EP0722012B1 - Gleisanlage für schienengebundene Fahrzeuge - Google Patents

Gleisanlage für schienengebundene Fahrzeuge Download PDF

Info

Publication number
EP0722012B1
EP0722012B1 EP96100188A EP96100188A EP0722012B1 EP 0722012 B1 EP0722012 B1 EP 0722012B1 EP 96100188 A EP96100188 A EP 96100188A EP 96100188 A EP96100188 A EP 96100188A EP 0722012 B1 EP0722012 B1 EP 0722012B1
Authority
EP
European Patent Office
Prior art keywords
track system
support plate
track
ballast bed
edge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP96100188A
Other languages
English (en)
French (fr)
Other versions
EP0722012A1 (de
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Grotz Georg
Original Assignee
Grotz Georg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=7751180&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0722012(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Grotz Georg filed Critical Grotz Georg
Priority to DE29622835U priority Critical patent/DE29622835U1/de
Publication of EP0722012A1 publication Critical patent/EP0722012A1/de
Application granted granted Critical
Publication of EP0722012B1 publication Critical patent/EP0722012B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01BPERMANENT WAY; PERMANENT-WAY TOOLS; MACHINES FOR MAKING RAILWAYS OF ALL KINDS
    • E01B2/00General structure of permanent way
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01BPERMANENT WAY; PERMANENT-WAY TOOLS; MACHINES FOR MAKING RAILWAYS OF ALL KINDS
    • E01B1/00Ballastway; Other means for supporting the sleepers or the track; Drainage of the ballastway
    • E01B1/008Drainage of track
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01BPERMANENT WAY; PERMANENT-WAY TOOLS; MACHINES FOR MAKING RAILWAYS OF ALL KINDS
    • E01B19/00Protection of permanent way against development of dust or against the effect of wind, sun, frost, or corrosion; Means to reduce development of noise
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01BPERMANENT WAY; PERMANENT-WAY TOOLS; MACHINES FOR MAKING RAILWAYS OF ALL KINDS
    • E01B3/00Transverse or longitudinal sleepers; Other means resting directly on the ballastway for supporting rails
    • E01B3/28Transverse or longitudinal sleepers; Other means resting directly on the ballastway for supporting rails made from concrete or from natural or artificial stone
    • E01B3/38Longitudinal sleepers; Longitudinal sleepers integral or combined with tie-rods; Combined longitudinal and transverse sleepers; Layers of concrete supporting both rails
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01FADDITIONAL WORK, SUCH AS EQUIPPING ROADS OR THE CONSTRUCTION OF PLATFORMS, HELICOPTER LANDING STAGES, SIGNS, SNOW FENCES, OR THE LIKE
    • E01F8/00Arrangements for absorbing or reflecting air-transmitted noise from road or railway traffic
    • E01F8/0005Arrangements for absorbing or reflecting air-transmitted noise from road or railway traffic used in a wall type arrangement
    • E01F8/0017Plate-like elements
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01FADDITIONAL WORK, SUCH AS EQUIPPING ROADS OR THE CONSTRUCTION OF PLATFORMS, HELICOPTER LANDING STAGES, SIGNS, SNOW FENCES, OR THE LIKE
    • E01F8/00Arrangements for absorbing or reflecting air-transmitted noise from road or railway traffic
    • E01F8/0005Arrangements for absorbing or reflecting air-transmitted noise from road or railway traffic used in a wall type arrangement
    • E01F8/0023Details, e.g. foundations
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01BPERMANENT WAY; PERMANENT-WAY TOOLS; MACHINES FOR MAKING RAILWAYS OF ALL KINDS
    • E01B1/00Ballastway; Other means for supporting the sleepers or the track; Drainage of the ballastway
    • E01B1/001Track with ballast
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01BPERMANENT WAY; PERMANENT-WAY TOOLS; MACHINES FOR MAKING RAILWAYS OF ALL KINDS
    • E01B1/00Ballastway; Other means for supporting the sleepers or the track; Drainage of the ballastway
    • E01B1/002Ballastless track, e.g. concrete slab trackway, or with asphalt layers
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01BPERMANENT WAY; PERMANENT-WAY TOOLS; MACHINES FOR MAKING RAILWAYS OF ALL KINDS
    • E01B2204/00Characteristics of the track and its foundations
    • E01B2204/01Elastic layers other than rail-pads, e.g. sleeper-shoes, bituconcrete
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01BPERMANENT WAY; PERMANENT-WAY TOOLS; MACHINES FOR MAKING RAILWAYS OF ALL KINDS
    • E01B2204/00Characteristics of the track and its foundations
    • E01B2204/03Injecting, mixing or spraying additives into or onto ballast or underground
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01BPERMANENT WAY; PERMANENT-WAY TOOLS; MACHINES FOR MAKING RAILWAYS OF ALL KINDS
    • E01B2204/00Characteristics of the track and its foundations
    • E01B2204/07Drainage
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01BPERMANENT WAY; PERMANENT-WAY TOOLS; MACHINES FOR MAKING RAILWAYS OF ALL KINDS
    • E01B2204/00Characteristics of the track and its foundations
    • E01B2204/13Dowels for slabs, sleepers or rail-fixings

Definitions

  • the invention relates to a track system for rail-bound Vehicles, especially railways, with one Superstructure, the rails mounted on sleepers and a die Has gravel bed supporting sleepers, and with a substructure supporting the superstructure, the one the ballast bed bearing load-bearing plate made of concrete, which on is supported by an earth structure.
  • ballast track In conventional track systems is usually used as a superstructure the so-called ballast track used, in which the sleepers rest on a gravel bed. The track and the ballast bed is supported on a substructure, over which the forces exerted by the railway vehicle in be derived from the ground.
  • the ballast track has proven itself so far because it is highly flexible and Possesses adaptability and is relatively simple Way to maintain.
  • Precast concrete parts to form a support channel and arrange a ballast bed in the trough, that carries the tracks in a known manner and through the side parts of the support channel are supported laterally.
  • the precast concrete elements are on an earth structure, i.e. the processed soil, being below the Concrete slab with a formation protection layer and a frost protection layer are trained.
  • the invention has for its object a track system of the type mentioned to create a dimensionally stable Securing the rails ensures a much improved Correctability of the tracks after deformation of the subsurface or substructure and an adjustment the vibration or vibration properties to the structural conditions.
  • This task is performed on a track system Art solved according to the invention in that the support plate as a continuous belt made of in-situ concrete is trained and a thickness of at least 0.40 m having.
  • the vibration and vibration problems can be solved with the massive support plate according to the invention, the one uniform, monolithic body of large mass, a so-called mass body, according to the principle of a mass-spring system.
  • the strength of the Carrier plate is made according to the structural conditions chosen so that effective protection against shocks is achieved.
  • the at known track systems also existing formation protection layer and frost protection layer as well as if necessary Parts of the ballast bed by a suitable, permanent Binders, especially cement, glue, etc., too connected to the mass body.
  • the one from the moving trains caused dynamic loads are weight and depending on the speed via that acting as a spring Ballast bed as rapid impulses in typical frequencies forwarded to the substructure.
  • the one from the ballast bed transmitted impulses excite the mass body that ever after dimensioning the mass a change in vibration and frequency causes.
  • Natural frequency of the neighboring buildings to be protected create a coordinated vibration system, its natural frequency below the natural frequency of the vibrating parts of the structures to be protected.
  • the mass body should be below the ballast superstructure monolithically acting, connected mass are produced, preferably the formation protection layer and Frost protection layer replaced. However, it is also possible the massive base plate directly onto the formation protection layer to hang up. If necessary, the mass of the Mass body through partial bonding of the ballast and adhesive connection of this ballast body with the actual mass body enlarged.
  • the mass-spring system existing spring action results in this case from the spring components of the rail liners and the remaining unglued ballast. Preferably only the gravel edge area in the slope elements, the so-called head ballast, glued and one little surface bonding done to gravel flight to avoid. If a further enlargement of the Mass over the maximum thickness of the formation protection layer and anti-freeze layer existing layer package necessary should also be a further enlargement the strength of the mass body by lowering the Earth planum can be reached.
  • ballast superstructure it is also possible to use the conventional function of the ballast superstructure to be completely preserved and this to separate from the mass body, which is, for example, supportive also by inserting a sub-ballast mat as Insulation can be achieved.
  • mass body which is, for example, supportive also by inserting a sub-ballast mat as Insulation can be achieved.
  • mass body can also be used with appropriate insulation mats be enveloped.
  • the correctability of the track system in the event of any Deformation of the substructure or subsurface is determined by means of conventional processing measures for the ballast bed achieved to a great extent.
  • Suitable base materials for the mass body are in for example, the corresponding ones in a cost-effective manner Base layers (formation protection layer, frost protection layer), cheap rolled or broken materials, recycling material if necessary with the addition of heavy weights and in certain Cases also encapsulated contaminated materials.
  • the materials mentioned are mixed with a binder, preferably cement or bitumen, to the monolithic acting mass connected.
  • the mass body is preferred unreinforced, but has a fatigue strength that is in the range of concrete classes B15 to B25. In some areas, the strength can be increased by adding heavy weights or special insulation measures reduced and the strength, for example, by inserting reinforcement be varied or increased.
  • the substructure or subsoil essentially only has to take over a supporting function for the massive supporting plate, without the risk of water penetration or a complicated layer structure is necessary. On elaborate drainage measures can be dispensed with will. Due to the high mass of the system Principle of a mass-spring system including dynamic ones Loads and vibrations generated in frequency and Intensity changed and subdued, so that directed towards it additional measures can largely be omitted.
  • the relatively large strength of the support plate, the greater than Is 0.4 m and approximately in a range from 0.4 m to 1.4 m, and preferably about 0.7 m does not require any other frost protection measures and does that for others Systems necessary formation protection layer and / or frost protection layer superfluous.
  • the invention provides that on the outside of the support plate, upwards protruding edge caps are arranged with the Support plate a gutter-shaped receiving the ballast bed Form support body.
  • a gutter-shaped receiving the ballast bed Form support body In the case of double-track systems, on the top of the support plate between the tracks also formed an upstanding central cap be so that each track has its own gutter-shaped Support body is assigned.
  • Track systems are the sleepers in or on a ballast bed stored.
  • the dimensional stability of the ballast bed is by the shape-keeping, gutter-shaped Supported body so that excessive settlement of the Ballast bed or its evasion in the transverse direction can be avoided.
  • from the Rail operation especially at high speeds resulting transverse or lateral forces through the edge caps and / or the middle cap can be included.
  • the Edge caps and / or the middle cap can be in height vary and if necessary to the maximum bank of the Tracks or the lateral forces that occur are erected be.
  • the massive support plate is existing or new below the ballast bed building routes on earthwork sections, i.e. below of the formation in the regular cross section of railway lines installed and preferably replaces the formation protection layer there and the frost protection layer.
  • edge caps and / or the middle cap can either integrally formed on the support plate or as separate prefabricated components can be formed, the then be attached to the support plate.
  • the solid support plate is first cast in situ as in essentially continuous band, whereupon the edge caps and / or the center cap in in-situ concrete design via a positive connection with the Support plate are connected.
  • the edge caps produced as a finished part and / or the Dowel the center cap with the support plate.
  • the inner wall of the edge caps and / or the Center cap is inclined so that it is one for have a free end tapering cross-section.
  • the side of the edge caps facing the track and / or the In this way, the center cap is designed so that the inclination that they correspond to the direction of those emerging in the gravel Counteract forces vertically as far as possible can.
  • the height of the edge caps and / or the middle cap is measured depending on the ballast bed thickness to be set up and in the geometry of the overall cross section such that the support function of the ballast bed and the shear force absorption even when the track is raised to the maximum is guaranteed.
  • ballast bed to increase the lateral stability of the ballast and for vibration protection in is at least partially glued.
  • the glued Ballast body connects to the massive Support plate and the side supporting edge caps and / or the center cap is a stable, stable shape Entire system.
  • the solidified and shear resistant glued ballast can settle when the Substructure or substructure at any time according to mechanical Breaking open to be reshaped so that the rails in their position and orientation can be readjusted.
  • the support plate and the edge caps and / or the center cap usually consist of concrete, especially B15 or B25, where appropriate also processed aggregates, Recycled material or where appropriate prepared, encapsulated and suitable contaminated Materials and binders other than cement, for example Bitumen, for the production of the base plate Can find use.
  • the surface of the support plate is largely closed and water-draining. At Needs can be between the ballast bed and the supporting body, i.e. the support plate surface and the inner walls the edge caps and / or the middle cap a sub-ballast mat be inserted.
  • the possibility of only partial gluing of the ballast bed and sub-ballast mats under and to the side of the ballast opens the way to a soft, springy overall system with variable spring action.
  • the massive, preferably one-piece design of the Support plate with the side edge caps and / or the Middle cap and the resulting composite effect comes across the cross section of a single track or double track Same route as a corresponding trough or channel, in which the ballast bed, which may become a stable ballast body is glued, fits snugly and in dimensionally stable is included.
  • a double track Stretch can interact through the edge caps a corresponding trough or channel effect with the middle cap be provided for each track.
  • the invention provides that at least the top the support plate has a cross slope that is about 1:20 should be. In the case of single-track routes, one one-sided inclination may be provided.
  • the top of the stretch Support plate starting from their longitudinal median plane to both Sides has a sloping bank, so that a so-called roof pitch is realized.
  • the bank the top of the support plate provides a water drain secure on the support plate to the sides of the track system.
  • the complete covering of the substructure by the support plate offers secure protection against intrusion Water.
  • the massive design of the support plate and the edge caps offers the possibility of other route accompanying Equipment such as soundproof walls, To install cable ducts etc. on the supporting body.
  • a soundproof wall is arranged.
  • the edge caps and / or the center cap can thus be used as a support for serve the soundproofing wall, preferably with Quivers for the mounting of the holders of the soundproofing elements be equipped.
  • the Training the quiver made so that they in the Support plate into it or if necessary for a deep foundation can reach through the support plate.
  • To the Soundproof wall at an optimal distance from the rail or to be able to arrange the sound source can be provided be the edge caps and / or the center cap if necessary to broaden.
  • the edge caps and / or the center cap can be used as Foundation beams designed for soundproof walls be, which has the advantage that the edge caps and / or the middle cap with a relatively small width than continuous component over the entire length of the Track system can be trained while in the Sections in which the arrangement of a soundproof wall is necessary as the foundation beam the optimal Ensures removal of the soundproof wall from the rail. In this way, the height of the soundproof wall be kept low or optimized what is economically advantageous. In addition, the Soundproof wall outside of that to be kept free for the trains Clearance profile can be kept.
  • the soundproof wall can be made in steel or in a known manner Concrete finish can be created and preferably owns Passages arranged at certain intervals.
  • the soundproof wall inclined on the side facing the track the sound waves reflecting on the ballast bed reflecting surfaces owns.
  • the ones aimed at the ballast bed Sound waves become uneven due to the there structured surface undirected or in many reflecting different direction and that way absorbed.
  • the reflective surfaces of formed a plurality of inclined partial surfaces, wherein these can have different inclinations to the sound waves emanating from the sound source wheel-rail aim effectively at the absorbent ballast bed to be able to.
  • transverse drainage channels are over the track length at any intervals are arranged.
  • transverse cable ducts should be formed.
  • the track system according to the invention can either with a well-known, buried along the track system Cable duct, but it is also possible the longitudinal cable ducts in the Integrate support body or attach to it.
  • the cable channels are in a known manner by means of a Cover closed.
  • the edge caps preferably rest on the side facing away from the track Side of the longitudinal cable duct known Form that is either integrally formed with the edge caps can be or is attached to this.
  • the latter can, for example, by a trained on the edge cap cantilever projecting from the side can be reached, on which the cable duct is placed.
  • the tops of the Edge cap and the assigned cable duct should be together a continuous accessible area next to the track body form.
  • the Cable ducts can also be integrated in the center cap.
  • the mass body has at least on its top an inclination of preferably 1:20, for example by designing the mass body with a parallelogram-like Cross section can be achieved. At single-track routes, a one-sided incline is sufficient, while achieving sufficient Water drainage on two-track lines a roof pitch should be provided.
  • Figure 1 comprises a track system 10 for a two-track Railroad track a massive supporting body 20, the one supported on a substructure or the ground 11 massive support plate 21 and attached, lateral, includes upwardly projecting edge caps 22.
  • the Have top and bottom of the support plate 21 starting from the median longitudinal plane on both sides descending bank slope of 1:20, so that a so-called roof-shaped structure is reached.
  • the edge caps 22 stand with a projection in a rectangular groove 19 Support plate 21 in engagement, so that a positive Connection is reached.
  • the edge cap 22 also by means of a dowel 23 on the Support plate 21 may be attached.
  • the support plate 21 forms together with the edge caps 22 a trough-shaped or gutter-shaped receptacle for a ballast bed 15.
  • a sub-ballast mat 16 is inserted in the trough-shaped receptacle.
  • the ballast bed 15 is possibly to form a stable in itself Ballast body glued and stores sleepers 13 as well Rails 14 in a known manner.
  • the track can and thus the ballast bed especially when curved
  • the route has a bank. In this case can use the corresponding edge cap to support the ballast bed also be elevated on the elevated side.
  • a transverse drain channel 18 is formed, that reliably ensures drainage.
  • the track system according to Figure 2 corresponds in all essentials Points of the track system according to Figure 1, however here additionally provided that on the essentially flat top 22b of the edge cap 22 a soundproof wall 25 is arranged and attached.
  • a soundproof wall 25 is arranged and attached.
  • the illustration on the left in FIG. 2 is Soundproof wall 25 in the opposite of the embodiment anchored widened edge cap 22 according to FIG. 1, while according to the illustration on the right Figure 2 laterally on the outside of the edge cap 22
  • Foundation beam 12 is attached in which a foundation quiver 26 to accommodate soundproof wall cassettes or -panels is provided, optionally with a through the deep foundation 27 leading through the support plate 21 can be used.
  • FIG 7 is an embodiment of an effective Soundproof wall 25 shown in steel.
  • the soundproof wall 25 consists of one to be fastened Individual panels 25a and 25b, the lower one Panels 25a over a base plate 28 on the edge cap 22 attached or by supports in the quiver foundations is held.
  • the panels 25a and 25b each have several inclined ones Reflection surfaces 28a and 28b, the surface normal in the is essentially directed to the ballast bed.
  • the of the sound source wheel-rail outgoing sound waves are reflected by the reflection surfaces 28a and 28b in the Reflected area of the absorbent ballast bed.
  • the upper panels 25b have four smaller ones inclined reflection surfaces 28b, while the lower Panels 25a has two larger reflection surfaces 25a, the reflective surfaces 28a of the lower panels 25a less inclination than the reflective surfaces 28b of FIG have upper panels 25b to in this way Adaptation to the different angles of incidence of sound waves emanating from the wheel-rail sound source to reach the soundproof wall 25.
  • the support plate 21 as a continuous band-like concrete component is formed the surface of which recesses 24 are provided serve as transverse cable ducts, which by means of a cover can be closed.
  • the edge caps 22 are made of precast concrete, lengthways the track system lined up and arranged a compensation layer 29 arranged on the support plate 21 are. In the joint area between two prefabricated edge caps are formed recesses that the transverse Form drainage channels 18.
  • FIG. 4 shows a first exemplary embodiment of an in Cable duct 17 running in the longitudinal direction of the track system.
  • the edge cap 22 with arrangement of the compensation layer 29 on the support plate 21 attached so that between the laterally outer Wall of the support plate 21 and the laterally outer wall of the Edge cap 22 formed an inwardly facing gradation on which the cable duct 17 is interposed a compensation layer 30 is arranged.
  • the cable duct 17 consists in a known manner of an open top U-shaped channel body 17a by means of a cover 17b is closable.
  • the cable duct 17 cannot in in more detail on the support plate 21 or the Edge cap 22 may be attached.
  • When assembled closes the outside of the cable duct 17 flush with the Outside of the support plate 21.
  • the Lid 17b flush with the top 22b of the edge cap 22 about.
  • the U-shaped channel body of the Cable duct 17 formed in one piece with the edge cap 22, again a cable duct 17 covering it Cover 17b is provided, the surface of which is flush with the top 22b of the edge cap 22 closes.
  • FIG. 6 is on the edge cap 22 to the outside protruding cantilever 22c molded onto which the U-shaped Channel body 17a of the cable duct 17 placed and in is not shown attached.
  • the gutter body 17a can be closed with the lid 17b, the Top of the lid 17b with the top 22b of the Edge cap 22 is flush.
  • dashed in Fig. 6 can at the free end of the cantilever 22c the projection 22d engaging behind the channel body 17a be provided, whereby the channel body 17a in the transverse direction is kept safe.
  • the track system 110 shown in FIG. 8 comprises one double-track railway line with a solid support plate 120 in the form of a mass body on a substructure or the ground 111 is supported.
  • the top and Bottom of the mass body 120 have, starting from the longitudinal median plane a sloping on both sides Bank of 1:20, so that a roof-shaped structure is reached.
  • the mass body 120 is interposed an insulation mat 116 on its lower and its lateral surfaces completely in the ground 111 embedded. Run laterally along the mass body 120 Cable channels 117 in a known manner.
  • ballast bed 118 On the top of the mass body 120 is interposed a ballast bed 118 a ballast bed 115 trained in a known manner, the swelling 113 and rails 114 for a two-lane route wearing.
  • the course of the Ballast bed 115 for a straight section of the route shown while dashed the course of the ballast bed indicated for a curved route is.
  • the thickness of the mass body 120 which is preferably the Formation protection layer and the frost protection layer replaced, is from the locally prevailing soil conditions and the relevant excitation frequencies and should be around one meter. Like figure 8 shows, the mass body 120 is laterally over the ballast bed 115 led out, so that from the train to the emitted pulses acting as a spring ballast bed completely into the mass body and from there after Attenuation can be transmitted to the ground.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Railway Tracks (AREA)
  • Train Traffic Observation, Control, And Security (AREA)
  • Platform Screen Doors And Railroad Systems (AREA)
  • Machines For Laying And Maintaining Railways (AREA)
  • Fittings On The Vehicle Exterior For Carrying Loads, And Devices For Holding Or Mounting Articles (AREA)

Description

Die Erfindung betrifft eine Gleisanlage für schienengebundene Fahrzeuge, insbesondere Eisenbahnen, mit einem Oberbau, der auf Schwellen gelagerte Schienen und ein die Schwellen unterstützendes Schotterbett aufweist, und mit einem den Oberbau tragenden Unterbau, der eine das Schotterbett tragende Tragplatte aus Beton aufweist, die auf einem Erdbauwerk aufgelagert ist.
Bei herkömmlichen Gleisanlagen wird als Oberbau üblicherweise der sogenannte Schotteroberbau verwendet, bei dem die Schwellen auf einem Schotterbett aufliegen. Das Gleis und das Schotterbett sind auf einen Unterbau aufgelagert, über den die vom Eisenbahnfahrzeug ausgeübten Kräfte in den Erdboden abgeleitet werden. Der Schotteroberbau hat sich bisher bewährt, da er eine hohe Flexibilität und Anpassungsfähigkeit besitzt und in relativ einfacher Weise instandzuhalten ist.
Es hat sich jedoch gezeigt, daß aufgrund höher werdender Achslasten und Fahrgeschwindigkeiten Schwingungen im Schotterbett auftreten, die zu einem Abbau der Reibung zwischen den Schottersteinen führen, was Schotterumlagerungen zur Folge hat, wodurch das Schotterbett sich in starkem Maße setzt und quer zur Gleisrichtung seitlich ausweicht. Dies bringt eine wesentliche Herabsetzung der Qualität der Gleisanlage mit sich und macht einen hohen Aufwand für die Instandhaltung erforderlich.
Aus der DE 40 07 710 A1 ist es bei Tunnelbauwerken bekannt, den Schotteroberbau durch eine sogenannte feste Fahrbahn zu ersetzen, bei der das Gleis in oder auf einer festen Betonsohle der Tunnelröhre fest angebracht ist, wodurch eine stabile Positionierung des Gleises relativ zu der Betonsohle gewährleistet ist. Darüber hinaus können bei dieser Ausführung Querkräfte zuverlässig aufgenommen werden, da die Betonsohle seitlich durch die Tunnelwände gestützt ist. Ein Oberbau in Form einer festen Fahrbahn verfügt jedoch nur über eine sehr geringe, im Millimeter-Bereich liegende Korrigierbarkeit des Schienenstranges. Darüber hinaus ist eine sehr hohe Montagegenauigkeit erforderlich und auch an den Unterbau sind wesentlich höhere Anforderungen als bei dem Schotteroberbau zu stellen. Bei festem, im wesentlichen unverformbarem, homogenem Unterbau, wie er in Tunnelabschnitten oder auf längeren Brücken zu finden ist, lassen sich feste Fahrbahnen sinnvoll einsetzen. Wenn jedoch der Unterbau aus einem verformungsfreudigen Erdbauwerk besteht, sind aufwendige Zusatzmaßnahmen notwendig, um die Anforderungen an den Unterbau für eine feste Fahrbahn einhalten zu können. Auf diese Weise sind Gleisanlagen mit einem Oberbau in Form einer festen Fahrbahn häufig sehr teuer in der Herstellung.
Aus der DE 41 00 881 A1 ist es bekannt, trogförmige Betonfertigteile zur Bildung einer Tragrinne aneinanderzureihen und in der Tragrinne ein Schotterbett anzuordnen, das die Gleise in bekannter Weise trägt und durch die Seitenteile der Tragrinne seitlich abgestützt ist. Die Betonfertigteile sind auf einem Erdbauwerk, d.h. dem bearbeiteten Erdboden aufgelegt, wobei unterhalb der Betonplatte eine Planumsschutzschicht und eine Frostschutzschicht ausgebildet sind.
Erdbauwerke können im Laufe der Zeit relativ großen Verformungen unterliegen, was zu örtlichen Setzungen einzelner Betonfertigteile bzw. der Tragrinne führen kann. Um diesen Wirkungen vorzubeugen, ist eine sehr aufwendige und präzise Bearbeitung des Erdbodens notwendig, was jedoch sehr teuer ist. Darüber hinaus können insbesondere bei hohen Fahrgeschwindigkeiten der Züge Schwingungen und Erschütterungen auftreten. Die dynamischen Lasteinwirkungen des Eisenbahnbetriebes verursachen an dem tragenden Gleisrost und dem Schotterbett oder sonstigen Tragelementen Schwingungen, die über den Untergrund bzw. Unterbau weitergegeben werden und bereichsweise auf das angrenzende Umfeld wirken können. Bei naheliegender baulicher Nutzung und insbesondere bei ungünstigen Bodenverhältnissen lassen sich die zulässigen Werte für die Erschütterungen bei einer konventionellen Streckenausbildung mit einem Schotteroberbau oder einer sogenannten festen Fahrbahn häufig nicht einhalten. Dies kann insbesondere bei schwingungsempfindlichen Gebäuden zu Beeinträchtigungen oder Schäden führen. Gegebenenfalls ist sogar eine Aufgabe des Bauvorhabens oder eine Umlegung der Trasse erforderlich.
Der Erfindung liegt die Aufgabe zugrunde, eine Gleisanlage der genannten Art zu schaffen, die eine formstabile Halterung der Gleise sicherstellt, eine wesentlich verbesserte Korrigierbarkeit der Gleise nach Verformungen des Untergrundes oder Unterbaus bietet und eine Anpassung der Schwingungs- bzw. Erschütterungseigenschaften an die bauliche Gegebenheiten ermöglicht.
Diese Aufgabe wird bei einer Gleisanlage der genannten Art erfindungsgemäß dadurch gelöst, daß die Tragplatte als kontinuierliches, in Ortbeton hergestelltes Band ausgebildet ist und eine Stärke von mindestens 0,40 m aufweist.
Die Schwingungs- und Erschütterungsprobleme lassen sich mit der erfindungsgemäßen massiven Tragplatte, die einen einheitlich, monolithisch wirkenden Körper großer Masse, einen sogenannten Massekörper, darstellt, nach dem Prinzip eines Masse-Feder-Systems lösen. Die Stärke der Tragplatte wird dabei entsprechend den baulichen Gegebenheiten so gewählt, daß ein wirksamer Schutz gegen Erschütterungen erreicht wird. Vorzugsweise werden die bei bekannten Gleisanlagen ebenfalls vorhandenen Planumsschutzschicht und Frostschutzschicht sowie gegebenenfalls Anteile des Schotterbettes durch ein geeignetes, dauerhaftes Bindemittel, insbesondere Zement, Kleber etc., zu dem Massekörper verbunden. Die von den fahrenden Zügen verursachten dynamischen Lasten, werden gewichts- und geschwindigkeitsabhängig über das als Feder wirkende Schotterbett als rasche Impulse in typischen Frequenzen an den Unterbau weitergeleitet. Die von dem Schotterbett übertragenen Impulse erregen den Massenkörper, der je nach Bemessung der Masse eine Schwingungs- und Frequenzänderung bewirkt. Auf diese Weise läßt sich ein auf die Eigenfrequenz der zu schützenden, angrenzenden Bebauung abgestimmtes Schwingungssystem schaffen, dessen Eigenfrequenz unter der Eigenfrequenz der schwingenden Teile der zu schützenden Bauwerke liegt. Somit können übermäßige Erschütterungen sowie unzulässiger Körperschall durch Anpassung an die örtlichen baulichen Gegebenheiten vermieden werden.
Der Massekörper sollte unterhalb des Schotteroberbaus als monolithisch wirkende, verbundene Masse hergestellt werden, wobei er vorzugsweise die Planumsschutzschicht und Frostschutzschicht ersetzt. Es ist jedoch auch möglich, die massive Tragplatte direkt auf die Planumsschutzschicht aufzulegen. Gegebenenfalls wird die Masse des Massekörpers durch anteiliges Verkleben des Schotters und klebende Verbindung dieses Schotterkörpers mit dem eigentlichen Massekörper vergrößert. Die im Masse-Federsystem vorhandene Federwirkung ergibt sich in diesem Fall aus den Federanteilen der Schienenzwischenlagen und des verbleibenden unverklebten Schotters. Vorzugsweise wird lediglich der Schotterrandbereich in den Böschungselementen, der sogenannte Vorkopfschotter, verklebt und eine geringe Oberflächenverklebung durchgeführt, um Schotterflug zu vermeiden. Falls eine weitere Vergrößerung der Masse über die Maximalstärke des aus Planumsschutzschicht und Frostschutzschicht bestehenden Schichtenpakets notwendig sein sollte, kann auch eine weitere Vergrößerung der Stärke des Massenkörpers durch Tieferlegung des Erdplanums erreicht werden.
Es ist jedoch auch möglich, die konventionelle Funktion des Schotteroberbaus vollständig zu erhalten und diesen vom Massekörper zu trennen, was beispielsweise unterstützend auch durch Einlegen einer Unterschottermatte als Dämmung erreicht werden kann. Alternativ oder zusätzlich dazu kann auch der Massekörper mit entsprechenden Dämmatten umhüllt werden.
Die Korrigierbarkeit der Gleisanlage bei eventuellen Verformungen des Unterbaus oder Untergrundes wird mittels konventioneller Bearbeitungsmaßnahmen des Schotterbetts in hohem Maße erreicht.
Als Grundmaterialien für den Massekörper eignen sich in kostengünstiger Weise beispielsweise die entsprechenden Tragschichten (Planumsschutzschicht, Frostschutzschicht), günstige rollige oder gebrochene Materialien, Recyclingmaterial ggf. mit Schwergewichtszugabe sowie in bestimmten Fällen auch eingekapselte kontaminierte Materialien. Die genannten Materialien werden mit einem Bindemittel, vorzugsweise Zement oder Bitumen, zu der monolithisch wirkenden Masse verbunden. Der Massekörper ist vorzugsweise unbewehrt, besitzt jedoch eine Dauerfestigkeit, die etwa im Bereich der Betonklassen B15 bis B25 liegt. Bereichsweise kann sowohl die Stärke durch Schwergewichtszusätze oder besondere Dämmaßnahmen reduziert und die Festigkeit beispielsweise durch Einlage von Bewehrung variiert bzw. erhöht werden.
Der Unterbau bzw. Untergrund hat im wesentlichen nur noch eine Tragfunktion für die massive Tragplatte zu übernehmen, ohne daß die Gefahr von Wasserdurchtritten besteht oder ein komplizierter Schichtenaufbau notwendig ist. Auf aufwendige Entwässerungsmaßnahmen kann dabei verzichtet werden. Durch die hohe Masse des Systems werden nach dem Prinzip eines Masse-Feder-Systems auch die dynamischen Belastungen und erzeugten Schwingungen in Frequenz und Intensität verändert und gedämpft, so daß hierauf gerichtete zusätzliche Maßnahmen weitgehend entfallen können. Die relativ große Stärke der Tragplatte, die größer als 0,4 m ist und etwa in einem Bereich von 0,4 m bis 1,4 m, und vorzugsweise bei etwa 0,7 m liegt, erfordert keine weiteren Frostschutzmaßnahmen und macht die bei anderen Systemen notwendige Planumsschutzschicht und/oder Frostschutzschicht überflüssig.
Die mit der erfindungsgemäßen Gleisanlage zu erzielenden Systemsteifigkeiten können variiert und an die Elastizitätswerte anderer Gleisanlagenarten angeglichen werden, so daß Systemübergänge auf andere Gleisanlagen speziell bei Brücken oder Tunneln keine Probleme aufwerfen und keine speziellen Konstruktionen erfordern.
In bevorzugter Ausgestaltung ist erfindungsgemäß vorgesehen, daß auf der Tragplatte außenseitige, nach oben vorstehende Randkappen angeordnet sind, die mit der Tragplatte einen das Schotterbett aufnehmenden rinnenförmigen Tragkörper bilden. Bei zweigleisigen Anlagen kann auf der Oberseite der Tragplatte zwischen den Gleisen auch eine nach oben vorstehende Mittelkappe ausgebildet sein, so daß jedem Gleis ein eigener rinnenförmiger Tragkörper zugeordnet ist. Auch bei der erfindungsgemäßen Gleisanlage sind die Schwellen in bzw. auf einem Schotterbett gelagert. Die Formbeständigkeit des Schotterbettes wird durch den oder die formhaltenden, rinnenförmigen Tragkörper gestützt, so daß übermäßige Setzungen des Schotterbettes oder dessen Ausweichen in Querrichtung vermieden werden können. Insbesondere können die aus dem Schienenbetrieb speziell bei hohen Geschwindigkeiten resultierenden Quer- bzw. Seitenkräfte durch die Randkappen und/oder die Mittelkappe aufgenommen werden. Der massive rinnenförmige Tragkörper ist sehr störungsunanfällig und bringt somit nur geringe Unterhaltskosten mit sich. Er wirkt über den gesamten Querschnitt der Gleisanlage und ermöglicht somit eine einfache Entwässerung. Es hat sich gezeigt, daß spezielle Anforderungen an den Unterbau oder hinsichtlich Schwingungsbelastungen bei der erfindungsgemäßen Gleisanlage nicht zu stellen sind. Die Randkappen und/oder die Mittelkappe können in ihrer Höhe variieren und bei Bedarf auf die maximale Querneigung der Gleise bzw. die auftretenden Seitenkräfte aufgerichtet sein.
Da die Schwellen weiterhin in einem Schotterbett gelagert sind, kann die Schienenlage bei Bedarf in einfacher Weise korrigiert werden, wie es auch bei dem bekannten Schotteroberbau der Fall ist. Die massive Tragplatte wird unterhalb des Schotterbettes bestehender bzw. neu zu bauender Strecken auf Erdbauabschnitten, also unterhalb des Planums im Regelquerschnitt von Eisenbahnstrecken eingebaut und ersetzt dort vorzugsweise die Planumsschutzschicht und die Frostschutzschicht.
Die Randkappen und/oder die Mittelkappe können entweder an die Tragplatte einstückig angeformt oder auch als separate vorgefertigte Bauteile ausgebildet sein, die dann an der Tragplatte befestigt werden. Vorzugsweise wird zuerst die massive Tragplatte in Ortbeton als im wesentlichen kontinuierliches Band ausgebildet, woraufhin die Randkappen und/oder die Mittelkappe in Ortbetonausführung über eine formschlüssige Verbindung mit der Tragplatte verbunden werden. Es ist jedoch auch möglich, die als Fertigteil hergestellten Randkappen und/oder die Mittelkappe mit der Tragplatte zu verdübeln.
In bevorzugter Ausgestaltung der Erfindung ist vorgesehen, daß die innere Wandung der Randkappen und/oder der Mittelkappe derart geneigt ist, daß sie einen sich zum freien Ende hin verjüngenden Querschnitt besitzen. Die dem Gleis zugewandte Seite der Randkappen und/oder der Mittelkappe ist auf diese Weise in der Neigung so gestaltet, daß sie der Richtung der in dem Schotter entstehenden Kräfte möglichst flächig senkrecht entgegen wirken kann.
Die Höhe der Randkappen und/oder der Mittelkappe bemißt sich nach der einzurichtenden Schotterbettstärke und dabei in der Geometrie des Gesamtquerschnitts derart, daß die Stützfunktion des Schotterbettes und die Querkraftaufnahme auch bei maximaler Überhöhung des Schienenstranges gewährleistet ist.
In bevorzugter Ausgestaltung der Erfindung ist vorgesehen, daß das Schotterbett zur Erhöhung der Seitenstabilität des Schotters und für den Erschütterungsschutz in sich zumindest teilweise verklebt ist. Der verklebte Schotterkörper stellt in Verbindung mit der massiven Tragplatte und den seitlich stützenden Randkappen und/ oder der Mittelkappe ein stabiles kräfte- und formbeständiges Gesamtsystem dar. Der verfestigte und querkraftbeständige verklebte Schotterkörper kann bei Setzungen des Untergrundes oder Unterbaus jederzeit nach mechanischem Aufbrechen neu geformt werden, so daß die Schienen in ihrer Lage und Ausrichtung nachjustiert werden können.
Die Tragplatte und die Randkappen und/oder die Mittelkappe bestehen üblicherweise aus Beton, insbesondere B15 oder B25, wobei gegebenenfalls auch aufbereitete Zuschlagstoffe, Recyclingmaterial oder gegebenenfalls aufbereitete, eingekapselte und geeignete kontaminierte Materialien sowie andere Bindemittel als Zement, beispielsweise Bitumen, zur Herstellung der Tragplatte Verwendung finden können. Die Oberfläche der Tragplatte ist weitestgehend geschlossen und wasserableitend. Bei Bedarf kann zwischen dem Schotterbett und dem Tragkörper, d.h. der Tragplattenoberfläche und den inneren Wandungen der Randkappen und/oder der Mittelkappe eine Unterschottermatte eingelegt werden. Die Möglichkeit, nur Teilverklebungen des Schotterbettes vorzunehmen und Unterschottermatten unter und seitlich des Schotters einzulegen, eröffnet den Weg zu einem weichen, federnden Gesamtsystem mit variierbarer Federwirkung.
In Weichenbereichen werden lediglich die Randkappen und/oder die Mittelkappe im Bereich der durchlaufenden Schwellensätzen unterbrochen. Auf diese Weise ist ein unkompliziertes weichengeeignetes Gleisanlagensystem geschaffen.
Die massive, vorzugsweise einstückige Ausgestaltung der Tragplatte mit den seitlichen Randkappen und/oder der Mittelkappe und die damit erzielte Verbundwirkung kommt über den Querschnitt einer eingleisigen oder zweigleisigen Strecke einem entsprechenden Trog oder Kanal gleich, in dem das Schotterbett, das gegebenenfalls zu einem stabilen Schotterkörper verklebt ist, paßgenau und in formstabiler Weise aufgenommen ist. Bei einer zweigleisigen Strecke kann durch die Randkappen in Zusammenwirken mit der Mittelkappe eine entsprechende Trog- oder Kanalwirkung für jedes Gleis vorgesehen sein. In Weiterbildung der Erfindung ist vorgesehen, daß zumindest die Oberseite der Tragplatte eine Querneigung besitzt, die etwa 1:20 betragen sollte. Bei eingleisigen Strecken kann eine einseitige Neigung vorgesehen sein. Bei zweigleisigen Strecken sollte vorgesehen sein, daß die Oberseite der Tragplatte ausgehend von deren Längsmittelebene zu beiden Seiten eine abfallende Querneigung besitzt, so daß eine sogenannte Dachneigung verwirklicht ist. Die Querneigung der Oberseite der Tragplatte stellt eine Wasserableitung an der Tragplatte zu den Seiten der Gleisanlage sicher. Die lückenlose Überdeckung des Unterbaus durch die Tragplatte bietet für diesen einen sicheren Schutz vor eindringendem Wasser.
Die massive Ausgestaltung der Tragplatte sowie der Randkappen bietet die Möglichkeit, auch andere streckenbegleitende Ausrüstungen wie beispielsweise Schallschutzwände, Kabelkanäle etc. an dem Tragkörper zu montieren. Insbesondere ist vorgesehen, daß auf der im wesentlichen ebenen Oberseite der Randkappen und/oder der Mittelkappe eine Schallschutzwand angeordnet ist. Die Randkappen und/oder die Mittelkappe können somit als Auflager für die Schallschutzwand dienen, wobei sie vorzugsweise mit Köchern für die Aufnahme der Halterungen der Schallschutzelemente ausgerüstet werden. Alternativ wird die Ausbildung der Köcher so vorgenommen, daß sie in die Tragplatte hinein oder bei Bedarf für eine Tiefgründung durch die Tragplatte hindurch reichen können. Um die Schallschutzwand in optimaler Entfernung von der Schiene bzw. der Schallquelle anordnen zu können, kann vorgesehen sein, die Randkappen und/oder die Mittelkappe gegebenenfalls zu verbreitern.
Dabei können die Randkappen und/oder die Mittelkappe als Gründungsbalken für die Schallschutzwände ausgebildet sein, was den Vorteil mit sich bringt, daß die Randkappen und/oder die Mittelkappe mit relativ geringer Breite als kontinuierliches Bauteil über die gesamte Länge der Gleisanlage ausgebildet sein können, während sie in den Abschnitten, in denen die Anordnung einer Schallschutzwand notwendig ist, als Gründungsbalken die optimale Entfernung der Schallschutzwand von der Schiene sicherstellt. Auf diese Weise kann auch die Höhe der Schallschutzwand gering gehalten bzw. optimiert werden, was kostenmäßig vorteilhaft ist. Darüber hinaus kann die Schallschutzwand somit außerhalb des für die Züge freizuhaltenden Lichtraumprofils gehalten werden.
Die Schallschutzwand kann in bekannter Weise in Stahloder Betonausführung erstellt werden und besitzt vorzugsweise in bestimmten Abständen angeordnete Durchgangsmöglichkeiten.
Es ist bekannt, daß bei schienengebundenen Fahrzeugen die hauptsächliche Schallquelle im Rad-Schienen-Bereich liegt. Um eine gute Schallabsorption zu erreichen, ist in Weiterbildung der Erfindung vorgesehen, daß die Schallschutzwand auf der dem Gleis zugewandten Seite geneigte, die Schallwellen auf das Schotterbett richtende Reflexionsflächen besitzt. Die auf das Schotterbett gerichteten Schallwellen werden aufgrund der dortigen ungleichmäßig strukturierten Oberfläche ungerichtet bzw. in viele verschiedene Richtung reflektiert und auf diese Weise absorbiert. Vorzugsweise werden die Reflexionsflächen von einer Vielzahl geneigter Teilflächen gebildet, wobei diese unterschiedliche Neigungen besitzen können, um die von der Schallquelle Rad-Schiene ausgehenden Schallwellen wirkungsvoll auf das absorbierende Schotterbett richten zu können.
Um das sich aufgrund der Querneigung der Oberseite der Tragplatte an einer oder an beiden Seiten des rinnenförmigen Tragkörpers ansammelnde Wasser abführen zu können, ist vorzugsweise vorgesehen, daß in den Randkappen und/ oder der Mittelkappe querverlaufende Abflußkanäle ausgebildet sind, die über die Gleislänge in beliebigen Abständen angeordnet sind. Vorzugsweise sollten in der Tragplatte oder den Randkappen und/oder der Mittelkappe querverlaufende Kabelkanäle ausgebildet sein.
Die erfindungsgemäße Gleisanlage kann entweder mit einem bekannten, längs der Gleisanlage verlaufenden, erdverlegten Kabelkanal versehen sein, es ist jedoch auch möglich, die in Längsrichtung verlaufenden Kabelkanäle in den Tragkörper zu integrieren oder an diesem anzubringen. Die Kabelkanäle sind in bekannter Weise mittels einer Abdeckung verschlossen.
Vorzugsweise lagern die Randkappen auf der gleisabgewandten Seite den längsverlaufenden Kabelkanal bekannter Form, der entweder einstückig mit den Randkappen ausgebildet sein kann oder an diesen befestigt ist. Letzteres kann beispielsweise durch einen an der Randkappe ausgebildeten seitlich vorstehenden Kragarm erreicht werden, auf den der Kabelkanal aufgesetzt ist. Die Oberseiten der Randkappe und des zugeordneten Kabelkanals sollten zusammen eine durchgehende begehbare Fläche neben dem Gleiskörper bilden. Alternativ oder zusätzlich können die Kabelkanäle auch in die Mittelkappe integriert sein.
Der Massekörper besitzt zumindest auf seiner Oberseite eine Neigung von vorzugsweise 1:20, was beispielsweise durch Ausgestaltung des Massekörpers mit einem parallelogramm-artigen Querschnitt erreicht werden kann. Bei eingleisigen Strecken ist eine einseitige Neigung ausreichend, während zur Erzielung einer ausreichenden Wasserableitung bei zweigleisigen Strecken eine Dachneigung vorgesehen sein sollte.
Weitere Einzelheiten und Merkmale der Erfindung sind aus der folgenden Beschreibung eines Ausführungsbeispiels unter Bezugnahme auf die Zeichnung ersichtlich. Es zeigen:
Figur 1:
den Querschnitt einer Gleisanlage,
Figur 2:
einen Querschnitt einer modifizierten Gleisanlage,
Figur 3:
eine ausschnittsweise Seitenansicht einer Gleisanlage,
Figur 4:
eine erste Ausführungsform für einen Kabelkanal,
Figur 5:
eine zweite Ausführungsform für einen Kabelkanal,
Figur 6:
eine dritte Ausführungsform für einen Kabelkanal,
Figur 7:
ein Ausführungsbeispiel für eine Schallschutzwand und
Figur 8:
einen erfindungsgemäßen Massekörper.
Gemäß Figur 1 umfaßt eine Gleisanlage 10 für eine zweigleisige Eisenbahnstrecke einen massiven Tragkörper 20, der eine auf einem Unterbau bzw. dem Erdboden 11 aufgelagerte massive Tragplatte 21 und daran angebrachte, seitliche, nach oben vorstehende Randkappen 22 umfaßt. Die Ober- und die Unterseite der Tragplatte 21 besitzen ausgehend von der Längsmittelebene zu beiden Seiten eine abfallende Querneigung von 1:20, so daß ein sogenannter dachförmiger Aufbau erreicht ist. Die Randkappen 22 stehen mit einem Vorsprung in einer Rechtecknut 19 der Tragplatte 21 in Eingriff, so daß eine formschlüssige Verbindung erreicht ist.
Wie auf der rechten Seite der Figur 1 zu sehen ist, kann die Randkappe 22 auch mittels einer Verdübelung 23 an der Tragplatte 21 befestigt sein.
Die Tragplatte 21 bildet zusammen mit den Randkappen 22 eine trog- oder rinnenförmige Aufnahme für ein Schotterbett 15. In der rinnenförmigen Aufnahme ist zwischen dem Schotterbett 15 und der Oberseite der Tragplatte 21 sowie den dem Gleis zugewandten Wandungen 22a der Randkappen 22 eine Unterschottermatte 16 eingelegt. Das Schotterbett 15 ist gegebenenfalls zur Bildung eines in sich stabilen Schotterkörpers verklebt und lagert Schwellen 13 sowie Schienen 14 in bekannter Weise. Wie in Figur 1 auf der rechten Seite gestrichelt angedeutet ist, kann das Gleis und somit das Schotterbett insbesondere bei gekrümmter Streckenführung eine Querneigung besitzen. In diesem Fall kann die entsprechende Randkappe zur Stützung des Schotterbettes auf der erhöhten Seite ebenfalls erhöht sein.
Um das sich in dem Randbereichen der rinnenförmigen Aufnahme aufgrund der Querneigung ansammelnde Niederschlagswasser abführen zu können, ist beidseitig im Übergangsbereich zwischen der Tragplatte 21 und den Randkappen 22 ein querverlaufender Abflußkanal 18 ausgebildet, der zuverlässig für eine Entwässerung sorgt.
Auf der rechten Seite der Figur 1 ist ein längs der Gleisanlage verlaufender Kabelkanal 17 dargestellt, der in herkömmlicher Weise in das Erdreich eingegraben und mittels einer Abdeckung verschlossen ist. Alternativ kann jedoch auch der Kabelkanal 17 in die Randkappe 22 integriert sein, wie auf der linken Seite der Figur 1 dargestellt ist und später im einzelnen beschrieben wird.
Die Gleisanlage gemäß Figur 2 entspricht in allen wesentlichen Punkten der Gleisanlage gemäß Figur 1, jedoch ist hierbei zusätzlich vorgesehen, daß auf der im wesentlichen ebenen Oberseite 22b der Randkappe 22 eine Schallschutzwand 25 angeordnet und befestigt ist. Gemäß der Darstellung auf der linken Seite in Figur 2 ist die Schallschutzwand 25 in der gegenüber der Ausführungsform gemäß Figur 1 verbreiterten Randkappe 22 verankert, während in der Darstellung auf der rechten Seite gemäß Figur 2 seitlich auf der Außenseite der Randkappe 22 ein Gründungsbalken 12 angebracht ist, in dem ein Gründungsköcher 26 zur Aufnahme von Schallschutzwandkassetten oder -paneelen vorgesehen ist, der wahlweise mit einer durch die Tragplatte 21 hindurchführenden Tiefgründung 27 verwendet werden kann.
In Figur 7 ist ein Ausführungsbeispiel für eine wirkungsvolle Schallschutzwand 25 in Stahlausführung dargestellt. Die Schallschutzwand 25 besteht aus aufeinander zu befestigenden Einzelpaneelen 25a und 25b, wobei die untere Paneele 25a über eine Fußplatte 28 auf der Randkappe 22 befestigt oder durch Träger in den Köcherfundamenten gehalten ist.
Auf der inneren, dem Gleiskörper zugewandten Oberfläche besitzen die Paneelen 25a und 25b jeweils mehrere geneigte Reflexionsflächen 28a und 28b, deren Flächennormale im wesentlichen auf das Schotterbett gerichtet ist. Die von der Schallquelle Rad-Schiene ausgehenden Schallwellen werden von den Reflexionsflächen 28a und 28b in den Bereich des absorbierenden Schotterbetts reflektiert. Wie Figur 7 zeigt, besitzt die obere Paneele 25b vier kleinere geneigte Reflexionsflächen 28b, während die untere Paneele 25a zwei größere Reflexionsflächen 25a aufweist, wobei die Reflexionsflächen 28a der unteren Paneele 25a eine geringere Neigung als die Reflexionsflächen 28b der oberen Paneele 25b besitzen, um auf diese Weise eine Anpassung an die unterschiedlichen Einfallswinkel der von der Rad-Schiene-Schallquelle ausgehenden Schallwellen auf die Schallschutzwand 25 zu erreichen.
Aus der in Figur 3 dargestellten Seitenansicht der Gleisanlage ist zu entnehmen, daß die Tragplatte 21 als kontinuierliches bandartiges Betonbauteil ausgebildet ist, an dessen Oberfläche Aussparungen 24 vorgesehen sind, die als quer- verlaufende Kabelkanäle dienen, die mittels einer Abdeckung verschlossen sein können. Die Randkappen 22 bestehen aus Betonfertigteilen, die in Längsrichtung der Gleisanlage aneinandergereiht und unter Anordnung einer Ausgleichslage 29 auf der Tragplatte 21 angeordnet sind. Im Stoßbereich zwischen zwei Randkappen-Fertigteilen sind Ausnehmungen ausgebildet, die die querverlaufenden Abflußkanäle 18 bilden.
Figur 4 zeigt ein erstes Ausführungsbeispiel für einen in Längsrichtung der Gleisanlage verlaufenden Kabelkanal 17. Gemäß diesem Ausführungsbeispiel ist die Randkappe 22 unter Anordnung der Ausgleichslage 29 auf der Tragplatte 21 derart befestigt, daß zwischen der seitlich äußeren Wand der Tragplatte 21 und der seitlich äußeren Wand der Randkappe 22 eine nach innen weisende Abstufung gebildet ist, auf der der Kabelkanal 17 unter Zwischenschaltung einer Ausgleichsschicht 30 angeordnet ist. Der Kabelkanal 17 besteht in bekannter Weise aus einem nach oben offenen U-förmigen Rinnenkörper 17a, der mittels eines Deckels 17b verschließbar ist. Der Kabelkanal 17 kann in nicht näher dargestellter Weise an der Tragplatte 21 oder der Randkappe 22 befestigt sein. Im montierten Zustand schließt die Außenseite des Kabelkanals 17 bündig mit der Außenseite der Tragplatte 21 ab. Darüber hinaus geht der Deckel 17b bündig in die Oberseite 22b der Randkappe 22 über.
Gemäß einem weiteren Ausführungsbeispiel, das in Figur 5 dargestellt ist, ist der U-förmige Rinnenkörper des Kabelkanals 17 einstückig mit der Randkappe 22 ausgebildet, wobei wiederum ein den Kabelkanal 17 abdeckender Deckel 17b vorgesehen ist, dessen Oberfläche bündig mit der Oberseite 22b der Randkappe 22 abschließt.
Gemäß Figur 6 ist an der Randkappe 22 ein nach außen vorstehender Kragarm 22c angeformt, auf den der U-förmige Rinnenkörper 17a des Kabelkanals 17 aufgesetzt und in nicht dargestellter Weise befestigt ist. Der Rinnenkörper 17a ist mit dem Deckel 17b verschließbar, wobei die Oberseite des Deckels 17b mit der Oberseite 22b der Randkappe 22 bündig abschließt. Wie in Fig. 6 gestrichelt angedeutet ist, kann am freien Ende des Kragarms 22c ein den Rinnenkörper 17a hintergreifender Vorsprung 22d vorgesehen sein, wodurch der Rinnenkörper 17a in Querrichtung sicher gehalten ist.
Die in Figur 8 gezeigte Gleisanlage 110 umfaßt eine zweigleisige Eisenbahnstrecke mit einer massiven Tragplatte 120 in Form eines Massekörpers, der auf einem Unterbau bzw. dem Erdboden 111 aufgelagert ist. Die Ober- und Unterseite des Massekörpers 120 besitzen ausgehend von der Längsmittelebene zu beiden Seiten eine abfallende Querneigung von 1:20, so daß ein dachförmiger Aufbau erreicht ist. Der Massekörper 120 ist unter Zwischenschaltung einer Dämmatte 116 auf seiner unteren und seinen seitlichen Flächen vollständig in den Erdboden 111 eingebettet. Seitlich längs des Massekörpers 120 verlaufen in bekannter Weise Kabelkanäle 117.
Auf der Oberseite des Massekörpers 120 ist unter Zwischenschaltung einer Unterschottermatte 118 ein Schotterbett 115 in bekannter Weise ausgebildet, das Schwellen 113 sowie Schienen 114 für eine zweispurige Strecke trägt. Mit durchgezogenen Linien ist der Verlauf des Schotterbettes 115 für einen geraden Streckenabschnitt dargestellt, während gestrichelt der Verlauf des Schotterbettes für eine gekrümmte Streckenführung angedeutet ist.
Die Stärke des Massekörpers 120, der vorzugsweise die Planumsschutzschicht und die Frostschutzschicht ersetzt, ist von den örtlich überwiegend vorhandenen Bodenverhältnissen und den maßgebenden Erregerfrequenzen abhängig und sollte etwa im Bereich von einem Meter liegen. Wie Figur 8 zeigt, ist der Massekörper 120 seitlich über das Schotterbett 115 hinausgeführt, so daß die von dem Zug auf das als Feder wirkende Schotterbett abgegebenen Impulse vollständig in den Massekörper und von diesem nach erfolgter Dämpfung in den Erdboden übertragen werden.

Claims (20)

  1. Gleisanlage für schienengebundene Fahrzeuge, insbesondere Eisenbahnen, mit einem Oberbau, der auf Schwellen (13, 113) gelagerte Schienen (14, 114) und ein die Schwellen (13, 113) unterstützendes Schotterbett (15, 115) aufweist, und mit einem den Oberbau tragenden Unterbau, der eine das Schotterbett (15, 115) tragende Tragplatte (21, 120) aus Beton aufweist, die auf einem Erdbauwerk aufgelagert ist, dadurch gekennzeichnet, daß die Tragplatte (21, 120) als kontinuierliches, in Ortbeton hergestelltes Band ausgebildet ist und eine Stärke von mindestens 0,4 m aufweist.
  2. Gleisanlage nach Anspruch 1, dadurch gekennzeichnet, daß die Tragplatte (21, 120) eine Stärke im Bereich von 0,4 m bis 1,4 m, vorzugsweise von 0,7 m besitzt.
  3. Gleisanlage nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß auf der Tragplatte (21) außenseitige, nach oben vorstehende Randkappen (22) angeordnet sind, die mit der Tragplatte (21) einen das Schotterbett aufnehmenden rinnenförmigen Tragkörper (20) bilden.
  4. Gleisanlage nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß zwei Gleise vorgesehen sind und daß auf der Oberseite der Tragplatte zwischen den Gleisen eine nach oben vorstehende Mittelkappe angeordnet ist.
  5. Gleisanlage nach Anspruch 3 oder 4, dadurch gekennzeichnet, daß die Randkappen (22) und/oder die Mittelkappe aus Beton bestehen.
  6. Gleisanlage nach einem der Ansprüche 3 bis 5, dadurch gekennzeichnet, daß die Randkappen (22) und/ oder die Mittelkappe an die Tragplatte (21) angeformt sind.
  7. Gleisanlage nach einem der Ansprüche 3 bis 5, dadurch gekennzeichnet, daß die Randkappen (22) und/ oder die Mittelkappe als separate Bauteile ausgebildet und an der Tragplatte (21) befestigt sind.
  8. Gleisanlage nach einem der Ansprüche 3 bis 7, dadurch gekennzeichnet, daß die innere Wandung (22a) der Randkappen (22) und/oder der Mittelkappe derart geneigt ist, daß sie einen sich zum freien Ende hin verjüngenden Querschnitt besitzen.
  9. Gleisanlage nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß das Schotterbett (15, 115) in sich zumindest teilweise verklebt ist.
  10. Gleisanlage nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, daß zumindest die Oberseite der Tragplatte (21, 120) eine Querneigung besitzt.
  11. Gleisanlage nach Anspruch 10, dadurch gekennzeichnet, daß die Oberseite der Tragplatte (21, 120) ausgehend von deren Längsmittelachse zu beiden Seiten eine abfallende Querneigung besitzt.
  12. Gleisanlage nach Anspruch 10 oder 11, dadurch gekennzeichnet, daß die Querneigung etwa 1:20 beträgt.
  13. Gleisanlage nach einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, daß zwischen dem Schotterbett (15, 115) und der Tragplatte (21, 120) eine Unterschottermatte (16, 116) angeordnet ist.
  14. Gleisanlage nach einem der Ansprüche 1 bis 13, dadurch gekennzeichnet, daß auf der im wesentlichen ebenen Oberseite (22b) der Randkappen (22) und/oder der Mittelkappe eine Schallschutzwand (25) angeordnet ist.
  15. Gleisanlage nach Anspruch 14, dadurch gekennzeichnet, daß die Schallschutzwand (25) auf der dem Gleis zugewandten Seite geneigte, die Schallwellen auf das Schotterbett (15) richtende Reflexionsflächen (28a, 28b) besitzt.
  16. Gleisanlage nach Anspruch 15, dadurch gekennzeichnet, daß die Reflexionsflächen (28a, 28b) unterschiedliche Neigungen besitzen.
  17. Gleisanlage nach einem der Ansprüche 1 bis 16, dadurch gekennzeichnet, daß in den Randkappen (22) und/oder der Mittelkappe quer verlaufende Abflußkanäle (18) ausgebildet sind.
  18. Gleisanlage nach einem der Ansprüche 1 bis 17, dadurch gekennzeichnet, daß in der Tragplatte (21, 120) quer verlaufende Kabelkanäle (24) ausgebildet sind.
  19. Gleisanlage nach einem der Ansprüche 1 bis 18, dadurch gekennzeichnet, daß an den Randkappen (22) und/oder der Mittelkappe in Längsrichtung verlaufende Kabelkanäle (17) vorgesehen sind.
  20. Gleisanlage nach Anspruch 19, dadurch gekennzeichnet, daß die Kabelkanäle (17) in die Randkappen (22) und/oder die Mittelkappe integriert sind.
EP96100188A 1995-01-10 1996-01-09 Gleisanlage für schienengebundene Fahrzeuge Expired - Lifetime EP0722012B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE29622835U DE29622835U1 (de) 1995-01-10 1996-01-09 Gleisanlage für schienengebundene Fahrzeuge

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19500443 1995-01-10
DE19500443A DE19500443A1 (de) 1995-01-10 1995-01-10 Gleisanlage für schienengebundene Fahrzeuge

Publications (2)

Publication Number Publication Date
EP0722012A1 EP0722012A1 (de) 1996-07-17
EP0722012B1 true EP0722012B1 (de) 1998-04-29

Family

ID=7751180

Family Applications (1)

Application Number Title Priority Date Filing Date
EP96100188A Expired - Lifetime EP0722012B1 (de) 1995-01-10 1996-01-09 Gleisanlage für schienengebundene Fahrzeuge

Country Status (4)

Country Link
EP (1) EP0722012B1 (de)
AT (1) ATE165637T1 (de)
DE (2) DE19500443A1 (de)
DK (1) DK0722012T3 (de)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19831404C2 (de) * 1998-07-15 2001-10-11 Vogel Bau Gmbh Gleisanlage für schienengebundene Fahrzeuge
DE102004002862A1 (de) * 2004-01-19 2005-08-25 Edilon Gmbh Lärmarmer Gleiskörper
DE102008002836A1 (de) 2008-04-30 2009-11-05 Msb-Management Gmbh Niedrige Lärmschutzwand an Gleisen
CN102787532A (zh) * 2012-09-02 2012-11-21 中铁二院工程集团有限责任公司 高速铁路路肩及排水构造
CN105735055A (zh) * 2016-02-04 2016-07-06 李谨武 渗吸排水法

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19741020A1 (de) 1997-09-18 1999-04-08 Georg Groetz Gleisanlage für schienengebundene Fahrzeuge
DE19841831A1 (de) * 1998-09-12 2000-05-04 Vogel Bau Gmbh Gleisanlage für schienengebundene Fahrzeuge
DE20005558U1 (de) * 2000-03-24 2000-05-25 Grötz, Georg, 76597 Loffenau Gleisanlage für schienengebundene Fahrzeuge
FR2833023B1 (fr) * 2001-12-05 2004-05-21 Alstom Procede de construction d'une voie ferree dans lequel on realise une dalle de voie en beton et on insere dans la dalle de voie des elements d'ancrage de la voie ferree
DE20120610U1 (de) 2001-12-20 2002-02-28 Grötz, Georg, 76597 Loffenau Gleisschotter für ein Schotterbett eines Gleisfahrweges, insbesondere für Eisenbahnen
DE102008044675B4 (de) 2008-08-28 2017-02-23 Johann Walthelm Gmbh Erschütterungsschutz für einen Gleisoberbau und Herstellungsverfahren dafür
AT512523B1 (de) * 2011-11-22 2013-09-15 Art Asamer Rubber Technology Gmbh Fundamentlose Lärmschutzvorrichtung
DE102012105983A1 (de) * 2012-07-04 2014-01-09 Hering Bau Gmbh & Co. Kg Akustische Abschirmeinheit und deren Aufbau
AT514307B1 (de) * 2013-05-02 2016-08-15 Kossik Roman Auflager für Massivelemente in Fahrwegen mit Schotteroberbau auf elastischer, bituminös- gebundener Tragschicht
HUP1300644A2 (en) * 2013-11-08 2015-05-28 Jozsef Szabo Structural arrangement and method for stabilizing earthworks and formations
CN108842522B (zh) * 2018-06-06 2023-11-24 广州地铁设计研究院股份有限公司 一种可调减振等级的预制浮置板轨道
CN110761127B (zh) * 2019-12-04 2024-10-15 中铁二院工程集团有限责任公司 一种岩石地基既有高铁路堤力平衡帮宽结构及构筑方法
CN113062148B (zh) * 2021-03-30 2022-05-13 武汉理工大学 一种高速铁路基床表层厚度灵活性设计方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1633211A (en) * 1924-06-30 1927-06-21 Edwin A Jenks Roadway embankment
DE1243225B (de) * 1964-05-21 1967-06-29 Gruenzweig & Hartmann Schall- und schwingungsisolierende Schotterbettlagerung
US3587964A (en) * 1969-04-18 1971-06-28 Meadows W R Inc Protective course for bridge deck
DE2751346C2 (de) * 1977-11-17 1983-12-22 Phoenix Ag, 2100 Hamburg Isoliermatte für Gleisanlagen
DE4007710C2 (de) * 1990-03-10 1995-04-06 Dyckerhoff & Widmann Ag Verfahren zum Herstellen eines Eisenbahnoberbaus im Tunnel
DE4100881A1 (de) * 1991-01-14 1992-07-16 Cronau Heinrich Gmbh Oberbau fuer eisenbahn-gleisanlagen
DE4401260C1 (de) * 1994-01-18 1995-05-18 Heitkamp Gmbh Bau Oberbau für Eisenbahngleise

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19831404C2 (de) * 1998-07-15 2001-10-11 Vogel Bau Gmbh Gleisanlage für schienengebundene Fahrzeuge
DE102004002862A1 (de) * 2004-01-19 2005-08-25 Edilon Gmbh Lärmarmer Gleiskörper
DE102008002836A1 (de) 2008-04-30 2009-11-05 Msb-Management Gmbh Niedrige Lärmschutzwand an Gleisen
CN102787532A (zh) * 2012-09-02 2012-11-21 中铁二院工程集团有限责任公司 高速铁路路肩及排水构造
CN105735055A (zh) * 2016-02-04 2016-07-06 李谨武 渗吸排水法
CN105735055B (zh) * 2016-02-04 2018-05-04 陈森 渗吸排水法

Also Published As

Publication number Publication date
DE19500443A1 (de) 1996-07-18
EP0722012A1 (de) 1996-07-17
ATE165637T1 (de) 1998-05-15
DK0722012T3 (da) 1999-02-15
DE59600164D1 (de) 1998-06-04

Similar Documents

Publication Publication Date Title
EP0722012B1 (de) Gleisanlage für schienengebundene Fahrzeuge
EP0937181B1 (de) Unterbau für ein gleis für schienenfahrzeuge
AT391499B (de) Eisenbahnoberbau, insbesondere fuer schienenfahrzeuge mit sehr hohen fahrgeschwindigkeiten
DE102008002836A1 (de) Niedrige Lärmschutzwand an Gleisen
DE4100881A1 (de) Oberbau fuer eisenbahn-gleisanlagen
DE19503220A1 (de) System für den schotterlosen Oberbau von Gleisanlagen
EP2210978A2 (de) Minischutzwand für Schwellengleise
WO2009121323A1 (de) Feste fahrbahn für schienenfahrzeuge
DE29810176U1 (de) Tunnelfahrweg
DE102007037339B4 (de) Gabionenwand mit lärmdämmender, monolithischer Schicht aus Beton
DE4027836A1 (de) Unterbau fuer ein gleis fuer schienenfahrzeuge
DE102004061165A1 (de) Betonfahrbahn für Schienenfahrzeuge
WO2007056968A1 (de) Feste fahrbahn für schienenfahrzeuge
AT512523B1 (de) Fundamentlose Lärmschutzvorrichtung
DE19706708C2 (de) Vorrichtung zur Schalldämpfung einer festen Fahrbahn
DE102006013851A1 (de) Schottertragschicht auf tiefliegender Elastomerschicht
AT370461B (de) Verfahren zum herstellen eines elastisch gelagerten troges aus stahlbeton als koerperschalldaemmende tragkonstruktion fuer den oberbau einer schienenbahn, insbesondere auf innerstaedtischen tunnelstrecken
DE29622835U1 (de) Gleisanlage für schienengebundene Fahrzeuge
DE60106552T2 (de) Gleis für ein schienengebundenes Fahrzeug und eine ein derartiges Gleis enthaltende Einrichtung
DE8911400U1 (de) Schotterloser Oberbau aus Fertigteilen
DE102004002862A1 (de) Lärmarmer Gleiskörper
DE19831404C2 (de) Gleisanlage für schienengebundene Fahrzeuge
DE19706542B4 (de) Fahrbahn
EP0968330B1 (de) Aufgeständerte Fahrbahnplattenvorrichtung
DE20216387U1 (de) Gleisanlage für schienengebundene Fahrzeuge

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK FR IT LI LU NL

17P Request for examination filed

Effective date: 19960725

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

17Q First examination report despatched

Effective date: 19971017

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE DK FR IT LI LU NL

REF Corresponds to:

Ref document number: 165637

Country of ref document: AT

Date of ref document: 19980515

Kind code of ref document: T

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

ITF It: translation for a ep patent filed
REF Corresponds to:

Ref document number: 59600164

Country of ref document: DE

Date of ref document: 19980604

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: TROESCH SCHEIDEGGER WERNER AG

ET Fr: translation filed
PLBQ Unpublished change to opponent data

Free format text: ORIGINAL CODE: EPIDOS OPPO

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

26 Opposition filed

Opponent name: SCHWEIZ. BUNDESBAHNEN SBB

Effective date: 19990128

NLR1 Nl: opposition has been filed with the epo

Opponent name: SCHWEIZ. BUNDESBAHNEN SBBB AUDIREKTION

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

PLBL Opposition procedure terminated

Free format text: ORIGINAL CODE: EPIDOS OPPC

PLBM Termination of opposition procedure: date of legal effect published

Free format text: ORIGINAL CODE: 0009276

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: OPPOSITION PROCEDURE CLOSED

27C Opposition proceedings terminated

Effective date: 20000102

NLR2 Nl: decision of opposition
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20060113

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20060119

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DK

Payment date: 20060125

Year of fee payment: 11

Ref country code: BE

Payment date: 20060125

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 20060203

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20060327

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070131

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070131

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20070801

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070109

BERE Be: lapsed

Owner name: *GROTZ GEORG

Effective date: 20070131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070801

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070109

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20110126

Year of fee payment: 16

Ref country code: FR

Payment date: 20110209

Year of fee payment: 16

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20120928

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120109

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120131

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20150124

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59600164

Country of ref document: DE