EP0691440B1 - Baustein mit wärmeisolierend wirkenden inneren Hohlräumen - Google Patents

Baustein mit wärmeisolierend wirkenden inneren Hohlräumen Download PDF

Info

Publication number
EP0691440B1
EP0691440B1 EP95110517A EP95110517A EP0691440B1 EP 0691440 B1 EP0691440 B1 EP 0691440B1 EP 95110517 A EP95110517 A EP 95110517A EP 95110517 A EP95110517 A EP 95110517A EP 0691440 B1 EP0691440 B1 EP 0691440B1
Authority
EP
European Patent Office
Prior art keywords
heat
cavities
reflecting
building block
bricks
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP95110517A
Other languages
English (en)
French (fr)
Other versions
EP0691440A1 (de
Inventor
Eduard Blatter
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ziegeleien Freiburg and Lausanne AG
Original Assignee
Freiburger Ziegelei Duedingen AG
Ziegeleien Freiburg and Lausanne AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Freiburger Ziegelei Duedingen AG, Ziegeleien Freiburg and Lausanne AG filed Critical Freiburger Ziegelei Duedingen AG
Publication of EP0691440A1 publication Critical patent/EP0691440A1/de
Application granted granted Critical
Publication of EP0691440B1 publication Critical patent/EP0691440B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B2/00Walls, e.g. partitions, for buildings; Wall construction with regard to insulation; Connections specially adapted to walls
    • E04B2/02Walls, e.g. partitions, for buildings; Wall construction with regard to insulation; Connections specially adapted to walls built-up from layers of building elements
    • E04B2/14Walls having cavities in, but not between, the elements, i.e. each cavity being enclosed by at least four sides forming part of one single element
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B2/00Walls, e.g. partitions, for buildings; Wall construction with regard to insulation; Connections specially adapted to walls
    • E04B2/02Walls, e.g. partitions, for buildings; Wall construction with regard to insulation; Connections specially adapted to walls built-up from layers of building elements
    • E04B2002/0202Details of connections
    • E04B2002/0204Non-undercut connections, e.g. tongue and groove connections
    • E04B2002/0208Non-undercut connections, e.g. tongue and groove connections of trapezoidal shape
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B2/00Walls, e.g. partitions, for buildings; Wall construction with regard to insulation; Connections specially adapted to walls
    • E04B2/02Walls, e.g. partitions, for buildings; Wall construction with regard to insulation; Connections specially adapted to walls built-up from layers of building elements
    • E04B2002/0202Details of connections
    • E04B2002/0204Non-undercut connections, e.g. tongue and groove connections
    • E04B2002/0228Non-undercut connections, e.g. tongue and groove connections with tongues next to each other on one end surface and grooves next to each other on opposite end surface
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B2/00Walls, e.g. partitions, for buildings; Wall construction with regard to insulation; Connections specially adapted to walls
    • E04B2/02Walls, e.g. partitions, for buildings; Wall construction with regard to insulation; Connections specially adapted to walls built-up from layers of building elements
    • E04B2002/0256Special features of building elements
    • E04B2002/0286Building elements with coatings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/13Hollow or container type article [e.g., tube, vase, etc.]
    • Y10T428/131Glass, ceramic, or sintered, fused, fired, or calcined metal oxide or metal carbide containing [e.g., porcelain, brick, cement, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/13Hollow or container type article [e.g., tube, vase, etc.]
    • Y10T428/131Glass, ceramic, or sintered, fused, fired, or calcined metal oxide or metal carbide containing [e.g., porcelain, brick, cement, etc.]
    • Y10T428/1317Multilayer [continuous layer]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/17Three or more coplanar interfitted sections with securing means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24149Honeycomb-like

Definitions

  • the invention relates to a , preferably cuboid, building block according to the preamble of claim 1.
  • a building block of this kind e.g. in EP-A-0599283 and can also be a brick be. It is used to create heat-insulating walls and is with adhesive, thin bed, medium bed or a fibrous mortar that does not fall into the cavities, bricked up.
  • the cavities can be parallel to the wall surface run vertically, as with so-called perforated bricks, or also horizontally.
  • the thermal insulation to improve by clever arrangement of louvers, the transverse to the heat flow direction from one side of the block go through others completely or at least for the most part.
  • the elongated, extruded for bricks and therefore continuous cavities weaken the Cohesion, especially the transverse tensile strength of the Insulating blocks. Therefore, a minimum of Cross-sectional area of heat-conducting webs in The heat flow direction must not be undercut.
  • slot holes be calculated (Swiss Patents 476 181, 482 882 and 516 057).
  • the mean slot width is understood as Cross-sectional area of a generally elongated cavity divided by its largest dimension across Heat flow direction.
  • the number of slot holes will be averaged over a variety of in the heat flow direction guided cuts through the brick. It corresponds to one more common parameter, namely the number of Rows of slots.
  • the cavity cross sections usually face oblong shapes such as ellipses across the heat flow direction, Rectangles, trapezoids, cuboids, triangles, etc.
  • the cavities can also be square, round, five, six and have polygonal shapes.
  • the web thickness is 6 mm and more common. If the web thickness is reduced, for example to 4 or 2 mm, so increases based on the above mentioned patents the optimal number of slot holes very strongly, so that brick with the theoretically determined optimal number of slots rows can no longer be produced can, because when extruding the clay masses much too high Pressures arise.
  • Today produced 30 cm thick Bricks usually have 17 rows of slots, maximum 21 rows of holes. 30 rows of holes are currently a borderline case represent the producibility.
  • the invention is based, to isolating modules create the statically resilient to a conventional extent are, but have a much better thermal insulation than previously known, and are easier to produce.
  • the coated inner cavities do not need to to be provided with additional insulation inserts because the coating of the cavities is due to the heat exchange Radiation between the opposing ones Ridges delimiting the cavity are sufficiently reduced.
  • the cheapest thermal conductivity values are included Cavity widths less than 3 cm realized, otherwise Convection currents can arise in the cavity. From the same reason is the height of the cavity to a stone height of usually 25 cm and make sure that the cavities do not connect to channels when bricked up, but separated from each other by a layer of mortar. This can be achieved in particular in that a building block with large cavities up to three centimeters wide next to this also has small cavities that when bricking be sealed by the mortar used and the cover large cavities.
  • the heat reflective layer can be aluminum or a contain similar heat reflective component. In question there are also various oxides such as zirconium oxide, titanium oxide, Magnesium oxide etc.
  • the heat-reflecting component can in Clay, in a glaze, a varnish or any Cover layer embedded or connected with an adhesive layer be.
  • a preferred method of applying the heat reflective layer is that this on the traditionally produced insulating block or is sprayed on. Especially with bricks suggested that if a smooth surface is necessary before applying the heat reflecting layer as Underlay for this a glaze is applied. This forms a hard, smooth surface on which z.
  • the cavities can also be coated by spraying a synthetic resin paint with reflective components done because the coating does not have high temperatures is exposed.
  • To coat insulating modules in particular bricks
  • the mass to be molded or the clay water-soluble products with a low Emission coefficients are added.
  • the Drying and firing processes migrate to the Surfaces of the blank and coat it evenly. If this on the wall-parallel outer surfaces Coating is undesirable, this can be brushed off or be sanded.
  • Another possibility of coating is that a glaze containing the heat reflecting component is co-extruded with the molding.
  • the glaze is included great pressure over the cores of the mouthpiece.
  • the effectiveness of a heat reflective coating can be by the so-called emission coefficient ⁇ specify numerically. With burnt clay it is or cement-bound lightweight building materials without coating 0.93, at aluminum-coated surfaces, on the other hand, only 0.05. Paints with aluminum bronze have one Emission coefficients ⁇ of about 0.20 and therefore quite suitable for coating the cavities.
  • these bricks are designed so that the the respective hole pattern should be added to adjacent brick ends. Accordingly, not only are the inner surfaces of the cross section differently shaped, to the storage area of the brick vertically running holes 2 heat reflecting coated, but also the butt surfaces 1 to also the Inner surfaces of the trapezoidal, rectangular or to capture wedge-shaped grooves in which after the Joining the bricks also through heat transfer Radiation takes place.
  • On the visible sides 3 are the Wall thickness of the brick 6 mm thick. The The wall thickness of the inner webs is 3 mm.
  • Masonry made with such bricks achieves a k-value of 0.38 W / m 2 with a wall thickness of 30 cm unplastered, taking into account the standardized heat transfer coefficients and with a thermal conductivity of the cullet material of 0.30 W / mK for non-reflecting inner surfaces K.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Building Environments (AREA)

Description

Die Erfindung betrifft einen , vorzugsweise quaderförmigen, Baustein gemäß Oberbegriff des Anspruchs 1. Ein Baustein dieser Art wird z.B. in EP-A-0599283 beschrieben und kann auch ein Ziegel sein. Er dient zur Erstellung von wärmeisolierenden Wänden und wird mit Klebe-, Dünnbett-, Mittelbett- oder einem faserhaltigen Mörtel, der nicht in die Hohlräume fällt, vermauert. Die Hohlräume können parallel zur Wandfläche vertikal verlaufen, wie bei sogenannten Hochlochziegeln, oder auch horizontal.
Bei herkömmlichen Isolierbausteinen, wie beispielsweise Lochziegeln, Gasbetonsteinen und Bausteinen aus zementgebundenen Leichtbaustoffen, wird versucht, das Wärmeisoliervermögen durch Verwendung eines möglichst leichten Baustoffes zu optimieren. Deshalb verwendet man stark porosierten Ton bei Ziegeln, aufgeschäumten Beton, Bims, Perlit oder dergleichen. Diese Technik findet aber ihre Grenzen in der beschränkten Druckfestigkeit der Leichtbaustoffe.
Weiter ist es Stand der Technik, das Wärmeisoliervermögen durch geschickte Anordnung von Luftschlitzen zu verbessern, die quer zur Wärmestromrichtung von einer Bausteinseite zur anderen ganz oder zumindest größtenteils durchgehen. Insbesondere verbessern in Steinlängsrichtung ausgerichtete und quer zur Wärmestromrichtung gegeneinander versetzte schlitzförmige Hohlräume das Wärmeisoliervermögen. Die länglichen, bei Ziegeln im Strangpreßverfahren hergestellten und deshalb durchgehenden Hohlräume schwächen aber den Zusammenhalt, insbesondere die Querzugfestigkeit der Isolierbausteine. Deshalb kann ein Minimum an Querschnittsfläche von wärmeleitenden Stegen in Wärmestromrichtung nicht unterschritten werden.
Es ist bekannt, daß sich bei vorgegebener Dicke der quer zur Wärmestromrichtung verlaufenden Längsstege die optimale mittlere Schlitzlochbreite respektive die durchschnittliche Anzahl der in Wärmestromrichtung aufeinanderfolgenden Schlitzlöcher rechnerisch ermitteln läßt (schweizerische Patentschriften 476 181, 482 882 und 516 057). Unter der mittleren Schlitzlochbreite versteht man die Querschnittsfläche eines in der Regel länglichen Hohlraumes dividiert durch seine größte Ausdehnung quer zur Wärmestromrichtung. Die Anzahl der Schlitzlöcher wird gemittelt über eine Vielzahl von in Wärmestromrichtung geführten Schnitten durch den Ziegel. Sie entspricht einer gebräuchlicheren Kenngröße, nämlich der Anzahl der Schlitzreihen. Die Hohlraumquerschnitte weisen in der Regel quer zur Wärmestromrichtung längliche Formen wie Ellipsen, Rechtecke, Trapeze, Quader, Dreiecke usw. auf. Die Hohlräume können aber auch quadratische, runde, fünf-, sechs- und mehreckige Formen haben.
Bei Bausteinen aus gebranntem Ton sind Stegdicken von 6 mm und mehr üblich. Wird die Stegdicke reduziert, beispielsweise auf 4 respektive 2 mm, so steigt in Anlehnung an oben genannte Patentschriften die optimale Zahl der Schlitzlöcher sehr stark an, so daß Ziegel mit der theoretisch ermittelten optimalen Schlitzreihenzahl nicht mehr produziert werden können, da bei der Extrudierung der Tonmassen viel zu hohe Drücke entstehen. Beispielsweise müßte für einen 30 cm dicken Ziegel bei der Stegdicke 2 mm nach Leitner (s. o. g. CH-PS 516 057) oder Amrein (s. o. g. CH-PS 476 181) die Schlitzlochbreite 3,5 mm betragen. Damit wären über 50 Schlitzlochreihen notwendig, um das theoretisch ermittelte Maximum annähernd zu erreichen. Heute produzierte 30 cm dicke Ziegel weisen in der Regel 17 Schlitzlochreihen auf, maximal 21 Lochreihen. 30 Lochreihen dürften zur Zeit einen Grenzfall der Produzierbarkeit darstellen.
Eine weitere Möglichkeit, wärmeisolierende Bausteine herzustellen, wird in FR-A-2192226 beschrieben und besteht darin, den Baustein mit mehreren größeren Hohlräumen zu erstellen und, um den Wärmeverlust in den Hohlräumen zu begrenzen, diese nachträglich mit Isoliereinschüben aus den verschiedensten Materialien zu füllen, was aber einen aufwendigen Arbeitsgang darstellt.
Herkömmliche Isolierbausteine, die mit diesen Methoden optimiert wurden, erreichen Wärmeleitzahlen von 0,12 W/mK oder schlechter, bei Ziegeln bestenfalls 0,15 W/mK.
Der Erfindung liegt die Aufgabe zugrunde, Isolierbausteine zu schaffen, die in herkömmlichem Ausmaß statisch belastbar sind, aber ein wesentlich besseres Wärmeisoliervermögen haben als bisher bekannt, und einfacher zu produzieren sind.
Ausgehend von einem Baustein der einleitend bezeichneten Art wird diese Aufgabe durch das kennzeichnende Merkmal des Anspruchs 1 und durch die beanspruchten Verfahrensmerkmale gelöst.
Der Wärmetransport in einem Isolierbaustein der genannten Art erfolgt einerseits durch Wärmeleitung im Grundmaterial, d. h. in den Stegen, und andererseits durch Konvektion, Leitung und Strahlung in den Hohlräumen. Neuere Erkenntnisse haben ergeben, daß insbesondere bei Bausteinen mit dünnen Stegen der Anteil des Wärmetransports durch die luftgefüllten dunklen Hohlräume am gesamten Wärmetransport erheblich ist. Überraschend hoch ist darüberhinaus der Wärmetransport in den Hohlräumen durch Strahlung. Diese überwiegt die Anteile des Wärmetransportes durch Leitung in der Luft und durch Konvektion. Die Wärmeübertragung durch Konvektion ist in Schlitzlöchern der Höhe 25 cm bis zu einer Schlitzbreite von ca. 3 cm neben dem Strahlungsanteil klein und auch kleiner als der Wärmetransport durch die Wärmeleitung in der Luft. Die große theoretische Anzahl Stege eines nach oben genannten Schriften optimierten Bausteines ist im Grunde nur deshalb nötig, weil die Stege wie Schirme immer wieder die Wärmestrahlung unterbrechen. Dasselbe geschieht bei bekannten Bausteinen, deren Hohlräume mit Isoliermaterialien gefüllt sind. Für Hohlräume, die wesentlich breiter sind als 3 cm verhindern die Isoliereinschübe zwar auch die Konvektion, bei allen gefüllten Hohlräumen, insbesondere jenen mit einer Breite um 3 cm und kleiner, bewirken die Isoliereinschübe aber primär eine Unterbrechung der Wärmestrahlung. Die ruhende Luft allein wäre ohne Konvektion und Strahlung ein optimaler Isolator.
Es ist zwar allgemein bekannt, zu Isolierzwecken wärmereflektierende Oberflächen an den vor Wärmestrahlung zu schützenden Objekten vorzusehen, vor allem bei hohen Temperaturen und gegen Sonneneinstrahlung. Gestützt auf die erwähnte Erkenntnis, daß die Wärmestrahlung in den Hohlräumen selbst bei Raumtemperatur einen überraschend hohen Einfluß hat, schlägt die Erfindung vor, diese Möglichkeit zur Reduzierung der Wärmestrahlung durch wärmereflektierende Oberflächen in den Hohlräumen von Isolierbausteinen zu nutzen. Dabei ist zu beachten, daß im Interesse des maximalen Nutzens der Beschichtung die optimale Lochreihenanzahl neu definiert werden muß.
Erfreulicherweise wurde gefunden, daß Bausteine mit wärmereflektierend beschichteten inneren Hohlräumen mit breiteren Hohlräumen versehen werden können als wenn die Hohlräume unbeschichtet sind. Es wird daher vorgeschlagen, im Gegensatz zu den Formeln nach den eingangs erwähnten schweizerischen Patentschriften weniger und breitere Schlitzlochreihen vorzusehen. Damit können weitere wärmeleitende Stege eingespart werden und das Wärmeisoliervermögen des Bausteins kann weiter gesteigert werden. Diese breiten inneren Hohlräume bringen nicht nur einen zusätzlichen Isolationsgewinn, sondern verbessern auch die Produzierbarkeit des Bausteins.
Die beschichteten inneren Hohlräume brauchen nicht mit zusätzlichen Isoliereinschüben versehen zu werden, denn durch die Beschichtung der Hohlräume wird der Wärmeaustausch durch Strahlung zwischen den einander gegenüberliegenden, den Hohlraum begrenzenden Stegen hinreichend reduziert. Allerdings werden die günstigsten Wärmeleitwerte mit Hohlraumbreiten unter 3 cm realisiert, weil sonst Konvektionsströme im Hohlraum entstehen können. Aus dem gleichen Grund ist die Höhe des Hohlraums auf eine Steinhöhe von in der Regel 25 cm zu begrenzen und darauf zu achten, daß beim Vermauern sich die Hohlräume nicht zu Kanälen verbinden, sondern durch eine Mörtelschicht voneinander getrennt werden. Dies ist insbesondere dadurch zu erreichen, daß ein Baustein mit großen bis zu drei Zentimeter breiten Hohlräumen neben diesen auch kleine Hohlräume aufweist, die beim Vermauern durch den verwendeten Mörtel verschlossen werden und die großen Hohlräume überdecken. Auf jeden Fall ist darauf zu achten, daß nicht zuviel Mörtel in die Hohlräume fällt, diese verschmutzt, teilweise füllt und damit das Isolierverhalten senkt. Insbesondere ist es sinnvoll, Grifflöcher wärmereflektierend zu beschichten und so anzuordnen, daß sie sich beim Vermauern im üblichen Versatz nicht überdecken. Mit Vorteil werden derartige Bausteine im Tauchverfahren vermauert, d. h. nur wenige Millimeter weit in den Mörtel getaucht und mit dem am Stein haftenden Mörtel versetzt.
Durch das weitgehende Unterbinden der Wärmestrahlung in den Hohlräumen ist eine Senkung des gesamten Wärmetransports in den Hohlräumen bei üblichen Klimatemperaturen in den Hohlräumen um mehr als die Hälfte möglich. Beispielsweise beträgt die Wärmeleitzahl für innen beschichtete Schlitzlöcher mit ca. 2 cm Breite weniger als 0,05 W/mK statt über 0,11 W/mK für unbeschichtete Hohlräume.
Bei Anwendung dieser Technik auf gute Isolierbausteine, die nach traditioneller Methode aus Leichtbaustoffen gefertigt sind und hinsichtlich der Lochbreite und der Lochreihenzahl der wärmereflektierenden Beschichtung Rechnung tragen, gelingt es, Bausteine für statisch belastbare Isolierwände ohne Zusatzdämmung mit Wärmeleitzahlen unter 0,10 W/mK herzustellen.
In Weiterbildung der Erfindung wird vorgeschlagen, daß außer den Hohlräumen auch die Stoßseiten der Isolierbausteine wärmereflektierend beschichtet sind. Dies gilt vor allem für Bausteine, die an den Stoßseiten Vertiefungen aufweisen, die sich nach dem Ansetzen an einen Folgestein der gleichen Lage mit dessen Vertiefungen zu geschlossenen Hohlräumen kombinieren. Somit sind dann auch diese Hohlräume an ihren Innenflächen beschichtet.
Die wärmereflektierende Schicht kann Aluminium oder eine ähnliche wärmereflektierende Komponente enthalten. In Frage kommen auch verschiedene Oxide wie Zirkoniumoxid, Titanoxid, Magnesiumoxid etc. Die wärmereflektierende Komponente kann im Ton, in einer Glasur, einem Lack oder irgend einer Deckschicht eingebettet oder mit einer Haftschicht verbunden sein.
Ein bevorzugtes Verfahren zum Aufbringen der wärmereflektierenden Schicht besteht darin, daß diese auf den traditionell produzierten Isolierbaustein aufgedampft oder aufgespritzt wird. Insbesondere bei Ziegeln wird vorgeschlagen, daß, sofern eine glatte Oberfläche notwendig ist, vor dem Aufbringen der wärmereflektierenden Schicht als Unterlage für diese eine Glasur aufgebracht wird. Diese bildet eine harte, glatte Unterlage, auf die dann z. B. Aluminium aufgedampft oder aufgespritzt werden kann. Statt des Aufdampfens können auch spezielle keramische oder anorganische Massen aufgespritzt werden, die nachträglich eingebrannt werden.
Die Beschichtung der Hohlräume kann auch durch Aufspritzen eines Kunstharzlackes mit reflektierenden Komponenten erfolgen, da die Beschichtung keinen hohen Temperaturen ausgesetzt ist.
Ein weiteres Verfahren, die Oberflächen von Isolierbausteinen, insbesondere von Ziegeln, zu beschichten, besteht darin, daß der zu formenden Masse bzw. dem Ton wasserlösliche Produkte mit einem niedrigen Emissionskoeffizienten beigemischt werden. Während des Trocknungs- und Brennprozesses wandern diese an die Oberflächen des Rohlings und beschichten diesen gleichmäßig. Falls an den wandparallelen äußeren Oberflächen diese Beschichtung unerwünscht ist, kann diese abgebürstet oder abgeschliffen werden.
Eine weitere Möglichkeit der Beschichtung besteht darin, daß eine die wärmereflektierende Komponente enthaltende Glasur mit dem Formling koextrudiert wird. Die Glasur wird dabei mit großem Druck über die Kerne des Mundstücks aufgepreßt.
Die Wirksamkeit einer wärmereflektierenden Beschichtung läßt sich durch den sogenannten Emissionskoeffizienten ε zahlenmäßig angeben. Er beträgt bei gebranntem Ton oder zementgebundenen Leichtbaustoffen ohne Beschichtung 0,93, bei aluminiumbeschichteten Oberflächen dagegen nur 0,05. Anstriche mit Aluminiumbronze haben einen Emissionskoeffizienten ε von etwa 0,20 und sind somit zur Beschichtung der Hohlräume durchaus geeignet.
Ausführungsbeispiele von Isolierbausteinen, bei denen die Erfindung verwirklicht ist, werden nachfolgend anhand der Zeichnung beschrieben. Diese stellt auch noch einige rechnerisch gewonnene Kurvenschaubilder dar, welche die Bedeutung der Erfindung unterstreichen. Im einzelnen zeigt
Fig. 1
die Draufsicht eines Bruchstücks eines Hochlochziegels mit wabenförmig angeordneten sechseckigen Hohlräumen (Wabenziegel),
Fig. 2
die entsprechende Draufsicht eines Hochlochziegels mit versetzten rechteckigen Hohlräumen (Schlitzlochziegel),
Fig. 3
die entsprechende Draufsicht eines Hochlochziegels mit elliptischen Hohlräumen,
Fig. 4
die Draufsicht eines ganzen Ziegels mit Grifflöchern im kleineren Maßstab,
Fig. 5
ein Kurvenschaubild, das bei einem Hochlochziegel bestimmter Abmessungen unter bestimmten Voraussetzungen die rechnerische Abhängigkeit des Wärmedurchlaßwiderstandes R von der Anzahl n der Lochreihen darstellt, und
Fig. 6 und 7
entsprechende Kurvenschaubilder, bei denen andere Parameter gelten.
Bei den Figuren 1 bis 3 ist ein Nachbarziegel jeweils strichpunktiert angedeutet. Die Hohlräume sind an ihren Wandflächen wärmereflektierend beschichtet. Selbstverständlich ist eine entsprechende Beschichtung bei jeder Form der Hohlräume möglich.
An den Stoßflächen 1 sind diese Ziegel so gestaltet, daß die angrenzenden Ziegelenden das jeweilige Lochmuster ergänzen. Demgemäß sind nicht nur die Innenflächen der querschnittlich unterschiedlich geformten, zur Lagerfläche des Ziegels senkrecht verlaufenden Löcher 2 wärmereflektierend beschichtet, sondern auch die Stoßflächen 1, um auch die Innenflächen der trapezförmigen, rechteckigen bzw. keilförmigen Nuten zu erfassen, in denen nach dem Zusammenfügen der Ziegel ebenfalls Wärmetransport durch Strahlung stattfindet. An den Sichtseiten 3 sind die Wandstärken des Ziegels 6 mm stark gewählt worden. Die Wandstärke der inneren Stege beträgt 3 mm.
Der Wabenziegel nach Fig. 1 hat 15 Lochreihen verwirklicht. Ein mit solchen Ziegeln erstelltes Mauerwerk erreicht bei einer Wandstärke von 30 cm unverputzt, unter Berücksichtigung der genormten Wärmeübergangszahlen und bei einer Wärmeleitzahl des Scherbenmaterials von 0,30 W/mK bei nicht reflektierenden inneren Oberflächen einen k-Wert von 0,38 W/m2K. Dabei beträgt der Emissionskoeffizient der Tonoberfläche 0,93. Sind die Oberflächen reflektierend mit einem Emissionskoeffizienten ε = 0,1 ausgebildet, so wird statt 0,38 W/m2K ein k-Wert von 0,25 W/m2K erreicht.
Bei dem in Fig. 4 dargestellten Ziegel ist das Wabenmuster noch einmal verfeinert. Der Ziegelgrundriß mißt in Natura 30 x 27 cm. Es sind 21 Lochreihen in Wärmestromrichtung verwirklicht. Eine weitere Besonderheit bei diesem Ziegel sind zwei eingelagerte Grifflöcher 4 und an den Stoßseiten je ein Halbhohlraum 5. Diese Halbhohlräume ergänzen sich beim Anfügen eines weiteren Ziegels zu einem ganzen Hohlraum. Selbstverständlich können hier wie in den vorhergehenden Beispielen alle Hohlräume und die Stoßseiten wärmereflektierend beschichtet sein. Ein sehr günstiger Einfluß ist aber auch schon zu erwarten, wenn nur die Grifflöcher 4 und die Halbhohlräume 5 entsprechend beschichtet sind. An einer Stoßseite hat dieser Ziegel vier je einen 6-eckigen Hohlraum enthaltende vertikale Federn 6, die in entsprechende Nuten 7 des Nachbarziegels eingreifen.
In den Figuren 5, 6 und 7 ist der Einfluß einer wärmereflektierenden Beschichtung der Hohlräume auf den Wärmedurchlaßwiderstand R und auf die theoretisch optimale Anzahl n der Schlitzreihen eines 30 cm breiten und 25 cm hohen Bausteines bei unterschiedlichen Stegbreiten graphisch dargestellt. Diese Darstellungen gelten unter folgenden Voraussetzungen: Die Wärmeleitzahl des Scherbens beträgt 0,30 W/mK, die beiden äußeren Randstege an den Sichtflächen sind doppelt so dick wie die inneren Stege. Wärmeleitende Querstege aus Ton werden vernachlässigt, ebenso die Wärmeübertragung durch Konvektionsströme, wodurch die Gültigkeit der Schaubilder auf Lochbreiten von maximal 3 cm beschränkt bleibt. Generell nimmt der Wärmedurchgangswiderstand R des Ziegels mit zunehmender Güte der Beschichtung zu und die optimale Anzahl n der Schlitzlochreihen nimmt ab, wobei die Schlitzlöcher breiter werden. Das Emmisionsverhältnis ε, das bei dieser Berechnung zwischen 0,05 und 0,9 mit drei Zwischenstufen verändert wurde, ist in Fig. 5 bei den einzelnen Kurven angegeben. Man sieht, daß bei zunehmender Qualität der wärmereflektierenden Beschichtung, d. h. bei kleinerem Emissionsverhältnis ε, der Wärmedurchgangswiderstand R nicht nur grundsätzlich größer wird, sondern die Kurvenform sich so ändert, daß überhaupt ein Maximum sichtbar wird. Bei Fig. 7 (Stegdicke 6 mm) ist dies besonders deutlich.
Es ist ersichtlich, daß bei Bausteinen mit beschichteten Hohlräumen bei mehr als 25 Schlitzlochreihen der Wärmedurchlaßwiderstand R bei Stegdicken von 4 mm und 6 mm sehr stark und selbst bei 2 mm noch abnimmt. Es ist deshalb nicht sinnvoll, die Hohlräume von Bausteinen mit Schlitzlochbreiten unter 8 mm wärmereflektierend zu beschichten.

Claims (10)

  1. Baustein mit einer Vielzahl von leeren inneren Hohlräumen, die den Baustein in ganzer Höhe durchsetzen und in Wärmeflußrichtung 8 bis 30 mm breit sind, und mit weniger als 6 mm dicken Stegen, welche die Hohlräume trennen, dadurch gekennzeichnet, daß die Innenflächen der Hohlräume (2) ringsum wärmereflektierend beschichtet sind.
  2. Baustein nach Anspruch 1, dadurch gekennzeichnet, daß auch die Stoßflächen (1) wärmereflektierend beschichtet sind.
  3. Baustein nach Anspruch 1, dadurch gekennzeichnet, daß größere Hohlräume wie Grifflöcher (4) wärmereflektierend beschichtet und so angeordnet sind, daß die Hohlräume beim Vermauern der Bausteine nicht direkt übereinander zu liegen kommen.
  4. Baustein nach Anspruch 1, dadurch gekennzeichnet, daß die wärmereflektierende Schicht Aluminium oder eine ähnliche wärmereflektierende Komponente wie andere Metalle oder Oxide enthält.
  5. Mauerwerk, erstellt mit Bausteinen nach einem der Ansprüche 1 bis 4, die mit Klebe-, Dünnbett-, Mittelbett- oder faserigen Mörtel vermauert sind, so daß die Hohlräume sich nicht mit Mörtel füllen oder verschmutzen.
  6. Verfahren zur Herstellung von Bausteinen, insbesondere Ziegeln, nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß dem Rohmaterial Ton eine wasserlösliche wärmereflektierende Komponente beigemischt wird, welche während des Trocknungs- und Brennprozesses an die Oberfläche auch der Hohlräume wandert und diese beschichtet.
  7. Verfahren zur Herstellung von Bausteinen, insbesondere Ziegeln, nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß die wärmereflektierende Schicht auf Ziegel durch Koextrudieren aufgebracht wird.
  8. Verfahren zur Herstellung von Bausteinen nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß die wärmereflektierende Schicht aufgedampft oder aufgespritzt wird.
  9. Verfahren nach einem der Ansprüche 6 bis 8, dadurch gekennzeichnet, daß die wärmereflektierende Schicht bei Ziegeln gegebenenfalls erst nach dem Brennen derselben eingebrannt wird.
  10. Verfahren nach einem der Ansprüche 6 bis 9, dadurch gekennzeichnet, daß vor dem Aufbringen der wärmereflektierenden Schicht als Unterlage für diese eine Glasur aufgebracht wird.
EP95110517A 1994-07-08 1995-07-06 Baustein mit wärmeisolierend wirkenden inneren Hohlräumen Expired - Lifetime EP0691440B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4423716A DE4423716A1 (de) 1994-07-08 1994-07-08 Baustein mit wärmeisolierend wirkenden inneren Hohlräumen
DE4423716 1994-07-08

Publications (2)

Publication Number Publication Date
EP0691440A1 EP0691440A1 (de) 1996-01-10
EP0691440B1 true EP0691440B1 (de) 1998-10-28

Family

ID=6522407

Family Applications (1)

Application Number Title Priority Date Filing Date
EP95110517A Expired - Lifetime EP0691440B1 (de) 1994-07-08 1995-07-06 Baustein mit wärmeisolierend wirkenden inneren Hohlräumen

Country Status (4)

Country Link
US (1) US5904963A (de)
EP (1) EP0691440B1 (de)
CA (1) CA2153471A1 (de)
DE (2) DE4423716A1 (de)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2749335B3 (fr) * 1996-05-31 1998-04-10 Sturm Petit element de maconnerie a emboitement
US6203879B1 (en) * 1997-10-24 2001-03-20 Mannington Carpets, Inc. Repeating series of carpet tiles, and method for cutting and laying thereof
GR1003284B (el) * 1998-06-22 1999-12-10 6� 9 6� 0fs@� 0 5#tfs *0* *55 065 f@ *660#sf@ t55#0@6*@ 0 9 sf@tfs@ *65 fs@ t50)95 s@ 5@tfs@ *65 fs@6*t ) sfs@t @ *
DE10126793B4 (de) * 2000-10-17 2016-05-12 JUWÖ-ENGINEERING GmbH Verfahren zum Bestücken eines Hochlochziegels mit Einschubelementen
EP1199417A3 (de) 2000-10-17 2003-07-16 Juwö-Engineering GmbH Mauerstein und Verfahren zum Bestücken eines gebrannten Hochlochziegels mit Einschubelementen
US20030066262A1 (en) * 2001-02-21 2003-04-10 Putnam Craig D. Hemp building material
ES2265234B2 (es) * 2004-07-29 2008-04-01 Universidad Politecnica De Madrid Ladrillo ceramico con hueco hexagonales.
CH696964A5 (de) 2006-05-23 2008-02-29 Veritec Ag Anlagen Und Geraete Verfahren und Vorrichtung zur Herstellung eines geformten Baumaterials
DE102006048444A1 (de) * 2006-10-11 2008-04-17 Ziegelwerk Bellenberg Wiest Gmbh & Co. Kg Verfahren zur Relativbewegung von Durchströmungsmedium und Lochstein
FR2928946B1 (fr) * 2008-03-21 2014-01-03 Cogestone France Bloc isolant muni d'une multitude d'alveoles
US8091307B2 (en) * 2009-08-18 2012-01-10 King Abdulaziz University Convection baffle for hollow blocks
US20110047924A1 (en) * 2009-09-01 2011-03-03 Antar Mohamed A Hollow brick providing thermal insulation
US8978342B2 (en) 2012-06-15 2015-03-17 Auburn University Residential radiant barrier assemblies
ES2495540B2 (es) * 2014-06-06 2015-05-11 Universidad Politécnica de Madrid Mejoras relativas a un ladrillo cerámico con huecos hexagonales
WO2017055630A1 (en) 2015-10-01 2017-04-06 Universiteit Gent Structural block with increased insulation properties

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH86156A (de) * 1915-04-12 1920-09-01 Welte Henry Verfahren zur Herstellung glasierter Kunststeine.
DE325293C (de) * 1915-06-27 1920-09-09 Henry Welte Verfahren zur Erzeugung metallischer UEberzuege auf Natur- und Kunststeinen
FR946387A (fr) * 1947-04-30 1949-06-01 Essor Economique Perfectionnements apportés aux moyens pour l'isolation thermique des locaux, notamment des locaux préfabriqués
AT276706B (de) 1968-04-12 1969-12-10 Wienerberger Baustoffind Ag Stranggepreßter Hohlziegel
CH482882A (de) 1968-05-14 1969-12-15 Verband Schweizerischer Ziegel Bauelement, insbesondere Backstein
CH476181A (de) 1968-05-14 1969-07-31 Verband Schweizerischer Ziegel Bauelement, insbesondere Backstein
GB1291567A (en) * 1968-12-16 1972-10-04 Thomas Gordon Mcnish Improvements in or relating to fibrous insulating materials
DE2124350A1 (de) * 1971-05-17 1973-01-04 Ernst W Schmidt Waermestrahlungsschutz fuer feste dachabdeckungen
FR2192226A1 (en) * 1972-07-11 1974-02-08 Debrock Marcel Hollow building blocks with insulated cavities - lined with IR reflecting lining and foam filled
DE8427060U1 (de) * 1984-09-13 1989-10-05 KLB Klimaleichtblock Vertriebs-Gesellschaft mbH, 5450 Neuwied Wandbauelement
DE3621114A1 (de) * 1986-06-24 1988-02-04 Rennebeck Klaus Behandeln und beschichten von formstabilen, temperaturbestaendigen hitzebestaendigen traegermateralien
US4956217A (en) * 1988-08-28 1990-09-11 Ciba-Geigy Corportion Silicate treated honeycomb structures
DD289038A5 (de) * 1989-11-13 1991-04-18 Brennstoffinstitut,De Waermestrahlungsaktive beschichtung fuer keramik-, mineral-, glas- oder mischfaser- und leichtbaustoffauskleidungen von waermeanlagen
DD289039A5 (de) * 1989-11-13 1991-04-18 Brennstoffinstitut Freiberg,De Hochtemperaturbestaendige ueberzugsmasse fuer waermereflexionsaktive beschichtungen mit vitrokeramischer matrix und verfahren zu deren herstellung
DE4225970C1 (de) * 1991-10-24 1994-04-07 Degussa Verfahren und Vorrichtung zur gleichmäßigen und reproduzierbaren Beschichtung von Wabenkörpern mit einem Beschichtungspulver
DE4135055C1 (en) * 1991-10-24 1993-05-06 Degussa Ag, 6000 Frankfurt, De Efficient, reliable and uniform charging of cylindrical honeycomb member - includes passing carrier gas through honeycomb member in closed circuit, etc.
EP0599283B1 (de) * 1992-11-25 1998-10-14 Raimund Rimmele Hochloch-Leichtziegel

Also Published As

Publication number Publication date
EP0691440A1 (de) 1996-01-10
DE4423716A1 (de) 1996-01-18
CA2153471A1 (en) 1996-01-09
US5904963A (en) 1999-05-18
DE59504044D1 (de) 1998-12-03

Similar Documents

Publication Publication Date Title
EP0691440B1 (de) Baustein mit wärmeisolierend wirkenden inneren Hohlräumen
EP1905914A2 (de) Wärmedämmziegel
EP0599283B1 (de) Hochloch-Leichtziegel
DE202011003283U1 (de) Keramischer Isolierkörper
DE69709803T2 (de) Lochziegel
CH643316A5 (en) Extruded hollow bricks
DE19807040B4 (de) Wärmedämmverfüllziegel
DE19741282A1 (de) Mauerwerksbaustein und Verfahren und Vorrichtung zur Herstellung desselben
EP0214650B1 (de) Mauerstein
EP0048932A1 (de) Mauerstein
DE102004043494A1 (de) Ziegelmanteldämmplatte (ZMD-Platte)
DE2939832C2 (de) Wandbaustein
DE3100642A1 (de) Hohlbaustein
DE10005947C2 (de) Mauerwerk
EP0584455B1 (de) Hochloch-Leichtziegel
DE3006393A1 (de) Porosierte keramische produkte
DE3013520A1 (de) Gasbetonelement mit aussparungen
DE4133711C1 (en) Wall for lining glass melting furnace - has ceramic bricks facing furnace interior and outer bricks supporting structure
EP0107243A1 (de) Liegender Gitterbesatz für Kammern regenerativ beheizter Öfen
EP0210456A2 (de) Schalenmauerwerk
DE3030846A1 (de) Hochlochziegel
DE3120380A1 (de) "keramische fliese"
DE19804729A1 (de) Baustein, insbesondere auf der Basis zementgebundenen Blähtons
EP1124022A1 (de) Ziegel
DE19735700A1 (de) Kerbschlitzziegel

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): BE CH DE DK ES FR GB IE IT LI NL SE

AX Request for extension of the european patent

Free format text: SI PAYMENT 950706

RAX Requested extension states of the european patent have changed

Free format text: SI PAYMENT 950706

17P Request for examination filed

Effective date: 19960625

RAP3 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ZIEGELEIEN FREIBURG & LAUSANNE AG DUEDINGEN

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

17Q First examination report despatched

Effective date: 19980325

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE CH DE DK ES FR GB IE IT LI NL SE

AX Request for extension of the european patent

Free format text: SI PAYMENT 950706

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19981028

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRE;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.SCRIBED TIME-LIMIT

Effective date: 19981028

Ref country code: ES

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19981028

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19981029

REF Corresponds to:

Ref document number: 59504044

Country of ref document: DE

Date of ref document: 19981203

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: GERMAN

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: KELLER & PARTNER PATENTANWAELTE AG

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19990128

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19990128

ET Fr: translation filed
NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990820

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

26N No opposition filed
BERE Be: lapsed

Owner name: ZIEGELEIEN FREIBURG & LAUSANNE A.G. DUDINGEN

Effective date: 19990731

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20010702

Year of fee payment: 7

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020706

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20020706

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: DTS ZUERICH

REG Reference to a national code

Ref country code: CH

Ref legal event code: PCAR

Free format text: DTS ZUERICH;RESIRAIN 1;8125 ZOLLIKERBERG (CH)

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20100805

Year of fee payment: 16

Ref country code: DE

Payment date: 20100730

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20110729

Year of fee payment: 17

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20120330

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120201

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110801

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59504044

Country of ref document: DE

Effective date: 20120201

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120731

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120731