EP0699524B1 - Rotary web offset printing machine - Google Patents

Rotary web offset printing machine Download PDF

Info

Publication number
EP0699524B1
EP0699524B1 EP95113017A EP95113017A EP0699524B1 EP 0699524 B1 EP0699524 B1 EP 0699524B1 EP 95113017 A EP95113017 A EP 95113017A EP 95113017 A EP95113017 A EP 95113017A EP 0699524 B1 EP0699524 B1 EP 0699524B1
Authority
EP
European Patent Office
Prior art keywords
printing
web
cylinder
unit
printing units
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP95113017A
Other languages
German (de)
French (fr)
Other versions
EP0699524A3 (en
EP0699524A2 (en
EP0699524B2 (en
Inventor
Peter Gröbner
Josef Hajek
Johann Königer
Michael Schramm
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Manroland Sheetfed GmbH
Original Assignee
Manroland Druckmaschinen AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
Priority to DE4430693 priority Critical
Priority to DE4430693A priority patent/DE4430693B4/en
Application filed by Manroland Druckmaschinen AG filed Critical Manroland Druckmaschinen AG
Priority claimed from EP01101495A external-priority patent/EP1110722B1/en
Publication of EP0699524A2 publication Critical patent/EP0699524A2/en
Publication of EP0699524A3 publication Critical patent/EP0699524A3/en
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=6526867&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0699524(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application granted granted Critical
Publication of EP0699524B1 publication Critical patent/EP0699524B1/en
Publication of EP0699524B2 publication Critical patent/EP0699524B2/en
Anticipated expiration legal-status Critical
Application status is Expired - Lifetime legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41FPRINTING MACHINES OR PRESSES
    • B41F31/00Inking arrangements or devices
    • B41F31/004Driving means for ink rollers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41FPRINTING MACHINES OR PRESSES
    • B41F13/00Common details of rotary presses or machines
    • B41F13/004Electric or hydraulic features of drives
    • B41F13/0045Electric driving devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41FPRINTING MACHINES OR PRESSES
    • B41F13/00Common details of rotary presses or machines
    • B41F13/08Cylinders
    • B41F13/24Cylinder-tripping devices; Cylinder-impression adjustments
    • B41F13/26Arrangement of cylinder bearings
    • B41F13/28Bearings mounted eccentrically of the cylinder axis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41PINDEXING SCHEME RELATING TO PRINTING, LINING MACHINES, TYPEWRITERS, AND TO STAMPS
    • B41P2213/00Arrangements for actuating or driving printing presses; Auxiliary devices or processes
    • B41P2213/70Driving devices associated with particular installations or situations
    • B41P2213/73Driving devices for multicolour presses
    • B41P2213/734Driving devices for multicolour presses each printing unit being driven by its own electric motor, i.e. electric shaft

Description

The invention relates to drives, control and adjustment devices for cylinders and Functional groups of offset printing machines according to the generic terms of independent claims.

Offset printing machines usually have a longitudinal shaft, which by a or more electric motors is driven (DE 42 19 969 A1). Of this The longitudinal shaft branches off the drive shafts via gearboxes and clutches on the printing units, unwinds, folding units and functional groups, such as for example pull and transfer rollers, hopper rollers, cutting rollers, Cooling plants, is driven. The gears usually contain additional clutches and Gears. The drive is therefore technically very complex and expensive.

The object of the invention is a cylinder in an offset printing machine and to drive function groups with little technical effort, adjust and control and for this purpose adjusting and control devices create as well as a cylinder configuration with single motor drives to show.

The object is solved by the features of the independent claims. By the single motor drive can be shafts, gears, couplings and Adjusting devices are not required. In addition, there is no need for the aforementioned components electrical monitoring devices.

JP-A-632665 is already a generic single motor drive for Offset printing machines known in which discrete external register signals from a register pulse signal generator can be given to each drive motor, however nothing is disclosed regarding plate change or path compensation. EP 0 567 741 A1 and GB 226 16 29-A also say about this problem nothing, but deal with synchronization problems, especially between printing units or printing unit groups. The state of the Technology also gives no indication of different Path compensation, which is therefore conventional there, i.e. H. With Compensation rolls are done. The same applies to the cutting register presetting, possibly with a control option.

The concept according to the invention thus enables, if necessary, without additional mechanical means alone with the drive motors the circumferential or Color register control, the setting in the plate change position, Path compensation and cutting register setting and, if required, additional with cut register regulation and color or circumference register regulation. For that there the state of the art is not a role model.

Further advantages and features emerge from the subclaims in Link with the description.

Figures 27 to 34 are not part of the present invention. You will be in separate parallel applications.

The invention will be explained in more detail below using a few exemplary embodiments. The accompanying drawings show schematically:

1 to 4
different printing units with drives in side view,
Fig. 5
the top view of the printing unit of FIG. 1,
6 to 9
various printing unit bridges with drives,
Fig. 10
the top view of the printing unit bridge according to FIG. 6,
11 to 14 and 16 to 19
further variants of drives,
Fig. 15
11 shows the top view of the printing unit according to FIG. 11,
Fig. 20
16 shows the top view of the printing unit according to FIG. 16,
21 and 21.1
a printing press with functional groups,
22 and 22.1
one folding unit each with functional groups,
Fig. 23
a device for color register adjustment of the printing forms of a forme cylinder,
Fig. 24
a device for adjusting the color register from printing point to printing point,
Fig. 25
a device for cutting register adjustment,
Fig. 26
a device for setting the plate changing position,
Fig. 27
the drive of an inking and dampening unit in side view,
Fig. 28
another variant of the drive of an inking and dampening unit,
Fig. 30
the view of the distribution cylinder of Fig. 29,
Fig. 31
the arrangement of an electric motor on a forme cylinder,
Fig. 32
another variant of the arrangement of an electric motor,
Fig. 33
a third variant of the arrangement of an electric motor,
Fig. 34
the view Y from FIG. 33.

In the figures 1 to 4 printing units are shown that of each driven by a separate, angle-controlled electric motor become. In Fig. 1, the printing unit contains two of one each Forme cylinder 1.1, 1.2 and a transfer cylinder 2.1, 2.2 formed printing units 3, 4. Each forme and transfer cylinder 1.1, 1.2, 2.1, 2.2 is mounted with its pegs in side walls 5, 6 (Fig. 5). On the operator side wall 5 is a arranged angle-controlled electric motor 7, the forme cylinder 1.1 drives. about the formation of this drive connection statements made later. The pins stored in the side wall 6 each have a spur gear 8 to 11 with which the cylinders 1.1, 1.2, 2.1, 2.2 with the adjacent cylinder in drive connection stand. Thus, the electric motor 7 (following in Fig. 1 symbolically represented by hatching) all four cylinders driven.

In Fig. 2, the printing unit shown in Fig. 1 is about Printing unit 12 with the forme cylinder 1.3 and the transfer cylinder 2.3 added. The printing unit 12 is attached to the printing unit 4, whereby, not shown, the drive-side pins also Wear spur gears and the spur gear of the transfer cylinder 2.3 is in engagement with the spur gear 11 of the transfer cylinder 2.2.

About these spur gears 8 to 11 are all cylinders with the Forme cylinder 1.1 in drive connection and are from the electric motor 7 driven.

In Fig. 3 are to the printing units 3, 4 of FIG. 1 cooperating printing units 13, 14 with the forme cylinders 1.4, 1.5 and the transfer cylinders 2.4, 2.5 have been added. Not each pin on the drive side of cylinders 1.4 is shown, 1.5, 2.4, 2.5 a spur gear, with which the cylinders in one another Stand by. Furthermore, the spur gear 11 of the Transfer cylinder 2.2 via a gear chain 15 with the spur gear of the transfer cylinder 2.5 in drive connection, so that all cylinders are driven by the electric motor 7.

The printing unit according to FIG. 4 is still one compared to FIG. 3 Satellite cylinder 16 added. This carries on the drive side Pin, not shown, a spur gear. On the latter as well as on that The spur gear of the forme cylinder 1.4 drives one of the spur gear 8 Forme cylinder 1.1 outgoing chain 17, so that all the cylinders Printing unit are driven by the electric motor 7.

In the following figures 6 to 20 are recurring spatial arrangements of. Cylinders and printing units from the Figures 1 to 5 described for the sake of simplicity Item numbers reused, regardless of any structural Differences. Figures 6, 7 and 10 show bridges, i. H. Parts of printing units which correspond to those in FIGS. 1, 2 and 5 described printing units match and therefore not are explained again in more detail.

In FIG. 8, the wheel chain 15 has been omitted compared to FIG. 3. The resulting lower printing unit bridge (double printing unit) with the Forme cylinders 1.1 and 1.2 and the transfer cylinders 2.1 and 2.2 is driven in the same way as in Figures 6 and 7. The resulting upper printing unit bridge with the form cylinders 1.4, 1.5 and the transfer cylinders 2.4, 2.5 is controlled by an angle Electric motor 7 driven, which engages the forme cylinder 1.4. The latter drives on the pin via spur gears, not shown the cylinder 1.4, 2.4, 2.5, 1.5 on this.

In Fig. 9 the situation is similar to Fig. 8. It will only from the forme cylinder 1.1 a satellite cylinder 16 by means of Gear chain 18 driven. Same or different types Printing unit bridges of Figures 6 to 9 can be different Printing units can be combined. You can also use the following drive cases described above are used.

In the exemplary embodiments described so far, anyone can other form, transfer or satellite cylinders from Electric motor are driven.

The double printing unit shown in FIG. 11 contains the printing units 3, 4 each with a forme cylinder 1.1, 1.2 and one Transfer cylinder 2.1, 2.2. These cylinders are equally in Side walls 5, 6 are mounted (FIG. 15), as in FIGS. 1 and 6. However, each printing unit 3, 4 has its own angle-controlled electric motor 7, namely each the forme cylinder 1.1 or 1.2 driven. The drive side Pins of the forme cylinders 1.1, 1.2 each have a spur gear 8, 19, with which they each with a spur gear 10, 20 on the pin of Comb the transfer cylinders 2.1, 2.2. The spur gears 8, 10 and 19, 20 are in two different levels because the transfer cylinder 2.1, 2.2 must not be in drive connection with each other. On the operator-side pin of the forme cylinder 1.1, 1.2 engages in each case an angle-controlled electric motor 7 and drives the printing units 3, 4 on.

In the previous and following embodiments the electric motors each on the forme cylinders. Instead it is also possible to drive the transfer cylinder. As such Example drive in the printing unit according to FIG Electric motors 7 each the transfer cylinder 2.1, 2.2, 2.3 of the Printing units 3, 4, 12. These are then made using spur gears the drive of the associated forme cylinder 1.1, 1.2, 1.3. Analogously to Fig. 15, the spur gears of the printing unit 4 and Printing unit 3 are not in one plane, nor is that Spur gears of printing units 4 and 12.

13, the forme cylinders 1.1, 1.2, 1.4, 1.5 of the printing units 3, 4, 13, 14 of one each angle-controlled electric motor 7 driven. Of these, by means of Spur gears of the associated transfer cylinders 2.1, 2.2, 2.4, 2.5 driven. The spur gear drives working together Printing units are each on two different levels.

Analogously to FIG. 13, the printing units 3 are driven in FIG. 14, 4, 13, 14. In addition, the satellite cylinder 16 is one separate, angle-controlled electric motor 7 driven.

In the printing units according to FIGS. 16 to 19, everyone Forme cylinders 1.1 to 1.5 and each transfer cylinder 2.1 to 2.5 and, if available, the satellite cylinder 16 of one each separate, angle-controlled electric motor 7 driven. Warehousing the cylinder takes place in the same way as in the previous exemplary embodiments the side walls 5, 6. Deviating from the previous ones However, the electric motors 7 are each exemplary embodiments on Pins of the so-called drive side S 2 arranged (Fig. 20). Likewise, the electric motors could also be on the operator-side pins to be appropriate. Also in the previous ones Embodiments of the electric motors 7 on the drive side Be attached. When equipping everyone Printing unit with its own drive motor (Fig. 11 to 14) can the individual printing units work well together are driven in a coordinated manner. With each drive separately Cylinder (Figures 16 to 19) is the unwindable drive even between the form and transfer cylinders 1, 2 of a printing unit possible. In addition, all gear drives and the otherwise necessary lubrication, gearbox encapsulation etc., resulting in huge cost savings. In addition, there is no need for desired printing unit controls mechanical (and electrical) devices as a result of this Reversal of the direction of rotation of the driving motors is accomplished.

In the exemplary embodiments, a printing unit always contains a form and a transfer cylinder and works with one Printing mechanism based on the rubber-rubber principle or with a satellite cylinder together. Such a printing unit can also be used with a Impression cylinders are added to a three-cylinder printing unit, each cylinder powered by a separate electric motor or only one cylinder is driven by an electric motor and the three cylinders are in drive connection via gearwheels.

The angle control of the electric motors is carried out by means of Computer engine controls as part of machine control. The motors are accordingly connected to these systems. The Regulations are not the subject of the invention, so that There are no representations or explanations.

With separate electric motors, others can also be advantageously used Drive functional groups of printing machines. 21 is one Printing machine in side view and in Fig. 22 a folding unit shown in the view with such functional groups. The 21 includes four printing units 21 to 24 and a folding unit 25. The printing units 23 and 24 are similar driving the printing unit shown in Fig. 17, the Printing units 21 and 22 are similar to that shown in Fig. 18. The Drive motors of the cylinders as well as the one below Function groups described are symbolic with an "M" or Hatching marked. The folding unit shown in Fig. 22 contains the folding units 26 and 27. In FIG. 21 are the feed units 28, the cooling rolls 29, the cutting rolls 30 and the hopper rolls 31 of a separate, angle-controlled electric motor 33.1 to 33.5 driven. The electric motors overdrive indirectly Belt the cylinders of these functional groups. Fig. 21.1 shows the same printing press, with each cylinder of these functional groups is driven directly by a motor.

22, the hopper rollers 31 and the pull and Transfer rollers 32 each of a separate, angle-controlled Electric motor driven directly. Also the two folding units 26 and 27 each have a separate, angle-controlled motor, the one folding cylinder each, here the knife cylinder 143, 144, directly drives. The other folding cylinders protrude with this cylinder spur gears arranged on their journals.

22.1, the former rolls 31 and the pull and transfer rollers 32 each have a common motor indirectly driven by a toothed belt. The only one Folding unit 27.1 is controlled by a separate, angle-controlled Electric motor driven. The drive takes place indirectly by means of Belt drive on the puncture folding knife cylinder, for example 145. With this the other folding cylinders stand with theirs Cylinder wheels in drive connection. With these electric motors a sensitive adjustment of the speed of the driven cylinders possible. For groups with advance regulation then is also the web tension can be adjusted accordingly. Surrender too great cost advantages from the elimination of such Drives previously common PIV transmissions.

The separate electric motor driving directly onto a forme cylinder is also advantageous as an actuator for color register adjustment usable. 23 shows a device for color register adjustment in a double printing unit with the printing units 34 and 35, each a forme cylinder 36, 38 and a transfer cylinder 37, 39 contain. The device is based on the forme cylinder 38 described, which carries two printing forms on the circumference. The the Form cylinder 38 driving electric motor 40 is powered by a Computer engine control 41 angle-controlled. Furthermore, a Position transmitter 42 of the printing unit 35 and the register marks of the web 43 leaving the printing unit 35 scanning the transducer 44 connected to a comparison device 45, the output of which the input of the computer engine control 41 is performed. The Transducer 44 scans from printing unit 35 onto web 43 printed register marks and thus determines the position of the two images printed per revolution of the forme cylinder. With the signal of the position transmitter 42 is in the Comparison device 45 the reference to the rotation of the forme cylinder 38 manufactured. With a staggered arrangement of a print image in Circumferential direction to half the circumference of the forme cylinder, d. H. at a arrangement of the printed image deviating from half the circumference, the Forme cylinder 38 before printing in this area with a balancing pre or post retracement. This is done using the Computer engine control according to the output signal of the Comparator 45 accomplished. With this you can for example copying errors or assembly errors of the printing form be balanced. Accepting certain cuts to the Registration quality at the start of printing can be the acceleration or Delay phase can also be extended into this area, whereby the electric motor is dimensioned with lower power can be.

The device shown in Fig. 24 is used to control the Circumferential register between two printing points, here between the printing unit 46 and 47. The from these printing units 46, 47 on the web 48 Printed registration marks are scanned by sensors 49, 50. The signals from the sensors 49, 50 are in the Comparator 51 passed. This gives the comparison result to the computer engine control 52. This controls the speed of the Forme cylinder 53 of the printing unit 47 driving electric motor 54. Each after changing the register to the printed image of the printing unit 46 the electric motor 54 is operated with advance or lag. If also the transfer cylinder 55 from a separate electric motor is driven, this is also with a registration correction corrected advantageously with regard to its speed. The device is according to the number of registers to be checked to be used accordingly in many ways or in a fully expanded manner. With the device, the traditional can be expensive mechanical gear z. B. sliding wheels Circumferential register adjustment of the forme cylinders can be saved.

Thanks to the individual drive of the printing units, different ones can also be used Paper paths between different printing units without that Requires additional length adjustment facilities be driven. In the printing machine shown in Fig. 21 for example, web 55 can either be from printing unit 23 to Printing unit 21 or on the path shown in dashed lines to Printing unit 22 are performed. According to the different The printing units of the printing units 21 and 22 are removed by means of their Drive motors moved into the required position. This is the computer motor control 56 of the electric motors on the input side a computing and storage unit 57 in which the required cylinder positions are stored. These will depending on the web run the computer engine control 56, which the Form and transfer cylinders by controlling their Electric motors moves into the required positions.

In addition, the computing and storage unit 57 for the possible web runs the cylinder positions of the printing units for the Cutting register saved. For cutting register setting according to the selected production configuration of the Computer engine control 56 the required cylinder positions specified. Adjusted according to the specification Computer motor control 56, the drive motors of all the web 55 printing units. The cutting register for cutting in the folder is about the cylinder positions of everyone involved in the printing Printing units set. The usual, costly linear register devices. Only for that Such a length adjustment is still necessary for the turning strand. The one containing the cylinder positions for the cutting register The computing and storage unit can also be used for computer engine control 66 of the device shown in FIG. 25, described below be guided, this device then both the Cutting register regulation as well as adjustment serves.

Thanks to the separate drives of the printing units can also under Elimination of previously common connecting elements, such as synchronous shafts, Couplings, gears and positioning devices, Printing press associations can be put together variably. about a corresponding control program can, for. B. that according to FIG. 21 the folding unit 25 connected printing units 21, 22, 23 or some of these printing units also another not shown Folding unit can be assigned.

25 shows a device for cutting register control. It for example, the printing units 58 to 61 print a web 62. a Transmitter 63 scans a printed register mark. The Sensor 63 and the position sensor 64 of an electric motor a traversed printing unit, advantageously the first traversed printing unit 59, are on the inputs of a Comparator 65 connected, the output side with the Input of the computer motor control of the electric motors of the printing units 58 to 61 is connected. One in the comparison device 65 Register errors are determined by leading or lagging Drive of the printing units 58 to 61 printing the web 62 through appropriate control of their electric motors by means of Computer engine control 66 adjusted.

Fig. 26 shows a device by means of which the forme cylinders in a position suitable for changing the shape. The Printing unit of the exemplary embodiment contains two printing units 67, 68 each with a forme cylinder 69, 70 and a transfer cylinder 71, 72. The drive motors of the printing units 67, 68, which are here drive the transfer cylinders 71, 72, for example a computer engine control unit 73 connected by a computer and memory unit 74 is fed. In the arithmetic and Storage unit 74 are the cylinder positions of the forme cylinders 69, 70 stored for the printing form change. These positions will be the computer engine control 73 specified that the electric motors Printing units 67, 68 of the type controls that the clamping pits 75, 76 of the Forme cylinder 69, 70 in the shortest possible way into the plate changing position be driven. It is the same as the previous ones Embodiments regardless of whether in a printing unit Transmission or the forme cylinder or both cylinders driven become. With the help of this device, the previously customary is eliminated time-consuming individual disengagement of the printing units, the subsequent one Position the printing units and their engagement after the Change printing form.

The distribution cylinders of inking and dampening units are also advantageous driven with separate drives. Fig. 27 shows a printing unit with a transfer cylinder 77.1 and a forme cylinder 78.1, wherein an inking unit 79.1 and a dampening unit 80.1 are arranged on the latter are. The inking unit 79.1 contains u. a. the ink rubbing cylinders 81.1 and 82.1, and the dampening unit 80.1 the dampening cylinder 83.1. Everyone Distribution cylinder 81.1, 82.1, 83.1 carries a spur gear 84.1, 85.1, 86.1, which are all in engagement with a central wheel 87. The Central wheel 87 is driven by an angle-controlled electric motor 88 driven. In the exemplary embodiment, the central wheel 87 is not shown, on the rotor journal of the electric motor 88. Likewise the electric motor could also be arranged next to the central wheel 87 be and engage it with a pinion. The electric motor 88 drives both ink rubbing cylinders 81.1, 82.1 and the Wet friction cylinder 83.1.

28, the ink rubbing cylinders 81.2 and 82.2 are replaced by one angle-controlled electric motor 89 driven. The dampening cylinder 83.2 of the dampening unit 80.2 is controlled by an angle Electric motor 90 driven. The electric motor 89 drives directly the ink rubbing cylinder 82.2. This carries a spur gear 85.2 with which it via an intermediate gear 91 to a spur gear 84.2 of the ink distribution cylinder 81.2 drives.

Fig. 29 shows a drive variant, according to which each ink rubbing cylinder 81.3, 82.3 of the inking unit 79.3 and the dampening cylinder 83.3 of the Dampening unit 80.3 from a separate, angle-controlled electric motor 92, 93, 94 is driven. With this drive the color and Dampening units no longer have any conventional gears.

In addition to the advantageous controllability of the speed of the Ink rubbing cylinder for the drive using a separate, angle-controlled Lateral rubbing is also favorable for electric motors customizable. Fig. 30 shows the side view of the color and Wet friction cylinders 81.3, 82.3, 83.3, in side walls 95, 96 are stored. On each pin 97 to 99 of these cylinders 81.3 to 83.3, which is advantageous as the rotor of the driving Electric motors 92 to 94 are formed, z. B. a Linear motor 100 to 102. The angle-controlled electric motors 92 to 94 are controlled by a computer engine control 103. The Motor controller 103 advantageously controls linear motors 100 to 102 with the same sequence of movements. This is advantageous sinusoidal course of the traversing movement, the friction strokes are mutually offset by 120 ° in phase. It will A mass balance is achieved, which stimulates vibrations is switched off across the machine axis. The setpoint of the axial Hubes is advantageously selectable. The current position the color driver 81.3, 82.3, 83.3 becomes the motor control of sensors 140 to 142 reported. The interpretation of the Traversing speed is linearly proportional to the speed of the Printing press.

Short inking units are also advantageous with separate, for example angle-controlled electric motors. So they can Anilox roller and the inking roller together by one or are individually driven by one electric motor each.

The cylinders are as rigid as possible for an exact drive Coupling with the electric motor important. Below will be brought constructive embodiments for this. 31 shows a forme cylinder 105, the pin 106, 107 in Side walls 108, 109 of the printing press is supported. Pins 106, 107 wear flanges 110, 111, with which they on the front sides of the Cylinder body are screwed. The pin 106 is a rotor 112 of the electric motor 113 driving the forme cylinder, d. H. it carries the elements of the rotor at its elongated end. The stator 114 is attached to the side wall 108. On pin 106 continues to engage a device for lateral displacement of the Forme cylinder 105 for the side register adjustment. For example, a linear motor 115 is used for this. It could e.g. B. also an engine in connection with one of its Rotary motion in a linear motion forming gear be used. The shift amount Z of the page register is dimension so that when the pins 106, 107 move away from both sides by Z / 2 from the forme cylinder body this is released and can be removed from the printing press. Then it is one sleeve-shaped printing form of the forme cylinder 105 changeable. In A similar type of distribution cylinder can also be designed, the Friction stroke to expose the cylinder body of the distribution cylinder can be used.

32 shows the drive-side part of a forme cylinder 116 the pin 117 of the rotor 118 of an electric motor 119 on the end face is screwed on. The stator 120 of the electric motor 119 is put together with a bush 121 attached to it, which the bearing 122 of the Forme cylinder 116 contains, recorded in end shields 123, 124.

The end shields 123, 124 can be moved apart and give in apart, an opening 125 of the side wall 126 the press free. Then through the exposed opening 125 a sleeve-shaped printing form 139 through to or from the Forme cylinder 116 feasible. The contour of the printing form passed through 139 is indicated by dash-dotted lines. Solutions for execution and Actuation of the end shields 123, 124 and holding the Forme cylinder 116 suspended at its other end exposed opening 125 provides the prior art, so that it is not discussed in more detail. Likewise, a Transfer cylinders are exposed, and the engine design is equally with transfer cylinders and other cylinders from Printing machines applicable. It is advantageous in the shown Design options also that an independent pre-assembly of The rotor and stator of the electric motor can be carried out.

Fig. 33 shows the attachment of the stator 127 of an electric motor 128 on the eccentric ring 129 of a three-ring bearing 130 one in the Side wall 131 mounted cylinder. It can be this for example, a transfer cylinder, of which only pin 132 is shown. By twisting the eccentric Bearing ring 129 can, for example, turn the pressure on and off respectively. This attachment of the stator 127 takes place advantageous to carry it with the on and off movement of the Pin together with the rotor 133 attached to it the stator 127 is attached to a flange 134 which is attached to the bearing ring 129 is screwed on. The flange 134 is held down by 135 Sidewall 131 axially fixed and takes the tilting moment from the Weight of the stator. The actuation of the bearing ring 129 is shown in Fig. 34. The bearing ring 129 carries a hub 136 the pressure on and off mechanism, for example a lever 137, attacks. In the pressure adjustment, the bearing ring 129 strikes advantageous on a frame-fixed, conveniently adjustable Stop 138 and thus takes the corresponding direction of rotation of the Provided the counter torque of the stator 127 on. at the strong dimension takes another direction of rotation of the cylinder Pressure on and off mechanism the counter torque. It is advantageous the cylinder bearing has no play.

In the exemplary embodiments, angle-controlled electric motors are used for driving the cylinders and functional groups. Under Use of the invention in drive cases with not too high Requirements for synchronism, such as driving train elements and distribution cylinders, also speed or torque controlled Electric motors are used. Even the applied ones Computer engine controls may vary from case to case Motor controls can be realized.

Claims (11)

  1. Web-fed rotary offset printing machine with printing units (Fig. 1 to 20; 21 to 24) having at least one forme and one transfer cylinder (1.1 to 1.5; 2.1 to 2.5) and at least one folding unit (25) and at least one electric motor (7) as the drive, characterised in that for each printing unit (Fig. 1 to 20; 21 to 24) at least one of these cylinders (1.1 to 1.5; 2.1 to 2.5) is in drive connection with a separate electric motor (7), and this cylinder (1.1 to 1.5; 2.1 to 2.5) optionally is either not in mechanical drive connection with a further cylinder (1.1 to 1.5; 2.1 to 2.5) driven directly or indirectly by a separate electric motor (7), or is in mechanical drive connection with a non-driven cylinder (1.1 to 1.5; 2.1 to 2.5) by means of spur gears (8, 10, 19, 20), and in that for pre-setting printing units (Fig. 1 to 20; 21 to 24) for adaptation to different web paths and/or production configurations the motor regulation unit (41, 52, 56, 66, 73) of the electric motors (7) of the printing units (3, 4, 12, 13, 14, 34, 35, 46, 47, 58 to 61, 67, 68) to be adjusted is connected on the input side to a computing and storage unit (45, 51, 57, 65, 74) into which are stored cylinder positions to be set.
  2. Web-fed rotary offset printing machine with printing units (Fig. 1 to 20; 21 to 24) having at least one forme and one transfer cylinder (1.1 to 1.5; 2.1 to 2.5) and at least one folding unit (25) and at least one electric motor (7) as the drive, characterised in that for each printing unit (Fig. 1 to 20; 21 to 24) at least one of these cylinders (1.1 to 1.5; 2.1 to 2.5) is in drive connection with a separate electric motor (7), and this cylinder (1.1 to 1.5; 2.1 to 2.5) optionally is either not in mechanical drive connection with a further cylinder (1.1 to 1.5; 2.1 to 2.5) driven directly or indirectly by a separate electric motor (7), or is in mechanical drive connection with a nondriven cylinder (1.1 to 1.5; 2.1 to 2.5) by means of spur gears (8, 10, 19, 20), and in that for rotating the clamping grooves (75, 76) of the forme cylinders (69, 70) into a position for plate exchange the motor regulation units (73) of the electric motors (7) driving the forme cylinders (69, 70) or transfer cylinders (71, 72) are connected on the input side to a computing and storage unit (74) into which are stored the cylinder positions to be set for plate exchange (Fig. 26).
  3. Web-fed rotary offset printing machine according to claim 2, characterised in that the transfer cylinders (71, 72, Fig. 26) without clamping grooves can each be driven by a motor (M), and in that the forme cylinders (69, 70) provided with clamping grooves (75, 76) can be rotated into a predetermined stop position.
  4. Web-fed rotary offset printing machine according to claim 1, characterised in that the cutting register can be adjusted with electric motors (7), the motor regulation unit (56, 66) of the electric motors (7) of the printing units (58 to 61) printing a web (55, 62) being connected on the input side to a computing and storage unit (57, 65) into which are stored cylinder positions for the cutting register for possible web runs for setting the cylinders (2,1 to 2,5) of all the printing units (58 to 61) printing the web (55, 62) into the predetermined positions for the respective web run (Fig. 21, 21.1, 22, 25).
  5. Web-fed rotary offset printing machine according to claim 4, characterised in that for regulating the cutting register of the web (62) printed by at least one printing unit (58 to 61) a measurement transducer (63) for the cutting register, which scans a register mark printed onto the web (62), and a position sensor of an electric motor of one of the printing units (58 to 61) printing the web (62) are connected to a comparator (65), the output of which is guided to the input of the motor regulation unit (66) of the one or more electric motors (M) of the printing units (58 to 61) printing the web (62) to advance or retard this drive up to their position necessary for regulating out a register error determined in the comparator (65) (Fig. 25).
  6. Web-fed rotary offset printing machine according to claim 1, characterised in that in order to preset printing units (21 to 24) to adapt to different web paths between different printing units (21 to 24) the motor regulation unit (56) of the electric motors (M, 7) of the printing units (58 to 61) to be adjusted is connected on the input side to a computing and storage unit (57), into which the cylinder positions to be set are stored, according to the specification of which the printing units (58 to 61) are brought into the corresponding positions (Fig. 21, 21.1).
  7. Web-fed rotary offset printing machine according to one of the preceding claims, characterised in that to regulate the ink register between two printing units (46, 47) printing the web (48) one after the other two measurement transducers scanning the register marks on the web (48) leaving the printing units (46, 47) are connected to a comparator (51), their output being guided to the input of the motor regulation unit (52) of the one or more electric motors (54) of the printing unit (47) to be adjusted.
  8. Web-fed rotary offset printing machine according to one of the preceding claims, characterised in that in the printing unit (58 to 61) to be adjusted the forme cylinder (1.1 to 1.5) is driven directly by means of the motor (7, M) or indirectly by the associated transfer cylinder (2.1 to 2.5) driven by the motor (7, M).
  9. Web-fed rotary offset printing machine according to one of the preceding claims, characterised in that the cutting register and the circumferential register can be regulated during the printing operation (Fig. 25, 24).
  10. Web-fed rotary offset printing machine with printing units (Fig. 1 to 20; 21 to 24) having at least one forme and one transfer cylinder (1.1 to 1.5; 2.1 to 2.5) and at least one folding unit (25) and at least one electric motor (7) as the drive, characterised in that for each printing unit (Fig. 1 to 20; 21 to 24) at least one of these cylinders (1.1 to 1.5; 2.1 to 2.5) is in drive connection with a separate electric motor (7), and this cylinder (1.1 to 1.5; 2.1 to 2.5) optionally is either not in mechanical drive connection with a further cylinder (1.1 to 1.5; 2.1 to 2.5) driven directly or indirectly by a separate electric motor (7) or is in mechanical drive connection with a non-driven cylinder (1.1 to 1.5; 2.1 to 2.5 ) by means of spur gears (8, 10, 19, 20), and in that the cutting register of a turning track can be adjusted by means of a length-regulation device, whilst the cutting register of the web (55, 62) can be adjusted with electric motors (7), the motor regulation unit (56, 66) of the electric motors (7) of the printing units (58 to 61) printing the web (55, 62) being connected on the input side to a computing and storage unit (57) into which are stored the cylinder positions for the cutting register for possible web runs for setting the cylinders (2.1 to 2.5) of all the printing units (58 to 61) printing the web (55, 62) into the predetermined positions for the respective web run (Fig. 21, 21.1, 22, 25), so that the cutting register can be adjusted to the cut in the folding unit (25) by means of cylinder positions of all the printing units (58 to 61) taking part in the printing.
  11. Web-fed rotary offset printing machine according to claim 1, characterised in that the necessary cylinder positions are stored in a computing and storage unit (57) both for different paper paths between different printing units (21 to 24) and for setting the cutting register in accordance with the selected production configuration, and accordingly the drive motors (7) of all the printing units (21 to 24) printing the web (55) can be pre-set with a computer-motor regulation unit (56).
EP95113017A 1994-08-30 1995-08-18 Rotary web offset printing machine Expired - Lifetime EP0699524B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE4430693 1994-08-30
DE4430693A DE4430693B4 (en) 1994-08-30 1994-08-30 Drives for a web-fed rotary offset printing machine

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
EP01101495A EP1110722B1 (en) 1994-08-30 1995-08-18 Offset printing machine
DE29522290U DE29522290U1 (en) 1994-08-30 1995-08-18 Offset printing machine
EP04023533A EP1493563A3 (en) 1994-08-30 1995-08-18 Offset printing press
EP01113489A EP1132202B1 (en) 1994-08-30 1995-08-18 Offset printing machine
EP02023919A EP1277575B2 (en) 1994-08-30 1995-08-18 Offset printing machine

Related Child Applications (1)

Application Number Title Priority Date Filing Date
EP01101495A Division EP1110722B1 (en) 1994-08-30 1995-08-18 Offset printing machine

Publications (4)

Publication Number Publication Date
EP0699524A2 EP0699524A2 (en) 1996-03-06
EP0699524A3 EP0699524A3 (en) 1997-02-05
EP0699524B1 true EP0699524B1 (en) 2001-10-31
EP0699524B2 EP0699524B2 (en) 2009-11-11

Family

ID=6526867

Family Applications (5)

Application Number Title Priority Date Filing Date
EP04023532A Withdrawn EP1493564A1 (en) 1994-08-30 1995-08-18 Offset printing machine
EP02023919A Expired - Lifetime EP1277575B2 (en) 1994-08-30 1995-08-18 Offset printing machine
EP95113017A Expired - Lifetime EP0699524B2 (en) 1994-08-30 1995-08-18 Rotary web offset printing machine
EP04023533A Withdrawn EP1493563A3 (en) 1994-08-30 1995-08-18 Offset printing press
EP01113489A Expired - Lifetime EP1132202B1 (en) 1994-08-30 1995-08-18 Offset printing machine

Family Applications Before (2)

Application Number Title Priority Date Filing Date
EP04023532A Withdrawn EP1493564A1 (en) 1994-08-30 1995-08-18 Offset printing machine
EP02023919A Expired - Lifetime EP1277575B2 (en) 1994-08-30 1995-08-18 Offset printing machine

Family Applications After (2)

Application Number Title Priority Date Filing Date
EP04023533A Withdrawn EP1493563A3 (en) 1994-08-30 1995-08-18 Offset printing press
EP01113489A Expired - Lifetime EP1132202B1 (en) 1994-08-30 1995-08-18 Offset printing machine

Country Status (4)

Country Link
US (1) US6408748B1 (en)
EP (5) EP1493564A1 (en)
JP (5) JP3059081B2 (en)
DE (1) DE4430693B4 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005097503A2 (en) 2004-04-05 2005-10-20 Koenig & Bauer Aktiengesellschaft Drives for a printing unit
WO2005097504A2 (en) 2004-04-05 2005-10-20 Koenig & Bauer Aktiengesellschaft Devices for mounting of a cylinder printing press and method for adjustment of a print on-position
WO2005097505A2 (en) 2004-04-05 2005-10-20 Koenig & Bauer Aktiengesellschaft Printing unit on a web-fed rotary printing press
EP1616697A2 (en) 2003-07-11 2006-01-18 Koenig & Bauer Aktiengesellschaft Printing machine installation with at least two printing machines and printing machine with at least two printing units
WO2006072557A1 (en) 2005-01-05 2006-07-13 Koenig & Bauer Aktiengesellschaft Printing unit of a printing machine comprising at least one inking system and at least one dampening system
DE10352618B4 (en) * 2003-07-11 2007-01-11 Koenig & Bauer Ag Drive a printing unit
DE102005052497A1 (en) * 2005-10-31 2007-05-03 Koenig & Bauer Ag Drive of rotary component of printing machine has lateral stands at which component is arranged movable in perpendicular direction to rotation axis whereby stator and rotor of driving motor are movable relative to each other
EP1894719A2 (en) 2004-04-05 2008-03-05 Koenig & Bauer Aktiengesellschaft Printing unit on a web-fed rotary printing press
DE102005047661B4 (en) * 2005-06-23 2008-07-10 Koenig & Bauer Aktiengesellschaft Drive a rotating component of a printing press
DE202004021518U1 (en) 2004-09-09 2008-09-04 Koenig & Bauer Aktiengesellschaft Printing presses
US8069786B2 (en) 2005-04-21 2011-12-06 Koenig & Bauer Aktiengesellschaft Printing groups comprising at least two cooperating cylinders and radially movable bearing units
US8069785B2 (en) 2006-03-03 2011-12-06 Koenig & Bauer Aktiengesellschaft Printing groups of a printing press

Families Citing this family (137)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6644184B1 (en) 1995-02-09 2003-11-11 Man Roland Druckmaschinen Ag Offset printing machine
DE4430693B4 (en) 1994-08-30 2005-12-22 Man Roland Druckmaschinen Ag Drives for a web-fed rotary offset printing machine
DE19525169C2 (en) * 1995-03-18 2000-02-03 Koenig & Bauer Ag Method for driving a folder
DE59611338D1 (en) * 1995-03-18 2006-05-24 Koenig & Bauer Ag Driving a folder of a rotary printing press
EP0738591B1 (en) * 1995-04-15 1999-01-27 Heidelberger Druckmaschinen Aktiengesellschaft Transfer cylinder with electric driving unit
DE19516445A1 (en) * 1995-05-04 1996-11-07 Wifag Maschf Rotary printing press with a freely erectable folder
DE19516443A1 (en) * 1995-05-04 1996-11-07 Wifag Maschf Separately driven folding unit for a rotary printing machine
CH691225A8 (en) * 1996-02-09 2001-08-15 Bobst Sa Rotary printing machine.
DE19629605C2 (en) * 1996-07-23 2000-02-03 Koenig & Bauer Ag Drive a printing unit
JP3357074B2 (en) * 1996-08-09 2002-12-16 ケーニツヒ ウント バウエル アクチエンゲゼルシヤフト Torso drive
EP0826494B2 (en) * 1996-08-28 2004-01-28 Koenig & Bauer Aktiengesellschaft Printing unit
GB9621324D0 (en) * 1996-10-12 1996-11-27 Rockwell Graphic Syst Printing apparatus
DE19732330C2 (en) * 1997-07-28 2001-04-19 Koenig & Bauer Ag Drive for a printing unit
DE19733644B4 (en) * 1997-08-04 2005-07-14 Man Roland Druckmaschinen Ag Application roller with variable speed
DE19739283C2 (en) * 1997-09-08 2002-10-24 Roland Man Druckmasch Method for achieving the production printing status in a web-fed rotary printing press
DE19742560A1 (en) * 1997-09-26 1999-04-01 Roland Man Druckmasch Device for changing the web layer a printing material
JP3037650B2 (en) * 1997-10-29 2000-04-24 株式会社東京機械製作所 Drive unit for printing unit of rotary press
DE19755316C2 (en) * 1997-12-12 1999-10-07 Koenig & Bauer Ag Drive for a printing unit cylinder
DE19803557C2 (en) * 1998-01-30 1999-12-23 Koenig & Bauer Ag Drive for a rotating component of a printing machine
US6601681B1 (en) 1998-01-30 2003-08-05 Koenig & Bauer Aktiengesellschaft Drive mechanism for a rotating component of a printing machine
JP3430154B2 (en) 1998-04-24 2003-07-28 ケーニツヒ ウント バウエル アクチエンゲゼルシヤフト Roller for rotary printing press
DE19903847C5 (en) * 1999-02-01 2014-09-04 Manroland Ag Device for axially guiding and adjusting a cylinder
DE19959152A1 (en) * 1999-12-08 2001-06-13 Heidelberger Druckmasch Ag Guide device for material web in rotary printing press, with running0in elements on longitudinal folding units
IT1314383B1 (en) 2000-02-18 2002-12-13 Uteco S P A Roto Flexo & Conve Rotary printing press Flexographic more 'colors
US6345574B1 (en) * 2000-05-17 2002-02-12 Heidelberger, Druckmaschinen Ag Printing unit arrangement in a web-fed rotary printing press
JP3363872B2 (en) * 2000-06-23 2003-01-08 株式会社東京機械製作所 Synchronous control device with cutting register and print register automatic adjustment functions
DE10038551A1 (en) 2000-08-03 2002-02-14 Roland Man Druckmasch Determining the preset adjustment data for crop mark (and color register) for printing machines without longitudinal shafts by monitoring length of paper drawn in at individual printing stations
DE10046368C2 (en) 2000-09-20 2003-02-06 Koenig & Bauer Ag Drive a printing unit
DE10046366C2 (en) * 2000-09-20 2002-11-14 Koenig & Bauer Ag Drive a printing unit
DE10046377B4 (en) * 2000-09-20 2006-02-09 Koenig & Bauer Ag Drive a printing unit
WO2002024454A1 (en) 2000-09-20 2002-03-28 Koenig & Bauer Aktiengesellschaft Printing unit
DE10046375B4 (en) * 2000-09-20 2005-04-07 Koenig & Bauer Ag Drive a printing unit
DE10046376C2 (en) 2000-09-20 2002-12-12 Koenig & Bauer Ag Drive a printing unit
DE10046374B4 (en) * 2000-09-20 2014-05-15 Koenig & Bauer Aktiengesellschaft Method for operating a printing unit
DE10046370B4 (en) * 2000-09-20 2005-02-03 Koenig & Bauer Ag Printing unit
EP1318914B1 (en) * 2000-09-20 2012-08-15 Koenig & Bauer Aktiengesellschaft Method for operating a printing unit.
DE10046373B4 (en) * 2000-09-20 2005-09-08 Koenig & Bauer Ag Drive a printing unit
EP1364781A2 (en) 2000-09-20 2003-11-26 Koenig & Bauer Aktiengesellschaft Printing unit
DE10046365B4 (en) * 2000-09-20 2004-09-23 Koenig & Bauer Ag Method and device for driving a printing unit
DE10046378C2 (en) * 2000-09-20 2002-12-12 Koenig & Bauer Ag Drive a printing unit
JP3431894B2 (en) 2000-09-22 2003-07-28 株式会社東京機械製作所 Synchronous control device for rotary presses that selects a control target based on print image information
JP3662852B2 (en) 2001-01-11 2005-06-22 株式会社東京機械製作所 Synchronous control device for rotary press for selecting control object based on print image information
US7216585B2 (en) 2001-01-24 2007-05-15 Goss International Americas, Inc. Shaftless motor drive for a printing press with an anilox inker
US6752751B2 (en) 2001-02-23 2004-06-22 Heidelberger Druckmaschinen Ag Folder with multiple-motor drive
DE10113338B4 (en) 2001-03-20 2004-10-28 Koenig & Bauer Ag Method and devices for driving a printing unit
DE10114801B4 (en) * 2001-03-26 2005-10-13 Koenig & Bauer Ag Drive a printing unit
EP1372962B1 (en) 2001-03-26 2004-09-29 Koenig & Bauer Aktiengesellschaft Drive mechanism of a printing unit
EP1932662A2 (en) 2001-11-08 2008-06-18 Koenig & Bauer AG Drive of a printing group
DE50206897D1 (en) 2001-03-26 2006-06-29 Koenig & Bauer Ag Drive of a pressure push
EP1459890B1 (en) 2001-03-26 2012-05-02 Koenig & Bauer Aktiengesellschaft Printing unit of a printing machine
WO2003039873A1 (en) 2001-11-08 2003-05-15 Koenig & Bauer Aktiengesellschaft Drives for a printing group
DE10114806A1 (en) 2001-03-26 2002-10-17 Koenig & Bauer Ag Drive a cylinder
CN100488773C (en) * 2001-04-09 2009-05-20 柯尼格及包尔公开股份有限公司 Printing unit of a printing machine
US7114439B2 (en) 2001-08-03 2006-10-03 Koenig & Bauer Aktiengesellschaft Printing groups of a printing press
WO2003016058A1 (en) 2001-08-03 2003-02-27 Koenig & Bauer Aktiengesellschaft Printing groups of a printing press
WO2002081219A2 (en) 2001-04-09 2002-10-17 Koenig & Bauer Aktiengesellschaft Printing couple in a printing machine
CN1325251C (en) * 2001-08-03 2007-07-11 柯尼格及包尔公开股份有限公司 Printing couple in printing machine
ES2224070T3 (en) * 2001-04-09 2005-03-01 KOENIG & BAUER AKTIENGESELLSCHAFT Printing mechanism of a printing machine with a scrolling distributor cylinder.
DE10121945B4 (en) * 2001-05-05 2007-04-05 Koenig & Bauer Ag Device for drawing in a material web
DE10129762B4 (en) 2001-06-20 2004-07-29 Koenig & Bauer Ag Printing unit
DE10131976B4 (en) * 2001-07-02 2005-12-29 Koenig & Bauer Ag Printing machine with several sections
US7156019B2 (en) 2001-10-05 2007-01-02 Koenig & Bauer Aktiengesellschaft Rotary roller printing press
CN1781703A (en) 2001-08-03 2006-06-07 柯尼格及包尔公开股份有限公司 Printing device in printing machine
US20040231535A1 (en) * 2002-07-03 2004-11-25 Gerner Erich Max Karl Printing groups of a printing press
DE10234402B4 (en) * 2001-09-21 2015-10-08 Heidelberger Druckmaschinen Ag Independent direct drive for paper processing presses
DE10154838A1 (en) * 2001-11-08 2003-05-22 Koenig & Bauer Ag Printer drive unit comprises transmission cylinder with connection with form cylinder, motor, spur toothing, inker unit, and drive mechanism
DE10157243A1 (en) * 2001-11-22 2003-06-05 Roland Man Druckmasch Vibrator cylinder of rotary printing press with electromotor for traverse movement connected with friction cylinder
DE10163211C2 (en) * 2001-12-21 2003-10-23 Koenig & Bauer Ag Device for the production of folded products
DE10164778A1 (en) 2001-12-21 2003-07-10 Koenig & Bauer Ag Device for the production of folded products
DE10163961B4 (en) * 2001-12-23 2006-06-01 Koenig & Bauer Ag Drive a printing unit
DE10163963B4 (en) * 2001-12-23 2006-06-08 Koenig & Bauer Ag Drive a printing unit
DE10163962B4 (en) * 2001-12-23 2006-05-18 Koenig & Bauer Ag Drive a printing unit
NL1022116C2 (en) 2002-12-09 2004-06-11 Skf Ab Axial actuator drive control unit for e.g. printing machine, has actuators provided with magnetic spring arrangements comprising spring and drive coils
DE10260491A1 (en) * 2002-12-21 2004-07-01 Koenig & Bauer Ag Device for adjusting the position of a rotating body with direct drive
GB2413304B (en) * 2003-04-23 2006-06-07 Koenig & Bauer Ag Rotary roller printing press
DE20320706U1 (en) * 2003-01-30 2004-12-23 Koenig & Bauer Ag press
KR100501959B1 (en) * 2003-02-06 2005-07-20 조충 Rotary press
DE10307202B4 (en) 2003-02-20 2006-09-28 Koenig & Bauer Ag Method for presetting productions of a web-fed rotary printing press
US7521481B2 (en) * 2003-02-27 2009-04-21 Mclaurin Joanne Methods of preventing, treating and diagnosing disorders of protein aggregation
DE602004020612D1 (en) * 2003-06-09 2009-05-28 Goss Internat Inc Offset printing machine with free-running printing and stamping modules
DE10327218B4 (en) 2003-06-17 2015-08-06 Schaeffler Technologies AG & Co. KG Direct drive for a cylinder of a printing machine
US7044058B2 (en) 2003-07-02 2006-05-16 Goss International Americas, Inc. Automatic motor phase presetting for a web printing press
DE10352614A1 (en) * 2003-07-11 2005-02-10 Koenig & Bauer Ag Roller of a paint or dampening unit
JP4307202B2 (en) * 2003-09-29 2009-08-05 株式会社日立製作所 Storage system and storage control device
US6829991B1 (en) 2003-10-29 2004-12-14 Goss International Americas, Inc. Inker driven shaftless unit
DE502004009632D1 (en) * 2003-12-12 2009-07-30 Wifag Maschf Ag External drive runner
DE102004009861B4 (en) * 2004-03-01 2007-09-20 Koenig & Bauer Aktiengesellschaft Method and device for the operation of printing units
DE102004019136A1 (en) * 2004-04-16 2005-11-10 Man Roland Druckmaschinen Ag Direct drive for a cylinder of a processing machine
US20050257704A1 (en) * 2004-05-21 2005-11-24 Pas Jon V Method for lateral adjustment of a directly driven load without shifting the entire drive assembly
DE102004040150A1 (en) 2004-08-19 2006-02-23 Man Roland Druckmaschinen Ag Printing unit and inking unit
DE102005014060B4 (en) * 2005-03-23 2008-11-20 Koenig & Bauer Aktiengesellschaft Inking unit of a printing press
US7775159B2 (en) 2005-03-30 2010-08-17 Goss International Americas, Inc. Cantilevered blanket cylinder lifting mechanism
WO2006104829A2 (en) 2005-03-30 2006-10-05 Goss International Americas, Inc. Print unit having blanket cylinder throw-off bearer surfaces
US7849796B2 (en) 2005-03-30 2010-12-14 Goss International Americas, Inc Web offset printing press with articulated tucker
EP1868812A4 (en) 2005-04-11 2012-01-04 Goss Int Americas Inc Print unit with single motor drive permitting autoplating
US7187142B2 (en) * 2005-05-25 2007-03-06 Rockwell Automation Technologies, Inc. Motor drive with velocity noise filter
US7109670B1 (en) * 2005-05-25 2006-09-19 Rockwell Automation Technologies, Inc. Motor drive with velocity-second compensation
EP1728628A1 (en) * 2005-06-01 2006-12-06 Kba-Giori S.A. Typographic printing machine with independent drive means
DE102006003013B4 (en) * 2005-06-17 2011-03-03 Koenig & Bauer Aktiengesellschaft flexographic printing
AT498090T (en) * 2005-06-23 2011-02-15 Koenig & Bauer Ag Device for connecting a rotating component to a printing machine for transmitting pressure equipment
JP2007021858A (en) 2005-07-15 2007-02-01 Komori Corp Printing machine equipped with moving type ink unit
DE102005063492B4 (en) * 2005-08-19 2013-11-28 Koenig & Bauer Aktiengesellschaft Drive device for laterally movable roller in color or dampening device in printing machine has drive motors for separate rotary and linear driving each provided with corresponding set of permanent magnets
DE102005063354A1 (en) * 2005-08-19 2007-03-01 Koenig & Bauer Aktiengesellschaft Drives one or two rollers
DE102005050651A1 (en) * 2005-10-20 2007-04-26 Ina - Drives & Mechatronics Gmbh & Co. Ohg Direct drive of a printing machine
DE102006007581A1 (en) * 2006-02-18 2007-08-23 Schaeffler Kg Traversing drive of a cylinder of a printing machine
US20070203433A1 (en) * 2006-02-27 2007-08-30 Murphy Martin P Relaxation inducing apparatus
DE102006047846B4 (en) * 2006-10-10 2020-02-20 Robert Bosch Gmbh Method for operating a processing machine, in particular printing machine, and processing machine, in particular printing machine
DE102006052763A1 (en) * 2006-11-09 2008-05-15 Robert Bosch Gmbh Direct drive
JP2008126432A (en) * 2006-11-16 2008-06-05 Mitsubishi Heavy Ind Ltd Image forming equipment
DE102006054381A1 (en) * 2006-11-17 2008-05-21 Koenig & Bauer Aktiengesellschaft Printing unit of a printing machine with two stacked double printing units
DE102006054382A1 (en) * 2006-11-17 2008-05-21 Koenig & Bauer Aktiengesellschaft Printing unit of a printing machine with two stacked double printing units
FR2910375B1 (en) 2006-12-26 2009-10-30 Goss Int Montataire Sa Printing press offset adjusting the cutting register and corresponding method.
DE102007010289A1 (en) * 2007-02-13 2008-08-14 Man Roland Druckmaschinen Ag Printing unit of continuous offset printing machine, includes compensating unit controlling drives of transfer cylinders
GB2444563B (en) * 2007-03-15 2009-04-22 M & A Thomson Litho Ltd Printing apparatus
US9547271B2 (en) * 2007-04-26 2017-01-17 Hewlett-Packard Development Company, L.P. Printing assembly
DE102007000745A1 (en) 2007-09-18 2009-03-19 Koenig & Bauer Aktiengesellschaft Device and method for producing a printed product and printed product
DE102007000763B3 (en) * 2007-09-19 2008-09-18 Koenig & Bauer Aktiengesellschaft Printing product production device for e.g. newspaper printing machine, has folding device with transportation cylinder, and connecting device connecting line layers designed as handle device and glue application device
FR2921583B1 (en) * 2007-10-02 2009-04-03 Goss Int Montataire Sa Liquid distribution unit and corresponding offset printing press
DE102008014810B4 (en) 2008-03-18 2018-05-30 Koenig & Bauer Ag Rotary press
DE102008001318A1 (en) 2008-04-22 2009-10-29 Manroland Ag press
DE102008001979A1 (en) * 2008-05-26 2009-12-24 Koenig & Bauer Aktiengesellschaft Drive for printing unit for printing machine, is provided with idler gear which is driven by another drive, where torque is applied by latter drive, and torque is directly transmitted to drive wheels of two distributing cylinders
DE102008025345A1 (en) 2008-05-27 2009-12-03 Heidelberger Druckmaschinen Ag Method for operating a printing machine
DE102008042939A1 (en) 2008-10-17 2010-04-29 Koenig & Bauer Aktiengesellschaft Gearless drive i.e. electric motor, for plate cylinder in rotary printing press, has threaded ring cooperating with mating thread ring and coupled with position-controllable drive that rotates threaded ring around preset angle value
DE102009028208B4 (en) * 2009-08-04 2017-04-13 Koenig & Bauer Ag Coupling device of a cylinder of a printing machine and a method for coupling a cylinder of a printing press
DE102009045922B4 (en) * 2009-10-22 2014-08-14 Koenig & Bauer Aktiengesellschaft Device in a printing unit of a printing press
US20110132216A1 (en) * 2009-12-09 2011-06-09 7242514 Canada Inc. Stack angle compensation arrangement for a skewing adjustment system in an offset printing press
US8919250B2 (en) * 2010-08-02 2014-12-30 Goss International Americas, Inc. Printing press and method for positioning cylinders therein
DE102010039175B4 (en) 2010-08-11 2015-04-09 Koenig & Bauer Aktiengesellschaft Drive a printing unit
DE102011089185B4 (en) 2011-12-20 2015-09-10 Koenig & Bauer Aktiengesellschaft Printing unit
DE102011089197A1 (en) 2011-12-20 2013-06-20 Koenig & Bauer Aktiengesellschaft Side frame of a printing machine
DE102012206802B4 (en) 2012-04-25 2015-04-02 Koenig & Bauer Aktiengesellschaft Printing unit with at least two mechanically independently driven, a double printing unit forming printing units
JP5800442B2 (en) * 2012-09-04 2015-10-28 三菱重工印刷紙工機械株式会社 Printing machine and ink supply method
DE202014102625U1 (en) 2014-06-05 2015-07-09 Siggset + Print & Media Ag Plant for the production of board material made of paper and board material produced therewith
DE102014107941A1 (en) 2014-06-05 2015-12-17 Siggset + Print & Media Ag Method of use of a plant for the production of board material made of paper, board material produced therewith and installation therefor
ES2734983T3 (en) * 2014-12-04 2019-12-13 Ball Beverage Packaging Europe Ltd Printing apparatus
DE102016205342B4 (en) 2016-03-31 2019-06-13 Koenig & Bauer Ag Method for regulating a torque of a forme cylinder drive
CN106240142A (en) * 2016-08-24 2016-12-21 常州市群星印刷有限公司 Embed the printer duplex bearing installed

Family Cites Families (61)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2022696A (en) * 1932-06-17 1935-12-03 Irving Trust Co Printing machine
US3557692A (en) * 1968-09-09 1971-01-26 Harris Intertype Corp Plural independently operable motor drive arrangement in printing press
FR1603899A (en) * 1968-12-31 1971-06-07
DE2046131B2 (en) * 1970-09-18 1975-07-24 Siemens Ag, 1000 Berlin Und 8000 Muenchen
DE7046973U (en) * 1970-12-19 1973-11-22 Koenig & Bauer Ag
US3765328A (en) * 1972-08-16 1973-10-16 Harris Intertype Corp Inker cam drive system
DE2336061C3 (en) * 1973-07-16 1978-06-29 Roland Offsetmaschinenfabrik Faber & Schleicher Ag, 6050 Offenbach
DE2604623A1 (en) * 1976-02-06 1977-08-11 Maschf Augsburg Nuernberg Ag Rotary press
DE2924616C2 (en) * 1979-06-19 1986-04-17 M.A.N. Maschinenfabrik Augsburg-Nuernberg Ag, 8900 Augsburg, De
JPS5621860A (en) * 1979-07-30 1981-02-28 Ryobi Ltd Cylinder driving device of offset printing machine
DE3136704A1 (en) 1981-09-16 1983-03-31 Roland Man Druckmasch Apparatus plate cylinders for adjusting to the mounted printing plates
US4514819A (en) 1982-06-04 1985-04-30 Harris Graphics Corporation Apparatus and method for measuring rotational position
US4495582A (en) * 1982-06-04 1985-01-22 Harris Graphics Corporation Control system for pre-setting and operation of a printing press and collator
JPS5987157A (en) 1982-11-10 1984-05-19 Akira Seisakusho:Kk Form rotary press
JPH0452211B2 (en) 1983-09-30 1992-08-21 Dainippon Insatsu Kk
GB2149149A (en) 1983-10-28 1985-06-05 Rockwell Graphic Syst Printing press synchronization
DE3342662A1 (en) 1983-11-25 1985-06-05 Roland Man Druckmasch Device at a printing machine, consisting of a plate and / or blanket cylinder
DE3407428C1 (en) * 1984-02-29 1985-10-17 Roland Man Druckmasch Arrangement for driving a roller or a cylinder of a convertible from letterpress printing to flexographic rotary printing machine
US4619198A (en) * 1984-12-24 1986-10-28 Moll Joseph P Method and apparatus for keyless offset printing
JPS61167556A (en) 1985-01-19 1986-07-29 Hitachi Seiko Ltd Apparatus for presetting correction roller of printing press
DE3602894C2 (en) * 1986-01-31 1989-05-18 Man Roland Druckmaschinen Ag, 6050 Offenbach, De
DE3614979C3 (en) * 1986-05-02 1999-12-16 Heidelberger Druckmasch Ag Security system for a printing press
JPH0677088B2 (en) 1986-07-03 1994-09-28 住友電気工業株式会社 Method of manufacturing a planar optical waveguide
JPS63236651A (en) * 1987-03-25 1988-10-03 Hitachi Seiko Ltd Printing press driver
DE3712702A1 (en) 1987-04-14 1988-11-03 Roland Man Druckmasch Register actuator
DE3715536C2 (en) * 1987-05-09 1989-02-23 Man Roland Druckmaschinen Ag, 6050 Offenbach, De
JPS6482947A (en) 1988-02-27 1989-03-28 Jpe Kk Humidifier of printing press
JPH0224937A (en) 1988-07-14 1990-01-26 Matsushita Electron Corp Magnetron device
JPH0224937U (en) * 1988-08-02 1990-02-19
JPH02103145A (en) 1988-10-13 1990-04-16 Mitsubishi Heavy Ind Ltd Apparatus for independent driving of printing unit
DE3915482C2 (en) * 1989-05-11 1995-01-26 Stork Mbk Gmbh A device for synchronously driving angle individual printing cylinder of a rotary printing machine
DE59003784D1 (en) 1989-10-05 1994-01-20 Heidelberger Druckmasch Ag Lithographic printing press.
DE4012396A1 (en) * 1990-04-19 1991-10-31 Roland Man Druckmasch Printing press system
JPH0451349B2 (en) 1990-05-14 1992-08-18 Komori Printing Mach
JPH0451349A (en) * 1990-06-20 1992-02-19 Hitachi Ltd Bus interface converter
FR2663588B1 (en) 1990-06-21 1992-10-09 Marinoni Harris Sa mooring system for a movie web offset press.
US5239892A (en) * 1990-08-27 1993-08-31 Mitutoyo Corporation Rotating device
JP3068682B2 (en) * 1990-10-04 2000-07-24 ハマダ印刷機械株式会社 Web processing machine
US5127324A (en) * 1990-11-06 1992-07-07 Heidelberg Harris Gmbh Adjustment apparatus with DC drive system for use in a printing press
US5150115A (en) * 1990-12-13 1992-09-22 Xerox Corporation Inductive type incremental angular position transducer and rotary motion encoder having once-around index pulse
JP2831162B2 (en) 1991-06-26 1998-12-02 三菱重工業株式会社 Multicolor printing machine registration control method and apparatus
JP3053670B2 (en) 1991-07-11 2000-06-19 大日本印刷株式会社 Cutting position controller
DE4127321C2 (en) * 1991-08-17 1999-01-07 Roland Man Druckmasch A drive for a web-fed rotary printing machine
DE4137979B4 (en) 1991-11-19 2004-05-06 Heidelberger Druckmaschinen Ag Drive for a printing press with at least two mechanically decoupled printing units
EP0722831B1 (en) * 1993-04-22 1999-08-18 BAUMÜLLER ANLAGEN-SYSTEMTECHNIK GmbH Co. Method and arrangement for an electric motor for driving a rotary, in particular a printing cylinder of a printing machine
DE4138479C3 (en) * 1991-11-22 1998-01-08 Baumueller Nuernberg Gmbh Method and arrangement for an electric motor for driving a rotary body, in particular of the pressure cylinder forming a printing machine
DE4202722B4 (en) * 1992-01-31 2005-09-29 Heidelberger Druckmaschinen Ag Safety device for controls or controls of drive units of a printing machine
DE4214394C2 (en) * 1992-04-30 1998-08-20 Asea Brown Boveri Drive device for a shaftless rotary press
DE4215227C2 (en) * 1992-05-09 1996-07-04 Kba Planeta Ag Method and apparatus for positioning a printing cylinder of printing machines
DE4219969A1 (en) * 1992-06-19 1993-12-23 Koenig & Bauer Ag Drive for a multi-color rotary press
DE4234331A1 (en) * 1992-10-12 1994-04-14 Heidelberger Druckmasch Ag Drive for a printing press with several printing units
DE4234308C2 (en) * 1992-10-12 1996-08-29 Heidelberger Druckmasch Ag A method for setting the cutting register in a web printing press a downstream cross-cutting device
JPH08454B2 (en) 1992-10-23 1996-01-10 株式会社東京機械製作所 Lithographic rotary printing press having a width adjusting method and width adjusting device and width adjusting device for the paper web
FR2697205B1 (en) 1992-10-26 1995-03-24 Heidelberger Druckmasch Ag Machine cutting and folding a printed paper web continuously.
US5241905A (en) * 1992-10-27 1993-09-07 Heidelberg Harris Inc. Printing unit with releasable bearing clamp
DE4241807A1 (en) * 1992-12-11 1994-06-16 Heidelberger Druckmasch Ag Drive for a printing machine
US5309833A (en) * 1993-03-04 1994-05-10 Heidelberg Druckmaschinen Ag Printing unit with vibrator mechanism
US5668455A (en) * 1994-09-16 1997-09-16 Gotz; Fritz Rainer Angle encoder for rotating equipment
AT200449T (en) 1993-12-29 2001-04-15 Wifag Maschf Rotary printing machine
US6005318A (en) * 1994-02-04 1999-12-21 Schelenker Enterprises Ltd. Motor including embedded permanent-magnet rotor and method for making the same
DE4430693B4 (en) 1994-08-30 2005-12-22 Man Roland Druckmaschinen Ag Drives for a web-fed rotary offset printing machine

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
BORIS FUCHS: "Rotationsdruckmaschinenantrieb ohne Längswelle", ZEITUNGSTECHNIK, vol. -, no. -, December 1991 (1991-12-01), pages 78 - 80 *
SIEGFRIED MEYER ET AL.: "Mehrmotorenantrieb für Rotationsdruckmaschinen", SIEMENS-ZEITSCHRIFT, vol. -HEFT 5-, no. -, 1977, pages 387 - 394 *
WOLFGANG WALENSKI: "Der Rollenoffsetdruck (Vorwort von 1996, Seiten 146, 147 und 244-247)", 1995, FACHSCHRIFTEN-VERLAG GMBH & CO. KG, FELLBACH *

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7549372B2 (en) 2003-07-11 2009-06-23 Koenig & Bauer Aktiengesellschaft Printing machine and printing machine system
EP1616697A2 (en) 2003-07-11 2006-01-18 Koenig & Bauer Aktiengesellschaft Printing machine installation with at least two printing machines and printing machine with at least two printing units
DE10352618B4 (en) * 2003-07-11 2007-01-11 Koenig & Bauer Ag Drive a printing unit
DE102004037888B4 (en) * 2004-04-05 2008-09-04 Koenig & Bauer Aktiengesellschaft Printing units of a web-fed rotary printing press
WO2005097505A2 (en) 2004-04-05 2005-10-20 Koenig & Bauer Aktiengesellschaft Printing unit on a web-fed rotary printing press
US7752964B2 (en) 2004-04-05 2010-07-13 Koenig & Bauer Aktiengesellschaft Printing unit on a web-fed rotary printing press
EP2113382A2 (en) 2004-04-05 2009-11-04 Koenig & Bauer Aktiengesellschaft Device for storing a cylinder and method for setting a press-on setting
WO2005097504A2 (en) 2004-04-05 2005-10-20 Koenig & Bauer Aktiengesellschaft Devices for mounting of a cylinder printing press and method for adjustment of a print on-position
EP1815980A2 (en) 2004-04-05 2007-08-08 Koenig & Bauer AG Printing unit in a rotary printing press
EP1859937A2 (en) 2004-04-05 2007-11-28 Koenig & Bauer Aktiengesellschaft Printing unit of a web-fed rotary printing press
EP1894719A2 (en) 2004-04-05 2008-03-05 Koenig & Bauer Aktiengesellschaft Printing unit on a web-fed rotary printing press
DE102004063944B4 (en) * 2004-04-05 2008-04-10 Koenig & Bauer Aktiengesellschaft Printing units of a web-fed rotary printing press
WO2005097503A2 (en) 2004-04-05 2005-10-20 Koenig & Bauer Aktiengesellschaft Drives for a printing unit
DE202004021518U1 (en) 2004-09-09 2008-09-04 Koenig & Bauer Aktiengesellschaft Printing presses
WO2006072557A1 (en) 2005-01-05 2006-07-13 Koenig & Bauer Aktiengesellschaft Printing unit of a printing machine comprising at least one inking system and at least one dampening system
US8069786B2 (en) 2005-04-21 2011-12-06 Koenig & Bauer Aktiengesellschaft Printing groups comprising at least two cooperating cylinders and radially movable bearing units
DE102005047661B4 (en) * 2005-06-23 2008-07-10 Koenig & Bauer Aktiengesellschaft Drive a rotating component of a printing press
WO2007051660A1 (en) 2005-10-31 2007-05-10 Koenig & Bauer Aktiengesellschaft Drives of a rotating component of a printing press
DE102005052497A1 (en) * 2005-10-31 2007-05-03 Koenig & Bauer Ag Drive of rotary component of printing machine has lateral stands at which component is arranged movable in perpendicular direction to rotation axis whereby stator and rotor of driving motor are movable relative to each other
DE102005052497B4 (en) * 2005-10-31 2011-09-01 Koenig & Bauer Aktiengesellschaft Drive a cylinder of a printing machine
US8069785B2 (en) 2006-03-03 2011-12-06 Koenig & Bauer Aktiengesellschaft Printing groups of a printing press

Also Published As

Publication number Publication date
EP1132202A1 (en) 2001-09-12
JP2008230252A (en) 2008-10-02
JP2005313655A (en) 2005-11-10
EP0699524A3 (en) 1997-02-05
JP3059081B2 (en) 2000-07-04
EP1493563A3 (en) 2009-11-25
US6408748B1 (en) 2002-06-25
EP1493564A1 (en) 2005-01-05
DE4430693A1 (en) 1996-03-07
EP0699524B2 (en) 2009-11-11
EP1277575B2 (en) 2010-01-20
EP1493563A2 (en) 2005-01-05
JP2007290403A (en) 2007-11-08
EP1277575A1 (en) 2003-01-22
EP0699524A2 (en) 1996-03-06
JPH0885196A (en) 1996-04-02
DE4430693B4 (en) 2005-12-22
JPH11147305A (en) 1999-06-02
EP1132202B1 (en) 2004-10-06
EP1277575B1 (en) 2004-10-06

Similar Documents

Publication Publication Date Title
RU2554789C2 (en) Gravure printing machine with collecting cylinder for paint
ES2220895T3 (en) Printer mechanism of a printing machine with a distributing cylinder with linear movement.
EP1441907B1 (en) Drive for a printing group
US5826505A (en) Drive for a printing press
ES2189289T5 (en) Electrical driving system for the displacement of one or various functional elements in machines; operating provision with an angular position transmitter and printing machine.
DE19732330C2 (en) Drive for a printing unit
EP1735158B1 (en) Printing unit on a web-fed rotary printing press
US7093540B2 (en) Method and device for initial adjustment of the register of the engraved cylinders of a rotary multicolor press
EP0846555B1 (en) Drive for a printing machine
US5787811A (en) Flexographic printing press
US7341001B2 (en) Printing unit arrangement in a web-fed rotary printing press
US6334389B1 (en) Drive mechanism for the cylinders of a printing press
US7699000B2 (en) Device for mounting a cylinder in a printing unit, and method for adjustment of a print on-position
US5443437A (en) Device for automatically adjusting a fold in a folding apparatus of a rotary printing machine
US6634292B2 (en) Printing press with means for connecting and disconnecting motors for oscillating roller
US20010017087A1 (en) Rotary printing machine with blanket cylinders and plate or form cylinders integrated in pairs in cylinder groups
EP1336478B1 (en) Driving member for rotating component integral with a printing machine
US6868783B2 (en) Printing press with multiple-image-carrying cylinder
US5588362A (en) Cylinder throw-on and throw-off mechanism for printing press
DE102005036786B3 (en) Device for driving of machine which processes sheet material has individual drive which has a rotor detachably installed on cylinder carrying printing block, and stator detachably fixed on side frame and concentric to rotor
EP1900522B1 (en) Printing unit in a web-fed rotaty printing press
JP4012503B2 (en) Printing press cylinder support
US4606269A (en) Register adjustment device for a rotary printing machine
US6668721B2 (en) Rotary printing press capable of nonstop printing during a change of printing plates
EP0930159B1 (en) Rotary printing machine

Legal Events

Date Code Title Description
AK Designated contracting states:

Kind code of ref document: A2

Designated state(s): CH DE FR GB LI

AK Designated contracting states:

Kind code of ref document: A3

Designated state(s): CH DE FR GB LI

17P Request for examination filed

Effective date: 19970610

17Q First examination report

Effective date: 19971103

RTI1 Title (correction)

Free format text: ROTARY WEB OFFSET PRINTING MACHINE

RTI1 Title (correction)

Free format text: ROTARY WEB OFFSET PRINTING MACHINE

AK Designated contracting states:

Kind code of ref document: B1

Designated state(s): CH DE FR GB LI

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: E. BLUM & CO. PATENTANWAELTE

REF Corresponds to:

Ref document number: 59509776

Country of ref document: DE

Date of ref document: 20011206

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20020206

ET Fr: translation filed
26 Opposition filed

Opponent name: MASCHINENFABRIK WIFAG

Effective date: 20020731

Opponent name: HEIDELBERGER DRUCKMASCHINEN AG

Effective date: 20020731

R26 Opposition filed (correction)

Opponent name: HEIDELBERGER DRUCKMASCHINEN AG

Effective date: 20020731

Opponent name: MASCHINENFABRIK WIFAG

Effective date: 20020731

REG Reference to a national code

Ref country code: CH

Ref legal event code: PFA

Owner name: M.A.N.-ROLAND DRUCKMASCHINEN AKTIENGESELLSCHAFT

Free format text: M.A.N.-ROLAND DRUCKMASCHINEN AKTIENGESELLSCHAFT#POSTFACH 10 12 64#63012 OFFENBACH (DE) -TRANSFER TO- M.A.N.-ROLAND DRUCKMASCHINEN AKTIENGESELLSCHAFT#POSTFACH 10 12 64#63012 OFFENBACH (DE)

RAP2 Transfer of rights of an ep granted patent

Owner name: MANROLAND AG

REG Reference to a national code

Ref country code: CH

Ref legal event code: PFA

Owner name: MANROLAND AG

Free format text: M.A.N.-ROLAND DRUCKMASCHINEN AKTIENGESELLSCHAFT#POSTFACH 10 12 64#63012 OFFENBACH (DE) -TRANSFER TO- MANROLAND AG#MUEHLHEIMER STRA?E 341#63075 OFFENBACH (DE)

PGFP Postgrant: annual fees paid to national office

Ref country code: GB

Payment date: 20080821

Year of fee payment: 14

AK Designated contracting states:

Kind code of ref document: B2

Designated state(s): CH DE FR GB LI

27A Maintained as amended

Effective date: 20091111

REG Reference to a national code

Ref country code: CH

Ref legal event code: AEN

Free format text: AUFRECHTERHALTUNG DES PATENTES IN GEAENDERTER FORM

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20090818

PG25 Lapsed in a contracting state announced via postgrant inform. from nat. office to epo

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090818

PGFP Postgrant: annual fees paid to national office

Ref country code: CH

Payment date: 20110824

Year of fee payment: 17

PGFP Postgrant: annual fees paid to national office

Ref country code: FR

Payment date: 20110901

Year of fee payment: 17

Ref country code: DE

Payment date: 20110823

Year of fee payment: 17

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 59509776

Country of ref document: DE

Owner name: MANROLAND WEB SYSTEMS GMBH, DE

Free format text: FORMER OWNER: MANROLAND AG, 63075 OFFENBACH, DE

Effective date: 20120626

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state announced via postgrant inform. from nat. office to epo

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120831

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120831

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20130430

PG25 Lapsed in a contracting state announced via postgrant inform. from nat. office to epo

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130301

PG25 Lapsed in a contracting state announced via postgrant inform. from nat. office to epo

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120831

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59509776

Country of ref document: DE

Effective date: 20130301