JP6515903B2 - Control device for internal combustion engine - Google Patents

Control device for internal combustion engine Download PDF

Info

Publication number
JP6515903B2
JP6515903B2 JP2016215359A JP2016215359A JP6515903B2 JP 6515903 B2 JP6515903 B2 JP 6515903B2 JP 2016215359 A JP2016215359 A JP 2016215359A JP 2016215359 A JP2016215359 A JP 2016215359A JP 6515903 B2 JP6515903 B2 JP 6515903B2
Authority
JP
Japan
Prior art keywords
turbine
pressure
current value
flow rate
egr valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2016215359A
Other languages
Japanese (ja)
Other versions
JP2018071496A (en
Inventor
梢 依藤
梢 依藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2016215359A priority Critical patent/JP6515903B2/en
Priority to DE102017125363.7A priority patent/DE102017125363B4/en
Publication of JP2018071496A publication Critical patent/JP2018071496A/en
Application granted granted Critical
Publication of JP6515903B2 publication Critical patent/JP6515903B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D21/00Controlling engines characterised by their being supplied with non-airborne oxygen or other non-fuel gas
    • F02D21/06Controlling engines characterised by their being supplied with non-airborne oxygen or other non-fuel gas peculiar to engines having other non-fuel gas added to combustion air
    • F02D21/08Controlling engines characterised by their being supplied with non-airborne oxygen or other non-fuel gas peculiar to engines having other non-fuel gas added to combustion air the other gas being the exhaust gas of engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/12Control of the pumps
    • F02B37/24Control of the pumps by using pumps or turbines with adjustable guide vanes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • F02D41/0007Controlling intake air for control of turbo-charged or super-charged engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/0047Controlling exhaust gas recirculation [EGR]
    • F02D41/0065Specific aspects of external EGR control
    • F02D41/0072Estimating, calculating or determining the EGR rate, amount or flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/04EGR systems specially adapted for supercharged engines with a single turbocharger
    • F02M26/05High pressure loops, i.e. wherein recirculated exhaust gas is taken out from the exhaust system upstream of the turbine and reintroduced into the intake system downstream of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D2041/1413Controller structures or design
    • F02D2041/1429Linearisation, i.e. using a feedback law such that the system evolves as a linear one
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/04Engine intake system parameters
    • F02D2200/0402Engine intake system parameters the parameter being determined by using a model of the engine intake or its components
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/04Engine intake system parameters
    • F02D2200/0406Intake manifold pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/10Parameters related to the engine output, e.g. engine torque or engine speed
    • F02D2200/1006Engine torque losses, e.g. friction or pumping losses or losses caused by external loads of accessories
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • F02D41/024Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to increase temperature of the exhaust gas treating apparatus
    • F02D41/0245Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to increase temperature of the exhaust gas treating apparatus by increasing temperature of the exhaust gas leaving the engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1448Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an exhaust gas pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/18Circuit arrangements for generating control signals by measuring intake air flow
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Description

本発明は、タービンに可変ノズルを有するターボ過給機とEGR装置とを備える内燃機関を制御する制御装置に関する。   The present invention relates to a control device for controlling an internal combustion engine provided with a turbocharger having a variable nozzle in a turbine and an EGR device.

特許文献1には、排気マニホールド内の目標圧力を達成するために必要な可変ノズルの開口面積の計算方法について記載されている。特許文献1に開示された方法によれば、EGR弁の下流側の圧力Pwg、EGR弁の上流側の圧力Peg、及びEGR弁の上流側の温度Tegがそれぞれセンサによって取得される。そして、ベルヌーイの定理に基づく式を用いて、EGR弁の下流側の圧力PegとEGR弁の上流側の圧力Pegとの圧力比と、EGR弁の上流側の温度Tegと、EGR弁の開度VTegrから計算される開口面積とに基づいて、EGR弁を通過するEGRガスの流量であるEGR流通量Gegが計算される。   Patent Document 1 describes a method of calculating the opening area of a variable nozzle necessary to achieve a target pressure in an exhaust manifold. According to the method disclosed in Patent Document 1, the pressure Pwg downstream of the EGR valve, the pressure Peg upstream of the EGR valve, and the temperature Teg upstream of the EGR valve are respectively acquired by the sensors. The pressure ratio between the pressure Peg on the downstream side of the EGR valve and the pressure Peg on the upstream side of the EGR valve, the temperature Teg on the upstream side of the EGR valve, and the opening degree of the EGR valve An EGR flow amount Geg, which is the flow rate of the EGR gas passing through the EGR valve, is calculated based on the opening area calculated from VTegr.

特許文献1に開示された方法によれば、次に、センサにより取得される吸気温度Tinと吸気圧力Pwgとに基づいて、シリンダに供給される作動ガスの流量である作動ガス量Gwgが計算され、作動ガス量GwgからEGR流通量Gegを減算することにより、タービンに流入する排気ガスの流量Gtiが計算される。また、タービンの出口圧力Pteとタービンの入口温度Ttiとがそれぞれ関連する状態量に基づいて計算される。そして、ベルヌーイの定理に基づく式を用いて、排気マニホールド内の目標圧力Pmeと、出口圧力Pteと、タービンの入口温度Ttiとに基づいて、可変ノズルの必要開口面積Aneが計算される。   According to the method disclosed in Patent Document 1, the working gas amount Gwg, which is the flow rate of the working gas supplied to the cylinder, is then calculated based on the intake temperature Tin and the intake pressure Pwg acquired by the sensor. The flow rate Gti of the exhaust gas flowing into the turbine is calculated by subtracting the EGR flow amount Geg from the working gas amount Gwg. Also, the outlet pressure Pte of the turbine and the inlet temperature Tti of the turbine are calculated based on the associated state quantities. Then, the required opening area Ane of the variable nozzle is calculated based on the target pressure Pme in the exhaust manifold, the outlet pressure Pte, and the inlet temperature Tti of the turbine using a formula based on Bernoulli's theorem.

特開2014−047717号公報JP, 2014-047717, A 特開2015−140718号公報JP, 2015-140718, A 特開平08−042380号公報Japanese Patent Application Publication No. 08-042380

特許文献1に開示されているベルヌーイの定理に基づく式を用いれば、可変ノズルの開度から排気マニホールド内の圧力、すなわち、タービン上流圧力の推定値を計算することもできる。この計算には、タービンを通過する排気ガスの流量であるタービン通過流量が必要であるが、特許文献1に開示されている方法では、これはシリンダ内の作動ガス量とEGR流通量とから計算されている。特許文献1に開示されている方法によると、EGR流通量はEGR弁の前後の圧力比に基づいて計算される。この場合、EGR弁の下流側の圧力を計測するセンサと、EGR弁の上流側の圧力を計測するセンサがそれぞれ必要となる。しかし、部品点数の削減の観点からは、センサの数はできるだけ少なくしたい。   Using the equation based on Bernoulli's theorem disclosed in Patent Document 1, it is also possible to calculate the pressure in the exhaust manifold, that is, the estimated value of the turbine upstream pressure from the opening degree of the variable nozzle. Although this calculation requires the flow rate through the turbine, which is the flow rate of exhaust gas passing through the turbine, in the method disclosed in Patent Document 1, this is calculated from the amount of working gas in the cylinder and the amount of EGR flow. It is done. According to the method disclosed in Patent Document 1, the EGR flow rate is calculated based on the pressure ratio before and after the EGR valve. In this case, a sensor for measuring the pressure on the downstream side of the EGR valve and a sensor for measuring the pressure on the upstream side of the EGR valve are respectively required. However, from the viewpoint of reducing the number of parts, the number of sensors should be as small as possible.

上述のようにタービン上流圧力を計算で得ることができるならば、EGR弁の上流側の圧力もまたタービン上流圧力から計算することができる。ゆえに、EGR弁の上流側の圧力を計測するためのセンサを不要にできる可能性がある。ただし、その場合、EGR弁の前後の圧力比に基づいてEGR流通量を計算することはできなくなるため、特許文献1に開示されている方法とは別の方法でタービン通過流量を計算しなければならない。   The pressure upstream of the EGR valve can also be calculated from the turbine upstream pressure, if the turbine upstream pressure can be calculated as described above. Therefore, there is a possibility that the sensor for measuring the pressure on the upstream side of the EGR valve can be dispensed with. However, in that case, it is not possible to calculate the EGR flow rate based on the pressure ratio before and after the EGR valve, so if the turbine passing flow rate is not calculated by a method different from the method disclosed in Patent Document 1 It does not.

容易に考えられる一つの方法としては、エアフローセンサで計測される新気量からタービン通過流量を計算する方法である。エアフローセンサを通過したガスがタービンに到達するまでの時間だけ、タービン通過流量には新気量に対して応答遅れがある。この応答遅れを考慮した遅れ処理を新気量に対して施すことで、タービン通過流量を計算することができる。ただし、エアフローセンサの計測値にはノイズが乗りやすいため、エアフローセンサで計測した新気量から計算したタービン通過流量では、タービン上流圧力を精度良く計算することは難しい。   One conceivable method is to calculate the flow rate through the turbine from the amount of fresh air measured by the air flow sensor. The flow rate through the turbine has a response delay with respect to the fresh air amount by the time until the gas having passed through the air flow sensor reaches the turbine. The flow rate through the turbine can be calculated by performing delay processing taking into consideration the response delay to the fresh air amount. However, it is difficult to calculate the pressure upstream of the turbine accurately with the flow rate through the turbine calculated from the fresh air amount measured by the air flow sensor because noise tends to get on the measurement value of the air flow sensor.

この発明は、上述のような課題を解決するためになされたもので、タービンの入口側の排気通路内圧力であるタービン上流圧力を精度良く計算することができる内燃機関の制御装置を提供することを目的とする。   The present invention has been made to solve the problems as described above, and provides a control device of an internal combustion engine capable of accurately calculating the pressure upstream of the turbine which is the pressure in the exhaust passage on the inlet side of the turbine. With the goal.

本発明に係る内燃機関の制御装置は、タービンに可変ノズルを有するターボ過給機と、排気通路におけるタービンの上流と吸気通路とを接続するEGR通路にEGR弁を有するEGR装置とを備える内燃機関を制御するための制御装置である。上記目的を達成するために、本制御装置は以下の処理を行うように構成される。   A control device for an internal combustion engine according to the present invention includes an internal combustion engine including a turbocharger having a variable nozzle in a turbine, and an EGR device having an EGR valve in an EGR passage connecting the upstream of the turbine in the exhaust passage and the intake passage. Is a control device for controlling the In order to achieve the above object, the control device is configured to perform the following processing.

本制御装置は、以下の状態量をセンサによって直接的に或いは間接的に取得する。
タービンの出口側の排気通路内圧力であるタービン下流圧力の現在値Pds;
吸気通路のEGR通路が接続された空間内の圧力である吸気通路圧力の現在値Pim;
タービンの入口側の排気通路内温度であるタービン上流温度の現在値Tus;
EGR弁の開度の現在値θegr;
可変ノズルの閉度の現在値θvn;及び
吸気通路に取り込まれた新気の流量である新気量の現在値Gadly
The control device acquires the following state quantities directly or indirectly by the sensor.
The present value P ds of the turbine downstream pressure, which is the pressure in the exhaust passage on the outlet side of the turbine;
The present value Pim of the intake passage pressure which is the pressure in the space to which the EGR passage of the intake passage is connected;
The current value Tus of the upstream temperature of the turbine, which is the temperature in the exhaust passage on the inlet side of the turbine;
Current value θegr of opening degree of EGR valve;
The present value θvn of the closing degree of the variable nozzle and the present value Gadly of the fresh air volume which is the flow rate of fresh air taken into the intake passage.

また本制御装置は、以下の状態量を計算により取得する。
シリンダに入るガスの圧力及び温度から計算されるシリンダ内ガス量の現在値Gcyl;
燃料噴射弁の燃料流量の現在値Gf;
新気量の現在値Gadlyと燃料流量の現在値Gfとから計算されるタービンを通過するガスの流量であるタービン通過流量の現在値Mtb;及び
シリンダ内ガス量の現在値Gcylと燃料流量の現在値Gfとの総和とタービン通過流量の現在値Mtbとの差分より計算されるEGR弁通過流量の現在値Megr
Further, the control device obtains the following state quantities by calculation.
Current value Gcyl of in-cylinder gas amount calculated from pressure and temperature of gas entering cylinder;
Current value Gf of fuel flow rate of fuel injection valve;
The present value Mtb of the flow rate through the turbine, which is the flow rate of gas passing through the turbine calculated from the present value Gadly of the fresh air amount and the present value Gf of the fuel flow; The present value Megr of the EGR valve passing flow rate calculated from the difference between the sum of the value Gf and the present value Mtb of the turbine passing flow rate

本制御装置は、タービンの入口側の排気通路内圧力であるタービン上流圧力の前回値Pus_0を一時的に記憶する。   The control device temporarily stores the previous value Pus_0 of the turbine upstream pressure, which is the pressure in the exhaust passage on the inlet side of the turbine.

本制御装置は、可変ノズルを含むタービンを一つのノズルに見立てた場合のタービン有効開口面積を、タービン通過流量と可変ノズルの閉度とに関連付けるタービン有効開口面積マップを予め記憶している。また、本制御装置は、EGR弁を一つのノズルに見立てた場合のEGR弁有効開口面積をEGR弁通過流量とEGR弁の開度とに関連付けるEGR弁有効開口面積マップを予め記憶している。   The control device stores in advance a turbine effective opening area map which relates the turbine effective opening area when the turbine including the variable nozzle is regarded as one nozzle to the turbine passing flow rate and the closing degree of the variable nozzle. Further, the control device stores in advance an EGR valve effective opening area map that associates the EGR valve effective opening area when the EGR valve is regarded as one nozzle with the EGR valve passing flow rate and the opening degree of the EGR valve.

本制御装置は、タービン通過流量の現在値Mtbと可変ノズルの閉度の現在値θvnとに対応するタービン有効開口面積μAtbをタービン有効開口面積マップから読み出すとともに、EGR弁通過流量の現在値MegrとEGR弁の開度の現在値θegrとに対応するEGR弁有効開口面積μAegrをEGR弁有効開口面積マップから読み出す。   The controller reads out the turbine effective opening area μAtb corresponding to the current value Mtb of the turbine passing flow and the current value θvn of the closing degree of the variable nozzle from the turbine effective opening area map, and the current value Megr of the EGR valve passing flow The EGR valve effective opening area μAegr corresponding to the current value θegr of the opening degree of the EGR valve is read out from the EGR valve effective opening area map.

本制御装置は、下記の式1で定義されるノズルの下流圧力と上流圧力との間の圧力比πの関数Φを、区分線形法によって複数の圧力比πの区分に分け、圧力比πの区分毎に下記の式2で定義される1次関数により直線近似した場合において、圧力比πの区分毎に定まる1次関数の各係数a,bを圧力比πの区分に関連付ける第1係数マップを予め記憶している。

Figure 0006515903
Figure 0006515903
The present control device divides the function Φ of the pressure ratio π between the downstream pressure and the upstream pressure of the nozzle defined by the following equation 1 into a plurality of pressure ratios π by the piecewise linear method, A first coefficient map that relates each coefficient a, b of the linear function determined for each pressure ratio π division to a pressure ratio π division when linear approximation is performed by the linear function defined by the following equation 2 for each division Is stored in advance.
Figure 0006515903
Figure 0006515903

本制御装置は、上記式1で定義されるノズルの下流圧力と上流圧力との間の圧力比πの関数Φを、区分線形法によって複数の圧力比πの区分に分け、圧力比πの区分毎に下記の式3で定義される1次関数により直線近似した場合において、圧力比πの区分毎に定まる1次関数の各係数c,dを圧力比πの区分に関連付ける第2係数マップを予め記憶している。

Figure 0006515903
The control device divides the function Φ of the pressure ratio π between the downstream pressure and the upstream pressure of the nozzle defined by the above equation 1 into a plurality of pressure ratio π divisions by the piecewise linear method, and divides the pressure ratio π The second coefficient map relating each coefficient c, d of the linear function determined for each section of the pressure ratio π to the section of the pressure ratio π when linearly approximated by the linear function defined by the following equation 3 for each It is stored in advance.
Figure 0006515903

本制御装置は、タービン下流圧力の現在値Pdsとタービン上流圧力の前回値Pus_0との比を上記式2における圧力比πとした場合に、圧力比πが当てはまる区分に対応する各係数a,bを前記第1係数マップから読み出すとともに、吸気通路圧力の現在値Pimとタービン上流圧力の前回値Pus_0との比を上記式3における圧力比πとした場合に、圧力比πが当てはまる区分に対応する各係数c,dを第2係数マップから読み出す。   When the ratio of the current value Pds of the turbine downstream pressure to the previous value Pus_0 of the turbine upstream pressure is set as the pressure ratio π in the above equation 2, the present control device has coefficients a and b corresponding to the section to which the pressure ratio π applies. Is read from the first coefficient map, and the pressure ratio π corresponds to the section to which the pressure ratio π applies, where the ratio of the current value Pim of the intake passage pressure to the previous value Pus_0 of the turbine upstream pressure is the pressure ratio The respective coefficients c and d are read out from the second coefficient map.

本制御装置は、タービン下流圧力の現在値Pdsと、吸気通路圧力の現在値Pimと、タービン上流温度の現在値Tusと、シリンダ内ガス量の現在値Gcylと燃料流量の現在値Gfとの総和と、タービン有効開口面積μAtbと、EGR弁有効開口面積μAegrと、各係数a,b,c,dとに基づいて、下記の式4を用いてタービン上流圧力の現在値Pusを計算する。

Figure 0006515903
The present control apparatus sums the present value Pds of the downstream pressure of the turbine, the present value Pim of the intake passage pressure, the present value Tus of the upstream temperature of the turbine, the present value Gcyl of the in-cylinder gas amount and the present value Gf of the fuel flow rate. Based on the turbine effective opening area μAtb, the EGR valve effective opening area μAegr, and the coefficients a, b, c, d, the current value Pus of the turbine upstream pressure is calculated using Equation 4 below.
Figure 0006515903

本制御装置は、上記のロジックにより計算されたタービン上流圧力の現在値Pusに基づいて内燃機関を制御する。   The control device controls the internal combustion engine based on the current value Pus of the turbine upstream pressure calculated by the above logic.

本制御装置によれば、上記の式4を用いることによりタービン上流圧力を精度良く計算することができ、精度の良いタービン上流圧力に基づいて内燃機関を制御することができる。なお、タービン有効開口面積の計算に用いられるタービン通過流量は新気量に基づいて計算されるため、ノイズによる新気量の計測値のばらつきの影響は、タービン有効開口面積の計算値にも及ぶ。同様に、EGR弁有効開口面積の計算に用いられるEGR弁通過流量も新気量を用いて計算されるため、ノイズによる新気量の計測値のばらつきの影響は、EGR弁有効開口面積の計算値にも及ぶ。ただし、タービン有効開口面積とタービン通過流量との関係から判断するには、タービン通過流量のばらつきに対するタービン有効開口面積の感度は高くない。同様に、EGR弁有効開口面積とEGR弁通過流量との関係から判断するには、EGR弁通過流量のばらつきに対するEGR弁有効開口面積の感度も高くない。ゆえに、ノイズによる新気量の計測値のばらつきがタービン有効開口面積とEGR弁有効開口面積の各計算結果に与える影響は限定的であり、タービン有効開口面積とEGR弁有効開口面積とをパラメータに含むタービン上流圧力の計算精度は十分に担保されている。   According to this control device, the turbine upstream pressure can be calculated with high accuracy by using the above-mentioned equation 4, and the internal combustion engine can be controlled based on the turbine upstream pressure with high accuracy. In addition, since the flow rate through the turbine used to calculate the turbine effective opening area is calculated based on the fresh air amount, the influence of the variation in the measured value of the fresh air amount due to the noise also extends to the calculated value of the turbine effective opening area . Similarly, since the EGR valve passing flow rate used for calculating the effective opening area of the EGR valve is also calculated using the fresh air amount, the influence of the variation of the measured value of the fresh air amount due to the noise is the calculation of the EGR valve effective opening area It extends to the value. However, the sensitivity of the turbine effective opening area to the variation of the turbine passing flow rate is not high, as judged from the relationship between the turbine effective opening area and the turbine passing flow rate. Similarly, to judge from the relationship between the EGR valve effective opening area and the EGR valve passing flow rate, the sensitivity of the EGR valve effective opening area to the variation of the EGR valve passing flow rate is not high either. Therefore, the influence of the variation in the measured value of the fresh air amount due to noise on the calculation results of the turbine effective opening area and the EGR valve effective opening area is limited, and the turbine effective opening area and the EGR valve effective opening area are used as parameters. The calculation accuracy of the turbine upstream pressure including is fully secured.

本発明の実施の形態の制御装置が適用される内燃機関の概略構成を示す図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a figure which shows schematic structure of the internal combustion engine to which the control apparatus of embodiment of this invention is applied. 可変ノズルの閉度とタービン通過流量とタービン有効開口面積との関係を示す図である。It is a figure which shows the relationship between the closeness degree of a variable nozzle, the turbine passing flow rate, and the turbine effective opening area. EGR弁の開度とEGR弁通過流量とEGR弁有効開口面積との関係を示す図である。It is a figure which shows the relationship between the opening degree of EGR valve, EGR valve passage flow volume, and EGR valve effective opening area. ベルヌーイの定理の式に含まれるノズルの下流圧力と上流圧力との間の圧力比πの関数Φと、それを近似した1次関数とを示す図である。It is a figure which shows the function phi of pressure ratio pi between the downstream pressure and upstream pressure of the nozzle included in the formula of Bernoulli's theorem, and the linear function which approximated it. 式4によるタービン上流圧力の推定精度を検証する検証用データの分布を示す図である。FIG. 6 is a view showing a distribution of verification data for verifying the estimation accuracy of the turbine upstream pressure according to Equation 4. 式4によるタービン上流圧力の推定値とタービン上流圧力の実際値との一致度を示す図である。FIG. 6 is a diagram showing the degree of agreement between the estimated value of the turbine upstream pressure according to Equation 4 and the actual value of the turbine upstream pressure. 本発明の実施の形態の制御装置が有するタービン上流圧力を計算するための構成を示すブロック図である。It is a block diagram which shows the structure for calculating the turbine upstream pressure which the control apparatus of embodiment of this invention has. タービン上流圧力の推定値の用途の一例を示す図である。It is a figure which shows an example of the application of the estimated value of a turbine upstream pressure. タービン上流圧力の推定値の用途の一例を示す図である。It is a figure which shows an example of the application of the estimated value of a turbine upstream pressure.

1.内燃機関の構成
図1は、本発明の実施の形態の制御装置が適用される内燃機関2の概略構成を示す図である。本実施の形態に係る内燃機関2は、単一のターボ過給機20を備えたシングルターボシステムである。内燃機関2は、ディーゼルエンジンとして構成されたエンジン本体4を備える。エンジン本体4には複数(図では4つ)のシリンダ4aが設けられ、シリンダ4aごとに燃料噴射弁6が設けられている。
1. Configuration of Internal Combustion Engine FIG. 1 is a view showing a schematic configuration of an internal combustion engine 2 to which a control device according to an embodiment of the present invention is applied. The internal combustion engine 2 according to the present embodiment is a single turbo system provided with a single turbocharger 20. The internal combustion engine 2 comprises an engine body 4 configured as a diesel engine. The engine body 4 is provided with a plurality of (four in the drawing) cylinders 4a, and a fuel injection valve 6 is provided for each cylinder 4a.

エンジン本体4の吸気入口には、外部から新気を吸入する吸気通路8が接続されている。吸気通路8には、その上流側から下流側に向けてエアクリーナ12、ターボ過給機20のコンプレッサ20a、インタークーラ14及び吸気絞り弁16がこの順で設けられている。吸気通路8のエンジン本体4に接続される部位には、各シリンダ4aに空気を分配するための吸気マニホールド8aが形成されている。エンジン本体4の排気出口には、排気を外部に排出する排気通路10が接続されている。排気通路10には、ターボ過給機20のタービン20bが設けられている。タービン20bは、可変ノズル22を備える。排気通路10のエンジン本体4に接続される部位には、各シリンダ4aから排出された排気を集合させるための排気マニホールド10aが形成されている。   An intake passage 8 for taking in fresh air from the outside is connected to the intake port of the engine body 4. In the intake passage 8, an air cleaner 12, a compressor 20a of the turbocharger 20, an intercooler 14 and an intake throttle valve 16 are provided in this order from the upstream side toward the downstream side. At a portion of the intake passage 8 connected to the engine body 4, an intake manifold 8 a for distributing air to the cylinders 4 a is formed. An exhaust passage 10 for exhausting the exhaust gas to the outside is connected to an exhaust outlet of the engine body 4. The exhaust passage 10 is provided with a turbine 20 b of a turbocharger 20. The turbine 20 b includes a variable nozzle 22. At a portion of the exhaust passage 10 connected to the engine body 4, an exhaust manifold 10 a for collecting the exhaust discharged from the cylinders 4 a is formed.

内燃機関2は、排気通路10から吸気通路8へ排気の一部を再循環させるEGR装置30を備える。EGR装置30は、排気通路10におけるタービン20bの上流と、吸気通路8における吸気絞り弁16の下流とを接続するEGR通路32を備える。EGR通路32には、EGRガスの流れの方向における上流側から下流側に向かってEGRクーラ34とEGR弁36がこの順に配設されている。EGR通路32には、EGRクーラ34をバイパスするバイパス通路38が設けられている。バイパス通路38がEGR通路32に合流する合流部には、バイパス通路38とEGRクーラ34との間でEGRガスの流路を切り替えるバイパス弁40が設けられている。   The internal combustion engine 2 includes an EGR device 30 that recirculates part of the exhaust gas from the exhaust passage 10 to the intake passage 8. The EGR device 30 includes an EGR passage 32 connecting the upstream of the turbine 20 b in the exhaust passage 10 and the downstream of the intake throttle valve 16 in the intake passage 8. An EGR cooler 34 and an EGR valve 36 are disposed in this order in the EGR passage 32 from the upstream side to the downstream side in the direction of flow of the EGR gas. The EGR passage 32 is provided with a bypass passage 38 that bypasses the EGR cooler 34. At a junction where the bypass passage 38 joins the EGR passage 32, a bypass valve 40 is provided which switches the flow path of the EGR gas between the bypass passage 38 and the EGR cooler 34.

内燃機関2を制御する制御装置100は、少なくとも1つのCPU、少なくとも1つのROM、少なくとも1つのRAMを有するECU(Electronic Control Unit)である。ROMには、内燃機関2の制御のための各種のプログラムやマップを含む各種のデータが記憶されている。ROMに記憶されているプログラムがRAMにロードされ、CPUで実行されることで、制御装置100には様々な機能が実現される。なお、制御装置100は、複数のECUから構成されていてもよい。   The control device 100 that controls the internal combustion engine 2 is an ECU (Electronic Control Unit) having at least one CPU, at least one ROM, and at least one RAM. The ROM stores various data including various programs and maps for controlling the internal combustion engine 2. Various functions are realized in the control device 100 by loading a program stored in the ROM into the RAM and executing the program by the CPU. Control device 100 may be configured of a plurality of ECUs.

制御装置100には、内燃機関2に取り付けられた各種のセンサから、内燃機関2の運転状態や運転条件に関する様々な情報が入力される。例えば、エアクリーナ12の近傍に配置されたエアフローセンサ50からは、吸気通路8に吸入される新気の流量である新気量(Gadly)に関する情報が入力される。吸気マニホールド8aに配置された圧力センサ52からは、吸気マニホールド8a内の圧力である吸気マニホールド圧力(Pim)に関する情報が入力される。吸気マニホールド圧力(Pim)は、吸気通路8のEGR通路32が接続された空間内の圧力である吸気通路圧力でもある。吸気マニホールド8aに配置された温度センサ54からは、吸気マニホールド8a内の温度である吸気マニホールド温度(Tim)に関する情報が入力される。また、排気マニホールド10aに配置された温度センサ56からは、タービン20bの入口側の排気通路内温度であるタービン上流温度(Tus)に関する情報が入力される。排気通路10におけるタービン20bの下流に配置された圧力センサ58からは、タービン20bの出口側の排気通路内圧力であるタービン下流圧力(Pds)に関する情報が入力される。さらに、EGR弁36に設けられた開度センサからは、EGR弁36の開度(θegr)に関する情報が入力され、可変ノズル22に設けられた閉度センサからは、可変ノズル22の閉度(θvn)に関する情報が入力される。制御装置100は、これらの情報に基づいて内燃機関2の制御パラメータを決定する。   Various information regarding the operating state and operating conditions of the internal combustion engine 2 are input to the control device 100 from various sensors attached to the internal combustion engine 2. For example, from the air flow sensor 50 disposed in the vicinity of the air cleaner 12, information on the amount of fresh air (Gadly) which is the flow rate of fresh air drawn into the intake passage 8 is input. Information on an intake manifold pressure (Pim) which is a pressure in the intake manifold 8a is input from a pressure sensor 52 disposed in the intake manifold 8a. The intake manifold pressure (Pim) is also an intake passage pressure which is a pressure in a space to which the EGR passage 32 of the intake passage 8 is connected. Information on an intake manifold temperature (Tim) which is a temperature in the intake manifold 8a is input from a temperature sensor 54 disposed in the intake manifold 8a. Further, from the temperature sensor 56 disposed in the exhaust manifold 10a, information on the turbine upstream temperature (Tus) which is the temperature in the exhaust passage on the inlet side of the turbine 20b is input. Information on a turbine downstream pressure (Pds), which is the pressure in the exhaust passage on the outlet side of the turbine 20b, is input from the pressure sensor 58 disposed downstream of the turbine 20b in the exhaust passage 10. Further, information on the opening degree (θ egr) of the EGR valve 36 is inputted from the opening degree sensor provided in the EGR valve 36, and the closing degree of the variable nozzle 22 is received from the closing degree sensor provided in the variable nozzle 22. Information about θ v n) is input. Control device 100 determines control parameters of internal combustion engine 2 based on these pieces of information.

2.タービン上流圧力の推定
制御装置100が有する機能の一つに、タービン20bの入口側の排気通路内圧力であるタービン上流圧力(Pus)を推定する機能がある。タービン上流圧力の計算は、上述の式4を用いて行われる。以下、式4がどのようにして導出されたのか、その導出方法について説明する。
2. Estimation of Turbine Upstream Pressure One of the functions of the control device 100 is a function of estimating the turbine upstream pressure (Pus) which is the pressure in the exhaust passage on the inlet side of the turbine 20b. Calculation of the turbine upstream pressure is performed using Equation 4 above. Hereinafter, how to derive Equation 4 will be described.

2−1.タービンの流量特性式
エネルギ保存則が適用されるノズルを流体が通過する場合、ノズルを通過する前の流体の状態量とノズルを通過した後の流体の状態量との関係は、ベルヌーイの定理に従う。ここで、仮にタービン20bがノズルであったならば、以下の式5が成立する。式5において、Mtbはタービン20bを通過するガスの流量であるタービン通過流量であり、μAtbは可変ノズル22を含むタービン20bを一つのノズルに見立てた場合のタービン20bの有効開口面積である。また、式5におけるΦは上述の式1で定義される関数である。

Figure 0006515903
2-1. Turbine flow characteristic equation When fluid passes through a nozzle to which the energy conservation law is applied, the relationship between the state quantity of fluid before passing through the nozzle and the state quantity of fluid after passing through the nozzle follows Bernoulli's theorem . Here, if the turbine 20b is a nozzle, the following equation 5 holds. In Equation 5, Mtb is the flow rate through the turbine, which is the flow rate of gas passing through the turbine 20b, and μAtb is the effective opening area of the turbine 20b when the turbine 20b including the variable nozzle 22 is regarded as one nozzle. Further, Φ in Equation 5 is a function defined by Equation 1 above.
Figure 0006515903

タービン20bはコンプレッサ20aへ仕事を与えるため、タービン20bではエネルギ保存則は成立せず、タービン20bにはベルヌーイの定理は適用できない。しかし、式5において、μAtbをガスの流れやすさを表す一つの係数として拡張して考えるならば、式5をタービン20bの流量特性を表す式として用いることができる。タービン仕事が大きいほど、タービン20bを通過するガスはエネルギを失い、ガスは流れにくくなる。ゆえに、μAtbがガスの流れやすさを表す係数であるなら、タービン仕事はμAtbに換算することができるので、式5でタービン20bの流量特性を表すことができる。なお、式5におけるμAtbは、可変ノズル22を含むタービン20bの全体を一つのノズルに見立てた場合の有効開口面積に相当することから、本明細書では、これをタービン有効開口面積と称する。   Since the turbine 20b applies work to the compressor 20a, the energy conservation law does not hold in the turbine 20b, and the Bernoulli's theorem can not be applied to the turbine 20b. However, in the equation 5, if .mu..sub.Atb is expanded as one factor representing the gas flow ease, the equation 5 can be used as an equation representing the flow characteristic of the turbine 20b. The greater the turbine work, the less the gas passing through the turbine 20b loses energy and the less the gas flows. Therefore, if μAtb is a coefficient representing the ease of gas flow, the turbine work can be converted to μAtb, so equation 5 can represent the flow characteristics of the turbine 20b. In addition, since μAtb in Equation 5 corresponds to the effective opening area when the whole of the turbine 20b including the variable nozzle 22 is regarded as one nozzle, this is referred to as a turbine effective opening area in the present specification.

タービン有効開口面積を決定するパラメータは、タービン20bが備える可変ノズル22の閉度とタービン通過流量である。可変ノズル22の閉度とは、可変ノズル22の全開位置を基準としたときに可変ノズル22がどの程度閉じられているかを表すパラメータである。可変ノズル22が全開位置にあるときの閉度が0%、全閉位置にあるときの閉度が100%である。図2は、可変ノズル22の閉度(θvn)とタービン通過流量(Mtb)とタービン有効開口面積(μAtb)との関係を示す図である。図2は、実験用の内燃機関を用いて得られた実験結果の一例である。実験では、タービン通過流量を固定し、可変ノズル22の閉度を0%から100%までの間で変えながら、式5が成立するタービン有効開口面積の値を可変ノズル22の閉度ごとに算出することが行われた。そして、タービン通過流量を小流量から大流量まで少しずつ変えながらこの作業を繰り返し行うことにより、図2のようなタービン有効開口面積の特性図が得られた。   The parameters that determine the turbine effective opening area are the degree of closure of the variable nozzle 22 provided in the turbine 20b and the flow rate through the turbine. The degree of closure of the variable nozzle 22 is a parameter indicating how close the variable nozzle 22 is closed based on the fully open position of the variable nozzle 22. The degree of closure when the variable nozzle 22 is in the fully open position is 0%, and the degree of closure when the variable nozzle 22 is in the fully closed position is 100%. FIG. 2 is a view showing the relationship between the degree of closure (θ vn) of the variable nozzle 22, the flow rate through the turbine (Mtb), and the turbine effective opening area (μAtb). FIG. 2 is an example of experimental results obtained using an experimental internal combustion engine. In the experiment, the turbine passing flow rate is fixed, and the value of the turbine effective opening area satisfying Equation 5 is calculated for each degree of closure of the variable nozzle 22 while changing the degree of closure of the variable nozzle 22 between 0% and 100%. It was done. Then, by repeating this operation while changing the flow rate through the turbine little by little from the large flow rate to the large flow rate, a characteristic diagram of the turbine effective opening area as shown in FIG. 2 was obtained.

2−2.EGR装置の流量特性式
ところで、EGR装置30が備えるEGR弁36そのものには、ベルヌーイの定理が適用できる。ただし、EGR弁36の上流側の状態量としてEGR通路32の入口における状態量を用いる場合には、途中に介在するEGRクーラ34の影響によって、ベルヌーイの定理の前提であるエネルギ保存則は成立しない。EGRクーラ34においてガスから熱が奪われるためである。しかし、タービン20bの流量特性を表す式5の場合と同様、μAegrをガスの流れやすさを表す一つの係数として定義するならば、EGR通路32の入口における状態量とEGR通路32の出口における状態量との間に以下の式6が成立する。式6において、MegrはEGR弁36を通過するガスの流量であるEGR弁通過流量である。また、式5におけるΦは上述の式1で定義される関数である。なお、式6におけるμAegrは、EGR弁36を含むEGR装置30の全体を一つのノズルに見立てた場合の有効開口面積に相当することから、本明細書では、これをEGR弁有効開口面積と称する。

Figure 0006515903
2-2. Flow Characteristic Characteristic Formula of the EGR Device By the way, Bernoulli's theorem can be applied to the EGR valve 36 itself provided in the EGR device 30. However, when the state quantity at the inlet of the EGR passage 32 is used as the state quantity on the upstream side of the EGR valve 36, the energy conservation law which is the premise of Bernoulli's theorem does not hold due to the influence of the EGR cooler 34 interposed in the middle. . This is because the gas is deprived of heat in the EGR cooler 34. However, if μA egr is defined as one factor representing the ease of gas flow, as in the case of equation 5 representing the flow characteristics of the turbine 20 b, the state quantity at the inlet of the EGR passage 32 and the condition at the outlet of the EGR passage 32 The following equation 6 is established between the quantity. In Equation 6, Megr is the flow rate of the gas passing through the EGR valve 36, which is the flow rate through the EGR valve. Further, Φ in Equation 5 is a function defined by Equation 1 above. In addition, since μAegr in Equation 6 corresponds to the effective opening area when the whole of the EGR device 30 including the EGR valve 36 is regarded as one nozzle, in this specification, this is referred to as the EGR valve effective opening area. .
Figure 0006515903

EGR弁有効開口面積を決定するパラメータは、EGR弁36の開度とEGR弁通過流量である。図3は、EGR弁36の開度(θegr)とEGR弁通過流量(Megr)とEGR弁有効開口面積(μAegr)との関係を示す図である。図3は、実験用の内燃機関を用いて得られた実験結果の一例である。実験では、EGR弁通過流量を固定し、EGR弁36の開度を0%から100%までの間で変えながら、式6が成立するEGR弁有効開口面積の値をEGR弁36の開度ごとに算出することが行われた。そして、EGR弁通過流量を小流量から大流量まで少しずつ変えながらこの作業を繰り返し行うことにより、図3のようなEGR弁有効開口面積の特性図が得られた。   The parameters that determine the EGR valve effective opening area are the opening degree of the EGR valve 36 and the EGR valve passing flow rate. FIG. 3 is a view showing the relationship between the opening degree (θegr) of the EGR valve 36, the EGR valve passing flow rate (Megr), and the EGR valve effective opening area (μAegr). FIG. 3 shows an example of experimental results obtained using an experimental internal combustion engine. In the experiment, while the EGR valve passing flow rate is fixed and the opening degree of the EGR valve 36 is changed between 0% and 100%, the value of the EGR valve effective opening area for which the formula 6 is satisfied is for each opening degree of the EGR valve 36 It was done to calculate. Then, by repeatedly performing this operation while changing the EGR valve passing flow rate little by little from the large flow rate to the large flow rate, a characteristic diagram of the EGR valve effective opening area as shown in FIG. 3 was obtained.

なお、図3に示す特性は、バイパス弁40が閉じている場合のEGR弁有効開口面積の特性である。バイパス弁40が開いている場合、EGRクーラ34でガスから熱が奪われることがない。このため、EGR弁開度とEGR弁通過流量とが同じであっても、式6が成立するEGR弁有効開口面積の値は、バイパス弁40が閉じている場合とは異なった値になる。バイパス弁40が開いている場合については別に実験が行われ、図3とは別の特性図が得られている。   The characteristic shown in FIG. 3 is the characteristic of the EGR valve effective opening area when the bypass valve 40 is closed. When the bypass valve 40 is open, the EGR cooler 34 does not take heat from the gas. For this reason, even if the EGR valve opening degree and the EGR valve passage flow rate are the same, the value of the EGR valve effective opening area for which the equation 6 holds is different from that in the case where the bypass valve 40 is closed. A separate experiment is performed for the case where the bypass valve 40 is open, and a characteristic diagram different from FIG. 3 is obtained.

2−3.関数Φの簡易化
上記の式5及び式6に含まれる関数Φは、上述の式1に示すように、ノズルの下流圧力と上流圧力との間の圧力比πを変数とする複雑な関数である。しかし、区分線形法により、関数Φを複数の圧力比πの区分に分け、圧力比πの区分毎に1次関数で直線近似することによって簡易化することができる。図4は、関数Φとその変数である圧力πとの関係を示す図である。破線で示す曲線は、式1で表される関数Φと圧力πとの関係を示し、実線で示す折れ線は、区分線形法により直線近似した関数Φと圧力πとの関係を示している。図4に示す例では、圧力比πは6つの区分に分けられ、区分毎に関数Φが直線で近似されている。
2-3. Simplification of the Function Φ The function Φ included in the above Equations 5 and 6 is a complex function having the pressure ratio π between the downstream pressure and the upstream pressure of the nozzle as a variable as shown in the above Equation 1 is there. However, according to the piecewise linear method, the function を can be divided into a plurality of pressure ratio π sections, and simplification can be made by linearly approximating each section of the pressure ratio π with a linear function. FIG. 4 is a diagram showing the relationship between the function Φ and the pressure π which is its variable. A curve indicated by a broken line indicates the relationship between the function Φ represented by the equation 1 and the pressure π, and a broken line indicated by a solid line indicates a relationship between the function し た and the pressure π which are linearly approximated by the piecewise linear method. In the example shown in FIG. 4, the pressure ratio π is divided into six sections, and the function Φ is approximated by a straight line for each section.

式5に含まれる関数Φは、区分線形法により上述の式2のように簡易化することができる。簡易化された関数Φを用いることにより、タービン20bの流量特性は以下の式7で表すことができる。なお、式7における係数a,bの値は、圧力比の区分毎に定められている。タービン下流圧力(Pds)とタービン上流圧力(Pus)との比の値から定まる区分に対応する係数a,bの値が式7に代入される。ただし、タービン上流圧力(Pus)については前回の計算タイミングで計算された前回値が用いられる。

Figure 0006515903
The function Φ included in Equation 5 can be simplified as in Equation 2 above by the piecewise linear method. By using the simplified function Φ, the flow rate characteristic of the turbine 20b can be expressed by the following equation 7. The values of the coefficients a and b in Equation 7 are determined for each pressure ratio division. The values of the coefficients a and b corresponding to the section defined by the value of the ratio of the turbine downstream pressure (Pds) to the turbine upstream pressure (Pus) are substituted into the equation (7). However, as for the turbine upstream pressure (Pus), the previous value calculated at the previous calculation timing is used.
Figure 0006515903

式6に含まれる関数Φは、区分線形法により上述の式3のように簡易化することができる。簡易化された関数Φを用いることにより、EGR装置30の流量特性は以下の式8で表すことができる。なお、式8における係数c,dの値は、圧力比の区分毎に定められている。吸気マニホールド圧力(Pim)とタービン上流圧力(Pus)との比の値から定まる区分に対応する係数c,dの値が式8に代入さる。ただし、タービン上流圧力(Pus)については前回の計算タイミングで計算された前回値が用いられる。

Figure 0006515903
The function Φ included in Equation 6 can be simplified as in Equation 3 above by the piecewise linear method. By using the simplified function Φ, the flow rate characteristic of the EGR device 30 can be expressed by the following equation 8. The values of the coefficients c and d in Equation 8 are determined for each pressure ratio division. The values of the coefficients c and d corresponding to the section defined by the value of the ratio of the intake manifold pressure (Pim) to the pressure upstream of the turbine (Pus) are substituted into the equation (8). However, as for the turbine upstream pressure (Pus), the previous value calculated at the previous calculation timing is used.
Figure 0006515903

2−4.流量特性式の統合
上述の式7において、Tusは温度センサ56によって計測可能であり、Pdsは圧力センサ58によって計測可能である。また、Mtbはエアフローセンサ50によって計測される新気量(Gadly)と、燃料噴射弁6からシリンダ内に噴射される燃料の燃料流量(Gf)とから計算可能である。μAtbは、可変ノズル22の閉度(θvn)とタービン通過流量(Mtb)とに基づいて決まる。ゆえに、式7をPusについて整理することにより、Tus、Pds、Mtb及びμAtbからPusを算出する式を得ることができる。つまり、単にタービン上流圧力を推定するだけならば、式7を用いて行うことができる。
2-4. Integration of the flow rate characteristic equation In the above equation 7, Tus can be measured by the temperature sensor 56, and Pds can be measured by the pressure sensor 58. Further, Mtb can be calculated from the amount of fresh air (Gadly) measured by the air flow sensor 50 and the fuel flow rate (Gf) of the fuel injected from the fuel injection valve 6 into the cylinder. μAtb is determined based on the degree of closure (θvn) of the variable nozzle 22 and the flow rate through the turbine (Mtb). Therefore, by rearranging Equation 7 with respect to Pus, an equation for calculating Pus can be obtained from Tus, Pds, Mtb and μAtb. That is, Equation 7 can be used to simply estimate the pressure upstream of the turbine.

しかし、エアフローセンサ50の計測値にはノイズが乗りやすい。タービン通過流量(Mtb)は、エアフローセンサ50で計測した新気量から計算されるため、新気量に含まれるノイズがそのままタービン通過流量の計算値に乗ることになる。ゆえに、式7を用いて計算されるタービン上流圧力の推定値は、エアフローセンサ50のノイズの影響を受けており、必ずしも高い精度であるとは言えない。   However, noise tends to get on the measurement value of the air flow sensor 50. Since the turbine passing flow rate (Mtb) is calculated from the fresh air amount measured by the air flow sensor 50, the noise included in the fresh air amount will be directly on the calculated value of the turbine passing flow rate. Therefore, the estimated value of the turbine upstream pressure calculated using Equation 7 is affected by the noise of the air flow sensor 50 and can not necessarily be said to have high accuracy.

そこで、以下の式9に示す関係に着目する。タービン通過流量(Mtb)とEGR弁通過流量(Megr)との和は、エンジン本体4から排気通路10に出た排気の総流量に一致し、これはシリンダ内ガス量(Gcyl)と燃料流量(Gf)との和で表される。シリンダ内ガス量は、圧力センサ52により計測される吸気マニホールド圧力(Pim)と温度センサ54により計測される吸気マニホールド温度(Tim)とに基づき、状態方程式を用いて計算することができる。燃料流量は、制御装置100から燃料噴射弁6に与えられる指令値から計算することができる。

Figure 0006515903
Therefore, attention is paid to the relationship shown in the following equation 9. The sum of the flow rate through the turbine (Mtb) and the flow rate through the EGR valve (Megr) corresponds to the total flow rate of the exhaust from the engine body 4 to the exhaust passage 10, which corresponds to the in-cylinder gas amount (Gcyl) and the fuel flow rate It is represented by the sum of Gf). The in-cylinder gas amount can be calculated using a state equation based on the intake manifold pressure (Pim) measured by the pressure sensor 52 and the intake manifold temperature (Tim) measured by the temperature sensor 54. The fuel flow rate can be calculated from the command value given from the control device 100 to the fuel injection valve 6.
Figure 0006515903

圧力センサ52と温度センサ54はエアフローセンサ50とは違ってノイズが乗り難い。ゆえに、式9の右辺によれば、左辺に比べて高い精度で排気の総流量をもとめることができる。式9の左辺のMtbに式7の右辺を代入し、式9の左辺のMegrに式8の右辺を代入することで、以下の式10が得られる。この式10をPusについて整理することで、上述の式4が得られる。

Figure 0006515903
Unlike the air flow sensor 50, the pressure sensor 52 and the temperature sensor 54 are difficult for noise to get on. Therefore, according to the right side of equation 9, it is possible to obtain the total flow rate of the exhaust with higher accuracy than the left side. By substituting the right side of equation 7 into Mtb on the left side of equation 9 and substituting the right side of equation 8 into Megr on the left side of equation 9, the following equation 10 is obtained. By arranging this equation 10 for Pus, the above equation 4 can be obtained.
Figure 0006515903

式4によるタービン上流圧力の推定精度について検証するため、図5に示すように様々な燃料噴射量と様々なエンジン回転速度について検証用データを得た。検証用データは、式4によるタービン上流圧力の推定値とタービン上流圧力の実際値とからなる。図6は、縦軸にタービン上流圧力の推定値(推定Pus)をとり、横軸にタービン上流圧力の実際値(実Pus)をとった平面上に検証用データをプロットしたグラフである。このグラフに示すように、式4によるタービン上流圧力の推定値と実際値との一致度は高い。これより、式4を用いることによってタービン上流圧力を精度良く計算できることが分かる。   In order to verify the estimation accuracy of the turbine upstream pressure according to Equation 4, verification data was obtained for various fuel injection amounts and various engine rotational speeds as shown in FIG. The verification data consists of the estimated value of the turbine upstream pressure according to Equation 4 and the actual value of the turbine upstream pressure. FIG. 6 is a graph in which the data for verification is plotted on a plane in which the estimated value (estimated Pus) of the turbine upstream pressure is taken on the vertical axis and the actual value (actual Pus) of the turbine upstream pressure is taken on the abscissa. As shown in this graph, the degree of agreement between the estimated value of the turbine upstream pressure according to Equation 4 and the actual value is high. From this, it is understood that the turbine upstream pressure can be accurately calculated by using the equation (4).

なお、式4におけるμAtbとμAegrの各計算結果にもエアフローセンサ50のノイズの影響は及んでいる。μAtbはタービン通過流量(Mtb)に基づいて計算され、μAegrはEGR弁通過流量(Megr)に基づいて計算されるからである。ただし、図2に示すμAtbとMtbとの関係から判断するには、Mtbのばらつきに対するμAtbの感度はそれほど高くない。同様に、図3に示すμAegrとMegrとの関係から判断するには、Megrのばらつきに対するμAegrの感度もそれほど高くない。ゆえに、エアフローセンサ50のノイズがμAtbとμAegrの各計算結果に与える影響は限定的であり、μAtbとμAegrをパラメータに含むタービン上流圧力の計算精度は十分に担保されていると言える。   Note that the noise of the air flow sensor 50 affects the calculation results of μAtb and μAegr in Expression 4. This is because μAtb is calculated based on the flow rate through the turbine (Mtb), and μAegr is calculated based on the flow rate through the EGR valve (Megr). However, in view of the relationship between μAtb and Mtb shown in FIG. 2, the sensitivity of μAtb to the variation of Mtb is not very high. Similarly, in view of the relationship between μAegr and Megr shown in FIG. 3, the sensitivity of μAegr to the variation of Megr is not very high. Therefore, the influence of the noise of the air flow sensor 50 on the calculation results of μAtb and μAegr is limited, and it can be said that the calculation accuracy of the turbine upstream pressure including μAtb and μAegr as parameters is sufficiently secured.

3.制御装置の構成と動作
図7は、制御装置100が有するタービン上流圧力を計算するための構成を示すブロック図である。ROMに記憶されているタービン上流圧力推定プログラムがCPUにより実行されることにより、制御装置100は、図7に示す演算ユニット102,104,106,108及び110として動作する。
3. Configuration and Operation of Control Device FIG. 7 is a block diagram showing a configuration for calculating the pressure upstream of the turbine that the control device 100 has. As a result of the CPU upstream pressure estimation program stored in the ROM being executed by the CPU, the control device 100 operates as the arithmetic units 102, 104, 106, 108 and 110 shown in FIG.

タービン上流圧力推定プログラムが実行される場合、制御装置100は、タービン下流圧力の現在値Pds、吸気マニホールド圧力の現在値Pim、タービン上流温度の現在値Tus、EGR弁36の開度の現在値θegr、可変ノズル22の閉度の現在値θvn、及び、新気量の現在値Gadlyをそれぞれ対応するセンサより所定の制御周期で取得する。   When the turbine upstream pressure estimation program is executed, the controller 100 controls the current value Pds of the turbine downstream pressure, the current value Pim of the intake manifold pressure, the current value Tus of the turbine upstream temperature, and the current value θegr of the opening degree of the EGR valve 36. The current value θvn of the closing degree of the variable nozzle 22 and the current value Gadly of the fresh air amount are acquired from the corresponding sensors at predetermined control cycles.

また、タービン上流圧力推定プログラムが実行される場合、制御装置100は、シリンダ内ガス量の現在値Gcyl、燃料流量の現在値Gf、タービン通過流量の現在値Mtb、及び、EGR弁通過流量の現在値Megrをそれぞれ所定の制御周期で計算する。なお、タービン通過流量の現在値Mtbは、新気量の現在値Gadlyと燃料流量の現在値Gfとから計算される。EGR弁通過流量の現在値Megrは、シリンダ内ガス量の現在値Gcylと燃料流量の現在値Gfとの総和とタービン通過流量の現在値Mtbとの差分より計算される。   In addition, when the turbine upstream pressure estimation program is executed, the control device 100 controls the present value Gcyl of the in-cylinder gas amount, the present value Gf of the fuel flow, the present value Mtb of the turbine passing flow, and the current of the EGR valve passing flow The value Megr is calculated in each predetermined control cycle. The current value Mtb of the turbine passing flow rate is calculated from the current value Gadly of the fresh air amount and the current value Gf of the fuel flow rate. The current value Megr of the EGR valve passing flow rate is calculated from the difference between the sum of the current value Gcyl of the in-cylinder gas amount and the current value Gf of the fuel flow rate and the current value Mtb of the turbine passing flow rate.

さらに、制御装置100は、後述する演算ユニット110で計算されたタービン上流圧力の前回値Pus_0を所定の制御周期でRAMに一時的に記憶する。   Further, control device 100 temporarily stores, in the RAM, the previous value Pus_0 of the turbine upstream pressure calculated by calculation unit 110 described later in a predetermined control cycle.

制御装置100のROMには、式2に示す1次関数の各係数a,bを圧力比πの区分に関連付ける第1係数マップが記憶されている。演算ユニット102は、タービン下流圧力の現在値Pdsとタービン上流圧力の前回値Pus_0との比を圧力比πとした場合に、圧力比πが当てはまる区分に対応する各係数a,bを第1係数マップから読み出すように構成されている。   The ROM of the control device 100 stores a first coefficient map that associates the coefficients a and b of the linear function shown in Equation 2 with the sections of the pressure ratio π. When the ratio between the current value Pds of the turbine downstream pressure and the previous value Pus_0 of the turbine upstream pressure is a pressure ratio π, the arithmetic unit 102 sets each coefficient a, b corresponding to a section to which the pressure ratio π applies to a first coefficient It is configured to read from the map.

制御装置100のROMには、式3に示す1次関数の各係数c,dを圧力比πの区分に関連付ける第2係数マップが記憶されている。演算ユニット104は、吸気マニホールド圧力の現在値Pimとタービン上流圧力の前回値Pus_0との比を圧力比πとした場合に、圧力比πが当てはまる区分に対応する各係数c,dを第2係数マップから読み出すように構成されている。   The ROM of the control device 100 stores a second coefficient map that associates the coefficients c and d of the linear function shown in Equation 3 with the sections of the pressure ratio π. When the ratio of the current value Pim of the intake manifold pressure to the previous value Pus_0 of the turbine upstream pressure is a pressure ratio π, the arithmetic unit 104 sets each coefficient c, d corresponding to a section to which the pressure ratio π is a second coefficient It is configured to read from the map.

制御装置100のROMには、図2に示す可変ノズル22の閉度とタービン通過流量とタービン有効開口面積との関係がマップ化されたタービン有効開口面積マップが記憶されている。演算ユニット106は、タービン通過流量の現在値Mtbと可変ノズル22の閉度の現在値θvnとに対応するタービン有効開口面積μAtbをタービン有効開口面積マップから読み出すように構成されている。   The ROM of the control device 100 stores a turbine effective opening area map in which the relationship between the degree of closure of the variable nozzle 22 shown in FIG. 2, the flow rate through the turbine, and the turbine effective opening area is mapped. The arithmetic unit 106 is configured to read out the turbine effective opening area μAtb corresponding to the current value Mtb of the flow rate through the turbine and the current value θvn of the degree of closure of the variable nozzle 22 from the turbine effective opening area map.

制御装置100のROMには、図3に示すEGR弁36の開度とEGR弁通過流量とEGR弁有効開口面積との関係がマップ化されたタービン有効開口面積マップが記憶されている。演算ユニット108は、EGR弁通過流量の現在値MegrとEGR弁36の開度の現在値θegrとに対応するEGR弁有効開口面積μAegrをEGR弁有効開口面積マップから読み出すように構成されている。   The ROM of the control device 100 stores a turbine effective opening area map in which the relationship between the opening degree of the EGR valve 36 and the EGR valve passing flow rate and the EGR valve effective opening area shown in FIG. 3 is mapped. The arithmetic unit 108 is configured to read out the EGR valve effective opening area μAegr corresponding to the current value Megr of the EGR valve passing flow rate and the current value θegr of the opening degree of the EGR valve 36 from the EGR valve effective opening area map.

演算ユニット110は、タービン下流圧力の現在値Pdsと、吸気マニホールド圧力の現在値Pimと、タービン上流温度の現在値Tusと、シリンダ内ガス量の現在値Gcylと燃料流量の現在値Gfとの総和と、タービン有効開口面積μAtbと、EGR弁有効開口面積μAegrと、各係数a,b,c,dとに基づいて、式4を用いてタービン上流圧力の現在値(推定値)Pusを計算するように構成されている。   The arithmetic unit 110 sums the present value Pds of the downstream pressure of the turbine, the present value Pim of the intake manifold pressure, the present value Tus of the upstream temperature of the turbine, the present value Gcyl of the in-cylinder gas amount and the present value Gf of the fuel flow rate. The present value (estimated value) Pus of the turbine upstream pressure is calculated using Equation 4 on the basis of the turbine effective opening area μAtb, the EGR valve effective opening area μAegr, and the coefficients a, b, c, d. Is configured as.

4.タービン上流圧力の推定値の用途
式4を用いて計算されたタービン上流圧力の推定値には種々の用途がある。ここでは、タービン上流圧力の推定値の用途のうち代表的な用途について紹介する。
4. Applications of estimated values of turbine upstream pressure There are various applications of estimated values of turbine upstream pressure calculated using Equation 4. Here, typical applications among the applications of estimated values of turbine upstream pressure are introduced.

タービン上流圧力の推定値の第1の用途は、EGR率の推定である。制御装置100は、図8に示すEGR率推定モデルを備える。EGR率推定モデルは、タービン上流圧力(Pus)、燃料噴射量(Q)、吸気マニホールド圧力(Pim)、新気量(Gadly)、エンジン水温(Tw)、及び吸気温度(Tair)からEGR率の推定値を計算するように構成されている。EGR率の推定値は、制御装置100により内燃機関2の制御パラメータの一つとして用いられる。   The first application of turbine upstream pressure estimates is to estimate the EGR rate. Control device 100 includes an EGR rate estimation model shown in FIG. The EGR rate estimation model is based on the turbine upstream pressure (Pus), the fuel injection amount (Q), the intake manifold pressure (Pim), the fresh air amount (Gadly), the engine water temperature (Tw), and the intake air temperature (Tair). It is configured to calculate an estimated value. The estimated value of the EGR rate is used as one of the control parameters of the internal combustion engine 2 by the control device 100.

タービン上流圧力の推定値の第2の用途は、燃焼モードを切り替える際に生じるトルク段差の抑制である。触媒の未活性時には、排気温度を上昇させて触媒を活性させるべく、通常燃焼モードからリッチ燃焼モードへの燃焼モードの切り替えが行われる場合がある。リッチ燃焼モードでは、吸気絞り弁16の開度を絞って空気量を減量し、それにより空燃比をリッチ化させることが行われる。ところが、通常燃焼モードからリッチ燃焼モードへ切り替えられたとき、吸気絞り弁16が絞られることによって内燃機関2のポンプロスが増大する。そこで、制御装置100は、図9に示すように、タービン上流圧力(Pus)と吸気マニホールド圧力(Pim)とに基づいてポンプロスを算出し、ポンプロスの大きさに応じて噴射補正量を算出する。そして、要求トルクから計算された噴射量に噴射補正量を加えることによって、ポンプロスの増大に起因するトルク段差を抑制する。   A second application of turbine upstream pressure estimates is the suppression of torque steps that occur when switching between combustion modes. When the catalyst is inactive, switching of the combustion mode from the normal combustion mode to the rich combustion mode may be performed in order to raise the exhaust temperature to activate the catalyst. In the rich combustion mode, the opening of the intake throttle valve 16 is throttled to reduce the amount of air, thereby enriching the air-fuel ratio. However, when the normal combustion mode is switched to the rich combustion mode, the intake throttle valve 16 is throttled to increase the pump loss of the internal combustion engine 2. Therefore, as shown in FIG. 9, the control device 100 calculates the pump loss based on the turbine upstream pressure (Pus) and the intake manifold pressure (Pim), and calculates the injection correction amount according to the size of the pump loss. Then, by adding the injection correction amount to the injection amount calculated from the required torque, the torque step caused by the increase of the pump loss is suppressed.

タービン上流圧力の推定値の第3の用途は、EGRガスの逆流のおそれの検知である。タービン上流圧力より吸気マニホールド圧力が高い場合、EGR通路32をEGRガスが逆流する可能性がある。制御装置100は、タービン上流圧力の推定値を吸気マニホールド圧力の計測値と比較することにより、EGRガスの逆流のおそれを検知する。制御装置100は、EGR弁36を開く運転域で内燃機関2が運転されている場合でも、EGRガスの逆流のおそれがなくなるまではEGR弁36を閉じたままにする。   A third application of turbine upstream pressure estimates is the detection of the possibility of EGR gas backflow. When the intake manifold pressure is higher than the pressure upstream of the turbine, EGR gas may flow back through the EGR passage 32. The controller 100 detects the possibility of backflow of the EGR gas by comparing the estimated value of the turbine upstream pressure with the measured value of the intake manifold pressure. Even when the internal combustion engine 2 is operated in the operating range where the EGR valve 36 is opened, the control device 100 keeps the EGR valve 36 closed until there is no risk of backflow of the EGR gas.

タービン上流圧力の推定値の第4の用途は、内燃機関2のハード故障のおそれの検知である。制御装置100は、タービン上流圧力の推定値を監視し、タービン上流圧力が所定の安全基準値を超えないように過給圧制御やEGR率制御を行う。   A fourth application of the estimate of turbine upstream pressure is the detection of the possibility of a hard failure of the internal combustion engine 2. The control device 100 monitors the estimated value of the turbine upstream pressure, and performs supercharging pressure control and EGR ratio control so that the turbine upstream pressure does not exceed a predetermined safety reference value.

2 内燃機関
4 エンジン本体
4a シリンダ
6 燃料噴射弁
8 吸気通路
10 排気通路
20 ターボ過給機
20a コンプレッサ
20b タービン
22 可変ノズル
30 EGR装置
32 EGR通路
36 EGR弁
50 エアフローセンサ
52、58 圧力センサ
54、56 温度センサ
100 制御装置
2 internal combustion engine 4 engine main body 4a cylinder 6 fuel injection valve 8 intake passage 10 exhaust passage 20 turbo supercharger 20a compressor 20b turbine 22 variable nozzle 30 EGR device 32 EGR passage 36 EGR valve 50 air flow sensors 52, 58 pressure sensors 54, 56 Temperature sensor 100 controller

Claims (1)

タービンに可変ノズルを有するターボ過給機と、排気通路における前記タービンの上流と吸気通路とをEGR通路で接続し前記EGR通路にEGR弁を有するEGR装置とを備える内燃機関の制御装置において、
前記タービンの出口側の排気通路内圧力であるタービン下流圧力の現在値Pdsを取得する手段と、
前記吸気通路の前記EGR通路が接続された空間内の圧力である吸気通路圧力の現在値Pimを取得する手段と、
前記タービンの入口側の排気通路内温度であるタービン上流温度の現在値Tusを取得する手段と、
前記EGR弁の開度の現在値θegrを取得する手段と、
前記可変ノズルの閉度の現在値θvnを取得する手段と、
前記吸気通路に取り込まれた新気の流量である新気量の現在値Gadlyを取得する手段と、
シリンダに入るガスの圧力及び温度からシリンダ内ガス量の現在値Gcylを計算する手段と、
燃料噴射弁の燃料流量の現在値Gfを計算する手段と、
前記新気量の現在値Gadlyと前記燃料流量の現在値Gfとから前記タービンを通過するガスの流量であるタービン通過流量の現在値Mtbを計算する手段と、
前記シリンダ内ガス量の現在値Gcylと前記燃料流量の現在値Gfとの総和と前記タービン通過流量の現在値Mtbとの差分よりEGR弁通過流量の現在値Megrを計算する手段と、
前記タービンの入口側の排気通路内圧力であるタービン上流圧力の前回値Pus_0を記憶する手段と、
前記可変ノズルを含む前記タービンの全体を一つのノズルに見立てた場合のタービン有効開口面積を、タービン通過流量と前記可変ノズルの閉度とに関連付けるタービン有効開口面積マップを予め記憶した手段と、
前記タービン通過流量の現在値Mtbと前記可変ノズルの閉度の現在値θvnとに対応するタービン有効開口面積μAtbを前記タービン有効開口面積マップから読み出す手段と、
前記EGR弁を含む前記EGR装置の全体を一つのノズルに見立てた場合のEGR弁有効開口面積をEGR弁通過流量と前記EGR弁の開度とに関連付けるEGR弁有効開口面積マップを予め記憶した手段と、
前記EGR弁通過流量の現在値Megrと前記EGR弁の開度の現在値θegrとに対応するEGR弁有効開口面積μAegrを前記EGR弁有効開口面積マップから読み出す手段と、
下記の式1で定義されるノズルの下流圧力と上流圧力との間の圧力比πの関数Φを、区分線形法によって複数の圧力比πの区分に分け、圧力比πの区分毎に下記の式2で定義される1次関数により直線近似した場合において、圧力比πの区分毎に定まる1次関数の各係数a,bを圧力比πの区分に関連付ける第1係数マップを予め記憶した手段と、
前記タービン下流圧力の現在値Pdsと前記タービン上流圧力の前回値Pus_0との比を前記式2における圧力比πとした場合に、圧力比πが当てはまる区分に対応する各係数a,bを前記第1係数マップから読み出す手段と、
前記式1で定義されるノズルの下流圧力と上流圧力との間の圧力比πの関数Φを、区分線形法によって複数の圧力比πの区分に分け、圧力比πの区分毎に下記の式3で定義される1次関数により直線近似した場合において、圧力比πの区分毎に定まる1次関数の各係数c,dを圧力比πの区分に関連付ける第2係数マップを予め記憶した手段と、
前記吸気通路圧力の現在値Pimと前記タービン上流圧力の前回値Pus_0との比を前記式3における圧力比πとした場合に、圧力比πが当てはまる区分に対応する各係数c,dを前記第2係数マップから読み出す手段と、
前記タービン下流圧力の現在値Pdsと、前記吸気通路圧力の現在値Pimと、前記タービン上流温度の現在値Tusと、前記シリンダ内ガス量の現在値Gcylと前記燃料流量の現在値Gfとの総和と、前記タービン有効開口面積μAtbと、前記EGR弁有効開口面積μAegrと、前記各係数a,b,c,dとに基づいて、下記の式4を用いて前記タービン上流圧力の現在値Pusを計算する手段と、
前記タービン上流圧力の現在値Pusに基づいて前記内燃機関を制御する手段と、
を備えることを特徴とする内燃機関の制御装置。
Figure 0006515903
Figure 0006515903
Figure 0006515903
Figure 0006515903
A control device for an internal combustion engine, comprising: a turbocharger having a variable nozzle in a turbine; and an EGR device having an EGR passage connected upstream of the turbine in the exhaust passage and an intake passage and having an EGR valve in the EGR passage.
A means for acquiring a current value P ds of turbine downstream pressure, which is the pressure in the exhaust passage on the outlet side of the turbine;
A means for acquiring a current value Pim of an intake passage pressure which is a pressure in a space to which the EGR passage of the intake passage is connected;
A means for obtaining a current value Tus of a turbine upstream temperature, which is a temperature in an exhaust passage on the inlet side of the turbine;
A means for acquiring a current value θegr of the opening degree of the EGR valve;
A means for acquiring a current value θvn of the closing degree of the variable nozzle;
A means for acquiring a current value Gadly of a fresh air amount which is a flow rate of fresh air taken into the intake passage;
A means for calculating the current value Gcyl of the gas amount in the cylinder from the pressure and temperature of the gas entering the cylinder;
A means for calculating a current value Gf of the fuel flow rate of the fuel injection valve;
A means for calculating a current value Mtb of a flow rate through a turbine which is a flow rate of gas passing through the turbine from the current value Gadly of the fresh air amount and the current value Gf of the fuel flow rate;
A means for calculating a current value Megr of an EGR valve passing flow rate from a difference between a current value Gcyl of the in-cylinder gas amount and a current value Gf of the fuel flow rate and a current value Mtb of the turbine passing flow rate;
A means for storing a previous value Pus_0 of the turbine upstream pressure, which is the pressure in the exhaust passage on the inlet side of the turbine;
A means for storing in advance a turbine effective opening area map relating a turbine effective opening area when the whole of the turbine including the variable nozzle is regarded as one nozzle to a turbine flow rate and the closing degree of the variable nozzle;
A means for reading from the turbine effective opening area map a turbine effective opening area μAtb corresponding to the current value Mtb of the flow rate through the turbine and the current value θvn of the degree of closure of the variable nozzle;
Means for storing in advance an EGR valve effective opening area map which relates the EGR valve effective opening area when the whole of the EGR device including the EGR valve is regarded as one nozzle to the EGR valve passing flow rate and the opening degree of the EGR valve When,
A means for reading out an EGR valve effective opening area μAegr corresponding to the current value Megr of the EGR valve passing flow rate and the current value θegr of the opening degree of the EGR valve from the EGR valve effective opening area map;
The function Φ of the pressure ratio π between the downstream pressure and the upstream pressure of the nozzle defined by the following equation 1 is divided into a plurality of pressure ratios π by the piecewise linear method, and Means for pre-storing a first coefficient map relating each coefficient a, b of the linear function determined for each section of the pressure ratio π to a section for the pressure ratio π when linear approximation is performed by the linear function defined by the equation 2 When,
When the ratio of the current value P ds of the turbine downstream pressure to the previous value P u s of the turbine upstream pressure is the pressure ratio π in the equation 2, the coefficients a and b corresponding to the sections to which the pressure ratio Means for reading out from one coefficient map,
The function Φ of the pressure ratio π between the downstream pressure and the upstream pressure of the nozzle defined by the equation 1 is divided into a plurality of pressure ratio π segments by the piecewise linear method, and the following equation is provided for each pressure ratio π segment Means for pre-storing a second coefficient map relating each coefficient c, d of the linear function determined for each section of the pressure ratio π to a section of the pressure ratio π when linear approximation is performed by the linear function defined in 3; ,
When the ratio of the current value Pim of the intake passage pressure to the previous value Pus_0 of the turbine upstream pressure is the pressure ratio π in the equation 3, the coefficients c and d corresponding to the sections to which the pressure ratio π applies are Means for reading out from the 2 coefficient map
The sum of the present value Pds of the turbine downstream pressure, the present value Pim of the intake passage pressure, the present value Tus of the turbine upstream temperature, the present value Gcyl of the in-cylinder gas amount, and the present value Gf of the fuel flow Based on the turbine effective opening area μAtb, the EGR valve effective opening area μAegr, and the coefficients a, b, c, and d, the current value Pus of the turbine upstream pressure is calculated using Equation 4 below. Means to calculate,
A means for controlling the internal combustion engine based on a current value Pus of the turbine upstream pressure;
A control device for an internal combustion engine, comprising:
Figure 0006515903
Figure 0006515903
Figure 0006515903
Figure 0006515903
JP2016215359A 2016-11-02 2016-11-02 Control device for internal combustion engine Expired - Fee Related JP6515903B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016215359A JP6515903B2 (en) 2016-11-02 2016-11-02 Control device for internal combustion engine
DE102017125363.7A DE102017125363B4 (en) 2016-11-02 2017-10-30 Control device for an internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016215359A JP6515903B2 (en) 2016-11-02 2016-11-02 Control device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2018071496A JP2018071496A (en) 2018-05-10
JP6515903B2 true JP6515903B2 (en) 2019-05-22

Family

ID=61912158

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016215359A Expired - Fee Related JP6515903B2 (en) 2016-11-02 2016-11-02 Control device for internal combustion engine

Country Status (2)

Country Link
JP (1) JP6515903B2 (en)
DE (1) DE102017125363B4 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6947118B2 (en) * 2018-05-11 2021-10-13 株式会社豊田自動織機 Supercharger
US11703890B2 (en) * 2018-10-30 2023-07-18 Hamilton Sundstrand Corporation Determining and controlling a weight flow in an environmental control system

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1073205C (en) * 1995-04-10 2001-10-17 西门子公司 Process for finding mass of air entering cylinders of internal combustion engine with aid of model
JP3678057B2 (en) * 1999-06-15 2005-08-03 日産自動車株式会社 Exhaust pressure detection device and engine control device
JP3861046B2 (en) * 2002-11-01 2006-12-20 トヨタ自動車株式会社 EGR gas flow rate estimation device for internal combustion engine
JP5988779B2 (en) 2012-08-31 2016-09-07 日野自動車株式会社 Control device for variable capacity turbocharger
JP2016065484A (en) * 2014-09-24 2016-04-28 トヨタ自動車株式会社 Estimation device of throttle upstream pressure

Also Published As

Publication number Publication date
JP2018071496A (en) 2018-05-10
DE102017125363B4 (en) 2020-10-01
DE102017125363A1 (en) 2018-05-03

Similar Documents

Publication Publication Date Title
JP5907339B2 (en) In-cylinder inflow EGR gas flow rate estimation device for internal combustion engine
JP6146192B2 (en) Diagnostic equipment
JP5754514B2 (en) Supercharged engine control device
JP5865942B2 (en) Cylinder intake air amount estimation apparatus and method for internal combustion engine
WO2012070100A1 (en) Air-quantity estimation device for internal combustion engine with supercharger
BR102016000467A2 (en) internal combustion engine control device
JP2013053546A (en) Supercharger control device
JP6515903B2 (en) Control device for internal combustion engine
WO2014080523A1 (en) Control device of internal combustion engine
JP5056953B2 (en) Control device for internal combustion engine
JP6691498B2 (en) Control device for internal combustion engine
US10883429B2 (en) Intake control method and intake control device for internal combustion engine
JP7055700B2 (en) Engine control
EP3333391A2 (en) Warm-up system for exhaust gas apparatus
US11181411B2 (en) Flow rate measurement system
JP6542592B2 (en) Control device for turbocharged engine
JP2013155613A (en) Control device of turbocharged engine
JP5929823B2 (en) Control device for internal combustion engine
WO2013175588A1 (en) Device for estimating air intake volume for supercharged engine
JP5930288B2 (en) Internal combustion engine
JP5561236B2 (en) Supercharged engine control device
JP2015206307A (en) Control device of internal combustion engine
EP3075991A1 (en) Control device for internal combustion engine
JP2013024203A (en) Control device of direct injection internal combustion engine with supercharger
WO2022014388A1 (en) Control device for internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180525

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190319

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190401

R151 Written notification of patent or utility model registration

Ref document number: 6515903

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees