EP0757691B1 - Cephalosporin synthesis - Google Patents

Cephalosporin synthesis Download PDF

Info

Publication number
EP0757691B1
EP0757691B1 EP95917948A EP95917948A EP0757691B1 EP 0757691 B1 EP0757691 B1 EP 0757691B1 EP 95917948 A EP95917948 A EP 95917948A EP 95917948 A EP95917948 A EP 95917948A EP 0757691 B1 EP0757691 B1 EP 0757691B1
Authority
EP
European Patent Office
Prior art keywords
formula
compound
alkyl
amino
denotes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP95917948A
Other languages
German (de)
English (en)
French (fr)
Other versions
EP0757691A1 (en
Inventor
Gerd Ascher
Johannes Ludescher
Hubert Sturm
Josef Wieser
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nabriva Therapeutics Forschungs GmbH
Original Assignee
Biochemie GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from AT0085894A external-priority patent/AT402072B/de
Priority claimed from AT85794A external-priority patent/AT402927B/de
Priority claimed from AT0106694A external-priority patent/AT402929B/de
Application filed by Biochemie GmbH filed Critical Biochemie GmbH
Priority to SI9530680T priority Critical patent/SI0757691T1/xx
Priority to AT95917948T priority patent/ATE244247T1/de
Priority to EP03012877A priority patent/EP1340762B1/en
Publication of EP0757691A1 publication Critical patent/EP0757691A1/en
Application granted granted Critical
Publication of EP0757691B1 publication Critical patent/EP0757691B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K5/00Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof
    • C07K5/04Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof containing only normal peptide links
    • C07K5/06Dipeptides
    • C07K5/06139Dipeptides with the first amino acid being heterocyclic
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D501/00Heterocyclic compounds containing 5-thia-1-azabicyclo [4.2.0] octane ring systems, i.e. compounds containing a ring system of the formula:, e.g. cephalosporins; Such ring systems being further condensed, e.g. 2,3-condensed with an oxygen-, nitrogen- or sulfur-containing hetero ring
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/55Design of synthesis routes, e.g. reducing the use of auxiliary or protecting groups

Definitions

  • This invention relates to new intermediates in the preparation of cephalosporins. Particularly it relates to a compound of formula wherein R denotes hydrogen or a tri(C 1-8 )alkylsilyl group, in free form or in salt form.
  • the invention relates to a compound of formula wherein R denotes hydrogen or a tri(C 1-8 )alkylsilyl group.
  • alkyl includes an alkyl group having 1 to 22, for example 1 to 12, such as 1 to 8 carbon atoms, preferably lower alkyl, such as (C 1-4 )alkyl.
  • An alkyl group may be unsubstituted or substituted by groups which are inert under relevant reaction conditions.
  • a tri(C 1-8 )alkylsilyl group includes for example the trimethylsilyl group.
  • a phenyl or naphtyl group may be unsubstituted or substituted by groups which are inert under relevant reaction conditions.
  • Hetreocyclyl include heterocyclic groups mentioned below in the meaning of R 5 and R 6 .
  • a heterocyclic group may be unsubstituted or substituted by groups which are inert under relevant reaction conditions.
  • Y denotes preferably tert.-butyl, phenyl, naphthyl or pyrimidinyl
  • a compound of formula Ia or a compound of formula I is an useful intermediate in the production of highly active antibiotics. It may be used to prepare a wide variety of cephalosporins which are substituted at the nitrogen atom in position 7 and in position 3 of the cephalosprin structure with a wide variety of groups which are useful groups in respect to the activity of the corresponding cephalosporin.
  • a compound of formula I is as such, or, in equilibrium with its tautomeric aldehyde form of formula Ia wherein R denotes a tri(C 1-8 )alkylsilyl group, suitable as starting material, for example for Wittig reactions, for decarbonylation reactions, for the production of most varied aldehyde derivatives. At the same time one is free to form desired derivatives in position 7, for example by acylation.
  • Examples of highly active antibiotics which may be obtained from the compounds of the invention in convential manner are ceftibuten as an example for a decarbonylation product; cefixim, cefdinir, E-1077 or, the compounds of EP 620 225, for example the compounds A to P of EP 620 225, as examples for Wittig products; or compounds having the structure of formula A, disclosed in EP 392 796, as a thioacetal (the thioacetal structure of formula A may be prepared for example according to J. Antibiotics 44(4), 415-21(1991):
  • the process has the particular disadvantage that the oxidation of the alcohol to the aldehyde is accompanied with undesired ⁇ -2 isomerisation and lactonisation.
  • the oxidation agents used such as chromium(VI)oxide, and cleavage reagents, such as trifluoro acetic acid, may not be used in technical scale for ecological reasons.
  • a compound of formulae I, Ia, Ib or II may surprisingly be produced without complicated protecting group technology and without the disadvantages of the prior art specified above. This may take place in a very simple way and results in high yields.
  • the invention relates therefore to a process for the production of a compound of formula la as defined above by
  • Process a) is an ozonolysis reaction. It may be carried out in a solvent or solvent mixture which contains alcohol or which is alcohol-free with or without the presence of water.
  • Solvents which may be employed include alcohols, such as a straight chain or branched (C 1-4 )alcohol; or organic solvents which are inert under the reaction conditions, such as halogenated hydrocarbons, for example dichloromethan; or esters, for example acetic acid esters; in combination with a (C 1-4 )alcohol; with or without the presence of water.
  • a compound of formula III (which may be prepared, for example, according to EP 503 453) in which preferably R 2 or R 3 denotes hydrogen and the corresponding R 3 or R 2 denotes preferably hydrogen, (C 1-8 )alkyl, phenyl, naphtyl, or, a group of formula -CH 2 -A wherein A denotes preferably hydrogen, hydroxy, (C 1-8 )alkoxy, halogen and X - is as defined above, or, the free base of a compound of formula III, treated in an alcohol or in an alcohol-containing solvent mixture with an inorganic or organic acid, is suspended or dissolved in an alcohol or in a solvent mixture containing an alcohol and a solvent which is stable in the presence of ozone, and ozonolysis is carried out in conventional manner.
  • a reducing agent such as a sulphide or phosphine may be added to the reaction mixture during or after ozonolysis.
  • a compound of formula I wherein R 1 denotes hydrogen may be converted into a compound of formula I wherein R 1 denotes (C 1-8 )alkyl by addition of little water or by prolonged standing in an alcohol-containing medium. Conversion of a compound of formula I wherein R 1 denotes (C 1-8 )alkyl into a compound of formula I wherein R 1 denotes hydrogen and vice versa may be effected in separate steps as described below.
  • An isolated compound of formula I wherein R 1 denotes (C 1-8 )alkyl may be easily converted into a compound of formula I wherein R 1 denotes hydrogen as follows:
  • a compound of formula I wherein R 1 denotes (C 1-8 )alkyl is dissolved or suspended in water or in an organic solvent mixed with a little water. Acid may be added additionally, and the compound of formula I wherein R 1 denotes hydrogen and the corresponding alcohol are formed.
  • the product may precipitate, or, isolation may be effected as convential, for example by addition of an anti-solvent, optionally after removing the solvent and water.
  • Suitable solvents include water in combination with at least one alcohol, nitriles, e.g.
  • Anti-solvents include solvents for completing precipitation or enhancement of yields, such as organic solvents which are water-free, for example hydrocarbons, ketones, nitriles, ethers or esters.
  • the compound of formula I wherein R 1 denotes hydrogen may be dissolved or suspended in an alcohol or in a solvent mixture containing an alcohol, optionally adding additional acid
  • the product of formula I wherein R 1 denotes (C 1-8 )alkyl may be isolated either by simple filtration or it may be precipitated by adding an anti-solvent, optionally after concentration.
  • Suitable solvents include, for example, the corresponding alcohols; nitriles such as acetonitrile; esters such as ethyl acetate; ketones, such as acetone in the presence of the corresponding alcohol; particularly alcohols.
  • Anti-solvents are for example ethers or hydrocarbons.
  • the reaction mixture may be diluted with hydrocarbons, ketones, nitriles, ethers or esters.
  • Suitable acids include for example (strong) inorganic acids such as hydrohalic acids, nitric acid or perchloric acid and (strong) organic acids, including for example organic sulphonic acids such as benzenesulphonic acid or toluenesulphonic acid.
  • a new assymmetric centre is established in the lactol ring due to its production according to the invention.
  • mixtures of both diastereoisomers or one or the other of the diastereoisomers may be obtained.
  • the specific diastereoisomer form may be detected, for example, by 1 H-NMR.
  • the invention relates to both diastereoisomers as well as to mixtures thereof including racemic mixtures. Separation of the diastereoisomers may be carried out in conventional manner, if desired, for example by chromatography.
  • a compound of formula I wherein R 1 denotes (C 1-8 )alkyl may be converted into a compound of formula Ib wherein R e denotes (C 1-8 )alkyl by use of a base and thereafter reconverted in a compound of formula I, wherein X - is different from the original X - of the compound of formula III by use of an acid HX wherein X denotes a desired anion of an inorganic or organic acid.
  • Suitable bases include organic amines, such as arylic amines, for example pyridine, or aliphatic amines, for example triethylamine.
  • Suitable solvents for the production of a compound of formula Ib include the corresponding alcohols optionally in combination with an ester, ketone, ether or nitrile.
  • Process b) relates to the reaction of a compound of formula IV wherein R denotes a tri(C 1-8 )alkylsilyl group (which may be obtained, for example, by the process described according to EP 503 453), with a nitroso compound of formula V to give a compound of formula II in the form of a free base.
  • the reaction may be carried out in the presence of at least one strong organic base in combination with a silylation agent and a solvent.
  • Examples for a silylation agent include bistrimethylsilylacetamide, bistrimethylsilyl urea.
  • the reaction is preferably carried out in a solvent which is inert under the reaction conditions.
  • Suitable solvents include halogenated hydrocarbons, such as methylene chloride; amides, such as dimethylformamide, dimethylacetamide; ethers, such as tetrahydrofurane.
  • an epoxide it may act as a base.
  • About 1 to 1.5 mol, preferably about 1.2 mol of the organic base and about 0.5 to 2 mol, preferably about 1.5 mol of the silylation agent may be used per mol of the starting compound of formula IV.
  • the chemical nature of the nitroso compound is not critical.
  • a suitable nitroso compound includes an aliphatic, aromatic or heterocyclic nitroso compound, preferably an aromatic nitroso compound, more preferably a nitrobenzene compound, such as p-nitrobenzene.
  • the nitroso comopound may be unsubstituted or in any position substituted, for example by halogen, nitro, alkyl, alkoxy, a nitrogen containing substituent or a functional group, such as carbalkoxy or carboxamido.
  • Equivalent amounts of the starting compound of formula IV and of the nitroso compound of formula V may be used. An excess of one or the other may be useful.
  • the process may be carried out within a broad temperature range, for example at a temperature of between +5 and -20°C.
  • the tri(C 1-8 )alkylsilyl groups R in a compound of formula II, thus obtained may be removed by simple hydrolysis or alcoholysis, for example by addition of an alcohol, for example an (C 1-4 )alcohol to the reaction mixture after the reaction between a compound of formula IV and formula V.
  • the desilylated imino compound of formula IIa may precipitate.
  • a compound of formula I, Ia or II obtained in free form may be converted into a compound of formula I, Ia or II, respectively, in salt form and vice versa in conventional manner.
  • Process c) is a hydrolysis reaction and results in a compound of formula Ia, wherein R denotes hydrogen in salt form, i.e . a compound of formula Ic.
  • Hydrolysis is carried out by treating a compound of formula II or of formula IIa with at least one strong inorganic acid, such as hydrochloric acid, hydrobromic acid, sulphuric acid, or at least one strong organic acid, such as a sulphonic acid, for example p-toluene sulfonic acid or methan sulfonic acid in an aqueous solvent or solvent mixture.
  • Solvents for hydrolysis reactions are known.
  • the process may be carried out either after isolation of a compound of formula II, respectively IIa, or directly in the reaction mixture wherein a compound of formula II was prepared.
  • a compound of formula Ic may be separated from the amine which is produced in the course of the reaction, for example by extraction of the aqueous reaction mixture with a water-immiscible solvent or by precipitation of the compound of formula Ic, for example by use of an anti-solvent which is water miscible, such as acetone, acetonitrile or isopropanol, if desired, after concentration by removing of at least a part of the solvent.
  • Isolation of a compound of formula Ic may be carried out for example by lyophilisation.
  • Process d) is directed to the production of the aldehyde of formula Ia and concerns a process which influences the tautomeric equilibrium between a compound of formula Ic and a compound of formula Ia.
  • a compound of formula Ic for example produced according to process a) or process c) may be used in the production of a compound of formula Ia.
  • An isolated compound of formula Ic, or, a compound of formula Ic formed in situ in the process of its preparation may be used.
  • the reaction may be carried out by addition of a base to the reaction mixture, preferably in the presence of a solvent or solvent mixture which is inert under the reaction conditions.
  • Suitable inert solvent include for example alcohols, such as methanol, nitriles, such as acetonitrile, ketones, such as acetone, esters or halogenated solvents, water or a mixture of solvents mentioned above.
  • Suitable bases include aliphatic or aromatic amines, the conjugated acids of which being soluble in the solvent used, for example triethylamine or pyridine. If water is used as solvent or, if water is present in the reaction mixture, an inorganic base, such as a carbonate or a hydrogen carbonate or the salt of a weak organic acid, such as sodium acetate may be used.
  • the base may be used in an approximately equivalent amount or in an excess, preferably in an approximately equivalent amount in respect to a compound of formula Ic used as starting material.
  • the aminoaldehyde carboxylic acid of formula Ia wherein R denotes hydrogen formed during the reaction may be isolated, for example by filtration if it is insoluble in the reaction medium.
  • a compound of formula Ia wherein R denotes a tri(C 1-8 )alkylsilyl group may be obtained from a compound of formula Ia wherein R denotes hydrogen or from a compound of formula Ic by silylation with a silylation agent.
  • Silylation agents include for example N,O bis-trialkylsilylacetamides, such as N,O-bis-trimethylsilylacetamide, N,O-bis-trimethylsilylformamide, N,O-bistrimethylsilyltrifluoracetamide and silylated ureas such as bis-trimethylsilylurea.
  • Suitable solvents include solvents which are inert toward silylation agents, for example halogenated hydrocarbons; nitriles, such as acetonitrile; esters, for example acetic acid ethyl ester; ethers, for example tert.butyl-methylether, tetrahydrofuran; epoxides, such as propylene oxide, butylene oxide.
  • the amount of the silylation agent may be preferably sufficient for approximately quantitative silylation of the carboxylic acid in position 4 as well as of the amine group in position 7. It has been found that thus a self-condensation of the free amine group with the aldehyde function may be avoided.
  • two to three mol of silylation agent may be used per mol of the starting material which is to be silylated.
  • the compound of formula Ia wherein R denotes hydrogen is surprisingly sufficiently stable to be isolated from aqueous solution; if desired, it may be converted into a bissilyl compound of formula I wherein R 1 denotes a silyl group by addition of a silylation agent.
  • a compound of formula I wherein R 1 denotes a silyl group is stable and may be further reacted in solution, if desired.
  • Compounds of formula I and of formula Ia are thus indicated for use in the production of antibiotics, for example by acylation at the amine group in position 7 or by reaction of the aldehyde group in position 3 with an aldehyde reagent. These reactions may be carried out in conventional manner.
  • Suitable acylation agents include, for example, activated carboxylic acids, such as acid chlorides, mixed anhydrides or active esters. Acylation may be carried out in conventional manner. Isolation of the N-acylated compound may be carried out as conventional, for example by desilylating with a protic solvent, for example an alcohol or water. The acylated compound may precipitate directly, or may be precipitated with an anti-solvent or in the form of the carboxylic acid salt. It may also be isolated in the form of the corresponding carboxylic acid ester, for example as benzhydrylester, by reacting the desilylated product with diphenyldiazomethane.
  • the aldehyde function of the compound of formula Ia wherein R is as defined above as well as the latent aldehyde function of its tautomeric form of formula I, wherein R 1 denotes hydrogen may be reacted with aldehyde reagents.
  • a conventional nitrogen containing aldehyde reagent such as an amine, hydroxylamine, hydrazine, guanidine or semi-carbazide, all of the educts of formula Ia wherein R is as defined above; or, of formula I wherein R 1 denotes hydrogen; may be used.
  • R 1 denotes a tri(C 1-8 )alkylsilyl group
  • both groups, i.e . the amine group in position 7 as well as the carboxylic acid group in position 4 of the ring system should be nearly quantitatively silylated because it was found that monosilylation at the carboxylic acid group may result in polymerisation and decomposition.
  • the aldehyde-reagent may be conveniently employed as its silylated analogue.
  • the reaction with the corresponding aldehyde reagent is carried out for example in solvents mentioned above for silylation.
  • the solubility of the aldehyde-reagent may be increased by adding a dipolar, aprotic solvent, such as DMF or sulpholane.
  • the reaction temperature is not critical.
  • the product may precipitate.
  • a suitable solvent directly with the desired aldehyde-reagent. If, for example, a nitrogen containing aldehyde-reagent as defined above is used this may be used as free compound or as a salt thereof.
  • suitable solvents include for example water, polar organic solvents, such as organic amides, ketones, esters, halogenated hydrocarbons, alcohols, organic acids, such as acetic acid. Alcohols may particularly be used in mixture with water.
  • the reaction products may precipitate or may be isolated in conventional manner, for example, by addition of an anti-solvent or by extraction from an organic solvent or solvent mixture.
  • an acid may be added to the reaction mixture to enhance solubility of the compound of formula Ia and to increase its reactivity.
  • the reaction may be carried out in tautomeric equilibrium with the compound of formula I wherein R 1 denotes hydrogen as described above.
  • Trials to convert these hydroxylactones into a salt of the isomer 7-acylamino-3-formyl-4-carboxylic acid of formula wherein Ac is as defined above and W denotes a cation, may result in decomposition under ring opening of the labile ⁇ -lactam ring, particularly in the presence of water.
  • a compound of formula I or of formula Ia may be used as a starting material or as an intermediate in the production of cephalosporins.
  • the invention relates therefor to the use of a compound of formula Ia in the production of cephalosporins.
  • the invention relates to the use of a compound of formula I wherein R 1 denotes hydrogen ; or a free form thereof of formula Ib wherein R e denotes hydrogen; or a compound of formula Ia; in the reaction of the free or latent aldehyde function in position 3 of the ring system with a nitrogen containing aldehyde-reagent to give the corresponding product.
  • a compound of formula I or of formula Ia is suitable in the production of a compound of formula wherein either R 5 denotes hydrogen and R 6 denotes
  • Examples for hetercyclic groups include unsubstituted and substituted imidazolyl, diazolyl, triazolyl, tetrazolyl, thiazolyl, thiadiazolyl, thiatriazolyl, oxazolyl, oxydiazolyl, benzimidazolyl, benzoxazolyl, benzothiazolyl, triazolylpyridyl, purinyl, pyridyl, pyrimidinyl, pyridazinyl, pyrazolyl und triazinyl; such as unsubstituted or substituted 4-hydroxy-4-pyridon-2-yl, 1,2,3-triazolyl, 1,2,4-triazolyl, tetrazolyl, oxyzolyl, thiazolyl, 1,3,4-oxydiazolyl, 1,3,4-thiadiazolyl, 1,2,3-thiadiazolyl; particularly 1,5-dihydroxy-4-pyridon-2
  • R 5 and R 6 as part of an unsubstituted or substituted ring system which may contain hetero atoms such as nitrogen, oxygen, sulphur in each of the rings include for example uncondensed or condensed rings having 3 to 7 ring members, such as 5 or 6 ring members.
  • the rings may be unsubstituted or substituted, for example by (C 1-4 )alkyl, (C 1-4 )alkoxy, halogen, trihalo(C 1-4 )alkyl, hydroxy, oxo, mercapto, amino, carboxyl, carbamoyl, di(C 1-4 )alkykamino, carboxymethyl, carbamoylmethyl, sulfomethyl methoxycarbonylamino.
  • Second variant is the reaction of a compound of formula wherein R 12 denotes an acyl group or a carbalkoxy group and R 11 is as defined above with a Wittig reagent of formula or with a Horner reagent of formula wherein R 5 , R 6 , R 10 and Cat + are as defined above. After cleavage of the protecting groups a compound of formula VI may be obtained.
  • the second variant the reaction of a 3-formylcephem compound looks economically favorable in comparison with the first variant in respect to yields, in respect to availability of the corresponding aldehyde or ketone of formula IX (of the first variant), in respect to purities of the products or in respect to the corresponding Z/E content of the product, i.e . the 3-vinyl compounds obtainable by both variants.
  • the second variant has the following disadvantages: J.A.Webber, J.L.Ott and R.T.
  • EP 103 264 is disclosed to convert in a first step 7-[2-(2-formamidothiazol-4-yl)-2-methoximinoacetamido]-3-formyl-3-cephem-4-carboxylic acid benzhydrylester into the corresponding ⁇ -2-compound which is in a second step reacted in a Wittig reaction to give the corresponding 3-vinyl compound.
  • the 3-vinyl compound has to be purified by chromatography, oxidized to give the corresponding ⁇ -3-sulphoxide and reduced to give the desired ⁇ -3-compound.
  • the invention is therefore directed to a process for the production of a compound of formula wherein R 5 and R 6 are as defined above, by reaction of a compound of formula wherein R denotes a tri(C 1-8 )alkylsilyl group with a compound of formula or with a compound of formula wherein R 5 and R 6 are as defined above, R 10 denotes phenyl, naphtyl or (C 1-6 )alkyl, and Cat + denotes a cation of an alkali metal or the protonated form of a strong organic base, to give a compound of formula wherein R, R 5 and R 6 are as defined above and desilylating a compound of formula XIII to give a compound of formula VI.
  • the Wittig or the Horner reaction may be carried out in a very simple way.
  • N,O-bissilylilated 7-amino-3-formyl-3-cephem-4-carboxylic acid as starting material is reacted with the corresponding phosphoranylidene which is added to the starting material or the reaction is carried out in situ by addition to the starting material of a base of formula wherein R 5 , R 6 and R 10 are as defined above and Hal - denotes an halogen anion, such as chlorine, bromine, iodine, to give the corresponding ylide; or the anion of the corresponding di(C 1-8 )alkoxy(di(phenyl/naphtyl)oxy)phosphinyl compound is added to the starting material.
  • the compound of formula VI may be isolated, for example in conventional manner, i.e . by hydrolysis of the (C 1-8 )alkylsilyl groups with a protic solvent such as water or alcohol or, the compound is isolated, for example, by extraction and precipitated around the isoelectric pH.
  • Suitable solvents for the Wittig or Homer reaction include solvents which are inert toward silylation agents, such as halogenated hydrocarbons, for example methylene chloride; N,N-dialkylamides, for example DMF; nitriles, for example acetonitrile; esters, for example alkyl acetate, such as ethyl acetate; ethers, for example tetrahydrofuran or methyl-tert.butyl-ether; epoxides (which may act at that same taime also as a base), such as propylene oxid or butylene oxid; or mixtures thereof.
  • the reaction temperatures for Wittig or Homer reactions are not critical. The reaction may be carried out, for example, with cooling below or around 0°C. Depending on the ylide used lower or higher temperatures may be used.
  • Suitable bases for the in situ formation of the ylide from the corresponding phosphonium salt include for example epoxides (which may act as the same time as a solvent), such as propylene oxide; or a salt of a carboxylic acid in combination with a silylation agent.
  • the silylation agent may be used to neutralize the carboxylic acid formed in the course of the reaction as a silyl compound.
  • the stoichiometry of the aldehyde compound and the phosphoric compound which may be applied depends on the basic strength of the phosphoric compound used.
  • the aldehyde or the phosphoric compound may be used in an excess or both are used in approximately equimolar amounts. If ylides or phosphinyl anions having a high base strength are used the compound of formula Ia should rather be used in an excess than the ylide or the phosphinyl anion.
  • the compounds of formula Ia or of formula XIII have under the reaction conditions surprisingly low tendency to form ⁇ -2 compounds. No or almost no ⁇ -2 compounds may be formed if stabilized ylides are used. Additionally, ⁇ -2 compounds which might be formed in the course of the reaction are depleted in the course of work up.
  • the process according to the invention shows high trans selectivity in respect to the double bond formed during the reaction. If, for example, a compound of formula Ia is reacted with ethoxycarbonylmethylene triphenylphosphorane surprisingly only the trans compound is in praxi isolated. This is in contrast to results of S.C.M. Fell et al., J.Chem. Soc. Perkin I, 1361ff, 1991 wherein the reaction of 7-phenylacetamido-3-formyl-3-cephem-4-carboxylic acid benzhydrylester with methoxycarbonylmethylene triphenylphosphorane results in a product containing about 8 to 9% of the cis isomer.
  • Example 1 Hydrochloride of 6-amino-1,4,5a,6-tetrahydro-3-hydroxy-1,7-dioxo-3H,7H-aceto[2,1-b]furo[3,4-d][1,3]thiazine (hydroxylactone of the hydrochloride of 7-amino-3-formyl-3-cephem-4-carboxylic acid) (process a)
  • the precipitated product is filtered under N 2 , washed with a little methyl tert.butyl ether and acetonitrile, and dried in a vacuum drying chamber over a drying agent.
  • the hydrochloride of 6-amino-1,4,5a,6-tetrahydro-3-hydroxy-1,7-dioxo-3H,7H-aceto[2,1-b]furo[3,4-d][1,3]thiazine is obtained in the form of a white powder with a purity (HPLC) of over 95%.
  • Example 2 Tosylate of 6-amino-1,4,5a,6-tetrahydro-3-hydroxy-1,7-dioxo-3H,7H-aceto[2,1-b]furo[3,4-d][1,3]thiazine (hydroxylactone of the tosylate of 7-amino-3-formyl-3-cephem-4-carboxylic acid) (process a)
  • Example 3 Hydrochloride of 6-amino-1,4,5a,6-dihydro-3-methoxy-1,7-dioxo-3H,7H-aceto[2,1-b]furo[3,4-d][1,3]thiazine (methoxylactone of the hydrochloride of 7-amino 3-formyl-3-cephem-4-carboxylic acid) (process a)
  • Example 4 Hydrochloride of 6-amino-1,4,5a,6-tetrahydro-3-methoxy-1,7-dioxo-3H,7H-aceto[2,1-b]furo[3,4-d][1,3]thiazine (methoxylactone of the hydrochloride of 7-amino-3-formyl-3-cephem-4-carboxylic acid)(process a)
  • Example 5 Hydrochloride of 6-amino-1,4,5a,6-tetrahydro-3-methoxy-1,7-dioxo-3H,7H-aceto[2,1-b]furo[3,4-d][1,3]thiazine (methoxylactone of the hydrochloride of 7-amino-3-formyl-3-cephem-4-carboxylic acid)
  • Example 6 Hydrochloride of 6-amino-1,4,5a,6-tetrahydro-3-ethoxy-1,7-dioxo-3H,7H-aceto[2,1-b]furo[3,4-d][1,3]thiazine (ethoxylactone of the hydrochloride of 7-amino-3-formyl-3-cephem-4-carboxylic acid)
  • the precipitate is a mixture of the diastereoisomers of the hydrochloride of 6-amino-1,4,5a,6-tetrahydro-3-ethoxy-1,7-dioxo-3H,7H-aceto[2,1-b]furo[3,4-d][1,3]thiazine in respect to position 3 of ca. 9:11.
  • Example 7 Hydrochloride of 6-amino-1,4,5a,6-tetrahydro-3-propoxy-1,7-dioxo-3H,7H-aceto[2,1-b]furo[3,4-d][1,3]thiazine (propoxylactone of the hydrochloride of 7-amino-3-formyl-3-cephem-4-carboxylic acid)
  • the precipitate is a mixture of the diastereoisomers of the hydrochloride of 6-amino-1,4,5a,6-tetrahydro-3-propoxy-1,7-dioxo-3H,7H-aceto[2,1-b]furo[3,4-d)[1,3]thiazine in respect to position 3 of ca. 1:1.
  • Example 8 Tosylate of 6-amino-1,4,5a,6-tetrahydro-3-methoxy-1,7-dioxo-3H,7H-aceto[2,1-b]furo[3,4-d][1,3]thiazine (methoxylactone of the tosylate of 7-amino-3-formyl-3-cephem-4-carboxylic acid)
  • Example 10 Hydrochloride of 6-amino-1,4,5a,6-tetrahydro-3-hydroxy-1,7-dioxo-3H,7H-aceto[2,1-b]furo[3,4-d][1,3]thiazine (hydroxylactone of the hydrochloride of 7-amino-3-formyl-3-cephem-4-carboxylic acid) (process c)
  • Example 11 Hydrochloride of 6-amino-1,4,5a,6-tetrahydro-3-hydroxy-1,7-dioxo-3H,7H-aceto[2,1-b]furo[3,4-d][1,3]thiazine (hydroxylactone of the hydrochloride of 7-amino-3-formyl-3-cephem-4-carboxylic acid) (processes b + c)
  • a solution of 956 g 7-amino-3-[(E/Z)-prop-1-en-1-yl]-3-cephem-4-carboxylic acid-hydrochloride in 7 1 methanol is ozonized as described in example 1(temperature: -50°; 10 1 oxygen containing ca. 4 percent by volume of ozone/minute are introduced). Ozonolysis is terminated after ca. 4 hours. 40 1 of N 2 are passed through the reaction mixture in ca. 5 minutes. The reaction temperature is raised to -35° and 5.6 1 of an aqueous, 5 % catifact solution of sodium acetate are added whilst stirring without further cooling.
  • Compounds of formulae I, Ia and II may be used for the production of cephalosporins, for example for the production of
  • a suspension of 1 g of 6-amino-1,4,5a,6-tetrahydro-3-hydroxy-1,7-dioxo-3H,7H-aceto[2,1-b]furo[3,4-d][1,3]thiazine in 10 ml of methylenchloride is treated at room temperature with 3.6 ml BSA.
  • the reaction mixture is stirred for 10 minutes at room temperature.
  • a clear solution is obtained containing N,O-bistrimethylsilyl-7-amino-3-formyl-3-cephem-4-carboxylic acid.
  • the solution is cooled to 0° and treated with 0.37 g of lithium acetate and 1.5 ml of DMF.
  • a suspension of 1 g of 7-amino-3-formyl-3-cephem-4-carboxylic acid in 10 ml of propylene oxide is treated at room temperature with 4.7 ml of BSA.
  • the reaction mixture is stirred at room temperature for 10 minutes.
  • a clear solution is obtained containing N,O-bistrimethylsilyl-7-amino-3-formyl-3-cephem-4-carboxylic acid.
  • the solution is cooled to 0° and treated with 1.45 g of ethoxycarbonylmethyltriphenylphosphonium chloride. After 44 hours stirring at 0° the reaction mixture is worked up as described in example 23).
  • a suspension of 1 g of 7-amino-3-formyl-3-cephem-4-carboxylic acid in 10 ml of propylene oxide is treated at room temperature with 4.7 ml of BSA.
  • the reaction mixture is stirred at room temperature for 10 minutes.
  • a clear solution is obtained containing N,O-bistrimethylsilyl-7-amino-3-formyl-3-cephem-4-carboxylic acid.
  • the solution is cooled to 0° and treated with 1.32 g of ethoxycarbonylmethyltriphenylphosphorane. After 24 hours stirring at 0° the reaction mixture is worked up as described in example 23).
  • a suspension of 200 mg of 7-amino-3-formyl-3-cephem-4-carboxylic acid in 2 ml of THF is treated at room temperature with 1.08 ml of BSA.
  • the reaction mixture is stirred at room temperature for 10 minutes.
  • a clear solution is obtained containing N,O-bistrimethylsilyl-7-amino-3-formyl-3-cephem-4-carboxylic acid.
  • the solution is cooled to 0° and treated dropwise with a mixture of 197 mg of diethylethoxycarbonylmethylphosphonate and 98 mg of potassium tert.butylate in 2 ml of THF. After 18 hours stirring at 0° the reaction mixture is worked up as described in example 23).
  • a suspension of 300 mg of 7-amino-3-formyl-3-cephem-4-carboxylic acid in 3 ml of propylene oxide is treated at room temperature with 1.4 ml of BSA.
  • the reaction mixture is stirred at room temperature for 10 minutes.
  • a clear solution is obtained containing N,O-bistrimethylsilyl-7-amino-3-formyl-3-cephem-4-carboxylic acid.
  • the solution is cooled to 0° and treated with 377 mg of N,N-diethylcarbamoylmethylenphosphorane. After 24 hours stirring at 0° the reaction mixture is worked up as described in example 23).
  • a suspension of 0.3 g of 7-amino-3-formyl-3-cephem-4-carboxylic acid in 3 ml of THF is treated at room temperature with 1.4 ml of BSA.
  • the reaction mixture is stirred at room temperature for 10 minutes.
  • a clear solution is obtained containing N,O-bistrimethylsilyl-7-amino-3-formyl-3-cephem-4-carboxylic acid.
  • the solution is cooled to 0° and treated with a solution of 0.53 g of phenylmethylene triphenylphosphorane in 4 ml of THF. After 24 hours stirring at 0° the reaction mixture is worked up as described in example 23).
  • a mixture of the isomers (6 parts Z-isomer and 11 parts E-isomer) is obtained.
  • 0.34 g of triethylamine are added dropwise at 0° to a suspension of 0.5 g of 7-amino-3-[(E)-3-ethoxy-3-oxo-1-propenyl)-3-cephem-4-carboxylic acid and 0.67 g of (2-amino-4-thiazolyl)(methoxyimino)acetic acid mercaptobenzthiazolyl ester in 5 ml ethanol.
  • the reaction mixture is stirred for 5 hours at this temperature. A clear solution is obtained.
  • the pH is adjusted to about 2.5 by dropwise addition of diluted hydrochloric acid. A precipitate is formed. After 1 hour stirring at 0° the crystal suspension is filtered and the filter cake is washed with ethanol.
  • a suspension of 126 mg of 7-amino-3-formyl-3-cephem-4-carboxylic acid in 2 ml of propylene oxide is treated at room temperature with 572 mg of BSA.
  • the reaction mixture is stirred at room temperature for 10 minutes.
  • a clear solution is obtained containing N,O-bistrimethylsilyl-7-amino-3-formyl-3-cephem-4-carboxylic acid.
  • the solution is cooled to 0° and treated with 152 mg of N-(2,2,2-trifluorethyl)-pyrrolidine-2-on-3-yl-triphenyl-phosphonium-bromide. After 24 hours stirring at 0° the reaction mixture is worked up as described in example 23).
  • a suspension of 300 mg of 7-amino-3-formyl-3-cephem-4-carboxylic acid in 3 ml of propylene oxide is treated at room temperature with 1.6 ml of BSA.
  • the reaction mixture is stirred at room temperature for 10 minutes.
  • a clear solution is obtained containing N,O-bistrimethylsilyl-7-amino-3-formyl-3-cephem-4-carboxylic acid.
  • the solution is cooled to 0° and treated with 445 mg of N-methylpyrrolidine-2-on-3-yl-methylene triphenylphosphorane. After 15 hours stirring at 0° the reaction mixture is worked up as described in example 23).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Cephalosporin Compounds (AREA)
EP95917948A 1994-04-25 1995-04-24 Cephalosporin synthesis Expired - Lifetime EP0757691B1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
SI9530680T SI0757691T1 (en) 1994-04-25 1995-04-24 Cephalosporin synthesis
AT95917948T ATE244247T1 (de) 1994-04-25 1995-04-24 Cephalosporinsynthese
EP03012877A EP1340762B1 (en) 1994-04-25 1995-04-24 Cephalosporin synthesis

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
AT85894 1994-04-25
AT858/94 1994-04-25
AT85794 1994-04-25
AT0085894A AT402072B (de) 1994-04-25 1994-04-25 Cephemderivate und verfahren zu ihrer herstellung
AT85794A AT402927B (de) 1994-04-25 1994-04-25 Neue cefalosporinderivate, verfahren zu ihrer herstellung und ihre verwendung
AT857/94 1994-04-25
AT1066/94 1994-05-25
AT0106694A AT402929B (de) 1994-05-25 1994-05-25 Neue cephalosporinderivate, verfahren zu ihrer herstellung und ihre verwendung
AT106694 1994-05-25
PCT/EP1995/001538 WO1995029182A1 (en) 1994-04-25 1995-04-24 Cephalosporin synthesis

Related Child Applications (1)

Application Number Title Priority Date Filing Date
EP03012877A Division EP1340762B1 (en) 1994-04-25 1995-04-24 Cephalosporin synthesis

Publications (2)

Publication Number Publication Date
EP0757691A1 EP0757691A1 (en) 1997-02-12
EP0757691B1 true EP0757691B1 (en) 2003-07-02

Family

ID=27146806

Family Applications (2)

Application Number Title Priority Date Filing Date
EP03012877A Expired - Lifetime EP1340762B1 (en) 1994-04-25 1995-04-24 Cephalosporin synthesis
EP95917948A Expired - Lifetime EP0757691B1 (en) 1994-04-25 1995-04-24 Cephalosporin synthesis

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP03012877A Expired - Lifetime EP1340762B1 (en) 1994-04-25 1995-04-24 Cephalosporin synthesis

Country Status (26)

Country Link
US (4) US5856474A (zh)
EP (2) EP1340762B1 (zh)
JP (1) JP3302369B2 (zh)
KR (1) KR100487833B1 (zh)
CN (3) CN1145628C (zh)
AT (2) ATE244247T1 (zh)
AU (1) AU686380B2 (zh)
BR (1) BR9507512A (zh)
CA (2) CA2180829C (zh)
CY (1) CY2494B1 (zh)
CZ (1) CZ297565B6 (zh)
DE (2) DE69536140D1 (zh)
DK (1) DK0757691T3 (zh)
ES (1) ES2202362T3 (zh)
FI (1) FI963761A (zh)
HU (3) HU0102726D0 (zh)
MX (1) MX9604353A (zh)
NO (1) NO318020B1 (zh)
NZ (2) NZ329984A (zh)
PL (2) PL182864B1 (zh)
PT (1) PT757691E (zh)
RU (2) RU2150471C1 (zh)
SI (1) SI0757691T1 (zh)
SK (1) SK285948B6 (zh)
TW (1) TW427992B (zh)
WO (1) WO1995029182A1 (zh)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6248881B1 (en) * 1991-03-08 2001-06-19 Biochemie Gmbh Intermediates and process for the production of 3-vinyl cephalosporins
US5856474A (en) * 1994-04-25 1999-01-05 Biochemie Gesellschaft, M.B.H. Cephalosporin synthesis
DK1067131T3 (da) * 1999-07-05 2007-12-10 Basilea Pharmaceutica Ag Hidtil ukendt fremgangsmåde til fremstilling af cephalosporinderivater
US6544555B2 (en) 2000-02-24 2003-04-08 Advancis Pharmaceutical Corp. Antibiotic product, use and formulation thereof
US7527807B2 (en) * 2000-06-21 2009-05-05 Cubist Pharmaceuticals, Inc. Compositions and methods for increasing the oral absorption of antimicrobials
KR100858945B1 (ko) 2000-06-21 2008-09-17 큐비스트 파마슈티컬즈 인코포레이티드 항미생물제의 경구 흡수를 개선하기 위한 조성물 및 방법
US20020068078A1 (en) 2000-10-13 2002-06-06 Rudnic Edward M. Antifungal product, use and formulation thereof
WO2005009368A2 (en) 2003-07-21 2005-02-03 Advancis Pharmaceutical Corporation Antibiotic product, use and formulation thereof
WO2005009365A2 (en) 2003-07-21 2005-02-03 Advancis Pharmaceutical Corporation Antibiotic product, use and formulation thereof
WO2005009364A2 (en) 2003-07-21 2005-02-03 Advancis Pharmaceutical Corporation Antibiotic product, use and formulation thereof
WO2005016311A1 (en) 2003-08-11 2005-02-24 Advancis Pharmaceutical Corporation Robust pellet
AU2004264356B2 (en) 2003-08-12 2011-01-27 Shionogi, Inc. Antibiotic product, use and formulation thereof
WO2005023184A2 (en) 2003-08-29 2005-03-17 Advancis Pharmaceuticals Corporation Antibiotic product, use and formulation thereof
WO2005027877A1 (en) 2003-09-15 2005-03-31 Advancis Pharmaceutical Corporation Antibiotic product, use and formulation thereof
WO2006014427A1 (en) 2004-07-02 2006-02-09 Advancis Pharmaceutical Corporation Tablet for pulsed delivery
US8968781B2 (en) * 2005-04-29 2015-03-03 Cubist Pharmaceuticals, Inc. Therapeutic compositions
US8778924B2 (en) 2006-12-04 2014-07-15 Shionogi Inc. Modified release amoxicillin products
US8357394B2 (en) 2005-12-08 2013-01-22 Shionogi Inc. Compositions and methods for improved efficacy of penicillin-type antibiotics
US8299052B2 (en) 2006-05-05 2012-10-30 Shionogi Inc. Pharmaceutical compositions and methods for improved bacterial eradication
US9096610B2 (en) * 2009-05-25 2015-08-04 Sandoz Ag Method for the production of ceftobiprole medocaril
ITMI20131820A1 (it) * 2013-11-04 2015-05-05 Laboratorio Chimico Int Spa Procedimento per la preparazione di olopatadina
CN109180704B (zh) * 2018-11-19 2020-06-05 齐鲁安替制药有限公司 一种头孢妥仑匹酯的合成方法
CA3147354A1 (en) 2019-09-06 2021-03-11 Rosemarie Riedl Siderophore cephalosporin conjugates and uses thereof

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3351596A (en) * 1966-09-21 1967-11-07 Lilly Co Eli 3-formyl cephalosporins
CH556876A (de) * 1971-05-19 1974-12-13 Ciba Geigy Ag Verfahren zur herstellung von cephalosporansaeurederivaten.
CH546794A (de) * 1970-06-18 1974-03-15 Ciba Geigy Ag Verfahren zur herstellung von cephalosporansaeurederivaten.
US3674784A (en) * 1970-07-27 1972-07-04 Lilly Co Eli 3-formyl cephalosporin sulfoxides
GB1368231A (en) * 1970-07-31 1974-09-25 Glaxo Lab Ltd Thio-substituted azetidinones and thiazolino azetidinones
US3880851A (en) * 1971-12-24 1975-04-29 Lilly Co Eli Antibiotic method
CA1109860A (en) 1972-12-08 1981-09-29 Shinji Terao Process for producing lactol-type cephalosporins
JPS49109391A (zh) * 1973-02-28 1974-10-17
JPS5093989A (zh) * 1973-10-25 1975-07-26
JPS5071691A (zh) * 1973-11-02 1975-06-13
JPS5129492A (en) * 1974-09-04 1976-03-12 Sankyo Co Sefuarosuhorinjudotai no seiho
GB1447959A (en) * 1975-02-27 1976-09-02 Shionogi & Co Process for preparing cephem aldehyde derivatives
US4101658A (en) * 1975-06-04 1978-07-18 Shionogi & Co., Ltd. Antibacterial hydrazono cephalosporins
GB8821797D0 (en) * 1988-09-16 1988-10-19 Beecham Group Plc Novel compounds
JPH0347187A (ja) 1989-04-12 1991-02-28 Yamanouchi Pharmaceut Co Ltd 新規なセファロスポリン誘導体
JP2895900B2 (ja) * 1990-03-08 1999-05-24 大塚化学株式会社 3―ホルミルセフエム誘導体の製造法
AT400436B (de) * 1992-11-10 1995-12-27 Biochemie Gmbh Neues verfahren zur herstellung von 3-vinylcephalosporinverbindungen
DE69231815T2 (de) * 1991-03-08 2001-09-27 Biochemie Gmbh Verfahren zur Herstellung von Cephalosporinen und Zwischenprodukte in diesem Verfahren
DK0620225T3 (da) 1993-04-16 2003-03-17 Basilea Pharmaceutica Ag Cephalosporinderivater
US5856474A (en) * 1994-04-25 1999-01-05 Biochemie Gesellschaft, M.B.H. Cephalosporin synthesis

Also Published As

Publication number Publication date
SK135796A3 (en) 1997-05-07
CN1146770A (zh) 1997-04-02
FI963761A0 (fi) 1996-09-20
WO1995029182A1 (en) 1995-11-02
ATE244247T1 (de) 2003-07-15
KR970702284A (ko) 1997-05-13
NO964493L (no) 1996-10-23
JPH09512259A (ja) 1997-12-09
SK285948B6 (sk) 2007-11-02
CN1344720A (zh) 2002-04-17
US5856474A (en) 1999-01-05
EP0757691A1 (en) 1997-02-12
DE69531203D1 (en) 2003-08-07
AU686380B2 (en) 1998-02-05
CN1145628C (zh) 2004-04-14
HU0102725D0 (en) 2001-08-28
PL182864B1 (pl) 2002-03-29
FI963761A (fi) 1996-09-20
RU2150471C1 (ru) 2000-06-10
NO964493D0 (no) 1996-10-23
PL184773B1 (pl) 2002-12-31
CZ310696A3 (en) 1997-01-15
JP3302369B2 (ja) 2002-07-15
US6034237A (en) 2000-03-07
AU2407295A (en) 1995-11-16
HU0102726D0 (en) 2001-08-28
HUT75229A (en) 1997-04-28
CN1145629C (zh) 2004-04-14
US6063917A (en) 2000-05-16
DK0757691T3 (da) 2003-10-27
KR100487833B1 (ko) 2005-10-14
CN1326935A (zh) 2001-12-19
CA2180829C (en) 2008-06-03
EP1340762B1 (en) 2011-02-16
CY2494B1 (en) 2005-09-02
CN1092662C (zh) 2002-10-16
CA2533837A1 (en) 1995-11-02
PL316661A1 (en) 1997-02-03
SI0757691T1 (en) 2003-12-31
ES2202362T3 (es) 2004-04-01
CZ297565B6 (cs) 2007-02-07
DE69536140D1 (de) 2011-03-31
EP1340762A1 (en) 2003-09-03
BR9507512A (pt) 1997-09-02
MX9604353A (es) 1997-06-28
DE69531203T2 (de) 2004-04-22
HU9602940D0 (en) 1996-12-30
ATE498627T1 (de) 2011-03-15
TW427992B (en) 2001-04-01
RU2225411C2 (ru) 2004-03-10
US6093813A (en) 2000-07-25
CA2180829A1 (en) 1995-11-02
PT757691E (pt) 2003-11-28
NZ329984A (en) 1998-06-26
NZ285084A (en) 1998-05-27
NO318020B1 (no) 2005-01-24

Similar Documents

Publication Publication Date Title
EP0757691B1 (en) Cephalosporin synthesis
MXPA96004353A (en) Sistensis de cefalospori
EP0503453B1 (en) New process for the production of cephalosporines and novel intermediates in this process
RU2056425C1 (ru) Производные цефалоспорина или их фармацевтически приемлемые кислотно-аддитивные соли и способы их получения
GB2173798A (en) Cephalosporanic acid derivatives
JPH0723379B2 (ja) セフエム化合物の製造方法
EP0175814B1 (en) Process for preparing cephem derivatives
JPH07108896B2 (ja) アミノ―ベーターラクタム酸塩およびその製造方法
EP0791597A1 (en) Method for manufacture of cephalosporins and intermediates thereof
KR800001554B1 (ko) 세펨유도체의 제조방법
CA2001642A1 (en) Penicillanic acid derivatives
KR800000792B1 (ko) 세펨 유도체의 제법
HU205935B (en) Process for producing cepheme-derivatives
JPH05331174A (ja) 7−アシル−3−置換カルバモイルオキシセフェム化合物およびその製造法

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19960712

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LI LU NL PT SE

AX Request for extension of the european patent

Free format text: SI PAYMENT 960712

17Q First examination report despatched

Effective date: 19990616

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LI LU NL PT SE

AX Request for extension of the european patent

Extension state: SI

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 69531203

Country of ref document: DE

Date of ref document: 20030807

Kind code of ref document: P

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: NOVARTIS AG

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: SANDOZ GMBH

NLT2 Nl: modifications (of names), taken from the european patent patent bulletin

Owner name: SANDOZ GMBH

REG Reference to a national code

Ref country code: GR

Ref legal event code: EP

Ref document number: 20030404840

Country of ref document: GR

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2202362

Country of ref document: ES

Kind code of ref document: T3

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20040405

REG Reference to a national code

Ref country code: CH

Ref legal event code: PUE

Owner name: SANDOZ AG

Free format text: SANDOZ G.M.B.H#BIOCHEMIESTRASSE10#6250 KUNDL (AT) -TRANSFER TO- SANDOZ AG#LICHTSTRASSE 35#4056 BASEL (CH)

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

REG Reference to a national code

Ref country code: SI

Ref legal event code: SP73

Owner name: SANDOZ AG; CH

Effective date: 20041015

NLS Nl: assignments of ep-patents

Owner name: SANDOZ AG

NLT1 Nl: modifications of names registered in virtue of documents presented to the patent office pursuant to art. 16 a, paragraph 1

Owner name: SANDOZ GMBH

REG Reference to a national code

Ref country code: SI

Ref legal event code: IF

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

Ref country code: FR

Ref legal event code: CD

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 20070412

Year of fee payment: 13

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

REG Reference to a national code

Ref country code: SI

Ref legal event code: SP73

Owner name: NABRIVA THERAPEUTICS FORSCHUNGS GMBH; AT

Effective date: 20070125

NLS Nl: assignments of ep-patents

Owner name: NABRIVA THERAPEUTICS FORSCHUNGS GMBH

Effective date: 20070323

BECA Be: change of holder's address

Owner name: *NABRIVA THERAPEUTICS FORSCHUNGS G.M.B.H.BRUNNERST

Effective date: 20060131

BECH Be: change of holder

Owner name: *NABRIVA THERAPEUTICS FORSCHUNGS G.M.B.H.

Effective date: 20060131

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IE

Payment date: 20090421

Year of fee payment: 15

Ref country code: DK

Payment date: 20090415

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20090416

Year of fee payment: 15

Ref country code: PT

Payment date: 20090413

Year of fee payment: 15

Ref country code: NL

Payment date: 20090415

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20090528

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GR

Payment date: 20090427

Year of fee payment: 15

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

Ref country code: FR

Ref legal event code: CD

Ref country code: FR

Ref legal event code: CA

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080424

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20100331

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20100506

Year of fee payment: 16

Ref country code: ES

Payment date: 20100426

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20100424

Year of fee payment: 16

Ref country code: DE

Payment date: 20100423

Year of fee payment: 16

Ref country code: AT

Payment date: 20100430

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20100423

Year of fee payment: 16

BERE Be: lapsed

Owner name: *NABRIVA THERAPEUTICS FORSCHUNGS G.M.B.H.

Effective date: 20100430

REG Reference to a national code

Ref country code: PT

Ref legal event code: MM4A

Free format text: LAPSE DUE TO NON-PAYMENT OF FEES

Effective date: 20101025

REG Reference to a national code

Ref country code: NL

Ref legal event code: V1

Effective date: 20101101

EUG Se: european patent has lapsed
REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101101

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100426

REG Reference to a national code

Ref country code: SI

Ref legal event code: KO00

Effective date: 20101210

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101025

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100430

Ref country code: GR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100503

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 69531203

Country of ref document: DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 69531203

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20110424

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 244247

Country of ref document: AT

Kind code of ref document: T

Effective date: 20110424

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20111230

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110502

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110430

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110424

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110424

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110424

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20120604

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110425

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100425

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111031