
  • Fresh air filling the partial pressure of the fresh gas is derived.
  • FIG. 1 shows a schematic illustration of an internal combustion engine with exhaust gas recirculation
  • FIG. 2 shows a functional diagram for calculating a modeled intake manifold pressure
  • FIG. 3 shows a detail from the functional diagram of FIG. 2 for adaptively adapting the flow characteristic of the exhaust gas recirculation valve
  • FIG. 4 shows a flow chart for the offset correction of the flow characteristic with an offset value related to the valve position.
  • FIG. 1 schematically shows an internal combustion engine 1 with an exhaust gas duct 2 and an intake manifold 3.
  • An exhaust gas recirculation line 4 branches off from the exhaust gas duct 2 and opens into the intake manifold 3.
  • a valve 5 is located in the exhaust gas recirculation line 4. Via this exhaust gas recirculation valve 5, the recirculated exhaust gas mass or the partial pressure pagr of the recirculated exhaust gas can be controlled.
  • Behind the mouth of the exhaust gas recirculation line 4, a pressure sensor 6 is arranged in the intake manifold 3, which measures the intake manifold pressure psaug.
  • a throttle valve 7 Before the opening of the exhaust gas recirculation line 4 there is a throttle valve 7 with a potentiometer 8 which detects the throttle valve position wdk.
  • an air mass sensor 9 is arranged in the intake manifold 3, which measures the air mass flow msdk via the throttle valve 7. Furthermore, are in the intake manifold 3 in front of the throttle valve 7, a pressure sensor 10, which measures the pressure pvdk in the intake manifold in front of the throttle valve, and a temperature sensor 11, which measures the intake air temperature TANS.
  • a pressure sensor 12, which measures the exhaust gas pressure pvagr upstream of the exhaust gas recirculation valve 5, and a temperature sensor 13, which detects the temperature Tabg of the exhaust gas upstream of the exhaust gas recirculation valve 5, are arranged in the exhaust gas recirculation line 4 upstream of the exhaust gas recirculation valve.
  • a control unit 14 is supplied with all of the sensed quantities mentioned. These include the measured intake manifold pressure psaug, the throttle valve position wdk, the air mass flow msdk in front of the throttle valve, the pressure pvdk in front of the throttle valve, the intake air temperature Tans, the position vs the exhaust gas recirculation valve 5, the engine speed nmot detected by a sensor 15, and the exhaust gas pressure pvagr in front of the exhaust gas recirculation valve and the temperature tab of the exhaust gas in front of the exhaust gas recirculation valve.
  • the sizes pvdk, Tabg and pvagr can also be determined by model calculations from other operating sizes of the engine.
  • the control unit 14 determines, among other things, the partial pressure pfg of the fresh gas and the partial pressure pagr of the recirculated exhaust gas from the input variables mentioned.
  • the desired modeled intake manifold pressure psaugm arises from an additive combination 16 of the partial pressure pfg of the fresh gas and the modeled partial pressure pagr of the recirculated exhaust gas. It is described below how the control unit 14 derives the partial pressure pfg of the fresh gas and the partial pressure pagr of the recirculated exhaust gas.
  • the mass flow msagr is first calculated via the exhaust gas recirculation valve according to equation (1).
  • msagr fkmsag ⁇ - ⁇ [msnagr (vs) + msnagr o] ⁇ pvagr / 1013 bR ⁇ • -273 / Tagr ⁇ KLAF (psaug I pvagr) (1)
  • This standard mass flow msnagr corresponds to the flow characteristic of the exhaust gas recirculation valve 5, which is usually provided by the valve manufacturer and is stored in the function block 17 (see FIG. 2).
  • This standard mass flow msnagr (vs) is therefore a variable derived from the flow characteristic as a function of the valve position vs.
  • the flow characteristic only takes into account the function of the exhaust gas recirculation valve 5, but not flow changes due to manufacturing tolerances and aging and also not the flow properties of the exhaust gas recirculation line 4. For this reason, in the equation (1) for the mass flow msagr via the exhaust gas recirculation valve, corrective heat fkmsagr and msnagro are provided, which can be changed adaptively.
  • the correction term msnagro takes into account an offset of the flow characteristic.
  • KLAF is a value taken from a characteristic curve, which shows the flow velocity over the exhaust gas recirculation valve in relation to the speed of sound as a function of the pressure ratio between the pressure psaug after the exhaust gas recirculation valve and the pressure pvagr upstream of the exhaust gas recirculation valve. If psaug / pvagr ⁇ 0.52 the speed of sound is set and if psaug / pvagr> 0.52 the flow speed drops below the speed of sound.
  • the constant K depends on the cylinder stroke volume and the standard density of the air.
  • the partial pressure pagr is calculated according to equation (3) from the relative filling rfagr resulting from the recirculated exhaust gas in the intake manifold on the basis of the recirculated exhaust gas.
  • the map size KFURL indicates the ratio of the effective cylinder stroke volume to the cylinder stroke volume.
  • the size ftsr reflects the temperature ratio of 273K to the gas temperature in the combustion chamber.
  • a relative fresh air charge rlfg in the intake manifold is first determined in accordance with equation (4).
  • the relative fresh air charge rlfg in the intake manifold can be calculated from the air mass flow msdk upstream of the throttle valve by division by the engine speed nrnot and the constant K (see equation (2)).
  • the partial pressure pfg of the fresh gas is derived therefrom in function block 18 according to equation (5).
  • the air mass flow msdk upstream of the throttle valve can either be measured with the sensor 9 or can be derived from other operating variables in accordance with equation (6).
  • msdk msndk (wdk) ⁇ pvdk / 1013hPa A / 273 / Tans • KLAF (psaug I pvdk) (6)
  • the KLAF value comes from a characteristic curve and provides the flow velocity over the throttle valve in relation to the speed of sound as a function of the pressure ratio psaug / pvdk at the throttle valve. If psaug / pvdk ⁇ 0.52 the speed of sound is set and if psaug / pvdk> 0.52 the flow rate drops below the speed of sound.
  • the partial pressure pagr of the recirculated exhaust gas derived from the flow characteristic in function block 17 is subject to errors, because this throughflow characteristic of the exhaust gas recirculation valve 5 does not take into account manufacturing tolerances, flow changes due to aging and also the flow properties of the exhaust gas recirculation line 4.
  • a function block 19 is provided, in which the partial pressure pagr of the recirculated exhaust gas is corrected.
  • the aim is that the modeled partial pressure pagr of the recirculated exhaust gas that is available after the correction is corresponds exactly to the real partial pressure in the exhaust gas recirculation line, so that the modeled intake manifold pressure psaugm resulting from the sum of the partial pressure pfg of the fresh gas and the partial pressure pagr of the recirculated exhaust gas is as unadulterated as possible.
  • a correction variable ⁇ ps is formed by forming the difference 20 from the modeled intake manifold pressure psaugm and the intake manifold pressure psaug measured by the pressure sensor 6, which is fed to a function block 19.
  • the correction variable ⁇ ps is fed via a switch 21 to either an integrator 22 or an integrator 23.
  • the integrator 22 provides the correction term fkmsagr occurring in equation (1)
  • the integrator 23 provides the offset correction term msnagro.
  • the integrators 22 and 23 increase the correction terms fkmsagr and msnagro to the extent that the correction variable ⁇ ps specifies.
  • the partial pressure pagr of the recirculated exhaust gas is thus adaptively changed in function block 20 until the deviation between the measured intake manifold pressure psaug and the modeled intake manifold pressure psaugm becomes minimal.
  • a threshold value decision takes place in switching block 21, which determines whether the measured intake manifold pressure psaug exceeds the threshold of 400 hPa. At a measured intake manifold pressure psaug that lies above the threshold of 400 hPa, only the integrator 23 for the correction term msnagro is controlled by the correction variable ⁇ ps. If the measured intake manifold pressure psaug is below the threshold of 400hPa, the correction variable ⁇ ps is switched over to the integrator 22 for the correction term fkmsagr.
  • the mass flow via the valve is required to determine the partial pressure. This is based on an adap- animal characteristic is determined depending on the valve position. Such a characteristic curve can also be essential in connection with other applications, so that the characteristic curve adaptation described cannot only be used in exhaust gas recirculation.
  • the air mass flow via a throttle valve is also determined in accordance with a flow characteristic, which can also be changed by valve contamination.
  • the offset value is formed from the deviation of a value calculated using the characteristic curve with a measured value, for example by integration.
  • FIG. 4 shows a flow chart for the adaptation of such a flow characteristic.
  • the input variable is the valve position vp.
  • the determined offset value off in the exemplary embodiment of an EGR valve ofvpagr, see e.g. FIG. 3, offset value msnagro
  • the result is used to address the flow characteristic MSNTAG 26, the output variable of which is the standard mass flow msnv (in the exemplary embodiment of an EGR valve msnagrv) via the control valve, which if necessary by linking 27 (division) with a slope adaptation factor to the standard mass flow msn (in the exemplary embodiment of an EGR - valve msnagr) is linked.
  • the offset value is related to the mass flow as described in equation 1. It is cheaper to refer to the valve position here as well.
  • the following calculation equation for the mass flow then results:

Abstract

A characteristic flow rate of a valve is adapted by weighing the input value valve position with a variable offset value in order to improve the accuracy of mass flow determination even when the valve is choked. The aim of the invention is to calculate a robust model for the induction pipe pressure (psaugm) by determining a modeled partial pressure (pagr) of the returned exhaust gas that deviates as little as possible from the real partial pressure of the returned exhaust gas. To this end, a modeled partial pressure (pagr) of the returned exhaust gas is derived from a characteristic flow rate of a valve disposed in an exhaust gas return pipe, depending on the valve position. The modeled partial pressure (pagr) of the returned exhaust gas derived from the characteristic flow rate is corrected adaptively, on the basis of the difference ( DELTA ps) between the modeled induction pipe pressure (psaugm) and a measured induction pipe pressure (psaug) (19).

Description

Verfahren und Vorrichtung zum Ermitteln eines Massenstromes über ein Steuerventil und zum Ermitteln eines modellierten SaugrohrdrucksMethod and device for determining a mass flow via a control valve and for determining a modeled intake manifold pressure
Stand der TechnikState of the art
Die vorliegende Erfindung betrifft ein Verfahren und eine Vorrichtung zum Ermitteln eines Massenstromes über ein Steuerventil und zum Ermitteln eines modellierten Saugrohrdrucks bei einer Brennkraftmaschine mit Abgasrückführung, wobei die Summe aus dem Partialdruck des Frischgases und dem Partialdruck des rückgeführten Abgases gebildet wird.The present invention relates to a method and a device for determining a mass flow via a control valve and for determining a modeled intake manifold pressure in an internal combustion engine with exhaust gas recirculation, the sum being formed from the partial pressure of the fresh gas and the partial pressure of the recirculated exhaust gas.
In vielen -Anwendungen auf dem Gebiet der Fahrzeugsteuerung ist die Kenntnis des Massenstromes über ein Steuerventil wesentlich. Ein Beispiel hierfür ist die Bestimmung des Par- tialdrucks, für welche die genaue Kenntnis des Massenstromes über ein Abgasrückführungssteuerventil wichtig ist. Da der Zusammenhang zwischen Ventilposition und Massenstrom bei Steuerventilen aber mit der Zeit durch verschiedene Faktoren wie Alterung, Verschmutzung, etc. verändert wird, besteht Bedarf an einer Adaption dieses Zusammenhangs, um die Genauigkeit der Massenstrombestimmung insbesondere auch bei Ventilverschmutzungen zu verbessern. Es ist bekannt, z.B. aus der DE 197 56 919 AI, daß sich der Saugrohrdruck aus der Summe des Frischgas-Partialdrucks und des Partialdrucks des rückgeführten Abgases berechnet.In many applications in the field of vehicle control, knowledge of the mass flow via a control valve is essential. An example of this is the determination of the partial pressure, for which the precise knowledge of the mass flow via an exhaust gas recirculation control valve is important. However, since the relationship between valve position and mass flow in control valves changes over time due to various factors such as aging, contamination, etc., there is a need to adapt this relationship in order to improve the accuracy of the mass flow determination, particularly in the case of valve contamination. It is known, for example from DE 197 56 919 AI, that the intake manifold pressure is calculated from the sum of the fresh gas partial pressure and the partial pressure of the recirculated exhaust gas.
Insbesondere bei Otto-Motoren mit Benzindirekteinspritzung ist eine externe Abgasrückführung notwendig, um die gesetzlich geforderten Grenzwerte für eine NOx-Emission im Abgas einzuhalten. Erhöhte NOx-Rohemissionen im Abgas treten vorwiegend im geschichteten Motorbetrieb mit einem Luf /Kraftstoff-Verhältnis λ > 1 auf. Durch die Abgasrückführung, bei der ein Abgasmassenstrom aus dem Abgasstrang entnommen und über ein Abgasrückführventil dem Verbrennungsmotor wieder dosiert zugeführt wird, wird die Spitzentemperatur des Verbrennungsprozesses verringert und damit die NOx-Rohemission reduziert.An external exhaust gas recirculation system is particularly necessary for Otto engines with gasoline direct injection in order to comply with the legally required limit values for NOx emissions in the exhaust gas. Increased raw NOx emissions in the exhaust gas occur predominantly in stratified engine operation with an air / fuel ratio λ> 1. The exhaust gas recirculation, in which an exhaust gas mass flow is removed from the exhaust system and fed back to the internal combustion engine in metered quantities via an exhaust gas recirculation valve, reduces the peak temperature of the combustion process and thus reduces the raw NOx emission.
Der Partialdruck des rückgeführten Abgases kann in der Ab- gasrückführleitung nicht gemessen werden. Deshalb kann nur ein Modell des rückgeführten Abgases ermittelt werden. Um nun ein möglichst fehlerfreies robustes Saugrohrdruck- Modell, das vom Partialdruck des rückgeführten Abgases abhängig ist, realisieren zu können, ist es entscheidend, ein möglichst wenig fehlerbehaftetes Modell für den Partialdruck des rückgeführten Abgases zu bilden.The partial pressure of the recirculated exhaust gas cannot be measured in the exhaust gas recirculation line. Therefore, only a model of the recirculated exhaust gas can be determined. In order to be able to implement a robust intake manifold pressure model which is as error-free as possible and which depends on the partial pressure of the recirculated exhaust gas, it is crucial to form a model for the partial pressure of the recirculated exhaust gas which is as free from errors as possible.
Vorteile der ErfindungAdvantages of the invention
Die genannte Aufgabe wird mit den Merkmalen der unabhängigen Ansprüche gelöst .The stated object is achieved with the features of the independent claims.
Die Ventildurchflußkennlinie, aus der der Massenstrom über das Ventil abhängig von der Ventilposition ermittelt wird, wird zur Genauigkeitsverbesserung mittels eines Offsetwertes adaptiert, der auf die Ventilposition des Ventils bezogen ist. Dieser Offsetwert ist über die Ventilposition konstant bei unterschiedlichen Verschmutzungsgraden des Ventils. Bei einem auf den Massenstrom bezogenen Offsetwert ist dagegen eine Abnahme des Offsetwerts für einen bestimmten Verschmutzungsgrad mit kleiner werdender Ventilöffnung zu beobachten.The valve flow characteristic, from which the mass flow over the valve is determined as a function of the valve position, is adapted to improve accuracy by means of an offset value which is related to the valve position of the valve. This offset value is constant over the valve position with different degrees of contamination of the valve. With an offset value related to the mass flow, on the other hand, a decrease in the offset value for a certain degree of contamination can be observed as the valve opening becomes smaller.
Besondere Vorteile ergeben sich bei Anwendung auf ein Steuerventil zur Abgasrückführung. Allerdings werden diese Vorteile auch bei anderen Steuerventilen, deren Durchflußmenge auf der Basis einer Kennlinie abhängig von der Ventilposition ermittelt wird, erreicht (z.B. Drosselklappen, etc.).There are particular advantages when used on a control valve for exhaust gas recirculation. However, these advantages are also achieved with other control valves, the flow rate of which is determined on the basis of a characteristic curve depending on the valve position (e.g. throttle valves, etc.).
Vorteilhaft ist, daß ein modellierter Partialdruck des rückgeführten Abgases aus einer Durchflußkennlinie eines sich in einer Abgasrückführleitung befindenden Ventils in Abhängigkeit von der Ventilstellung abgeleitet wird und daß der aus der Durchflußkennlinie abgeleitete modellierte Partialdruck des rückgeführten Abgases adaptiv, in Abhängigkeit von der Differenz aus dem modellierten Saugrohrdruck und einem gemessenen Saugrohrdruck, korrigiert wird.It is advantageous that a modeled partial pressure of the recirculated exhaust gas is derived from a flow characteristic of a valve located in an exhaust gas recirculation line depending on the valve position and that the modeled partial pressure of the recirculated exhaust gas derived from the flow characteristic is adaptive, depending on the difference from the modeled intake manifold pressure and a measured intake manifold pressure is corrected.
Vorteilhafte Weiterbildungen der Erfindung gehen aus den Unteransprüchen hervor.Advantageous developments of the invention emerge from the subclaims.
Es ist zweckmäßig, daß der Massenstrom über das Abgasrück- führ-Ventil in Abhängigkeit von der Durchflußkennlinie des Abgasrückführventils ermittelt wird, daß dann aus dem Massenstrom, indem dieser durch die Motordrehzahl dividiert wird, eine relative Füllung im Saugrohr berechnet wird und schließlich aus der relativen Füllung im Saugrohr der Partialdruck des rückgeführten Abgases abgeleitet wird.It is expedient that the mass flow via the exhaust gas recirculation valve is determined as a function of the flow characteristic of the exhaust gas recirculation valve, that a relative charge in the intake manifold is then calculated from the mass flow by dividing it by the engine speed, and finally from the relative one Filling in the intake pipe the partial pressure of the recirculated exhaust gas is derived.
Es ist weiterhin zweckmäßig, aus dem Luftmassenstrom über die Drosselklappe im Saugrohr eine relative Frischluftfüllung im Saugrohr zu ermitteln, indem der Luftmassenstrom durch die Motordrehzahl dividiert und dann aus der relativen - H -It is furthermore expedient to determine a relative fresh air filling in the intake manifold from the air mass flow via the throttle valve in the intake manifold by dividing the air mass flow by the engine speed and then from the relative one - H -
Frischluftfüllung der Partialdruck des Frischgases abgeleitet wird.Fresh air filling the partial pressure of the fresh gas is derived.
Zeichnungdrawing
-Anhand eines in der Zeichnung dargestellten Ausführungsbei- spiels wird nachfolgend die Erfindung näher erläutert. Es zeigen:The invention is explained in more detail below on the basis of an exemplary embodiment shown in the drawing. Show it:
Figur 1 eine schematische Darstellung einer Brennkraftmaschine mit Abgasrückführung,FIG. 1 shows a schematic illustration of an internal combustion engine with exhaust gas recirculation,
Figur 2 ein Funktionsdiagramm zur Berechnung eines modellierten Saugrohrdrucks,FIG. 2 shows a functional diagram for calculating a modeled intake manifold pressure,
Figur 3 ein Detail aus dem Funktionsdiagramm der Figur 2 zur adaptiven Anpassung der Durchflußkennlinie des Abgasrück- führ-Ventils und3 shows a detail from the functional diagram of FIG. 2 for adaptively adapting the flow characteristic of the exhaust gas recirculation valve and
Figur 4 ein Ablaufdiagramm zur Offsetkorrektur der Durchflusskennlinie mit einem auf die Ventilposition bezogenen Offsetwert .FIG. 4 shows a flow chart for the offset correction of the flow characteristic with an offset value related to the valve position.
Beschreibung eines AusführungsbeispielsDescription of an embodiment
Die Figur 1 zeigt schematisch eine Brennkraftmaschine 1 mit einem Abgaskanal 2 und einem Saugrohr 3. Vom Abgaskanal 2 zweigt eine Abgasrückführleitung 4 ab, die in das Saugrohr 3 einmündet . In der Abgasrückführleitung 4 befindet sich ein Ventil 5. Über dieses Abgasrückführ-Ventil 5 läßt sich die rückgeführte Abgasmasse bzw. der Partialdruck pagr des rückgeführten Abgases steuern. Hinter der Einmündung der Abgasrückführleitung 4 ist im Saugrohr 3 ein Drucksensor 6 angeordnet, der den Saugrohrdruck psaug mißt. Vor der Einmündung der Abgasrückführleitung 4 befindet sich eine Drosselklappe 7 mit einem die Drosselklappenstellung wdk erfassenden Potentiometer 8. Vor der Drosselklappe 7 ist im Saugrohr 3 ein Luf massensensor 9 angeordnet, der den Luftmassenstrom msdk über die Drosselklappe 7 mißt . Desweiteren sind im Saugrohr 3 vor der Drosselklappe 7 ein Drucksensor 10, der den Druck pvdk im Saugrohr vor der Drosselklappe mißt, und ein Temperatursensor 11, der die Ansauglufttemperatur TANS mißt. In der Abgasrückführungleitung 4 sind vor dem Abgasrückführ- Ventil ein Drucksensor 12, der den Abgasdruck pvagr vor dem Abgasrückführ-Ventil 5 mißt, und ein Temperatursensor 13 angeordnet, der die Temperatur Tabg des Abgases vor dem Abgas- rückführventil 5 erfaßt.FIG. 1 schematically shows an internal combustion engine 1 with an exhaust gas duct 2 and an intake manifold 3. An exhaust gas recirculation line 4 branches off from the exhaust gas duct 2 and opens into the intake manifold 3. A valve 5 is located in the exhaust gas recirculation line 4. Via this exhaust gas recirculation valve 5, the recirculated exhaust gas mass or the partial pressure pagr of the recirculated exhaust gas can be controlled. Behind the mouth of the exhaust gas recirculation line 4, a pressure sensor 6 is arranged in the intake manifold 3, which measures the intake manifold pressure psaug. Before the opening of the exhaust gas recirculation line 4 there is a throttle valve 7 with a potentiometer 8 which detects the throttle valve position wdk. In front of the throttle valve 7, an air mass sensor 9 is arranged in the intake manifold 3, which measures the air mass flow msdk via the throttle valve 7. Furthermore, are in the intake manifold 3 in front of the throttle valve 7, a pressure sensor 10, which measures the pressure pvdk in the intake manifold in front of the throttle valve, and a temperature sensor 11, which measures the intake air temperature TANS. A pressure sensor 12, which measures the exhaust gas pressure pvagr upstream of the exhaust gas recirculation valve 5, and a temperature sensor 13, which detects the temperature Tabg of the exhaust gas upstream of the exhaust gas recirculation valve 5, are arranged in the exhaust gas recirculation line 4 upstream of the exhaust gas recirculation valve.
Einem Steuergerät 14 werden all die genannten sensierten Größen zugeführt. Dazu gehören der gemessene Saugrohrdruck psaug, die Drosselklappenstellung wdk, der Luftmassenstrom msdk vor der Drosselklappe, der Druck pvdk vor der Drosselklappe, die Ansauglufttemperatur Tans, die Stellung vs des Abgasrückführ-Ventils 5, die von einem Sensor 15 erfaßte Motordrehzahl nmot, der Abgasdruck pvagr vor dem Abgasrückführ-Ventil und die Temperatur Tabg des Abgases vor dem Abgasrückführ-Ventil. Die Größen pvdk, Tabg und pvagr können auch durch Modellberechnungen aus anderen Betriebsgrößen des Motors ermittelt werden. Das Steuergerät 14 ermittelt unter anderem aus den genannten Eingangsgrößen den Partialdruck pfg des Frischgases und den Partialdruck pagr des rückgeführten Abgases .A control unit 14 is supplied with all of the sensed quantities mentioned. These include the measured intake manifold pressure psaug, the throttle valve position wdk, the air mass flow msdk in front of the throttle valve, the pressure pvdk in front of the throttle valve, the intake air temperature Tans, the position vs the exhaust gas recirculation valve 5, the engine speed nmot detected by a sensor 15, and the exhaust gas pressure pvagr in front of the exhaust gas recirculation valve and the temperature tab of the exhaust gas in front of the exhaust gas recirculation valve. The sizes pvdk, Tabg and pvagr can also be determined by model calculations from other operating sizes of the engine. The control unit 14 determines, among other things, the partial pressure pfg of the fresh gas and the partial pressure pagr of the recirculated exhaust gas from the input variables mentioned.
Wie das Funktionsdiagramm in Figur 2 zeigt, entsteht der gewünschte modellierte Saugrohrdruck psaugm durch eine additive Verknüpfung 16 des Partialdrucks pfg des Frischgases und des modellierten Partialdrucks pagr des rückgeführten Abgases. Nachfolgend wird beschrieben, wie das Steuergerät 14 den Partialdruck pfg des Frischgases und den Partialdruck pagr des rückgeführten Abgases herleitet.As the functional diagram in FIG. 2 shows, the desired modeled intake manifold pressure psaugm arises from an additive combination 16 of the partial pressure pfg of the fresh gas and the modeled partial pressure pagr of the recirculated exhaust gas. It is described below how the control unit 14 derives the partial pressure pfg of the fresh gas and the partial pressure pagr of the recirculated exhaust gas.
Zur Ermittlung des Partialdrucks pagr des rückgeführten Abgases wird zuerst der Massenstrom msagr über das Abgasrückführ-Ventil nach Gleichung (1) berechnet. msagr =fkmsagι- [msnagr (vs) + msnagr o ] pvagr/1013 bRα• -273/ Tagr ■ KLAF(psaug I pvagr) (1)To determine the partial pressure pagr of the recirculated exhaust gas, the mass flow msagr is first calculated via the exhaust gas recirculation valve according to equation (1). msagr = fkmsagι- [msnagr (vs) + msnagr o] pvagr / 1013 bRα • -273 / Tagr ■ KLAF (psaug I pvagr) (1)
In Gleichung (1) bezeichnet msnagr (vs) den Normmassenstrom über das Abgasrückführ-Ventil bei einem Abgasdruck pvagr vor dem Abgasrückführ-Ventil von 1013hPa, Tagr = 213K und psaug/pvagr < 0,52. Dieser Normmassenstrom msnagr entspricht der Durchflußkennlinie des Abgasrückführ-Ventils 5, welche üblicherweise vom Ventil-Hersteller zur Verfügung gestellt wird und im Funktionsblock 17 (siehe Figur 2) abgespeichert ist. Dieser Normmassenstrom msnagr (vs) ist also eine aus der Durchflußkennlinie in Abhängigkeit von der Ventilstellung vs abgeleitete Größe. Die Durchflußkennline berücksichtigt nur die Funktion des Abgasrückführ-Ventils 5, nicht aber durch Fertigungstoleranzen und Alterung bedingte Durchflußveränderungen und auch nicht die Durchflußeigenschaften der Abgasrückführleitung 4. Aus diesem Grunde sind in der Gleichung (1) für den Massenstrom msagr über das Abgasrückführ-Ventil Korrekturtherme fkmsagr und msnagro vorgesehen, welche adap- tiv verändert werden können. Der Korrekturtherm msnagro berücksichtigt einen Offset der Durchflußkennline. KLAF ist ein einer Kennlinie entnommener Wert, der die Strömungsgeschwindigkeit über das Abgasrückführ-Ventil im Verhältnis zur Schallgeschwindigkeit als Funktion des Druckverhältnisses zwischen dem Druck psaug nach dem Abgasrückführ-Ventil und dem Druck pvagr vor dem Abgasrückführ-Ventil . Bei psaug/pvagr < 0,52 stellt sich Schallgeschwindigkeit ein und bei psaug/pvagr > 0,52 sinkt die Strömungsgeschwindigkeit unter die Schallgeschwindigkeit .In equation (1), msnagr (vs) denotes the standard mass flow through the exhaust gas recirculation valve at an exhaust gas pressure pvagr before the exhaust gas recirculation valve of 1013hPa, Tagr = 213K and psaug / pvagr <0.52. This standard mass flow msnagr corresponds to the flow characteristic of the exhaust gas recirculation valve 5, which is usually provided by the valve manufacturer and is stored in the function block 17 (see FIG. 2). This standard mass flow msnagr (vs) is therefore a variable derived from the flow characteristic as a function of the valve position vs. The flow characteristic only takes into account the function of the exhaust gas recirculation valve 5, but not flow changes due to manufacturing tolerances and aging and also not the flow properties of the exhaust gas recirculation line 4. For this reason, in the equation (1) for the mass flow msagr via the exhaust gas recirculation valve, corrective heat fkmsagr and msnagro are provided, which can be changed adaptively. The correction term msnagro takes into account an offset of the flow characteristic. KLAF is a value taken from a characteristic curve, which shows the flow velocity over the exhaust gas recirculation valve in relation to the speed of sound as a function of the pressure ratio between the pressure psaug after the exhaust gas recirculation valve and the pressure pvagr upstream of the exhaust gas recirculation valve. If psaug / pvagr <0.52 the speed of sound is set and if psaug / pvagr> 0.52 the flow speed drops below the speed of sound.
Nachdem der Massenstrom msagr über das Abgasrückführ-Ventil gemäß Gleichung (1) berechnet worden ist, erfolgt im Funktionsblock 17 eine Umrechnung in eine relative Füllung rfagr im Saugrohr aufgrund des rückgeführten Abgases . rfagr = msagr /{nrnot - K.) (2)After the mass flow msagr has been calculated via the exhaust gas recirculation valve in accordance with equation (1), a conversion into a relative filling rfagr in the intake manifold takes place in function block 17 on the basis of the recirculated exhaust gas. rfagr = msagr / {nrnot - K.) (2)
Die Konstante K hängt vom Zylinderhubvolumen und von der Normdichte der Luft ab.The constant K depends on the cylinder stroke volume and the standard density of the air.
Schließlich wird aus der durch das rückgeführte Abgas im Saugrohr sich ergebenden relativen Füllung rfagr aufgrund des rückgeführten Abgases der Partialdruck pagr gemäß Gleichung (3) berechnet.Finally, the partial pressure pagr is calculated according to equation (3) from the relative filling rfagr resulting from the recirculated exhaust gas in the intake manifold on the basis of the recirculated exhaust gas.
pagr = rfagr /{KFURL ftsr) (3 )pagr = rfagr / {KFURL ftsr) (3)
Die Kennfeldgröße KFURL gibt das Verhältnis vom effektiven Zylinderhubvolumen zum Zylinderhubvolumen an. Die Größe ftsr gibt das Temperaturverhältnis von 273K zur Gastemperatur im Brennraum wieder.The map size KFURL indicates the ratio of the effective cylinder stroke volume to the cylinder stroke volume. The size ftsr reflects the temperature ratio of 273K to the gas temperature in the combustion chamber.
Um den Partialdruck pfg des Frischgases im Saugrohr zu bestimmen, wird zunächst eine relative Frischluftfüllung rlfg im Saugrohr gemäß Gleichung (4) ermittelt.In order to determine the partial pressure pfg of the fresh gas in the intake manifold, a relative fresh air charge rlfg in the intake manifold is first determined in accordance with equation (4).
rlfg = msdk l(nmot -K) (4 )rlfg = msdk l (nmot -K) (4)
Die relative Frischluftfüllung rlfg im Saugrohr läßt sich aus dem Luftmassenstrom msdk vor der Drosselklappe durch Division mit der Motordrehzahl nrnot und der Konstanten K (vgl . Gleichung (2) ) berechnen.The relative fresh air charge rlfg in the intake manifold can be calculated from the air mass flow msdk upstream of the throttle valve by division by the engine speed nrnot and the constant K (see equation (2)).
Nach der Berechnung der relativen Frischluftfüllung rlfg wird im Funktionsblock 18 daraus der Partialdruck pfg des Frischgases gemäß Gleichung (5) abgeleitet.After the calculation of the relative fresh air filling rlfg, the partial pressure pfg of the fresh gas is derived therefrom in function block 18 according to equation (5).
pfg=rlfg /(KFURL - flsr) ( 5 ) Der Partialdruck pfg des Frischgases entsteht also aus der Division der relativen Frischluftfüllung rlfg durch die im Zusammenhang mit der Gleichung (3) bereits erläuterten Größen KFURL und ftsr.pfg = rlfg / (KFURL - flsr) (5) The partial pressure pfg of the fresh gas thus arises from the division of the relative fresh air charge rlfg by the quantities KFURL and ftsr already explained in connection with equation (3).
Der Luftmassenstrom msdk vor der Drosselklappe kann entweder mit dem Sensor 9 gemessen oder gemäß Gleichung (6) aus anderen Betriebsgrößen hergeleitet werden.The air mass flow msdk upstream of the throttle valve can either be measured with the sensor 9 or can be derived from other operating variables in accordance with equation (6).
msdk = msndk (wdk) ■ pvdk/1013hPa A/273/ Tans • KLAF (psaug I pvdk) ( 6)msdk = msndk (wdk) ■ pvdk / 1013hPa A / 273 / Tans • KLAF (psaug I pvdk) (6)
Mit msndk (wdk) ist der Normmassenstrom über die Drosselklappe bei einem Druck pvdk vor der Drosselklappe von 1013hPA, einer Ansauglufttemperatur Tans = 273K und einem Druckverhältnis vor und nach der Drosselklappe (psaug/pvdk < 0,52) bezeichnet. Der Wert KLAF entstammt einer Kennlinie und liefert die Strömungsgeschwindigkeit über die Drosselklappe im Verhältnis zur Schallgeschwindigkeit als Funktion des Druckverhältnisses psaug/pvdk an der Drosselklappe. Bei psaug/pvdk < 0,52 stellt sich Schallgeschwindigkeit ein und bei psaug/pvdk > 0,52 sinkt die Strömungsgeschwindigkeit unter die Schallgeschwindigkeit.The msndk (wdk) is the standard mass flow through the throttle valve at a pressure pvdk before the throttle valve of 1013hPA, an intake air temperature Tans = 273K and a pressure ratio before and after the throttle valve (psaug / pvdk <0.52). The KLAF value comes from a characteristic curve and provides the flow velocity over the throttle valve in relation to the speed of sound as a function of the pressure ratio psaug / pvdk at the throttle valve. If psaug / pvdk <0.52 the speed of sound is set and if psaug / pvdk> 0.52 the flow rate drops below the speed of sound.
Wie bereits oben gesagt, ist der im Funktionsblock 17 aus der Durchflußkennlinie abgeleitete Partialdruck pagr des rückgeführten Abgases fehlerbehaftet, weil diese Durchflußkennlinie des Abgasrückführ-Ventils 5 Fertigungstoleranzen, Durchflußveränderungen aufgrund von Alterungen und auch die Durchflußeigenschaften der Abgasrückführleitung 4 nicht berücksichtigt. Um den Fehler des Partialdrucks pagr des rückgeführten Abgases zu verringern, ist ein Funktionsblock 19 vorgesehen, in dem eine Korrektur des Partialdrucks pagr des rückgeführten Abgases vorgenommen wird. Ziel dabei ist es, daß der nach der Korrektur zur Verfügung stehende modellierte Partialdruck pagr des rückgeführten Abgases möglichst ge- nau dem realen Partialdruck in der Abgasrückführleitung entspricht, so daß der aus der Summe des Partialdrucks pfg des Frischgases und des Partialdruckes pagr des rückgeführten Abgases hervorgehende modellierte Saugrohrdruck psaugm möglichst unverfälscht ist. Zur Fehlerkorrektur des Partialdrucks pagr des rückgeführten Abgases wird durch Differenzbildung 20 aus dem modellierten Saugrohrdruck psaugm und dem vom Drucksensor 6 gemessenen Saugrohrdruck psaug eine Korrekturgröße Δps gebildet, welche einem Funktionsblock 19 zugeführt wird.As already mentioned above, the partial pressure pagr of the recirculated exhaust gas derived from the flow characteristic in function block 17 is subject to errors, because this throughflow characteristic of the exhaust gas recirculation valve 5 does not take into account manufacturing tolerances, flow changes due to aging and also the flow properties of the exhaust gas recirculation line 4. In order to reduce the error of the partial pressure pagr of the recirculated exhaust gas, a function block 19 is provided, in which the partial pressure pagr of the recirculated exhaust gas is corrected. The aim is that the modeled partial pressure pagr of the recirculated exhaust gas that is available after the correction is corresponds exactly to the real partial pressure in the exhaust gas recirculation line, so that the modeled intake manifold pressure psaugm resulting from the sum of the partial pressure pfg of the fresh gas and the partial pressure pagr of the recirculated exhaust gas is as unadulterated as possible. For error correction of the partial pressure pagr of the recirculated exhaust gas, a correction variable Δps is formed by forming the difference 20 from the modeled intake manifold pressure psaugm and the intake manifold pressure psaug measured by the pressure sensor 6, which is fed to a function block 19.
Wie in der Figur 3 dargestellt, wird die Korrekturgröße Δps über einen Schalter 21 entweder einem Integrator 22 oder einem Integrator 23 zugeführt. Der Integrator 22 liefert den in der Gleichung (1) vorkommenden Korrekturterm fkmsagr, und der Integrator 23 liefert den Offset-Korrekturterm msnagro. Die Integratoren 22 und 23 lassen die Korrekturterme fkmsagr und msnagro in dem Maße anwachsen, wie es die Korrekturgröße Δps vorgibt . Über die Korrekturterme fkmsagr und msnagro wird also im Funktionsblock 20 der Partialdruck pagr des rückgeführten Abgases adaptiv so verändert, bis die Abweichung zwischen dem gemessenen Saugrohrdruck psaug und dem modellierten Saugrohrdruck psaugm minimal wird. Im Schalt - block 21 findet eine Schwellwertentscheidung statt, welche feststellt, ob der gemessene Saugrohrdruck psaug die Schwelle von 400hPa überschreitet. Bei einem gemessenen Saugrohrdruck psaug, der oberhalb der Schwelle von 400hPa liegt, wird nur der Integrator 23 für den Korrekturterm msnagro von der Korrekturgröße Δps angesteuert. Liegt der gemessene Saugrohrdruck psaug unterhalb der Schwelle von 400hPa so wird die Korrekturgröße Δps auf den Integrator 22 für den Korrekturterm fkmsagr umgeschaltet.As shown in FIG. 3, the correction variable Δps is fed via a switch 21 to either an integrator 22 or an integrator 23. The integrator 22 provides the correction term fkmsagr occurring in equation (1), and the integrator 23 provides the offset correction term msnagro. The integrators 22 and 23 increase the correction terms fkmsagr and msnagro to the extent that the correction variable Δps specifies. Using the correction terms fkmsagr and msnagro, the partial pressure pagr of the recirculated exhaust gas is thus adaptively changed in function block 20 until the deviation between the measured intake manifold pressure psaug and the modeled intake manifold pressure psaugm becomes minimal. A threshold value decision takes place in switching block 21, which determines whether the measured intake manifold pressure psaug exceeds the threshold of 400 hPa. At a measured intake manifold pressure psaug that lies above the threshold of 400 hPa, only the integrator 23 for the correction term msnagro is controlled by the correction variable Δps. If the measured intake manifold pressure psaug is below the threshold of 400hPa, the correction variable Δps is switched over to the integrator 22 for the correction term fkmsagr.
Zur Bestimmung des Partialdrucks wird der Massenstrom über das Ventil benötigt. Dieser wird auf der Basis einer adap- tierbaren Kennlinie abhängig von der Ventilposition bestimmt. Eine solche Kennlinie kann auch im Zusammenhang mit anderen Anwendungen wesentlich sein, so dass die beschriebene Kennlinienadaption nicht nur bei einer Abgasrückführung Anwendungen finden kann. So wird z.B. der Luftmassenstrom über eine Drosselklappe ebenfalls nach Maßgabe einer Durch- flusskennlinie bestimmt, welche ebenfalls durch Ventilver- schmutzung verändert werden kann. Der Offsetwert wird wie in Figur 3 dargestellt aus der Abweichung eines unter Verwendung der Kennlinie berechneten Wertes mit einem gemessenen Wert z.B. durch Integration gebildet.The mass flow via the valve is required to determine the partial pressure. This is based on an adap- animal characteristic is determined depending on the valve position. Such a characteristic curve can also be essential in connection with other applications, so that the characteristic curve adaptation described cannot only be used in exhaust gas recirculation. For example, the air mass flow via a throttle valve is also determined in accordance with a flow characteristic, which can also be changed by valve contamination. As shown in FIG. 3, the offset value is formed from the deviation of a value calculated using the characteristic curve with a measured value, for example by integration.
Figur 4 zeigt ein Ablaufdiagramm zur Adaptierung einer solchen Durchflusskennlinie. Eingangsgröße ist die Ventilposition vp . Mit dieser wird in der Verknüpfungsstelle 25 der ermittelte Offsetwert off (im Ausführungsbeispiel eines AGR- Ventils ofvpagr, vgl. z.B. Figur 3, Offsetwert msnagro), verknüpft (addiert) . Das Ergebnis dient zur Adressierung der Durchflusskennlinie MSNTAG 26, deren Ausgangsgröße der Normmassenstrom msnv (im Ausführungsbeispiel eines AGR-Ventils msnagrv) über das Steuerventil ist, der ggf. durch Verknüpfung 27 (Division) mit einem dem Steigungsadaptionsfaktor zum Normmassenstrom msn (im Ausführungsbeispiel eines AGR- Ventils msnagr) verknüpft wird.FIG. 4 shows a flow chart for the adaptation of such a flow characteristic. The input variable is the valve position vp. With this, the determined offset value off (in the exemplary embodiment of an EGR valve ofvpagr, see e.g. FIG. 3, offset value msnagro) is linked (added) in the linkage point 25. The result is used to address the flow characteristic MSNTAG 26, the output variable of which is the standard mass flow msnv (in the exemplary embodiment of an EGR valve msnagrv) via the control valve, which if necessary by linking 27 (division) with a slope adaptation factor to the standard mass flow msn (in the exemplary embodiment of an EGR - valve msnagr) is linked.
Im obigen Ausführungsbeispiel einer Partialdruckbestimmung mit Hilfe der Durchflusskennlinie über einem AGR-Ventil wird der Offsetwert wie in Gleichung 1 beschrieben auf den Massenstrom bezogen. Günstiger ist es, auch hier ihn auf die Ventilposition zu beziehen. Es ergibt sich dann folgende Berechnungsgleichung für den Massenstrom:In the above exemplary embodiment of a partial pressure determination using the flow characteristic over an EGR valve, the offset value is related to the mass flow as described in equation 1. It is cheaper to refer to the valve position here as well. The following calculation equation for the mass flow then results:
msagr =1/ fkmsagr [msnagr]- pvagr /1013hPa ^273 / Tagrmsagr = 1 / fkmsagr [msnagr] - pvagr / 1013hPa ^ 273 / Tagr
KLAF(psaug I pvagr) (7) Diese Gleichung stellt das physikalisch richtige Verhalten der Massenstroms über das AGR-Ventil in Abhängigkeit der Verschmutzung des Ventils dar. Der Offset ist im Gegensatz zur Gleichung (1) nicht mehr zu erkennen. Er wird bei der Adressierung der Durchflusskennlinie ausgewertet, deren Ausgangssignal die Größe msnagr (Massenstrom unter Normbedingungen) ist. Der Ausgangswert wird also nicht adaptiert, vielmehr wird durch den Offset der Eingangswert der Kennlinie, also die Ventilposition adaptiert. KLAF (psaug I pvagr) (7) This equation represents the physically correct behavior of the mass flow via the EGR valve depending on the contamination of the valve. In contrast to equation (1), the offset can no longer be recognized. It is evaluated when addressing the flow characteristic curve, the output signal of which is the quantity msnagr (mass flow under standard conditions). The output value is therefore not adapted, rather the input value of the characteristic curve, that is to say the valve position, is adapted by the offset.

Claims

Ansprüche Expectations
1. Verfahren zum Ermitteln eines Massenstromes über ein Steuerventil ,1. Method for determining a mass flow via a control valve,
- dessen Position erfasst wird,- whose position is recorded,
- wobei der Massenstrom nach Maßgabe einer Kennlinie abhängig von der Position bestimmt wird,the mass flow is determined according to a characteristic curve depending on the position,
- wobei die Kennlinie mit einem veränderlichen Offsetwert adaptiert wird, dadurch gekennzeichnet, dass- The characteristic curve being adapted with a variable offset value, characterized in that
- mit dem Offsetwert die Ventilposition korrigiert wird und der Massenstrom aus der Kennlinie abhängig von der korrigierten Ventilposition bestimmt wird.- The valve position is corrected with the offset value and the mass flow is determined from the characteristic curve depending on the corrected valve position.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass der Offsetwert aus der Abweichung einer aufgrund des Massenstromes berechneten Größe und der gemessenen Größe abgeleitet wird.2. The method according to claim 1, characterized in that the offset value is derived from the deviation of a variable calculated on the basis of the mass flow and the measured variable.
3. Verfahren zum Ermitteln eines modellierten Saugrohrdrucks bei einer Brennkraftmaschine mit Abgasrückführung, wobei die Summe aus dem Partialdruck (pfg) des Frischgases und dem Partialdrucks (pagr) des rückgeführten Abgases gebildet wird, dadurch gekennzeichnet, daß ein modellierter Partialdruck (pagr) des rückgeführten Abgases aus einer Durchflußkennlinie eines sich in einer Abgasrückführleitung (4) befindenden Ventils (5) in Abhängigkeit von der Ventilstel- lung (vs) abgeleitet wird und daß der aus der Durchflußkennlinie abgeleitete modellierte Partialdruck (pagr) des rückgeführten Abgases adaptiv, in Abhängigkeit von der Differenz (Δps) aus dem modellierten Saugrohrdruck (psaugm) und einem gemessenen Saugrohrdruck (psaug) , korrigiert (20) wird.3. A method for determining a modeled intake manifold pressure in an internal combustion engine with exhaust gas recirculation, the sum of the partial pressure (pfg) of the fresh gas and the partial pressure (pagr) of the recirculated exhaust gas being formed, characterized in that a modeled partial pressure (pagr) of the recirculated exhaust gas from a flow characteristic of a valve (5) located in an exhaust gas recirculation line (4) as a function of the valve position lung (vs) and that the modeled partial pressure (pagr) of the recirculated exhaust gas derived from the flow characteristic curve is adaptively corrected as a function of the difference (Δps) from the modeled intake manifold pressure (psaugm) and a measured intake manifold pressure (psaug) (20) becomes.
4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, daß der Massenstrom über das Abgasrückführ-Ventil (5) in Abhängigkeit von der Durchflußkennlinie des Abgasrückführ-Ventils4. The method according to claim 3, characterized in that the mass flow through the exhaust gas recirculation valve (5) in dependence on the flow characteristic of the exhaust gas recirculation valve
(5) ermittelt wird, daß aus dem Massenstrom, indem dieser durch die Motordrehzahl (nmot) dividiert wird, eine relative Füllung im Ξaugrohr (3) berechnet wird und daß aus der relativen Füllung im Saugrohr (3) der Partialdruck (pagr) des rückgeführten Abgases abgeleitet wird.(5) it is determined that from the mass flow, by dividing it by the engine speed (nmot), a relative filling in the suction pipe (3) is calculated and that the partial pressure (pagr) of the recirculated from the relative filling in the suction pipe (3) Exhaust gas is derived.
5. Verfahren nach Anspruch 3, dadurch gekennzeichnet, daß aus dem Luftmassenstrom (msdk) über die Drosselklappe (7) im Saugrohr (3) eine relative Frischluftfüllung im Saugrohr (3) ermittelt wird, indem der Luftmassenstrom (msdk) durch die Motordrehzahl (nmot) dividiert wird, und daß aus der relativen Frischluftfüllung der Partialdruck (pfg) des Frischgases abgeleitet wird.5. The method according to claim 3, characterized in that from the air mass flow (msdk) via the throttle valve (7) in the intake manifold (3) a relative fresh air filling in the intake manifold (3) is determined by the air mass flow (msdk) by the engine speed (nmot ) is divided, and that the partial pressure (pfg) of the fresh gas is derived from the relative fresh air filling.
6. Vorrichtung zum Ermitteln eines Massenstromes über ein Steuerventil, mit einer Steuereinheit, die die Position des Steuerventils erfasst, die den Massenstrom nach Maßgabe einer Kennlinie abhängig von der Position bestimmt, und die die Kennlinie mit einem veränderlichen Offsetwert adaptiert, dadurch gekennzeichnet, dass die Steuereinheit Mittel aufweist, die mit dem Offsetwert die Ventilposition korrigieren und den Massenstrom aus der Kennlinie abhängig von der korrigierten Ventilposition bestimmen.6.Device for determining a mass flow via a control valve, with a control unit which detects the position of the control valve, which determines the mass flow according to a characteristic curve depending on the position, and which adapts the characteristic curve with a variable offset value, characterized in that the Control unit has means that correct the valve position with the offset value and determine the mass flow from the characteristic curve depending on the corrected valve position.
7. Vorrichtung zum Ermitteln eines modellierten Ξaugrohr- drucks bei einer Brennkraftmaschine mit Abgasrückführung, welche die Summe aus dem Partialdruck (pfg) des Frischgases und dem Partialdruck (pagr) des rückgeführten Abgases bildet, dadurch gekennzeichnet, daß Mittel (17) vorhanden sind, die einen modellierten Partialdruck (pagr) des rückgeführten Abgases aus einer Durchflußkennlinie eines sich in einer Abgasrückführleitung (4) befindenden Ventils (5) in Abhängigkeit von der Ventilstellung (vs) ableiten und daß weitere Mittel (19) vorgesehen sind, welche aus den aus der Durchflußkennlinie abgeleiteten modellierten Partialdruck (pagr) des rückgeführten Abgases adaptiv, in Abhängigkeit von der Differenz (Δps) aus dem modellierten Saugrohrdruck (psaug) und einem gemessenen Saugrohrdruck (psaug) , korrigieren. 7. Device for determining a modeled intake pipe pressure in an internal combustion engine with exhaust gas recirculation. which forms the sum of the partial pressure (pfg) of the fresh gas and the partial pressure (pagr) of the recirculated exhaust gas, characterized in that means (17) are present which generate a modeled partial pressure (pagr) of the recirculated exhaust gas from a flow characteristic of one in a Derive exhaust gas recirculation line (4) located valve (5) depending on the valve position (vs) and that further means (19) are provided, which adaptively from the modeled partial pressure (pagr) of the recirculated exhaust gas derived from the flow characteristic, depending on the difference (Δps) from the modeled intake manifold pressure (psaug) and a measured intake manifold pressure (psaug).
EP01913510A 2000-02-09 2001-01-18 Method and device for mass flow determination via a control valve and for determining a modeled induction pipe pressure Ceased EP1264227A1 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
DE10005569 2000-02-09
DE10005569 2000-02-09
DE10041073A DE10041073A1 (en) 2000-02-09 2000-08-22 Method and device for determining a mass flow via a control valve and for determining a modeled intake manifold pressure
DE10041073 2000-08-22
PCT/DE2001/000200 WO2001059536A1 (en) 2000-02-09 2001-01-18 Method and device for mass flow determination via a control valve and for determining a modeled induction pipe pressure

Publications (1)

Publication Number Publication Date
EP1264227A1 true EP1264227A1 (en) 2002-12-11

Family

ID=26004240

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01913510A Ceased EP1264227A1 (en) 2000-02-09 2001-01-18 Method and device for mass flow determination via a control valve and for determining a modeled induction pipe pressure

Country Status (5)

Country Link
US (1) US20030075158A1 (en)
EP (1) EP1264227A1 (en)
JP (1) JP2003522888A (en)
CN (1) CN1416541A (en)
WO (1) WO2001059536A1 (en)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10065122A1 (en) * 2000-12-28 2002-08-14 Bosch Gmbh Robert Method for detecting the state of the art mass flows to the intake manifold of an internal combustion engine
DE10225306B4 (en) * 2002-06-07 2017-03-30 Robert Bosch Gmbh Method and device for controlling the drive unit of a vehicle operated with a gaseous fuel
DE102004033845A1 (en) * 2004-07-13 2006-02-09 Robert Bosch Gmbh Method and device for operating an internal combustion engine with exhaust gas recirculation
DE102005049535A1 (en) * 2005-10-17 2007-04-19 Robert Bosch Gmbh Internal combustion engine management procedure has Exhaust Gas Recycling (EGR) regulator with pressure determined after it
SG140513A1 (en) * 2006-09-05 2008-03-28 Yokogawa Electric Corp A method to evaluate a performance of a control valve and a system thereof
US7533658B2 (en) * 2007-02-06 2009-05-19 Gm Global Technology Operations, Inc. Coordinated control of throttle and EGR valve
US7739027B2 (en) * 2007-08-17 2010-06-15 Gm Global Technology Operations, Inc. Method and apparatus for monitoring an EGR valve in an internal combustion engine
DE102008027762B3 (en) * 2008-06-11 2010-02-11 Continental Automotive Gmbh Method and device for diagnosing an intake tract of an internal combustion engine
US8108128B2 (en) * 2009-03-31 2012-01-31 Dresser, Inc. Controlling exhaust gas recirculation
FR2959775B1 (en) * 2010-05-07 2012-05-25 Peugeot Citroen Automobiles Sa METHOD FOR ESTIMATING FRESH AIR QUANTITY, RECORDING MEDIUM AND ESTIMATOR FOR THIS METHOD, VEHICLE EQUIPPED WITH SAID ESTIMATOR
KR101241219B1 (en) * 2010-12-06 2013-03-13 한양대학교 산학협력단 Controling mehod for egr system of engine
US9068502B2 (en) * 2011-09-13 2015-06-30 Caterpillar Inc. EGR flow measurement
US9062635B2 (en) 2011-09-25 2015-06-23 Cummins Inc. System and method for estimating engine exhaust manifold operating parameters
CN102606320B (en) * 2012-03-23 2014-05-28 潍柴动力股份有限公司 Method and system for solving changes of exhaust gas recirculation (EGR) characteristic curves
US9267453B2 (en) 2013-08-22 2016-02-23 Ford Global Technologies, Llc Learning of EGR valve lift and EGR valve flow transfer function
DE102014013284A1 (en) * 2014-09-12 2016-03-17 Man Truck & Bus Ag Internal combustion engine, in particular gas engine, for a vehicle, in particular for a utility vehicle
US9951701B2 (en) 2014-09-22 2018-04-24 General Electric Company Method and systems for EGR control
DE102017205829A1 (en) * 2017-04-05 2018-10-11 Robert Bosch Gmbh Method and apparatus for determining a gas system size in an internal combustion engine
CN113091043B (en) * 2021-03-02 2023-03-21 杭州华电半山发电有限公司 Method for automatically controlling water level of steam drum of waste heat boiler in whole process

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CZ319497A3 (en) * 1995-04-10 1999-01-13 Siemens Aktiengesellschaft Method of determining amount of air flowing into cylinder, respectively cylinders of internal combustion engine
KR100462458B1 (en) * 1996-03-15 2005-05-24 지멘스 악티엔게젤샤프트 How to use the model to determine the mass of clean air flowing into the cylinder of an internal combustion engine that recycles external exhaust gas
DE19625688B4 (en) * 1996-06-27 2006-06-08 Robert Bosch Gmbh Method for determining the load signal of an internal combustion engine with external exhaust gas recirculation
DE19756619B4 (en) * 1997-04-01 2007-03-15 Robert Bosch Gmbh System for operating an internal combustion engine, in particular for a motor vehicle
DE69929375T2 (en) * 1998-06-05 2006-08-24 Toyota Jidosha K.K., Toyota internal combustion engine

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO0159536A1 *

Also Published As

Publication number Publication date
WO2001059536A1 (en) 2001-08-16
JP2003522888A (en) 2003-07-29
CN1416541A (en) 2003-05-07
US20030075158A1 (en) 2003-04-24

Similar Documents

Publication Publication Date Title
EP1264227A1 (en) Method and device for mass flow determination via a control valve and for determining a modeled induction pipe pressure
EP0886725B1 (en) Process for model-assisted determination of fresh air mass flowing into the cylinder of an internal combustion engine with external exhaust-gas recycling
EP1789665B1 (en) Method for the model-based determination of the fresh air mass being ingested into the cylinder combustion chamber of an internal combustion engine during an inlet phase
WO1996032579A1 (en) Process for finding the mass of air entering the cylinders of an internal combustion engine with the aid of a model
DE19740916A1 (en) Operating IC engine for motor vechile with air led to engine across throttle valve
DE102016101210A1 (en) SYSTEM AND METHOD FOR OPERATING AN EXHAUST GAS VALVE BASED ON A TEMPERATURE DIFFERENCE OF THE VALVE
WO2006069853A1 (en) Method for the operation of an internal combustion engine
DE102007009689B4 (en) Method for operating an internal combustion engine with exhaust gas recirculation
DE102005022691A1 (en) Method for operating internal combustion engine entails carrying out correction for operating point modelling differently for different operating points of engine
EP1115964B1 (en) Method for controlling an internal combustion engine according to an exhaust gas pressure
WO2001077509A1 (en) Method and device for controlling an internal combustion engine
DE10041076B4 (en) Method for detecting erroneous changes in the gas flow through an exhaust gas recirculation line of an internal combustion engine
WO2009033950A2 (en) Method for regulating a combustion process and control device
WO2007036377A1 (en) Method for detecting an ambient pressure in an internal combustion engine
DE102004038733A1 (en) Method and device for operating an internal combustion engine
DE10356713B4 (en) Method for controlling or controlling an internal combustion engine operating in a cyclic process
EP0962642B1 (en) Procedure for the correction of the sucked air mass measurement in the intake tube of a combustion engine
DE102007012340B3 (en) Air-mass flow rate determining and adjusting method for e.g. petrol engine, involves transforming adaptation target value of generalized adaptation into physical parameter of suction tube by using successive adaptation value transformation
DE102007021469A1 (en) Internal combustion motor control has a balance pressure sensor, for ambient or charging air pressure, and an air intake pressure sensor for air intake pressure correction from a comparison of the sensor readings
DE10041073A1 (en) Method and device for determining a mass flow via a control valve and for determining a modeled intake manifold pressure
WO1994002730A1 (en) Method of adapting internal-combustion engine air values from a substitute characteristic diagram used to control, on the occurrence of pulsing in the air-aspiration line, the formation of the mixture to suit the currently prevailing outside-air conditions
WO2017157580A1 (en) Method and controller for determining the quantity of filling components in a cylinder of an internal combustion engine
EP0928366B1 (en) Secondary-air system for an internal combustion engine
EP0719383B1 (en) Method and device for determining the rate of flow of a gas through a valve in an internal-combustion engine
DE102017209525A1 (en) Method for calculating a filling of an internal combustion engine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20020909

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

RIN1 Information on inventor provided before grant (corrected)

Inventor name: MILOS, LEONHARD

Inventor name: EBERLE, KRISTINA

Inventor name: JANIN, PATRICK

Inventor name: SCHLESIGER, OLIVER

Inventor name: PFITZ, MANFRED

Inventor name: GROSS, JOCHEN

Inventor name: HERYNEK, ROLAND

Inventor name: WILD, ERNST

17Q First examination report despatched

Effective date: 20030207

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN REFUSED

18R Application refused

Effective date: 20030530

RBV Designated contracting states (corrected)

Designated state(s): DE FR IT