WO2013175588A1 - Device for estimating air intake volume for supercharged engine - Google Patents

Device for estimating air intake volume for supercharged engine Download PDF

Info

Publication number
WO2013175588A1
WO2013175588A1 PCT/JP2012/063189 JP2012063189W WO2013175588A1 WO 2013175588 A1 WO2013175588 A1 WO 2013175588A1 JP 2012063189 W JP2012063189 W JP 2012063189W WO 2013175588 A1 WO2013175588 A1 WO 2013175588A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
intake
model
air amount
atmospheric pressure
Prior art date
Application number
PCT/JP2012/063189
Other languages
French (fr)
Japanese (ja)
Inventor
高橋 真知子
龍太郎 森口
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to PCT/JP2012/063189 priority Critical patent/WO2013175588A1/en
Publication of WO2013175588A1 publication Critical patent/WO2013175588A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • F02D41/0007Controlling intake air for control of turbo-charged or super-charged engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/04Engine intake system parameters
    • F02D2200/0402Engine intake system parameters the parameter being determined by using a model of the engine intake or its components
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/70Input parameters for engine control said parameters being related to the vehicle exterior
    • F02D2200/703Atmospheric pressure
    • F02D2200/704Estimation of atmospheric pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D23/00Controlling engines characterised by their being supercharged
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to an intake air amount estimation device for a supercharged engine.
  • a method for estimating the intake air amount of a supercharged engine using a physical model is known. According to this method, it is possible to accurately estimate the amount of intake air that varies depending on the operating state of an actuator such as a throttle or a wastegate valve.
  • atmospheric pressure affects the intake air volume of the engine.
  • the amount of intake air is smaller than that in an environment where the atmospheric pressure is high such as a low altitude. Therefore, in order to keep the estimation accuracy of the intake air amount high regardless of the environmental conditions, the influence of the atmospheric pressure on the intake air amount should be considered.
  • Patent Document 1 discloses that an atmospheric pressure measured by an atmospheric pressure sensor is used for calculation in a physical model in an apparatus that estimates the intake air amount of a supercharged engine using a physical model. ing.
  • Patent Document 2 discloses that the technique disclosed in Patent Document 2 is directed to a naturally aspirated engine, the atmospheric pressure measured by the atmospheric pressure sensor is also used in the calculation in the physical model.
  • Patent Documents 1 and 2 when the techniques disclosed in Patent Documents 1 and 2 are employed, it is essential to provide an atmospheric pressure sensor. To reduce the manufacturing cost of the entire engine, we want to reduce the number of sensors equipped on the engine as much as possible. In particular, in the case of a supercharged engine, a supercharging pressure sensor for measuring the supercharging pressure upstream of the throttle or an intake manifold pressure sensor for measuring the intake manifold pressure downstream of the throttle is already provided. There are many cases. Therefore, providing an atmospheric pressure sensor in addition to these pressure sensors is to be avoided if possible from the viewpoint of manufacturing cost.
  • Patent Documents 3 and 4 are techniques for a naturally aspirated engine. If it is a naturally aspirated engine, the pressure upstream of the throttle is approximately equal to the atmospheric pressure. However, in the case of a supercharged engine, air is supercharged by the compressor, so the pressure upstream of the throttle does not match the atmospheric pressure. Therefore, the techniques disclosed in Patent Documents 3 and 4 cannot be applied to a supercharged engine.
  • the present invention has been made in view of the above problems, and an object of the present invention is to accurately calculate an intake air amount that is influenced by atmospheric pressure without using an atmospheric pressure sensor in an intake air amount estimation device for a supercharged engine.
  • the intake air amount estimation device measures the pressure in the intake passage by a pressure sensor arranged at a predetermined position of the intake passage from the compressor to the intake valve.
  • a pressure sensor arranged at a predetermined position of the intake passage from the compressor to the intake valve.
  • a general supercharging pressure sensor or an intake manifold pressure sensor can be cited as a supercharged engine.
  • the supercharging pressure sensor is arranged in the intake passage from the compressor to the throttle.
  • the intake manifold pressure sensor is disposed in the intake passage from the throttle to the intake valve.
  • the intake air amount estimation device calculates the estimated intake passage pressure under the standard atmospheric pressure using a model in parallel with measuring the actual intake passage pressure by the pressure sensor.
  • the model used for calculating the estimated intake passage pressure is a model that represents the relationship that holds between the operating state of the actuator, the atmospheric pressure, and the intake passage pressure at the predetermined position.
  • the actuator in this model is an actuator that acts on the relationship between the atmospheric pressure and the pressure in the intake passage at the predetermined position, and a throttle, a waste gate valve, and the like correspond to the actuator.
  • the intake air amount estimation device calculates the correction coefficient using the actual intake passage pressure and the estimated intake passage pressure.
  • the pressure ratio between the actual intake passage pressure and the estimated intake passage pressure is calculated as a correction coefficient.
  • the intake air amount estimation device calculates the estimated intake valve passage air amount under standard atmospheric pressure using a model.
  • the model used for calculating the estimated intake valve passing air amount is a model that represents the relationship that holds between the operating state of the actuator, the atmospheric pressure, and the intake valve passing air amount.
  • the actuator in this model is an actuator that affects the relationship between the atmospheric pressure and the amount of air passing through the intake valve, and the throttle timing, the wastegate valve, the valve timing variable mechanism of the intake valve and the exhaust valve, and the like correspond to the actuator.
  • the intake air amount estimation device calculates the intake valve passage air amount under the current atmospheric pressure by correcting the estimated intake valve passage air amount using a correction coefficient.
  • a correction coefficient According to the inventors of the present application, at least when the engine is in a steady state, it is confirmed that the amount of air passing through the intake valve is proportional to the atmospheric pressure if the operation state of the related actuator is the same. . In addition, at least when the engine is in a steady state, it is confirmed that the pressure in the intake passage at a predetermined position of the intake passage from the compressor to the intake valve is proportional to the atmospheric pressure if the operation state of the related actuator is the same. ing.
  • an atmospheric pressure sensor is not required by using a pressure sensor disposed at a predetermined position in the intake passage from the compressor to the intake valve.
  • the amount of air passing through the intake valve under the current atmospheric pressure can be calculated.
  • the final intake air amount that is, the amount of air remaining in the cylinder and contributing to combustion is calculated by subtracting the scavenging amount from the intake valve passing air amount.
  • FIG. 5 is a flowchart showing a calculation procedure of an intake valve passage air amount by the intake air amount estimation device shown in FIG. 4;
  • Embodiment 1 FIG. Embodiment 1 of the present invention will be described with reference to the drawings.
  • the supercharged engine to which the intake air amount estimation device according to the present embodiment is applied is a spark ignition type four-cycle reciprocating engine equipped with an electronically controlled throttle.
  • the supercharger according to the present embodiment is a turbo-type supercharger that drives a compressor disposed in an intake passage by rotation of a turbine disposed in an exhaust passage.
  • the turbocharger is provided with a waste gate valve that bypasses the turbine and an air bypass valve that bypasses the compressor.
  • An intercooler is provided between the compressor and the throttle for cooling the air whose temperature has increased due to compression by the compressor.
  • a supercharging pressure sensor for measuring the supercharging pressure is attached to the outlet of the intercooler in the intake passage.
  • the operation of the supercharged engine is controlled by an in-vehicle ECU (Electronic Control Unit) which is a computer.
  • the ECU has various functions such as vehicle control and engine control.
  • the intake air amount estimation device according to the present embodiment is realized as part of the function of the ECU. Specifically, when the program stored in the memory is executed by the CPU, the ECU functions as an intake air amount estimation device.
  • FIG. 1 is a functional block diagram showing a configuration of an intake air amount estimation device 100 realized by the ECU functioning in accordance with a program.
  • the intake air amount estimation device 100 includes an estimated boost pressure calculation unit 102, a correction coefficient calculation unit 104, an estimated intake valve passage air amount calculation unit 106, and an actual intake valve passage air amount calculation unit 108.
  • These calculation units are calculation units that are virtually realized by a program being executed by a CPU. However, each of these calculation units may be configured by independent hardware.
  • the estimated supercharging pressure calculation unit 102 is a calculation unit that calculates an estimated supercharging pressure under the standard atmospheric pressure based on the current operating state of the actuator.
  • the estimated supercharging pressure calculation unit 102 uses an air model for calculating the estimated supercharging pressure.
  • the air model is a dynamic model that expresses the behavior of air in the intake passage from the air cleaner to the intake valve using mathematical formulas. Details of the air model used in the present embodiment will be described later.
  • the correction coefficient calculation unit 104 is a calculation unit that calculates a correction coefficient using the actual boost pressure measured by the boost pressure sensor 10 and the estimated boost pressure calculated by the estimated boost pressure calculation unit 102.
  • a pressure ratio between the actual supercharging pressure and the estimated supercharging pressure is calculated as a correction coefficient.
  • the actual supercharging pressure measured by the supercharging pressure sensor 10 is a supercharging pressure under the current atmospheric pressure
  • the estimated supercharging pressure is a supercharging pressure under the standard atmospheric pressure. From experimental data, it has been confirmed that the pressure ratio between the actual supercharging pressure and the estimated supercharging pressure is equal to the pressure ratio between the current atmospheric pressure and the standard atmospheric pressure.
  • the estimated intake valve passage air amount calculation unit 106 is a calculation unit that calculates an estimated intake valve passage air amount under the standard atmospheric pressure based on the current operating state of the actuator.
  • the estimated intake valve passing air amount calculation unit 106 uses an air model for calculating the estimated intake valve passing air amount.
  • the air model used by the estimated intake valve passing air amount calculation unit 106 is the same air model as the air model used by the estimated boost pressure calculation unit 102.
  • the actual intake valve passing air amount calculating unit 108 uses the estimated intake valve passing air amount calculated by the estimated intake valve passing air amount calculating unit 106 and the correction coefficient calculated by the correction coefficient calculating unit 104 to obtain the current large value. This is a calculation unit for calculating the amount of air passing through the intake valve under atmospheric pressure.
  • the correction coefficient which is the pressure ratio between the actual boost pressure obtained under the current boost pressure and the estimated boost pressure under the standard atmospheric pressure, is used as the estimated intake valve passing air volume under the standard atmospheric pressure. By multiplying, the intake valve passing air amount under the current atmospheric pressure is calculated. It has been confirmed from experimental data obtained by the inventors that the calculated value of the intake valve passing air amount obtained in this way matches the actual value of the intake valve passing air amount.
  • FIG. 2 is a functional block diagram showing details of the air model.
  • the air model includes a plurality of element models, that is, a wastegate valve response model M0, a turbo speed model M1, a compressor model M2, an intercooler model M3, a throttle model M4, an intake manifold model M5, an intake valve model M6, an air cleaner model M7, and an air
  • the bypass valve model M8 is used.
  • these element models are publicly known, and since they are not characteristic points in the present invention, description of the details of each element model such as mathematical formulas and maps is omitted.
  • the waste gate valve response model M0 is a model for calculating the actual opening degree of the waste gate valve from the instruction opening degree with respect to the waste gate valve, and the response characteristic of the actual opening degree with respect to the instruction opening degree is modeled.
  • the current indicated opening degree inputted to the waste gate valve is inputted.
  • the turbo speed model M1 is a model of the rotational behavior of the supercharger, and a relationship that is established among the intake valve flow rate, the wastegate valve opening degree, and the turbo speed is modeled.
  • information such as a waste gate valve opening “wgv” calculated in the waste gate valve response model M0 and an intake valve flow rate “mc” calculated in an intake valve model M6 described later is input.
  • the turbo speed “Ntb” is calculated from the input information.
  • the compressor model M2 is a turbocharger compressor model, and models the relationship that holds between the turbo speed, the supercharging pressure (compressor downstream pressure), the air cleaner downstream pressure (compressor upstream pressure), and the compressor flow rate. Has been.
  • the turbo speed “Ntb” calculated by the turbo speed model M1 the supercharging pressure “Pic” calculated by the intercooler model M3 described later, and the air cleaner calculated by the air cleaner model M7 described later.
  • Information such as the downstream pressure “Pac” is input, and the compressor flow rate “mcp” is calculated from the input information.
  • the intercooler model M3 is a physical model constructed based on the conservation law regarding the air in the intercooler in the intake passage. As the intercooler model M3, specifically, an energy conservation law formula and a flow rate conservation law formula are used. In the intercooler model M3, a flow rate obtained by subtracting an air bypass valve flow rate “mabv” calculated in an air bypass valve model M8 described later from a compressor flow rate “mcp” calculated in the compressor model M2, and a throttle model M4 described later. Information such as the throttle flow rate “mt” is input, and the supercharging pressure “Pic” is calculated from the input information.
  • the throttle model M4 is a model for calculating the flow rate of air passing through the throttle. Specifically, the throttle model M4 is based on a differential pressure before and after the throttle, a flow passage area determined by the throttle opening, and a flow coefficient. The orifice flow rate formula is used. In the throttle model M4, the measured value of the throttle opening by the throttle opening sensor, the supercharging pressure “Pic” calculated by the intercooler model M3, and the intake manifold pressure “Pm” calculated by the intake manifold model M5 described later. The throttle flow rate “mt” is calculated from the input information.
  • the intake manifold model M5 is a physical model constructed on the basis of the conservation law regarding air in the intake manifold model. As the intake manifold model M5, specifically, an energy conservation law equation and a flow rate conservation law equation are used. In the intake manifold model M5, information such as a throttle flow rate “mt” calculated by the throttle model M4 and an intake valve flow rate “mc” calculated by an intake valve model M6 to be described later is input. The model pressure “Pm” is calculated.
  • the intake valve model M6 is a model based on the experimental results of examining the relationship between the intake valve flow rate and the intake manifold model pressure. Based on empirical rules obtained through experiments, in the intake valve model M6, the relationship between the intake air amount and the intake pipe pressure is approximated by a broken line (or a straight line). The coefficient of the equation of the broken line (or straight line) is not a constant, but is a variable determined by the engine speed, the wastegate valve opening, the valve timing of the intake valve, the valve timing of the exhaust valve, and the like.
  • the intake valve model M6 in addition to the intake manifold model pressure “Pm” calculated by the intake manifold model M5, information such as the engine speed, the wastegate valve opening, the intake valve timing, and the exhaust valve timing is input.
  • the intake valve flow rate “mc” is calculated from the input information.
  • the air cleaner model M7 is a model for calculating the pressure loss generated in the air cleaner disposed at the inlet of the intake passage.
  • the air cleaner model M7 calculates a value obtained by subtracting the pressure loss from the standard atmospheric pressure as the air cleaner downstream pressure “Pac”.
  • the standard atmospheric pressure value is stored in the ECU memory as a default value.
  • the pressure loss can be calculated from the flow rate of air passing through the air cleaner.
  • the flow rate obtained by subtracting the air bypass valve flow rate “mabv” from the compressor flow rate “mcp” is used as the flow rate of the air that has passed through the air cleaner.
  • the air bypass valve model M8 is a model for calculating the flow rate of air returned from the downstream side to the upstream side of the compressor by the air bypass valve.
  • a throttle equation is used as the air bypass valve model M8 .
  • information such as the air cleaner downstream pressure “Pac” calculated by the air cleaner model M7, the supercharging pressure “Pic” calculated by the intercooler model M3, and the operation flag of the air bypass valve are input.
  • the air bypass valve flow rate “mabv” is calculated from the input information.
  • the boost pressure realized by the current throttle opening, the current wastegate valve opening, and the current air bypass valve opening at the standard atmospheric pressure is the intercooler model M3.
  • the estimated supercharging pressure calculation unit 102 calculates the supercharging pressure output from the intercooler model M3 as the estimated supercharging pressure “Pic0” under the standard atmospheric pressure.
  • the intake manifold pressure realized by the current throttle opening, the current wastegate valve opening, and the current air bypass valve opening at the standard atmospheric pressure is the intake manifold pressure.
  • the estimated intake valve passage air amount calculation unit 106 calculates the intake valve passage air amount based on the intake manifold pressure output from the intake manifold model M5, and calculates the calculated intake valve passage air amount “under standard atmospheric pressure”. Calculated as KL0 ”.
  • step S102 the estimated supercharging pressure calculation unit 102 calculates the estimated supercharging pressure “Pic0” under the standard atmospheric pressure. Specifically, the supercharging pressure output from the intercooler model M3 in the calculation using the air model is calculated as the estimated supercharging pressure “Pic0” under the standard atmospheric pressure.
  • step S104 the actual boost pressure “Pic” measured by the boost pressure sensor 10 is taken into the intake air amount estimation device 100. Note that the execution order of step S102 and step S104 may be reversed or may be executed in parallel.
  • step S106 the correction coefficient calculation unit 104 calculates the pressure ratio “Pic / Pic0” between the actual supercharging pressure “Pic” and the estimated supercharging pressure “Pic0” as a correction coefficient.
  • step S108 the estimated intake manifold passage air amount calculation unit 106 calculates the estimated intake manifold pressure “Pm0” under the standard atmospheric pressure. Specifically, the intake manifold pressure output from the intake manifold model M5 is calculated as the estimated intake manifold pressure “Pm0” under the standard atmospheric pressure in the calculation using the air model.
  • step S110 the estimated intake valve passing air amount calculation unit 106 calculates the estimated intake valve passing air amount “KL0” under the standard atmospheric pressure from the estimated intake manifold pressure “Pm0” under the standard atmospheric pressure. . From the intake manifold pressure, the intake valve flow rate can be obtained by using the intake valve model M6, and the intake valve passing air amount is calculated by multiplying the intake valve flow rate by the valve opening time per cycle of the intake valve. Can do.
  • step S112 the actual intake valve passing air amount calculation unit 108 calculates the intake valve passing air amount “KL” under the current atmospheric pressure by the following equation. As shown in this equation, the estimated intake valve passing air amount “KL0” under standard atmospheric pressure is multiplied by the pressure ratio “Pic / Pic0” between the actual boost pressure “Pic” and the estimated boost pressure “Pic0”. Thus, the estimated intake valve passing air amount “KL0” under the standard atmospheric pressure can be converted into the intake valve passing air amount “KL” under the current atmospheric pressure.
  • the intake air amount estimation device is suitable for a supercharged engine similar to that of the first embodiment.
  • the supercharged engine according to the present embodiment does not include a supercharging pressure sensor, but instead includes an intake manifold pressure sensor.
  • the intake manifold pressure sensor is attached between the throttle and the intake valve in the intake passage. It has been.
  • FIG. 4 is a functional block diagram showing the configuration of the intake air amount estimation device 200 according to the present embodiment.
  • the intake air amount estimating apparatus 200 includes an estimated intake manifold pressure calculating unit 202, a correction coefficient calculating unit 204, an estimated intake valve passing air amount calculating unit 206, and an actual intake valve passing air amount calculating unit 208.
  • These calculation units are calculation units that are virtually realized by a program being executed by a CPU. However, each of these calculation units may be configured by independent hardware.
  • the estimated intake manifold pressure calculation unit 202 is a calculation unit that calculates an estimated intake manifold pressure under standard atmospheric pressure based on the current operating state of the actuator.
  • the estimated intake manifold pressure calculating unit 202 uses an air model for calculating the estimated intake manifold pressure.
  • the air model is a dynamic model that expresses the behavior of air in the intake passage from the air cleaner to the intake valve using mathematical formulas.
  • the air model used in the present embodiment is the same air model shown in FIG. 2 as that used in the first embodiment. According to this air model, the intake manifold model M5 outputs the intake manifold pressure realized by the current throttle opening, the current wastegate valve opening, and the current air bypass valve opening at the standard atmospheric pressure.
  • the correction coefficient calculation unit 204 is a calculation unit that calculates a correction coefficient using the actual intake manifold pressure measured by the intake manifold pressure sensor 20 and the estimated intake manifold pressure calculated by the estimated intake manifold pressure calculation unit 202.
  • the pressure ratio between the actual intake manifold pressure and the estimated intake manifold pressure is calculated as a correction coefficient.
  • the actual intake manifold pressure measured by the intake manifold pressure sensor 20 is the intake manifold pressure under the current atmospheric pressure
  • the estimated intake manifold pressure is the intake manifold pressure under the standard atmospheric pressure. From experimental data, it has been confirmed that the pressure ratio between the actual intake manifold pressure and the estimated intake manifold pressure is equal to the pressure ratio between the current atmospheric pressure and the standard atmospheric pressure.
  • the estimated intake valve passage air amount calculation unit 206 has the same function as the estimated intake valve passage air amount calculation unit 106 of the first embodiment.
  • the estimated intake valve passing air amount calculation unit 206 calculates an estimated intake valve passing air amount under standard atmospheric pressure using the air model shown in FIG.
  • the actual intake valve passing air amount calculation unit 208 has the same function as the actual intake valve passing air amount calculation unit 208 of the first embodiment. By multiplying the estimated intake valve passing air amount by the correction coefficient calculated by the correction coefficient calculating unit 204, the intake valve passing air amount under the current atmospheric pressure is calculated. It has been confirmed from experimental data obtained by the inventors that the calculated value of the intake valve passing air amount obtained in this way matches the actual value of the intake valve passing air amount.
  • FIG. 5 is a flowchart showing the calculation procedure of the intake valve passing air amount by the intake air amount estimating apparatus 200 according to the present embodiment.
  • step S202 the estimated intake manifold pressure “Pm0” under the standard atmospheric pressure is calculated by the estimated intake manifold pressure calculating unit 202. Specifically, in the calculation by the air model, the intake manifold pressure output from the intake manifold model M5 is calculated as the intake manifold pressure “Pm0” under the standard atmospheric pressure.
  • step S204 the actual intake manifold pressure “Pm” measured by the intake manifold pressure sensor 20 is taken into the intake air amount estimation device 100. Note that the execution order of step S202 and step S204 may be reversed or executed in parallel.
  • step S206 the correction coefficient calculation unit 204 calculates the pressure ratio “Pm / Pm0” between the actual intake manifold pressure “Pm” and the estimated intake manifold pressure “Pm0” as a correction coefficient.
  • step S208 the estimated intake valve passing air amount calculation unit 206 calculates the estimated intake valve passing air amount “KL0” under the standard atmospheric pressure from the estimated intake manifold pressure “Pm0” under the standard atmospheric pressure. .
  • step S210 the actual intake valve passing air amount calculation unit 208 calculates the intake valve passing air amount “KL” under the current atmospheric pressure by the following equation. As shown in this equation, the estimated intake valve passing air amount “KL0” under standard atmospheric pressure is multiplied by the pressure ratio “Pm / Pm0” between the actual intake manifold pressure “Pm” and the estimated intake manifold pressure “Pm0”. Thus, the estimated intake valve passing air amount “KL0” under the standard atmospheric pressure can be converted into the intake valve passing air amount “KL” under the current atmospheric pressure.
  • the pressure ratio between the actual supercharging pressure and the estimated supercharging pressure is calculated and used as a correction coefficient.
  • a map that associates the correction coefficient with the actual supercharging pressure and the estimated supercharging pressure is prepared.
  • the correction coefficient may be determined from the map.
  • a map that associates the correction coefficient with the actual intake manifold pressure and the estimated intake manifold pressure may be prepared, and the correction coefficient may be determined from the map.
  • the model used for calculating the estimated supercharging pressure and the estimated intake manifold pressure is not limited to the one shown in FIG.
  • the air model shown in FIG. 2 is a dynamic model in which a dynamic relationship between parameters is described.
  • a model in which a static relationship between parameters in a steady state is described can be used.
  • an intercooler and an air bypass valve are not essential.
  • an EGR device may be provided in a supercharged engine to which the intake air amount estimation device according to the present invention is applied.
  • the air bypass model may be omitted from the air model.
  • the EGR model may be added to the air model.

Abstract

The purpose of the present invention is to precisely calculate intake air volume, which fluctuates with atmospheric pressure, with a device for estimating air intake volume for a supercharged engine without using an atmospheric pressure sensor. In order to achieve this purpose, the device for estimating air intake volume according to this invention measures the actual intake channel pressure by way of a pressure sensor disposed at a prescribed position in the intake channel, which is from the compressor to the air intake valve, calculates the estimated intake channel pressure under standard atmospheric pressure using a model, and calculates a correction coefficient using the actual intake channel pressure and the estimated intake channel pressure. Then, an estimated intake valve channel air volume under standard atmospheric pressure is calculated using a model, and the intake valve channel air volume under current atmospheric pressure is calculated by way of correcting the estimated intake valve channel air volume using the correction coefficient.

Description

過給エンジンの吸入空気量推定装置Intake air amount estimation device for supercharged engine
 本発明は、過給エンジンの吸入空気量推定装置に関する。 The present invention relates to an intake air amount estimation device for a supercharged engine.
 過給エンジンの吸入空気量を物理モデルを用いて推定する方法が知られている。この方法によれば、スロットルやウエストゲートバルブ等のアクチュエータの動作状態によって変化する吸入空気量を精度良く推定することができる。 A method for estimating the intake air amount of a supercharged engine using a physical model is known. According to this method, it is possible to accurately estimate the amount of intake air that varies depending on the operating state of an actuator such as a throttle or a wastegate valve.
 ところで、エンジンの吸入空気量には大気圧が影響する。例えば、高地のような大気圧が低い環境では、アクチュエータの動作状態が同じであるならば、低地のような大気圧が高い環境に比較して吸入空気量は少なくなる。よって、環境条件によらず吸入空気量の推定精度を高く保つためには、大気圧が吸入空気量に与える影響についても考慮すべきである。 By the way, atmospheric pressure affects the intake air volume of the engine. For example, in an environment where the atmospheric pressure is low such as a high altitude, if the operation state of the actuator is the same, the amount of intake air is smaller than that in an environment where the atmospheric pressure is high such as a low altitude. Therefore, in order to keep the estimation accuracy of the intake air amount high regardless of the environmental conditions, the influence of the atmospheric pressure on the intake air amount should be considered.
 この点に関し、下記の特許文献1には、過給エンジンの吸入空気量を物理モデルを用いて推定する装置において、大気圧センサにより計測された大気圧を物理モデルにおける計算に用いることが開示されている。同様な技術は下記の特許文献2にも開示されている。特許文献2に開示された技術は自然吸気エンジンを対象としているが、この技術においても大気圧センサにより計測された大気圧が物理モデルにおける計算に用いられている。 In this regard, Patent Document 1 below discloses that an atmospheric pressure measured by an atmospheric pressure sensor is used for calculation in a physical model in an apparatus that estimates the intake air amount of a supercharged engine using a physical model. ing. A similar technique is also disclosed in Patent Document 2 below. Although the technique disclosed in Patent Document 2 is directed to a naturally aspirated engine, the atmospheric pressure measured by the atmospheric pressure sensor is also used in the calculation in the physical model.
 しかし、特許文献1や2に開示された技術を採用する場合には、大気圧センサを備えることが必須となってしまう。エンジン全体の製造コストを抑えるためには、エンジンに装備するセンサの数もできるかぎり減らしたい。特に、過給エンジンの場合は、スロットルの上流の過給圧を計測するための過給圧センサか、若しくは、スロットルの下流の吸気マニホールド圧を計測するための吸気マニホールド圧センサが既に設けられている場合が多い。よって、それら圧力センサとは別にさらに大気圧センサを備えることは、製造コストの観点からは、できるならば避けたいことである。 However, when the techniques disclosed in Patent Documents 1 and 2 are employed, it is essential to provide an atmospheric pressure sensor. To reduce the manufacturing cost of the entire engine, we want to reduce the number of sensors equipped on the engine as much as possible. In particular, in the case of a supercharged engine, a supercharging pressure sensor for measuring the supercharging pressure upstream of the throttle or an intake manifold pressure sensor for measuring the intake manifold pressure downstream of the throttle is already provided. There are many cases. Therefore, providing an atmospheric pressure sensor in addition to these pressure sensors is to be avoided if possible from the viewpoint of manufacturing cost.
 そこで考えられるのが、既存の圧力センサにより得られた情報を用いて大気圧を推定することである。例えば、下記の特許文献3には、吸気マニホールド圧センサによって計測された吸気マニホールド圧とスロットル開度とスロットルを通過する空気の流量とに基づき、スロットルをモデル化した物理モデルを用いて大気圧を推定する技術が開示されている。同様の技術は下記の特許文献4にも開示されている。 Therefore, it is conceivable to estimate the atmospheric pressure using information obtained by an existing pressure sensor. For example, in Patent Document 3 below, based on the intake manifold pressure measured by the intake manifold pressure sensor, the throttle opening, and the flow rate of air passing through the throttle, the atmospheric pressure is calculated using a physical model that models the throttle. An estimation technique is disclosed. A similar technique is also disclosed in Patent Document 4 below.
 しかしながら、特許文献3や4に開示されている技術は自然吸気エンジンを対象とした技術である。自然吸気エンジンであるならば、スロットルの上流の圧力は大気圧と略一致する。しかし、過給エンジンの場合はコンプレッサによって空気が過給されるため、スロットルの上流の圧力と大気圧とは一致しない。よって、特許文献3や4に開示されている技術は過給エンジンには適用することはできない。 However, the techniques disclosed in Patent Documents 3 and 4 are techniques for a naturally aspirated engine. If it is a naturally aspirated engine, the pressure upstream of the throttle is approximately equal to the atmospheric pressure. However, in the case of a supercharged engine, air is supercharged by the compressor, so the pressure upstream of the throttle does not match the atmospheric pressure. Therefore, the techniques disclosed in Patent Documents 3 and 4 cannot be applied to a supercharged engine.
特開2009-121356号公報JP 2009-121356 A 特開2004-197614号公報JP 2004-197614 A 特開2008-144641号公報JP 2008-144641 A 特開2011-144682号公報JP 2011-144682 A
 本発明は、上述の問題に鑑みてなされたもので、過給エンジンの吸入空気量推定装置において、大気圧によって左右される吸入空気量を大気圧センサを用いることなく精度良く計算することを目的とする。 The present invention has been made in view of the above problems, and an object of the present invention is to accurately calculate an intake air amount that is influenced by atmospheric pressure without using an atmospheric pressure sensor in an intake air amount estimation device for a supercharged engine. And
 本発明に係る吸入空気量推定装置は、コンプレッサから吸気弁までの吸気通路の所定位置に配置された圧力センサによって吸気通路内圧力を計測する。そのような圧力センサの一例として、過給エンジンには一般的な過給圧センサ或いは吸気マニホールド圧センサを挙げることができる。過給圧センサはコンプレッサからスロットルまでの吸気通路に配置される。吸気マニホールド圧センサはスロットルから吸気弁までの吸気通路に配置される。 The intake air amount estimation device according to the present invention measures the pressure in the intake passage by a pressure sensor arranged at a predetermined position of the intake passage from the compressor to the intake valve. As an example of such a pressure sensor, a general supercharging pressure sensor or an intake manifold pressure sensor can be cited as a supercharged engine. The supercharging pressure sensor is arranged in the intake passage from the compressor to the throttle. The intake manifold pressure sensor is disposed in the intake passage from the throttle to the intake valve.
 また、本発明に係る吸入空気量推定装置は、圧力センサによって実際の吸気通路内圧力を計測するのと並行して、標準大気圧の下での推定吸気通路内圧力をモデルを用いて算出する。推定吸気通路内圧力の計算に使用されるモデルは、アクチュエータの動作状態と大気圧と前記所定位置における吸気通路内圧力との間に成り立つ関係を表したモデルである。このモデルにおけるアクチュエータは、大気圧と前記所定位置における吸気通路内圧力との関係に作用するアクチュエータであり、スロットルやウエストゲートバルブなどが同アクチュエータに該当する。このようなアクチュエータの動作状態と標準大気圧とをモデルに入力することにより、標準大気圧の下での推定吸気通路内圧力が算出される。 In addition, the intake air amount estimation device according to the present invention calculates the estimated intake passage pressure under the standard atmospheric pressure using a model in parallel with measuring the actual intake passage pressure by the pressure sensor. . The model used for calculating the estimated intake passage pressure is a model that represents the relationship that holds between the operating state of the actuator, the atmospheric pressure, and the intake passage pressure at the predetermined position. The actuator in this model is an actuator that acts on the relationship between the atmospheric pressure and the pressure in the intake passage at the predetermined position, and a throttle, a waste gate valve, and the like correspond to the actuator. By inputting the operating state of the actuator and the standard atmospheric pressure into the model, the estimated intake passage pressure under the standard atmospheric pressure is calculated.
 そして、本発明に係る吸入空気量推定装置は、実際吸気通路内圧力と推定吸気通路内圧力とを用いて補正係数を算出する。好ましくは、実際吸気通路内圧力と推定吸気通路内圧力との圧力比を補正係数として算出する。 The intake air amount estimation device according to the present invention calculates the correction coefficient using the actual intake passage pressure and the estimated intake passage pressure. Preferably, the pressure ratio between the actual intake passage pressure and the estimated intake passage pressure is calculated as a correction coefficient.
 さらに、本発明に係る吸入空気量推定装置は、標準大気圧の下での推定吸気弁通過空気量をモデルを用いて算出する。推定吸気弁通過空気量の計算に使用されるモデルは、アクチュエータの動作状態と大気圧と吸気弁通過空気量との間に成り立つ関係を表したモデルである。このモデルにおけるアクチュエータは、大気圧と吸気弁通過空気量との関係に作用するアクチュエータであり、スロットル、ウエストゲートバルブ、吸気弁及び排気弁のバルブタイミング可変機構などが同アクチュエータに該当する。このようなアクチュエータの動作状態と標準大気圧とをモデルに入力することにより、標準大気圧の下での推定吸気弁通過空気量が算出される。 Furthermore, the intake air amount estimation device according to the present invention calculates the estimated intake valve passage air amount under standard atmospheric pressure using a model. The model used for calculating the estimated intake valve passing air amount is a model that represents the relationship that holds between the operating state of the actuator, the atmospheric pressure, and the intake valve passing air amount. The actuator in this model is an actuator that affects the relationship between the atmospheric pressure and the amount of air passing through the intake valve, and the throttle timing, the wastegate valve, the valve timing variable mechanism of the intake valve and the exhaust valve, and the like correspond to the actuator. By inputting the operating state of the actuator and the standard atmospheric pressure into the model, the estimated intake valve passing air amount under the standard atmospheric pressure is calculated.
 本発明に係る吸入空気量推定装置は、推定吸気弁通過空気量を補正係数を用いて補正することによって現在の大気圧の下での吸気弁通過空気量を算出する。本出願に係る発明者らによれば、少なくともエンジンが定常状態の場合は、関係するアクチュエータの動作状態が同じであるならば、吸気弁通過空気量は大気圧に比例することが確認されている。また、少なくともエンジンが定常状態の場合は、関係するアクチュエータの動作状態が同じであるならば、コンプレッサから吸気弁までの吸気通路の所定位置における吸気通路内圧力は大気圧に比例することも確認されている。これらの事実から、実際吸気通路内圧力と標準大気圧の下での推定吸気通路内圧力とを用いて算出された補正係数を標準大気圧の下での推定吸気弁通過空気量に乗算することにより、標準大気圧の下での推定吸気弁通過空気量を現在の大気圧の下での吸気弁通過空気量に変換可能なことが分かる。 The intake air amount estimation device according to the present invention calculates the intake valve passage air amount under the current atmospheric pressure by correcting the estimated intake valve passage air amount using a correction coefficient. According to the inventors of the present application, at least when the engine is in a steady state, it is confirmed that the amount of air passing through the intake valve is proportional to the atmospheric pressure if the operation state of the related actuator is the same. . In addition, at least when the engine is in a steady state, it is confirmed that the pressure in the intake passage at a predetermined position of the intake passage from the compressor to the intake valve is proportional to the atmospheric pressure if the operation state of the related actuator is the same. ing. From these facts, multiply the estimated intake valve passage air amount under standard atmospheric pressure by the correction coefficient calculated using the actual intake passage pressure and the estimated intake passage pressure under standard atmospheric pressure. Thus, it is understood that the estimated intake valve passing air amount under the standard atmospheric pressure can be converted into the intake valve passing air amount under the current atmospheric pressure.
 以上のように、本発明に係る吸入空気量推定装置によれば、コンプレッサから吸気弁までの吸気通路の所定位置に配置された圧力センサを利用することにより、大気圧センサを必要とすることなく、現在の大気圧の下での吸気弁通過空気量を算出することができる。なお、最終的な吸入空気量、つまり、気筒内に残って燃焼に寄与する空気の量は、吸気弁通過空気量からスカベンジ量を差し引くことによって算出される。 As described above, according to the intake air amount estimation device according to the present invention, an atmospheric pressure sensor is not required by using a pressure sensor disposed at a predetermined position in the intake passage from the compressor to the intake valve. The amount of air passing through the intake valve under the current atmospheric pressure can be calculated. The final intake air amount, that is, the amount of air remaining in the cylinder and contributing to combustion is calculated by subtracting the scavenging amount from the intake valve passing air amount.
本発明の実施の形態1に係る過給エンジンの吸入空気量推定装置の構成を示す機能ブロック図である。It is a functional block diagram which shows the structure of the intake air amount estimation apparatus of the supercharged engine which concerns on Embodiment 1 of this invention. 図1に示す吸入空気量推定装置が使用するエアモデルの詳細を示す機能ブロック図である。It is a functional block diagram which shows the detail of the air model which the intake air amount estimation apparatus shown in FIG. 1 uses. 図1に示す吸入空気量推定装置による吸気弁通過空気量の計算手順を示すフローチャートである、It is a flowchart which shows the calculation procedure of the intake valve passage air amount by the intake air amount estimation device shown in FIG. 本発明の実施の形態2に係る過給エンジンの吸入空気量推定装置の構成を示す機能ブロック図である。It is a functional block diagram which shows the structure of the intake air amount estimation apparatus of the supercharged engine which concerns on Embodiment 2 of this invention. 図4に示す吸入空気量推定装置による吸気弁通過空気量の計算手順を示すフローチャートである、FIG. 5 is a flowchart showing a calculation procedure of an intake valve passage air amount by the intake air amount estimation device shown in FIG. 4;
実施の形態1.
 本発明の実施の形態1について図を参照して説明する。
Embodiment 1 FIG.
Embodiment 1 of the present invention will be described with reference to the drawings.
 本実施の形態に係る吸入空気量推定装置が適用される過給エンジンは、電子制御式のスロットルを備えた火花点火式の4サイクルレシプロエンジンである。本実施の形態に係る過給機は、吸気通路に配置されたコンプレッサを排気通路に配置されたタービンの回転によって駆動するターボ式の過給機である。この過給機にはタービンをバイパスするウエストゲートバルブと、コンプレッサをバイパスするエアバイパスバルブとが設けられている。コンプレッサとスロットルとの間には、コンプレッサによる圧縮によって温度が上昇した空気を冷却するためのインタークーラが設けられている。吸気通路におけるインタークーラの出口には、過給圧を計測するための過給圧センサが取り付けられている。 The supercharged engine to which the intake air amount estimation device according to the present embodiment is applied is a spark ignition type four-cycle reciprocating engine equipped with an electronically controlled throttle. The supercharger according to the present embodiment is a turbo-type supercharger that drives a compressor disposed in an intake passage by rotation of a turbine disposed in an exhaust passage. The turbocharger is provided with a waste gate valve that bypasses the turbine and an air bypass valve that bypasses the compressor. An intercooler is provided between the compressor and the throttle for cooling the air whose temperature has increased due to compression by the compressor. A supercharging pressure sensor for measuring the supercharging pressure is attached to the outlet of the intercooler in the intake passage.
 過給エンジンの運転はコンピュータである車載ECU(Electronic Control unit)によって制御される。ECUは車両制御やエンジン制御等の種々の機能を備えている。本実施の形態に係る吸入空気量推定装置はECUが備える機能の一部として実現される。詳しくは、メモリに記憶されたプログラムがCPUによって実行されることで、ECUは吸入空気量推定装置として機能する。 The operation of the supercharged engine is controlled by an in-vehicle ECU (Electronic Control Unit) which is a computer. The ECU has various functions such as vehicle control and engine control. The intake air amount estimation device according to the present embodiment is realized as part of the function of the ECU. Specifically, when the program stored in the memory is executed by the CPU, the ECU functions as an intake air amount estimation device.
 図1は、プログラムに従いECUが機能することで実現される吸入空気量推定装置100の構成を示す機能ブロック図である。本実施の形態に係る吸入空気量推定装置100は、推定過給圧算出ユニット102、補正係数算出ユニット104、推定吸気弁通過空気量算出ユニット106及び実際吸気弁通過空気量算出ユニット108を備える。なお、これらの計算ユニットはプログラムがCPUによって実行されることで仮想的に実現される計算ユニットである。ただし、これらの計算ユニットのそれぞれが独立したハードウェアで構成されていてもよい。 FIG. 1 is a functional block diagram showing a configuration of an intake air amount estimation device 100 realized by the ECU functioning in accordance with a program. The intake air amount estimation device 100 according to the present embodiment includes an estimated boost pressure calculation unit 102, a correction coefficient calculation unit 104, an estimated intake valve passage air amount calculation unit 106, and an actual intake valve passage air amount calculation unit 108. These calculation units are calculation units that are virtually realized by a program being executed by a CPU. However, each of these calculation units may be configured by independent hardware.
 推定過給圧算出ユニット102は、現在のアクチュエータの動作状態に基づき標準大気圧の下での推定過給圧を算出する計算ユニットである。推定過給圧算出ユニット102は推定過給圧の計算にエアモデルを使用する。エアモデルはエアクリーナから吸気弁までの吸気通路内の空気の挙動を数式を用いて表す動的モデルである。本実施の形態で用いられるエアモデルの詳細については後述する。 The estimated supercharging pressure calculation unit 102 is a calculation unit that calculates an estimated supercharging pressure under the standard atmospheric pressure based on the current operating state of the actuator. The estimated supercharging pressure calculation unit 102 uses an air model for calculating the estimated supercharging pressure. The air model is a dynamic model that expresses the behavior of air in the intake passage from the air cleaner to the intake valve using mathematical formulas. Details of the air model used in the present embodiment will be described later.
 補正係数算出ユニット104は、過給圧センサ10によって計測された実際過給圧と推定過給圧算出ユニット102で算出された推定過給圧とを用いて補正係数を算出する計算ユニットである。実際過給圧と推定過給圧との圧力比が補正係数として算出される。過給圧センサ10によって計測された実際過給圧は現在の大気圧の下での過給圧であり、推定過給圧は標準大気圧の下での過給圧である。実験データより、実際過給圧と推定過給圧との圧力比は、現在の大気圧と標準大気圧との圧力比と等しいことが確認されている。 The correction coefficient calculation unit 104 is a calculation unit that calculates a correction coefficient using the actual boost pressure measured by the boost pressure sensor 10 and the estimated boost pressure calculated by the estimated boost pressure calculation unit 102. A pressure ratio between the actual supercharging pressure and the estimated supercharging pressure is calculated as a correction coefficient. The actual supercharging pressure measured by the supercharging pressure sensor 10 is a supercharging pressure under the current atmospheric pressure, and the estimated supercharging pressure is a supercharging pressure under the standard atmospheric pressure. From experimental data, it has been confirmed that the pressure ratio between the actual supercharging pressure and the estimated supercharging pressure is equal to the pressure ratio between the current atmospheric pressure and the standard atmospheric pressure.
 推定吸気弁通過空気量算出ユニット106は、現在のアクチュエータの動作状態に基づき標準大気圧の下での推定吸気弁通過空気量を算出する計算ユニットである。推定吸気弁通過空気量算出ユニット106は推定吸気弁通過空気量の計算にエアモデルを使用する。推定吸気弁通過空気量算出ユニット106が使用するエアモデルは推定過給圧算出ユニット102が使用するエアモデルと同一のエアモデルである。 The estimated intake valve passage air amount calculation unit 106 is a calculation unit that calculates an estimated intake valve passage air amount under the standard atmospheric pressure based on the current operating state of the actuator. The estimated intake valve passing air amount calculation unit 106 uses an air model for calculating the estimated intake valve passing air amount. The air model used by the estimated intake valve passing air amount calculation unit 106 is the same air model as the air model used by the estimated boost pressure calculation unit 102.
 実際吸気弁通過空気量算出ユニット108は、推定吸気弁通過空気量算出ユニット106で算出された推定吸気弁通過空気量と、補正係数算出ユニット104で算出された補正係数とを用いて現在の大気圧の下での吸気弁通過空気量を算出する計算ユニットである。現在の過給圧の下で得られた実際過給圧と標準大気圧の下での推定過給圧との圧力比である補正係数を標準大気圧の下での推定吸気弁通過空気量に乗算することにより、現在の大気圧の下での吸気弁通過空気量が算出される。このようにして得られた吸気弁通過空気量の計算値が吸気弁通過空気量の実際値と合っていることは発明者らが得た実験データから確認されている。 The actual intake valve passing air amount calculating unit 108 uses the estimated intake valve passing air amount calculated by the estimated intake valve passing air amount calculating unit 106 and the correction coefficient calculated by the correction coefficient calculating unit 104 to obtain the current large value. This is a calculation unit for calculating the amount of air passing through the intake valve under atmospheric pressure. The correction coefficient, which is the pressure ratio between the actual boost pressure obtained under the current boost pressure and the estimated boost pressure under the standard atmospheric pressure, is used as the estimated intake valve passing air volume under the standard atmospheric pressure. By multiplying, the intake valve passing air amount under the current atmospheric pressure is calculated. It has been confirmed from experimental data obtained by the inventors that the calculated value of the intake valve passing air amount obtained in this way matches the actual value of the intake valve passing air amount.
 次に、本実施の形態で用いられるエアモデルについて説明する。図2は、エアモデルの詳細を示す機能ブロック図である。エアモデルは複数の要素モデル、すなわち、ウエストゲートバルブ応答モデルM0、ターボ回転数モデルM1、コンプレッサモデルM2、インタークーラモデルM3、スロットルモデルM4、吸気マニホールドモデルM5、吸気弁モデルM6、エアクリーナモデルM7及びエアバイパスバルブモデルM8によって構成されている。以下、エアモデルが備えるこれら要素モデルの内容について説明する。ただし、これらの要素モデルはそれぞれに公知であり、また、それ自体は本発明における特徴点ではないことから、数式やマップ等の各要素モデルの詳細については記載を省略する。 Next, the air model used in this embodiment will be described. FIG. 2 is a functional block diagram showing details of the air model. The air model includes a plurality of element models, that is, a wastegate valve response model M0, a turbo speed model M1, a compressor model M2, an intercooler model M3, a throttle model M4, an intake manifold model M5, an intake valve model M6, an air cleaner model M7, and an air The bypass valve model M8 is used. Hereinafter, the contents of these element models included in the air model will be described. However, these element models are publicly known, and since they are not characteristic points in the present invention, description of the details of each element model such as mathematical formulas and maps is omitted.
 ウエストゲートバルブ応答モデルM0は、ウエストゲートバルブに対する指示開度からウエストゲートバルブの実際開度を算出するためのモデルであって、指示開度に対する実際開度の応答特性がモデル化されている。ウエストゲートバルブ応答モデルM0には、ウエストゲートバルブに入力されている現在の指示開度が入力される。 The waste gate valve response model M0 is a model for calculating the actual opening degree of the waste gate valve from the instruction opening degree with respect to the waste gate valve, and the response characteristic of the actual opening degree with respect to the instruction opening degree is modeled. In the waste gate valve response model M0, the current indicated opening degree inputted to the waste gate valve is inputted.
 ターボ回転数モデルM1は、過給機の回転挙動のモデルであって、吸気弁流量とウエストゲートバルブ開度とターボ回転数との間に成り立つ関係がモデル化されている。ターボ回転数モデルM1では、ウエストゲートバルブ応答モデルM0で算出されたウエストゲートバルブ開度“wgv”と、後述する吸気弁モデルM6で算出された吸気弁流量“mc”等の情報が入力され、それらの入力情報からターボ回転数“Ntb”が算出される。 The turbo speed model M1 is a model of the rotational behavior of the supercharger, and a relationship that is established among the intake valve flow rate, the wastegate valve opening degree, and the turbo speed is modeled. In the turbo speed model M1, information such as a waste gate valve opening “wgv” calculated in the waste gate valve response model M0 and an intake valve flow rate “mc” calculated in an intake valve model M6 described later is input. The turbo speed “Ntb” is calculated from the input information.
 コンプレッサモデルM2は、ターボ過給機のコンプレッサのモデルであって、ターボ回転数と過給圧(コンプレッサ下流圧)とエアクリーナ下流圧(コンプレッサ上流圧)とコンプレッサ流量との間に成り立つ関係がモデル化されている。コンプレッサモデルM2では、ターボ回転数モデルM1で算出されたターボ回転数“Ntb”と、後述するインタークーラモデルM3で算出された過給圧“Pic”と、後述するエアクリーナモデルM7で算出されたエアクリーナ下流圧“Pac”等の情報が入力され、それらの入力情報からコンプレッサ流量“mcp”が算出される。 The compressor model M2 is a turbocharger compressor model, and models the relationship that holds between the turbo speed, the supercharging pressure (compressor downstream pressure), the air cleaner downstream pressure (compressor upstream pressure), and the compressor flow rate. Has been. In the compressor model M2, the turbo speed “Ntb” calculated by the turbo speed model M1, the supercharging pressure “Pic” calculated by the intercooler model M3 described later, and the air cleaner calculated by the air cleaner model M7 described later. Information such as the downstream pressure “Pac” is input, and the compressor flow rate “mcp” is calculated from the input information.
 インタークーラモデルM3は、吸気通路におけるインタークーラ内の空気に関する保存則に基づいて構築された物理モデルである。インタークーラモデルM3としては、具体的にはエネルギー保存則の式と流量保存則の式とが用いられている。インタークーラモデルM3では、コンプレッサモデルM2で算出されたコンプレッサ流量“mcp”から後述するエアバイパスバルブモデルM8で算出されたエアバイパスバルブ流量“mabv”を差し引いた流量と、後述するスロットルモデルM4で算出されたスロットル流量“mt”等の情報が入力され、それらの入力情報から過給圧“Pic”が算出される。 The intercooler model M3 is a physical model constructed based on the conservation law regarding the air in the intercooler in the intake passage. As the intercooler model M3, specifically, an energy conservation law formula and a flow rate conservation law formula are used. In the intercooler model M3, a flow rate obtained by subtracting an air bypass valve flow rate “mabv” calculated in an air bypass valve model M8 described later from a compressor flow rate “mcp” calculated in the compressor model M2, and a throttle model M4 described later. Information such as the throttle flow rate “mt” is input, and the supercharging pressure “Pic” is calculated from the input information.
 スロットルモデルM4は、スロットルを通過する空気の流量を算出するためのモデルであって、具体的には、スロットルの前後の差圧、スロットル開度により決まる流路面積、及び流量係数を基本とするオリフィスの流量式が用いられている。スロットルモデルM4では、スロットル開度センサによるスロットル開度の計測値と、インタークーラモデルM3で算出された過給圧“Pic”と、後述する吸気マニホールドモデルM5で算出された吸気マニホールド圧“Pm”等の情報が入力され、それらの入力情報からスロットル流量“mt”が算出される。 The throttle model M4 is a model for calculating the flow rate of air passing through the throttle. Specifically, the throttle model M4 is based on a differential pressure before and after the throttle, a flow passage area determined by the throttle opening, and a flow coefficient. The orifice flow rate formula is used. In the throttle model M4, the measured value of the throttle opening by the throttle opening sensor, the supercharging pressure “Pic” calculated by the intercooler model M3, and the intake manifold pressure “Pm” calculated by the intake manifold model M5 described later. The throttle flow rate “mt” is calculated from the input information.
 吸気マニホールドモデルM5は、吸気マニホールドモデル内の空気に関する保存則に基づいて構築された物理モデルである。吸気マニホールドモデルM5としては、具体的にはエネルギー保存則の式と流量保存則の式とが用いられている。吸気マニホールドモデルM5では、スロットルモデルM4で算出されたスロットル流量“mt”と、後述する吸気弁モデルM6で算出された吸気弁流量“mc”等の情報が入力され、それらの入力情報から吸気マニホールドモデル圧“Pm”が算出される。 The intake manifold model M5 is a physical model constructed on the basis of the conservation law regarding air in the intake manifold model. As the intake manifold model M5, specifically, an energy conservation law equation and a flow rate conservation law equation are used. In the intake manifold model M5, information such as a throttle flow rate “mt” calculated by the throttle model M4 and an intake valve flow rate “mc” calculated by an intake valve model M6 to be described later is input. The model pressure “Pm” is calculated.
 吸気弁モデルM6は、吸気弁流量と吸気マニホールドモデル圧との関係について調べた実験結果に基づくモデルである。実験で得られた経験則により、吸気弁モデルM6においては吸入空気量と吸気管圧との関係が折線(或いは直線)で近似されている。その折線(或いは直線)の方程式の係数は定数ではなく、エンジン回転数、ウエストゲートバルブ開度、吸気弁のバルブタイミング、排気弁のバルブタイミング等によって決まる変数である。吸気弁モデルM6では、吸気マニホールドモデルM5で算出された吸気マニホールドモデル圧“Pm”の他、エンジン回転数、ウエストゲートバルブ開度、吸気弁のバルブタイミング、排気弁のバルブタイミング等の情報が入力され、それらの入力情報から吸気弁流量“mc”が算出される。 The intake valve model M6 is a model based on the experimental results of examining the relationship between the intake valve flow rate and the intake manifold model pressure. Based on empirical rules obtained through experiments, in the intake valve model M6, the relationship between the intake air amount and the intake pipe pressure is approximated by a broken line (or a straight line). The coefficient of the equation of the broken line (or straight line) is not a constant, but is a variable determined by the engine speed, the wastegate valve opening, the valve timing of the intake valve, the valve timing of the exhaust valve, and the like. In the intake valve model M6, in addition to the intake manifold model pressure “Pm” calculated by the intake manifold model M5, information such as the engine speed, the wastegate valve opening, the intake valve timing, and the exhaust valve timing is input. The intake valve flow rate “mc” is calculated from the input information.
 エアクリーナモデルM7は、吸気通路の入口に配置されたエアクリーナで生じる圧力損失を算出するためのモデルである。エアクリーナモデルM7は、標準大気圧から圧力損失分だけ減算した値をエアクリーナ下流圧“Pac”として算出する。標準大気圧の値は既定値としてECUのメモリに記憶されている。圧力損失はエアクリーナを通過した空気の流量から計算することができる。エアクリーナモデルM7では、コンプレッサ流量“mcp”からエアバイパスバルブ流量“mabv”を差し引いた流量がエアクリーナを通過した空気の流量として用いられる。 The air cleaner model M7 is a model for calculating the pressure loss generated in the air cleaner disposed at the inlet of the intake passage. The air cleaner model M7 calculates a value obtained by subtracting the pressure loss from the standard atmospheric pressure as the air cleaner downstream pressure “Pac”. The standard atmospheric pressure value is stored in the ECU memory as a default value. The pressure loss can be calculated from the flow rate of air passing through the air cleaner. In the air cleaner model M7, the flow rate obtained by subtracting the air bypass valve flow rate “mabv” from the compressor flow rate “mcp” is used as the flow rate of the air that has passed through the air cleaner.
 エアバイパスバルブモデルM8は、エアバイパスバルブによってコンプレッサの下流から上流に戻される空気の流量を算出するためのモデルである。エアバイパスバルブモデルM8としては、絞りの式が用いられている。エアバイパスバルブモデルM8では、エアクリーナモデルM7で算出されたエアクリーナ下流圧“Pac”と、インタークーラーモデルM3で算出された過給圧“Pic”と、エアバイパスバルブの動作フラグ等の情報が入力され、それらの入力情報からエアバイパスバルブ流量“mabv”が算出される。 The air bypass valve model M8 is a model for calculating the flow rate of air returned from the downstream side to the upstream side of the compressor by the air bypass valve. As the air bypass valve model M8, a throttle equation is used. In the air bypass valve model M8, information such as the air cleaner downstream pressure “Pac” calculated by the air cleaner model M7, the supercharging pressure “Pic” calculated by the intercooler model M3, and the operation flag of the air bypass valve are input. The air bypass valve flow rate “mabv” is calculated from the input information.
 以上のように構成されるエアモデルによれば、標準大気圧において現在のスロットル開度、現在のウエストゲートバルブ開度、及び現在のエアバイパスバルブ開度により実現される過給圧がインタークーラモデルM3から出力される。推定過給圧算出ユニット102は、インタークーラモデルM3から出力される過給圧を標準大気圧の下での推定過給圧“Pic0”として算出する。 According to the air model configured as described above, the boost pressure realized by the current throttle opening, the current wastegate valve opening, and the current air bypass valve opening at the standard atmospheric pressure is the intercooler model M3. Is output from. The estimated supercharging pressure calculation unit 102 calculates the supercharging pressure output from the intercooler model M3 as the estimated supercharging pressure “Pic0” under the standard atmospheric pressure.
 また、以上のように構成されるエアモデルによれば、標準大気圧において現在のスロットル開度、現在のウエストゲートバルブ開度、及び現在のエアバイパスバルブ開度により実現される吸気マニホールド圧が吸気マニホールドモデルM5から出力される。推定吸気弁通過空気量算出ユニット106は、吸気マニホールドモデルM5から出力される吸気マニホールド圧に基づいて吸気弁通過空気量を計算し、それを標準大気圧の下での推定吸気弁通過空気量“KL0”として算出する。 Further, according to the air model configured as described above, the intake manifold pressure realized by the current throttle opening, the current wastegate valve opening, and the current air bypass valve opening at the standard atmospheric pressure is the intake manifold pressure. Output from model M5. The estimated intake valve passage air amount calculation unit 106 calculates the intake valve passage air amount based on the intake manifold pressure output from the intake manifold model M5, and calculates the calculated intake valve passage air amount “under standard atmospheric pressure”. Calculated as KL0 ”.
 最後に、本実施の形態に係る吸入空気量推定装置100による吸気弁通過空気量の計算手順について図3に示すフローチャートによって確認する。 Finally, the calculation procedure of the intake valve passage air amount by the intake air amount estimation device 100 according to the present embodiment is confirmed by the flowchart shown in FIG.
 ステップS102では、推定過給圧算出ユニット102により、標準大気圧の下での推定過給圧“Pic0”が算出される。詳しくはエアモデルによる計算においてインタークーラモデルM3から出力される過給圧が標準大気圧の下での推定過給圧“Pic0”として算出される。 In step S102, the estimated supercharging pressure calculation unit 102 calculates the estimated supercharging pressure “Pic0” under the standard atmospheric pressure. Specifically, the supercharging pressure output from the intercooler model M3 in the calculation using the air model is calculated as the estimated supercharging pressure “Pic0” under the standard atmospheric pressure.
 ステップS104では、過給圧センサ10で計測した実際過給圧“Pic”が吸入空気量推定装置100に取り込まれる。なお、ステップS102とステップS104の実行順序は逆でもよいし並行して実行されてもよい。 In step S104, the actual boost pressure “Pic” measured by the boost pressure sensor 10 is taken into the intake air amount estimation device 100. Note that the execution order of step S102 and step S104 may be reversed or may be executed in parallel.
 ステップS106では、補正係数算出ユニット104により、実際過給圧“Pic”と推定過給圧“Pic0”との圧力比“Pic/Pic0”が補正係数として算出される。 In step S106, the correction coefficient calculation unit 104 calculates the pressure ratio “Pic / Pic0” between the actual supercharging pressure “Pic” and the estimated supercharging pressure “Pic0” as a correction coefficient.
 ステップS108では、推定吸気弁通過空気量算出ユニット106により、標準大気圧の下での推定吸気マニホールド圧“Pm0”が算出される。詳しくはエアモデルによる計算において吸気マニホールドモデルM5から出力される吸気マニホールド圧が標準大気圧の下での推定吸気マニホールド圧“Pm0”として算出される。 In step S108, the estimated intake manifold passage air amount calculation unit 106 calculates the estimated intake manifold pressure “Pm0” under the standard atmospheric pressure. Specifically, the intake manifold pressure output from the intake manifold model M5 is calculated as the estimated intake manifold pressure “Pm0” under the standard atmospheric pressure in the calculation using the air model.
 ステップS110では、推定吸気弁通過空気量算出ユニット106により、標準大気圧の下での推定吸気マニホールド圧“Pm0”から標準大気圧の下での推定吸気弁通過空気量“KL0”が算出される。吸気マニホールド圧からは吸気弁モデルM6を用いることによって吸気弁流量を得ることができ、吸気弁流量に吸気弁の1サイクル当たりの開弁時間を乗算することによって吸気弁通過空気量を算出することができる。 In step S110, the estimated intake valve passing air amount calculation unit 106 calculates the estimated intake valve passing air amount “KL0” under the standard atmospheric pressure from the estimated intake manifold pressure “Pm0” under the standard atmospheric pressure. . From the intake manifold pressure, the intake valve flow rate can be obtained by using the intake valve model M6, and the intake valve passing air amount is calculated by multiplying the intake valve flow rate by the valve opening time per cycle of the intake valve. Can do.
 ステップS112では、実際吸気弁通過空気量算出ユニット108により、現在の大気圧の下での吸気弁通過空気量“KL”が次の式によって算出される。この式に示すように、実際過給圧“Pic”と推定過給圧“Pic0”との圧力比“Pic/Pic0”を標準大気圧の下での推定吸気弁通過空気量“KL0”に乗算することにより、標準大気圧の下での推定吸気弁通過空気量“KL0”を現在の大気圧の下での吸気弁通過空気量“KL”に変換することができる。
Figure JPOXMLDOC01-appb-M000001
In step S112, the actual intake valve passing air amount calculation unit 108 calculates the intake valve passing air amount “KL” under the current atmospheric pressure by the following equation. As shown in this equation, the estimated intake valve passing air amount “KL0” under standard atmospheric pressure is multiplied by the pressure ratio “Pic / Pic0” between the actual boost pressure “Pic” and the estimated boost pressure “Pic0”. Thus, the estimated intake valve passing air amount “KL0” under the standard atmospheric pressure can be converted into the intake valve passing air amount “KL” under the current atmospheric pressure.
Figure JPOXMLDOC01-appb-M000001
 実施の形態2.
 次に、本発明の実施の形態2について図を参照して説明する。
Embodiment 2. FIG.
Next, a second embodiment of the present invention will be described with reference to the drawings.
 本実施の形態に係る吸入空気量推定装置は、実施の形態1と同様の過給エンジンに適当される。ただし、本実施の形態に係る過給エンジンは過給圧センサは備えず、その代わりに吸気マニホールド圧センサを備えている、吸気マニホールド圧センサは、吸気通路におけるスロットルと吸気弁までの間に取り付けられている。 The intake air amount estimation device according to the present embodiment is suitable for a supercharged engine similar to that of the first embodiment. However, the supercharged engine according to the present embodiment does not include a supercharging pressure sensor, but instead includes an intake manifold pressure sensor. The intake manifold pressure sensor is attached between the throttle and the intake valve in the intake passage. It has been.
 図4は、本実施の形態に係る吸入空気量推定装置200の構成を示す機能ブロック図である。本実施の形態に係る吸入空気量推定装置200は、推定吸気マニホールド圧算出ユニット202、補正係数算出ユニット204、推定吸気弁通過空気量算出ユニット206及び実際吸気弁通過空気量算出ユニット208を備える。なお、これらの計算ユニットはプログラムがCPUによって実行されることで仮想的に実現される計算ユニットである。ただし、これらの計算ユニットのそれぞれが独立したハードウェアで構成されていてもよい。 FIG. 4 is a functional block diagram showing the configuration of the intake air amount estimation device 200 according to the present embodiment. The intake air amount estimating apparatus 200 according to the present embodiment includes an estimated intake manifold pressure calculating unit 202, a correction coefficient calculating unit 204, an estimated intake valve passing air amount calculating unit 206, and an actual intake valve passing air amount calculating unit 208. These calculation units are calculation units that are virtually realized by a program being executed by a CPU. However, each of these calculation units may be configured by independent hardware.
 推定吸気マニホールド圧算出ユニット202は、現在のアクチュエータの動作状態に基づき標準大気圧の下での推定吸気マニホールド圧を算出する計算ユニットである。推定吸気マニホールド圧算出ユニット202は推定吸気マニホールド圧の計算にエアモデルを使用する。エアモデルはエアクリーナから吸気弁までの吸気通路内の空気の挙動を数式を用いて表す動的モデルである。本実施の形態で用いられるエアモデルは実施の形態1で用いられているのと同じ図2に示すエアモデルである。このエアモデルによれば、標準大気圧において現在のスロットル開度、現在のウエストゲートバルブ開度、及び現在のエアバイパスバルブ開度により実現される吸気マニホールド圧が吸気マニホールドモデルM5から出力される。 The estimated intake manifold pressure calculation unit 202 is a calculation unit that calculates an estimated intake manifold pressure under standard atmospheric pressure based on the current operating state of the actuator. The estimated intake manifold pressure calculating unit 202 uses an air model for calculating the estimated intake manifold pressure. The air model is a dynamic model that expresses the behavior of air in the intake passage from the air cleaner to the intake valve using mathematical formulas. The air model used in the present embodiment is the same air model shown in FIG. 2 as that used in the first embodiment. According to this air model, the intake manifold model M5 outputs the intake manifold pressure realized by the current throttle opening, the current wastegate valve opening, and the current air bypass valve opening at the standard atmospheric pressure.
 補正係数算出ユニット204は、吸気マニホールド圧センサ20によって計測された実際吸気マニホールド圧と推定吸気マニホールド圧算出ユニット202で算出された推定吸気マニホールド圧とを用いて補正係数を算出する計算ユニットである。本実施の形態では、実際吸気マニホールド圧と推定吸気マニホールド圧との圧力比が補正係数として算出される。吸気マニホールド圧センサ20によって計測された実際吸気マニホールド圧は現在の大気圧の下での吸気マニホールド圧であり、推定吸気マニホールド圧は標準大気圧の下での吸気マニホールド圧である。実験データより、実際吸気マニホールド圧と推定吸気マニホールド圧との圧力比は、現在の大気圧と標準大気圧との圧力比と等しいことが確認されている。 The correction coefficient calculation unit 204 is a calculation unit that calculates a correction coefficient using the actual intake manifold pressure measured by the intake manifold pressure sensor 20 and the estimated intake manifold pressure calculated by the estimated intake manifold pressure calculation unit 202. In the present embodiment, the pressure ratio between the actual intake manifold pressure and the estimated intake manifold pressure is calculated as a correction coefficient. The actual intake manifold pressure measured by the intake manifold pressure sensor 20 is the intake manifold pressure under the current atmospheric pressure, and the estimated intake manifold pressure is the intake manifold pressure under the standard atmospheric pressure. From experimental data, it has been confirmed that the pressure ratio between the actual intake manifold pressure and the estimated intake manifold pressure is equal to the pressure ratio between the current atmospheric pressure and the standard atmospheric pressure.
 推定吸気弁通過空気量算出ユニット206は、実施の形態1の推定吸気弁通過空気量算出ユニット106と同じ機能を有している。推定吸気弁通過空気量算出ユニット206は、図2に示すエアモデルを用いて標準大気圧の下での推定吸気弁通過空気量を算出する。 The estimated intake valve passage air amount calculation unit 206 has the same function as the estimated intake valve passage air amount calculation unit 106 of the first embodiment. The estimated intake valve passing air amount calculation unit 206 calculates an estimated intake valve passing air amount under standard atmospheric pressure using the air model shown in FIG.
 実際吸気弁通過空気量算出ユニット208は、実施の形態1の実際吸気弁通過空気量算出ユニット208と同じ機能を有している。補正係数算出ユニット204で算出された補正係数を推定吸気弁通過空気量に乗算することにより、現在の大気圧の下での吸気弁通過空気量を算出する。このようにして得られた吸気弁通過空気量の計算値が吸気弁通過空気量の実際値と合っていることは発明者らが得た実験データから確認されている。 The actual intake valve passing air amount calculation unit 208 has the same function as the actual intake valve passing air amount calculation unit 208 of the first embodiment. By multiplying the estimated intake valve passing air amount by the correction coefficient calculated by the correction coefficient calculating unit 204, the intake valve passing air amount under the current atmospheric pressure is calculated. It has been confirmed from experimental data obtained by the inventors that the calculated value of the intake valve passing air amount obtained in this way matches the actual value of the intake valve passing air amount.
 本実施の形態に係る吸入空気量推定装置200による吸気弁通過空気量の計算手順をフローチャートで表したものが図5である。 FIG. 5 is a flowchart showing the calculation procedure of the intake valve passing air amount by the intake air amount estimating apparatus 200 according to the present embodiment.
 ステップS202では、推定吸気マニホールド圧算出ユニット202により、標準大気圧の下での推定吸気マニホールド圧“Pm0”が算出される。詳しくはエアモデルによる計算において吸気マニホールドモデルM5から出力される吸気マニホールド圧が標準大気圧の下での吸気マニホールド圧“Pm0”として算出される。 In step S202, the estimated intake manifold pressure “Pm0” under the standard atmospheric pressure is calculated by the estimated intake manifold pressure calculating unit 202. Specifically, in the calculation by the air model, the intake manifold pressure output from the intake manifold model M5 is calculated as the intake manifold pressure “Pm0” under the standard atmospheric pressure.
 ステップS204では、吸気マニホールド圧センサ20で計測した実際吸気マニホールド圧“Pm”が吸入空気量推定装置100に取り込まれる。なお、ステップS202とステップS204の実行順序は逆でもよいし並行して実行されてもよい。 In step S204, the actual intake manifold pressure “Pm” measured by the intake manifold pressure sensor 20 is taken into the intake air amount estimation device 100. Note that the execution order of step S202 and step S204 may be reversed or executed in parallel.
 ステップS206では、補正係数算出ユニット204により、実際吸気マニホールド圧“Pm”と推定吸気マニホールド圧“Pm0”との圧力比“Pm/Pm0”が補正係数として算出される。 In step S206, the correction coefficient calculation unit 204 calculates the pressure ratio “Pm / Pm0” between the actual intake manifold pressure “Pm” and the estimated intake manifold pressure “Pm0” as a correction coefficient.
 ステップS208では、推定吸気弁通過空気量算出ユニット206により、標準大気圧の下での推定吸気マニホールド圧“Pm0”から標準大気圧の下での推定吸気弁通過空気量“KL0”が算出される。 In step S208, the estimated intake valve passing air amount calculation unit 206 calculates the estimated intake valve passing air amount “KL0” under the standard atmospheric pressure from the estimated intake manifold pressure “Pm0” under the standard atmospheric pressure. .
 ステップS210では、実際吸気弁通過空気量算出ユニット208により、現在の大気圧の下での吸気弁通過空気量“KL”が次の式によって算出される。この式に示すように、実際吸気マニホールド圧“Pm”と推定吸気マニホールド圧“Pm0”との圧力比“Pm/Pm0”を標準大気圧の下での推定吸気弁通過空気量“KL0”に乗算することにより、標準大気圧の下での推定吸気弁通過空気量“KL0”を現在の大気圧の下での吸気弁通過空気量“KL”に変換することができる。
Figure JPOXMLDOC01-appb-M000002
In step S210, the actual intake valve passing air amount calculation unit 208 calculates the intake valve passing air amount “KL” under the current atmospheric pressure by the following equation. As shown in this equation, the estimated intake valve passing air amount “KL0” under standard atmospheric pressure is multiplied by the pressure ratio “Pm / Pm0” between the actual intake manifold pressure “Pm” and the estimated intake manifold pressure “Pm0”. Thus, the estimated intake valve passing air amount “KL0” under the standard atmospheric pressure can be converted into the intake valve passing air amount “KL” under the current atmospheric pressure.
Figure JPOXMLDOC01-appb-M000002
その他.
 本発明は上述の実施の形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で種々変形して実施することができる。例えば、実施の形態1では実際過給圧と推定過給圧との圧力比を計算してそれを補正係数としているが、補正係数を実際過給圧と推定過給圧とに関連付けるマップを用意しておき、そのマップから補正係数を決定するようにしてもよい。実施の形態2についても同様である。補正係数を実際吸気マニホールド圧と推定吸気マニホールド圧とに関連付けるマップを用意しておき、そのマップから補正係数を決定するようにしてもよい。
Others.
The present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the spirit of the present invention. For example, in the first embodiment, the pressure ratio between the actual supercharging pressure and the estimated supercharging pressure is calculated and used as a correction coefficient. However, a map that associates the correction coefficient with the actual supercharging pressure and the estimated supercharging pressure is prepared. In addition, the correction coefficient may be determined from the map. The same applies to the second embodiment. A map that associates the correction coefficient with the actual intake manifold pressure and the estimated intake manifold pressure may be prepared, and the correction coefficient may be determined from the map.
 また、推定過給圧や推定吸気マニホールド圧の計算に用いるモデルは図2に示す構成のものには限定されない。図2に示すエアモデルは各パラメータ間の動的な関係を記述した動的モデルであるが、本発明に関しては定常状態での各パラメータ間の静的な関係を記述したモデルを用いることもできる。 Further, the model used for calculating the estimated supercharging pressure and the estimated intake manifold pressure is not limited to the one shown in FIG. The air model shown in FIG. 2 is a dynamic model in which a dynamic relationship between parameters is described. However, in the present invention, a model in which a static relationship between parameters in a steady state is described can be used.
 本発明に係る吸入空気量推定装置が適用される過給エンジンにおいては、インタークーラやエアバイパスバルブは必須ではない。逆に、本発明に係る吸入空気量推定装置が適用される過給エンジンにはEGR装置が設けられていてもよい。その場合、省略する装備や追加する装備に応じて、図2に示すエアモデルの構成を変えればよい。例えば、エアバイパスバルブを有しない過給エンジンであれば、エアモデルからエアバイパスモデルを省略すればよい。また、EGR装置を有する過給エンジンであれば、エアモデルにEGRモデルを追加すればよい。 In the supercharged engine to which the intake air amount estimation device according to the present invention is applied, an intercooler and an air bypass valve are not essential. Conversely, an EGR device may be provided in a supercharged engine to which the intake air amount estimation device according to the present invention is applied. In that case, what is necessary is just to change the structure of the air model shown in FIG. 2 according to the equipment to abbreviate | omit or the equipment to add. For example, in the case of a supercharged engine having no air bypass valve, the air bypass model may be omitted from the air model. Further, in the case of a supercharged engine having an EGR device, the EGR model may be added to the air model.
10 過給圧センサ
20 吸気マニホールド圧センサ
100 吸入空気量推定装置
102 推定過給圧算出ユニット
104 補正係数算出ユニット
106 推定吸気弁通過空気量算出ユニット
108 実際吸気弁通過空気量算出ユニット
200 吸入空気量推定装置
202 推定吸気マニホールド圧算出ユニット
204 補正係数算出ユニット
206 推定吸気弁通過空気量算出ユニット
208 実際吸気弁通過空気量算出ユニット
M0 ウエストゲートバルブ応答モデル
M1 ターボ回転数モデル
M2 コンプレッサモデル
M3 インタークーラモデル
M4 スロットルモデル
M5 吸気マニホールドモデル
M6 吸気弁モデル
M7 エアクリーナモデル
M8 エアバイパスバルブ
DESCRIPTION OF SYMBOLS 10 Supercharging pressure sensor 20 Intake manifold pressure sensor 100 Intake air amount estimation apparatus 102 Estimated supercharging pressure calculation unit 104 Correction coefficient calculation unit 106 Estimated intake valve passage air amount calculation unit 108 Actual intake valve passage air amount calculation unit 200 Intake air amount Estimator 202 Estimated intake manifold pressure calculating unit 204 Correction coefficient calculating unit 206 Estimated intake valve passing air amount calculating unit 208 Actual intake valve passing air amount calculating unit M0 Wastegate valve response model M1 Turbo speed model M2 Compressor model M3 Intercooler model M4 Throttle model M5 Intake manifold model M6 Intake valve model M7 Air cleaner model M8 Air bypass valve

Claims (4)

  1.  コンプレッサから吸気弁までの吸気通路の所定位置に圧力センサを備える過給エンジンの吸入空気量推定装置において、
     前記圧力センサによって計測された前記所定位置における実際吸気通路内圧力を取得する手段と、
     大気圧と前記所定位置における吸気通路内圧力との関係に作用するアクチュエータの動作状態に基づき、同アクチュエータの動作状態と大気圧と前記所定位置における吸気通路内圧力との間に成り立つ関係を表したモデルを用いて、前記所定位置における標準大気圧の下での推定吸気通路内圧力を算出する手段と、
     前記実際吸気通路内圧力と前記推定吸気通路内圧力とを用いて補正係数を算出する手段と、
     大気圧と吸気弁通過空気量との関係に作用するアクチュエータの動作状態に基づき、同アクチュエータの動作状態と大気圧と吸気弁通過空気量との間に成り立つ関係を表したモデルを用いて、標準大気圧の下での推定吸気弁通過空気量を算出する手段と、
     前記推定吸気弁通過空気量を前記補正係数を用いて補正することによって現在の大気圧の下での吸気弁通過空気量を算出する手段と、
    を備えることを特徴とする過給エンジンの吸入空気量推定装置。
    In an intake air amount estimation device for a supercharged engine comprising a pressure sensor at a predetermined position in an intake passage from a compressor to an intake valve,
    Means for acquiring an actual intake passage pressure at the predetermined position measured by the pressure sensor;
    Based on the operating state of the actuator acting on the relationship between the atmospheric pressure and the pressure in the intake passage at the predetermined position, the relationship between the operating state of the actuator and the atmospheric pressure and the pressure in the intake passage at the predetermined position is expressed. Means for calculating an estimated intake passage pressure under standard atmospheric pressure at the predetermined position using a model;
    Means for calculating a correction coefficient using the actual intake passage pressure and the estimated intake passage pressure;
    Based on the operating state of the actuator that affects the relationship between the atmospheric pressure and the intake valve passing air amount, a model that represents the relationship between the operating state of the actuator and the atmospheric pressure and the intake valve passing air amount is used as a standard. Means for calculating an estimated intake valve passing air amount under atmospheric pressure;
    Means for calculating the intake valve passage air amount under the current atmospheric pressure by correcting the estimated intake valve passage air amount using the correction coefficient;
    An intake air amount estimation device for a supercharged engine comprising:
  2.  前記実際吸気通路内圧力と前記推定吸気通路内圧力との圧力比が前記補正係数として算出されることを特徴とする過給エンジンの吸入空気量推定装置。 A supercharged engine intake air amount estimation device, wherein a pressure ratio between the actual intake passage internal pressure and the estimated intake passage internal pressure is calculated as the correction coefficient.
  3.  前記圧力センサはコンプレッサからスロットルまでの吸気通路に配置された過給圧センサであることを特徴とする請求項1又は2に記載の過給エンジンの吸入空気量推定装置。 3. The intake air amount estimation device for a supercharged engine according to claim 1, wherein the pressure sensor is a supercharging pressure sensor arranged in an intake passage from a compressor to a throttle.
  4.  前記圧力センサはスロットルから吸気弁までの吸気通路に配置された吸気マニホールド圧センサであることを特徴とする請求項1又は2に記載の過給エンジンの吸入空気量推定装置。 3. The intake air amount estimation device for a supercharged engine according to claim 1, wherein the pressure sensor is an intake manifold pressure sensor disposed in an intake passage from a throttle to an intake valve.
PCT/JP2012/063189 2012-05-23 2012-05-23 Device for estimating air intake volume for supercharged engine WO2013175588A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/063189 WO2013175588A1 (en) 2012-05-23 2012-05-23 Device for estimating air intake volume for supercharged engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/063189 WO2013175588A1 (en) 2012-05-23 2012-05-23 Device for estimating air intake volume for supercharged engine

Publications (1)

Publication Number Publication Date
WO2013175588A1 true WO2013175588A1 (en) 2013-11-28

Family

ID=49623319

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/063189 WO2013175588A1 (en) 2012-05-23 2012-05-23 Device for estimating air intake volume for supercharged engine

Country Status (1)

Country Link
WO (1) WO2013175588A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018515711A (en) * 2015-05-06 2018-06-14 ボルボトラックコーポレーション How to model compressor speed
JP2020051431A (en) * 2019-12-25 2020-04-02 ボルボトラックコーポレーション Method for modeling compressor speed

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010242693A (en) * 2009-04-09 2010-10-28 Toyota Motor Corp Control device of internal combustion engine
WO2011086707A1 (en) * 2010-01-18 2011-07-21 トヨタ自動車株式会社 Gas state estimation device for internal combustion engine

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010242693A (en) * 2009-04-09 2010-10-28 Toyota Motor Corp Control device of internal combustion engine
WO2011086707A1 (en) * 2010-01-18 2011-07-21 トヨタ自動車株式会社 Gas state estimation device for internal combustion engine

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018515711A (en) * 2015-05-06 2018-06-14 ボルボトラックコーポレーション How to model compressor speed
US10428677B2 (en) 2015-05-06 2019-10-01 Volvo Truck Corporation Method for modeling a compressor speed
US10801356B2 (en) 2015-05-06 2020-10-13 Volvo Truck Corporation Method for modeling a compressor speed
JP2020051431A (en) * 2019-12-25 2020-04-02 ボルボトラックコーポレーション Method for modeling compressor speed

Similar Documents

Publication Publication Date Title
US9175597B2 (en) Control device for supercharged engine
JP5754514B2 (en) Supercharged engine control device
US9989029B2 (en) Method and device for determining a charge air mass flow rate
US20130013166A1 (en) Determination of exhaust back pressure
JP2008138630A (en) Control device of internal combustion engine
WO2015016303A1 (en) Diagnosis device
CN109072772B (en) Physics-based vehicle turbocharger control techniques
WO2012070100A1 (en) Air-quantity estimation device for internal combustion engine with supercharger
WO2014083654A1 (en) Control device for engine equipped with supercharger
JP2012241625A (en) Control device for supercharging engine
JP5854131B2 (en) Control device for an internal combustion engine with a supercharger
JP6545290B2 (en) Control device
JP2008106703A (en) Control device for internal combustion engine with turbocharger
WO2013175588A1 (en) Device for estimating air intake volume for supercharged engine
US9945306B2 (en) Control device for internal combustion engine
JP6515903B2 (en) Control device for internal combustion engine
JP2013155613A (en) Control device of turbocharged engine
CN107061031B (en) System and method for estimating turbocharger speed of an engine
JP6625837B2 (en) EGR control method and EGR device
JP2017203444A (en) Engine control system
JP5561236B2 (en) Supercharged engine control device
WO2018159316A1 (en) Flow-rate measurement system
JP2013155614A (en) Control device of turbocharged engine
JP5464161B2 (en) Supercharged engine control device
JP5626082B2 (en) Air quantity estimation device for an internal combustion engine with a supercharger

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12877288

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12877288

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP