EP0683248B1 - Procédé de post-traitement de plaques, feuilles ou bandes et son application comme support pour plaques d'impression - Google Patents

Procédé de post-traitement de plaques, feuilles ou bandes et son application comme support pour plaques d'impression Download PDF

Info

Publication number
EP0683248B1
EP0683248B1 EP95107331A EP95107331A EP0683248B1 EP 0683248 B1 EP0683248 B1 EP 0683248B1 EP 95107331 A EP95107331 A EP 95107331A EP 95107331 A EP95107331 A EP 95107331A EP 0683248 B1 EP0683248 B1 EP 0683248B1
Authority
EP
European Patent Office
Prior art keywords
post
silicate
process according
ions
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP95107331A
Other languages
German (de)
English (en)
Other versions
EP0683248A1 (fr
Inventor
Wolfgang Dr. Dipl.-Chem. Wiedemann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Agfa Gevaert AG
Original Assignee
Agfa Gevaert AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agfa Gevaert AG filed Critical Agfa Gevaert AG
Publication of EP0683248A1 publication Critical patent/EP0683248A1/fr
Application granted granted Critical
Publication of EP0683248B1 publication Critical patent/EP0683248B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41NPRINTING PLATES OR FOILS; MATERIALS FOR SURFACES USED IN PRINTING MACHINES FOR PRINTING, INKING, DAMPING, OR THE LIKE; PREPARING SUCH SURFACES FOR USE AND CONSERVING THEM
    • B41N3/00Preparing for use and conserving printing surfaces
    • B41N3/03Chemical or electrical pretreatment
    • B41N3/038Treatment with a chromium compound, a silicon compound, a phophorus compound or a compound of a metal of group IVB; Hydrophilic coatings obtained by hydrolysis of organometallic compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41NPRINTING PLATES OR FOILS; MATERIALS FOR SURFACES USED IN PRINTING MACHINES FOR PRINTING, INKING, DAMPING, OR THE LIKE; PREPARING SUCH SURFACES FOR USE AND CONSERVING THEM
    • B41N1/00Printing plates or foils; Materials therefor
    • B41N1/04Printing plates or foils; Materials therefor metallic
    • B41N1/08Printing plates or foils; Materials therefor metallic for lithographic printing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41NPRINTING PLATES OR FOILS; MATERIALS FOR SURFACES USED IN PRINTING MACHINES FOR PRINTING, INKING, DAMPING, OR THE LIKE; PREPARING SUCH SURFACES FOR USE AND CONSERVING THEM
    • B41N3/00Preparing for use and conserving printing surfaces
    • B41N3/03Chemical or electrical pretreatment
    • B41N3/034Chemical or electrical pretreatment characterised by the electrochemical treatment of the aluminum support, e.g. anodisation, electro-graining; Sealing of the anodised layer; Treatment of the anodic layer with inorganic compounds; Colouring of the anodic layer
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/04Anodisation of aluminium or alloys based thereon
    • C25D11/18After-treatment, e.g. pore-sealing
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/04Anodisation of aluminium or alloys based thereon
    • C25D11/18After-treatment, e.g. pore-sealing
    • C25D11/20Electrolytic after-treatment
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/04Anodisation of aluminium or alloys based thereon
    • C25D11/18After-treatment, e.g. pore-sealing
    • C25D11/24Chemical after-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41NPRINTING PLATES OR FOILS; MATERIALS FOR SURFACES USED IN PRINTING MACHINES FOR PRINTING, INKING, DAMPING, OR THE LIKE; PREPARING SUCH SURFACES FOR USE AND CONSERVING THEM
    • B41N1/00Printing plates or foils; Materials therefor
    • B41N1/04Printing plates or foils; Materials therefor metallic
    • B41N1/08Printing plates or foils; Materials therefor metallic for lithographic printing
    • B41N1/083Printing plates or foils; Materials therefor metallic for lithographic printing made of aluminium or aluminium alloys or having such surface layers

Definitions

  • the invention relates to a process for the aftertreatment of plate, film or tape material based on chemically, mechanically and / or electrochemically roughened and anodically oxidized aluminum or one of its alloys, the aluminum oxide layers of which are treated with an alkali metal silicate in aqueous solution, and one Carrier made of such a material, in which the aluminum oxide layer is coated with an alkali metal silicate layer, and the use of such a carrier as a carrier for offset printing plates.
  • Carrier materials for offset printing plates are either equipped directly by the consumer or by the manufacturer of precoated printing plates or equipped on one or both sides with a radiation or light-sensitive layer, a so-called reproduction layer, with the help of which an image to be printed is created for submission in a photomechanical way.
  • the support After the radiation-sensitive layer has been exposed and developed, the support carries the image-bearing areas which later lead to color printing and, at the same time, forms the hydrophilic background for the lithographic printing process at the non-image areas during later printing, the so-called non-image areas.
  • the parts of the radiation-sensitive layer which have become relatively more soluble after exposure must be easy to remove from the support without residue by development in order to produce the hydrophilic non-image areas.
  • the carrier exposed in the non-image areas must have a high affinity for water, i.e. be highly hydrophilic in order to absorb water quickly and permanently during the lithographic printing process and to be sufficiently repellent to the bold printing ink.
  • the adhesion of the radiation-sensitive layer before or the printing parts of the layer after the irradiation must be sufficient.
  • Aluminum which is roughened on the surface by known methods by dry, wet brushing, sandblasting, chemical and / or electrochemical treatment, is used in particular as the base material for such layer supports.
  • the roughened substrate is subjected to an anodization step to build up a thin oxide layer.
  • the carrier materials in particular anodically oxidized carrier materials based on aluminum, are often used to improve the Layer adhesion, to increase the hydrophilicity and / or to facilitate the developability of the radiation-sensitive layers prior to the application of a radiation-sensitive layer, undergo a further treatment step, as described for example in EP-B 0 105 170 and EP 0 154 201.
  • EP-B 0 105 170 discloses a process for the aftertreatment of aluminum oxide layers with an aqueous alkali silicate solution, in which after the treatment a) is carried out with an aqueous alkali silicate solution, a treatment b) is also carried out with a solution containing aqueous alkaline earth metal salts.
  • the alkali silicate solution is an aqueous solution containing Na 2 SiO 3 .5 H 2 O. It is then rinsed with distilled water, this intermediate cleaning can also be omitted, and then, or immediately after the silicatization, treatment is carried out in an aqueous solution of an alkaline earth metal nitrate, such as calcium, strontium or barium nitrate.
  • the intermediate rinses with distilled water show a certain influence on the alkali resistance, which is generally better for pores that have not been rinsed after the silicatization step than for rinsed pores.
  • EP-B 0 154 201 describes a process for the aftertreatment of aluminum oxide layers in a solution which contains an alkali metal silicate and alkaline earth metal cations.
  • Calcium or strontium salts are used as alkaline earth metal salts, in particular nitrates or hydroxides used.
  • the aqueous solution in the aftertreatment additionally contains at least one complexing agent for alkaline earth metal ions.
  • the materials are electrochemically roughened in an aqueous solution containing nitric acid.
  • the materials are further anodically oxidized in one or two stages in aqueous solutions containing H 2 SO 4 and / or H 3 PO 4 .
  • the aftertreatment is carried out electrochemically or by immersion treatment.
  • the object of the invention is therefore to improve a process for the aftertreatment of flat aluminum layer supports which have an aluminum oxide layer in such a way that the degradation of the oxide layer by the silicating can be avoided or at least kept very slight.
  • This object is achieved according to the invention by a process of the type described in the introduction that a) the aftertreatment is carried out in an aqueous solution of the ⁇ modification of sodium phyllosilicate Na 2 Si 2 O 5 and b) subsequently rinsed with water containing alkali metal or alkaline earth metal ions being, the Alkali or alkaline earth metal ions can be selected from the group Ca, Mg, Na, K, Sr.
  • the SiO 2 / Na 2 O molar ratio of the crystalline layered sodium silicate is preferably in the range from 1.9 to 3.5 to 1.
  • the solution in the after-treatment stage a) contains 0.1 to 10% by weight. % of ⁇ -Na 2 Si 2 O 5 .
  • the aftertreatment can be carried out as an immersion treatment or else electrochemically, the latter procedure bringing about a certain increase in the alkali resistance and / or improvement in the adsorption behavior of the material. It is assumed that a firmly adhering silicate top layer forms in the pores of the aluminum oxide layer, which protects the aluminum oxide from attacks, the surface topography previously generated, such as roughness and oxide pores, being changed practically or only insignificantly.
  • the post-treatment stage a) is carried out electrochemically and / or by an immersion treatment for a time of 10 to 120 seconds and at a temperature of 40 ° C. to 80 ° C.
  • the electrochemical aftertreatment is carried out in particular with direct or alternating current, trapezoidal, rectangular or triangular current or overlapping forms of these types of current.
  • the current density is generally 0.1 to 10 A / dm 2 and / or the voltage is 3 to 100 volts.
  • Post-treatment stage b) with ionic Water generally follows an immersion treatment in a 0.1 to 10% by weight salt solution, this salt solution containing, for example, individually or in combination NaF, NaHCO 3 , CaSO 4 , polyvinyl phosphoric acid and MgSO 4 .
  • suitable base materials for the layer supports are also alloys of aluminum which, for example, have a content of more than 98.5% by weight of Al and proportions of Si, Fe, Ti, Cu and Zn.
  • All process stages can be carried out discontinuously with plates or foils, but they are preferably carried out continuously with belts in belt systems.
  • FIG. 1 shows the structure of layered sodium silicate, which is a pure sodium silicate, ie it is composed exclusively of sodium, silicon and oxygen. It is the ⁇ phase of the crystalline disilicate Na 2 Si 2 O 5 . It is similar to the common water glass, but is anhydrous and crystalline.
  • the structure shown in FIG. 1 was determined by X-ray diffraction on single crystals. It shows the polymeric wavy layer structure of the silicate framework made of sodium ions, which are represented in the figure by large bright spheres, oxygen by large black spheres and silicon by small black spheres. The sodium ions are almost in one plane.
  • the crystalline layered sodium silicate which is a layered silica, has a SiO 2 / Na 2 O molar ratio of 1.9 to 3.5 to 1.
  • the structure of this compound is almost identical to that of the mineral natrosilite, in which it is a ⁇ modification of Na 2 Si 2 O 5 .
  • Very pure sand and soda or sodium hydroxide solution are used as the base material in the production of layered sodium silicate, from which a water glass solution is produced. This solution is then dewatered and crystallized at high temperature into the delta modification of the disilicate.
  • the product obtained can be ground and, if necessary, compacted into granules. In aqueous solution, water penetrates between two layers and widens the distance.
  • the sodium ions can then be exchanged with other ions.
  • the calcium and magnesium ions of the rinse water for example tap water, are bound by the crystalline layered silicate in an ion exchange process, ie the sodium ions of the layered silicate are quickly replaced, thereby stabilizing the silicate structure.
  • This exchange process takes place faster than the dissolution of the layered sodium silicate - with the effect that the particles are much smaller than when the amorphous silicate.
  • the layered sodium silicate provides the desired alkalinity and stabilizes the pH. Hoechst AG offers the product as a builder or builder for detergents.
  • layer silicates SKS systems from Hoechst AG, corresponding to S chicht k iesel s äure
  • SKS-6 the most important with regard to builder properties in detergents (binding capacity of Mg, Ca ions); it is also advantageously water-soluble for silicating and processing.
  • trioctahedral layered silicates such as SKS 20 (mineralogical name “Saponit”) and SKS 21 (“Hectorite”), have water solubility and a good cation exchange capacity of the intermediate Na ions.
  • anhydrous layered Na silicate with Kanemite structure (SKS-9) and the synthetic Kanemite (SKS 10) have a very good Ca binding capacity.
  • Radiation-sensitive coatings are applied to the aftertreated layer supports, and the offset printing plates thus obtained are converted into the desired printing form in a known manner by imagewise exposure and washing out of the non-image areas with a developer, preferably an aqueous developer solution.
  • a developer preferably an aqueous developer solution.
  • offset printing plates stand out, their layer support materials using the two-stage process were treated compared to those plates in which the same layer support material was aftertreated with aqueous solutions containing silicates, such as water glass or ⁇ - or ⁇ -Na 2 Si 2 O 5 , by improved alkali resistance, a lower tendency to form color and great resistance to a rubber coating of the offset printing plate.
  • a defined area of 7.5 cm x 7.5 cm at room temperature is immersed in a 0.1 N NaOH solution with an electrolyte concentration of 4 g NaOH per liter of fully deionized water and the alkali resistance is determined electrochemically .
  • the time course of the potential of an Al / Al 3+ half cell against a reference electrode is measured without current.
  • the potential curve provides information about the resistance that the aluminum oxide layer opposes to its dissolution.
  • the time in seconds which is determined in the voltage-time diagram after passing through a minimum until a maximum occurs, serves as a measure of the alkali resistance.
  • An average value is formed from the measured values of two samples.
  • the alkali resistance with an oxide weight of 3.21 g / m 2 is 112 ⁇ 10 seconds, this value being an average of 5 double measurements.
  • FIG. 2 shows the silicatization or the covering with silicate on an aluminum surface of a printing plate, in which the aftertreatment with layered sodium silicate of different concentrations in aqueous solution takes place at an immersion bath temperature of 60 ° C. for different lengths of time.
  • the surface silicatization is investigated according to the ESCA method, which is "Electron Spectroscopy for Chemical Analyzes", with which the atomic layers on a surface up to approx. 5 nm thick, due to their binding energy position and the intensity of the peak values, the surface atoms, if applicable theirs Binding state, can be determined. Furthermore, the intensity ratio of the different peak values compared to the peak value of aluminum allows an assessment of the atomic occupancy on the aluminum oxide surface.
  • FIG. 2 shows the Si / Al and the Na / Al ratio or the coating with Si and Na on the aluminum oxide surface.
  • the support with the highest Si / Al ratio is rinsed with fully deionized water and dried and then gummed with an aqueous solution of dextrin, H 3 PO 4 , glycerin, which has a pH of 5.0, and after 16 hours Washed off with fully deionized water.
  • the Si / Al ratio does not change after this procedure and is 0.56, and the Na / Al ratio goes to 0.07 back.
  • the silication with layered sodium silicate is not attacked by the rubber coating, ie the silicate coating is not removed. Phosphorus from the rubber coating can only be detected in the ESCA spectrum, which is proof that the rubber coating does not attack the silicate coating.
  • the silicatisation of the aluminum oxide surface increases with increasing concentration of the layered sodium silicate in the aftertreatment solution, with increasing temperature of the immersion bath (see FIG. 5) and with a longer immersion time. This is expressed in particular in an increase in the Si / Al ratio.
  • the concentration of the layered sodium silicate was increased from 1 g / l to 10 g / l of fully deionized water, furthermore demineralized water, the immersion temperature of the aftertreatment solution was raised from 60 to 80 ° C. (see FIG. 5) and the immersion time was 10 s increased to 120 s.
  • the ESCA measurements show that the applied layered sodium silicate retains its ion exchange capacity, ie when sodium is rinsed with tap or city water, the sodium ions are exchanged for calcium ions.
  • the sodium ions are exchanged for calcium ions.
  • the magnesium content after such a rinse is poor due to its peak value
  • the exchange of sodium for strontium could also be determined using a strontium solution (see also Table 2).
  • Figure 3 shows the oxide degradation in the aluminum oxide layer of a layer or printing plate support.
  • the substrate is roughened electrochemically in hydrochloric acid and anodized in sulfuric acid. Its total thickness is 0.3 mm, the oxide weight is 3.21 g / m 2 , the thickness of the oxide layer is about 1 ⁇ m.
  • the aftertreatment is carried out in accordance with the process according to the invention in an aqueous solution with a 1% concentration of the layered sodium silicate, deionized water being used. The solution had a pH of 11.4.
  • the printing plate carrier was immersed in the immersion bath at a temperature of 60 ° C. The diving times were 10 to 120 s. As can be seen from Figure 3, the aluminum oxide is attacked only slightly.
  • the surfaces of the substrate which were treated for 10 s, 30 s, and 120 s in the 1% sodium layer silicate solution at 60 ° C, show little change in SEM images compared to the starting material, only that Porosity of the surface, ie the refinement of the pore structure increases slightly.
  • the surfaces of substrates were also investigated, in which sodium metasilicates Na 2 SiO 3 x 5 H 2 O were used for the silicatization, under otherwise identical immersion conditions. These investigations were carried out for the diving temperatures of 25 ° C and 60 ° C. A very strong oxide degradation is found, which is still at a low diving temperature of 25 ° C is significantly higher than when silicating with layered sodium silicate.
  • the 1% sodium metasilicate solution (10 g / l Na 2 SiO 3 x 5 H 2 O, whereby the water of crystallization is not taken into account) has a pH of 12.2.
  • the oxide degradation is determined gravimetrically in a chrome / phosphoric acid bath at a higher temperature of approx. 70 ° C by differential weighing; the starting oxide weight of the support is 3.21 g / m 2 at an immersion temperature of 60 ° C.
  • the basis weight of aluminum oxide layers is determined by chemical detachment in accordance with DIN standard 30944 (March 1969 edition) in conjunction with an internal operating regulation of the applicant from 1973.
  • rinsing with demineralized water at most provides a slightly increased alkali resistance, which is only slightly dependent on the immersion temperature.
  • the aftertreatment with city water results in an alkali resistance of the oxidized aluminum surface, which is significantly higher than with the aftertreatment with demineralized water. This resistance to alkali rises sharply with increasing immersion bath temperature of the layered sodium silicate solution.
  • Alkali resistance values were determined for the following rinse solutions: Rinse solutions: Alkali resistance: 0.4% NaHCO 3 in VE-H 2 O 210/204 s to the maximum 1.0% NaHCO 3 in VE-H 2 O 350 " 0.4% Na 2 CO 3 in VE-H 2 O 258 " 0.4% Na 2 SiO 3 in VE-H 2 O 413 " 0.4% Na 3 PO 4 in VE-H 2 O 278 " , PO 4 3-, SiO 3 2-, CO 3 2- anions can be significantly enhanced by rinsing with the appropriate salt solutions - in addition to the alkaline earth metal cations and anions decisive influence on the size of the alkali resistance, for example, by HCO 3 have.
  • the table also shows that in the case of a rinsing solution in NaHCO 3 , the alkali resistance also increases with increasing concentration.
  • Table 2 shows alkali resistance values for further rinsing solutions, together with the X / Al ratios of various alkaline earth metals X in the rinsing solutions to aluminum Al, measured by the ESCA method.
  • the samples were prepared as standard, that is, siliconized with 1% sodium phyllosilicate solution in demineralized water, at an immersion temperature of 60 ° C and an immersion time of 120 s. It was rinsed with demineralized water and with solutions in which 0.4% strength CaCl 2 , MgCl 2 , SrCl 2 and dextrin were dissolved. Further Solutions were CaSO 4 , Na 2 SO 4 , MgSO 4 , NaF, polyvinyl phosphoric acid NaHCO 3 . After drying, the alkali resistance value and the X / Al ratios were determined by ESCA measurements in order to determine the surface coverage by Si, Na, Ca, Sr and the like.
  • X / Al X Ca, Mg, Sr, F, P Si / Al Well / Al X / Al default VE water 80-120 0.46 0.20 - " 0.4% igCaCl 2 / VE 145 0.47 0.02 0.07 / approx " "MgCl 2 / VE 118 0.48 0.04 ?
  • FIGS. 5 and 6 The results on the temperature dependence of the silication are shown in FIGS. 5 and 6: According to FIG. 5, the Si / Al ratio is independent of the rinsing and increases sharply with increasing temperature and with increasing immersion time.
  • the layered sodium silicate on the Al / AlOOH surface largely retains its ion exchange function; the alkaline earth ions replace the Na ions in the silicated Al / AlOOH surface.
  • layered substrates of type P51 in the 32 x 27 cm format which were coated with sodium silicate and rinsed with city water, were produced as standard and hand-coated with a positive printing plate formulation (P61 solution) and a negative printing plate formulation (N50 solution).
  • P61 solution positive printing plate formulation
  • N50 solution negative printing plate formulation
  • an untreated P51 substrate which was also not treated with polyvinylphosphonic acid solution, was coated with the same printing plate formulations and then dried.
  • the positive layer supports P51 were developed for 60 s with an EP26 developer and then consumed.
  • the negative layer supports N50 were treated by hand with 30 ml of DN-5 developer for 60 s without exposure and then brewed.
  • the essential components of the EP-26 developer are Na silicate, hydroxide, tetraborate, Sr levolinate, polyglycol and water.
  • the DN-5 developer contains benzyl alcohol, mono-, di- and triethanolamine, nitrogen and has a pH of 10.9.
  • the formation of blue haze is more pronounced in the case of the positive layer supports than the formation of green haze in the case of the negative layer supports, the fog formation being the least noticeable on the layer supports in which the silicate coating has been rinsed with city water.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Treatment Of Metals (AREA)
  • Printing Plates And Materials Therefor (AREA)
  • Laminated Bodies (AREA)
  • Discharge By Other Means (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
  • Printing Methods (AREA)

Claims (13)

  1. Procédé pour le traitement ultérieur d'une matière en forme de plaque, de feuille ou de bande à base d'aluminium rendu rugueux par voie chimique, par voie mécanique et/ou par voie électrochimique, et oxydé par voie anodique, ou à base d'un de ses alliages, dont on traite les couches d'oxyde d'aluminium avec un silicate de métal alcalin en solution aqueuse, caractérisé en ce que
    a) le traitement ultérieur a lieu dans une solution aqueuse de la modification du silicate stratifié de sodium Na2Si2O5 et
    b) on procède ensuite à un rinçage ultérieur avec de l'eau contenant des ions de métaux alcalins ou alcalino-terreux, les ions de métaux alcalins ou alcalino-terreux étant choisis parmi le groupe comprenant Ca, Mg, Na, K, Sr.
  2. Procédé selon la revendication 1, caractérisé en ce que le rapport molaire SiO2/Na2O du silicate stratifié cristallin de sodium se situe dans le domaine de 1,9 à 3,5:1.
  3. Procédé selon les revendications 1 et 2, caractérisé en ce que la solution dans l'étape de traitement ultérieur a) contient de 0,1 à 10% en poids de -Na2Si2O5.
  4. Procédé selon une ou plusieurs des revendications 1 à 3, caractérisé en ce qu'on effectue l'étape de traitement ultérieur a) par voie électrochimique et/ou via un traitement d'immersion pendant un laps de temps de 10 à 120 secondes et à une température de 25°C à 80°C.
  5. Procédé selon la revendication 1, caractérisé en ce qu'à l'étape de traitement ultérieur b), avec de l'eau ionique, fait suite un traitement par immersion dans une solution saline à concurrence de 0,1 à 10% en poids.
  6. Procédé selon la revendication 5, caractérisé en ce qu'on effectue le traitement ultérieur par voie électrochimique avec une densité de courant de 0,1 à 10 A/dm2 et/ou avec une tension de 3 à 100 V.
  7. Procédé selon la revendication 5, caractérisé en ce que la solution saline contient du NaF, du NaHCO3, du CaSO4, de l'acide polyvinylphosphonique et du MgSO4, individuellement ou en combinaison.
  8. Procédé selon la revendication 7, caractérisé en ce qu'une aspersion avec de l'eau ionique précède le rinçage avec la solution saline.
  9. Support constitué par une matière en forme de plaque, de feuille ou de bande à base d'aluminium rendu rugueux par voie chimique, par voie mécanique et/ou par voie électrochimique, et oxydé par voie anodique ou à base d'un de ses alliages, dont on enduit la couche d'oxyde d'aluminium avec une couche de silicate de métal alcalin, caractérisé en ce que la couche de silicate de métal alcalin est constituée par du silicate stratifié cristallin pur de sodium.
  10. Support selon la revendication 9, caractérisé en ce que le silicate stratifié de sodium présente une structure polymère stratifiée.
  11. Support selon la revendication 9, caractérisé en ce que le silicate de sodium possède la composition -Na2Si2O5 et en ce que le rapport molaire SiO2:Na2O du silicate stratifié cristallin de sodium se situe dans le domaine de 1,9 à 3,5:1.
  12. Support selon la revendication 11, caractérisé en ce que, sur la surface Al/AlOOH, le rapport Si/Al s'élève de 0,10 à 0,8 et le rapport Ca/Al s'élève de 0,01 à 0,15.
  13. Utilisation de la matière soumise à un traitement ultérieur selon une ou plusieurs des revendications 1 à 8, comme support pour des clichés offset.
EP95107331A 1994-05-21 1995-05-15 Procédé de post-traitement de plaques, feuilles ou bandes et son application comme support pour plaques d'impression Expired - Lifetime EP0683248B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4417907A DE4417907A1 (de) 1994-05-21 1994-05-21 Verfahren zur Nachbehandlung von platten-, folien- oder bandförmigem Material, Träger aus derartigem Material und seine Verwendung für Offsetdruckplatten
DE4417907 1994-05-21

Publications (2)

Publication Number Publication Date
EP0683248A1 EP0683248A1 (fr) 1995-11-22
EP0683248B1 true EP0683248B1 (fr) 1997-12-17

Family

ID=6518714

Family Applications (1)

Application Number Title Priority Date Filing Date
EP95107331A Expired - Lifetime EP0683248B1 (fr) 1994-05-21 1995-05-15 Procédé de post-traitement de plaques, feuilles ou bandes et son application comme support pour plaques d'impression

Country Status (7)

Country Link
US (2) US5556531A (fr)
EP (1) EP0683248B1 (fr)
JP (1) JPH07316882A (fr)
KR (1) KR950032719A (fr)
AT (1) ATE161297T1 (fr)
BR (1) BR9502487A (fr)
DE (2) DE4417907A1 (fr)

Families Citing this family (68)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0799717B1 (fr) * 1996-04-03 1999-11-17 Agfa-Gevaert N.V. Procédé de fabrication d'une surface hydrophile d'une plaque d'impression lithographique
JP3830114B2 (ja) * 1997-09-29 2006-10-04 富士写真フイルム株式会社 ポジ型感光性平版印刷版
EP0908306B3 (fr) 1997-10-08 2009-08-05 Agfa-Gevaert Procédé pour la fabrication d'une plaque d'impression positive à partir d'un élément pour l'enregistrement de l'image thermosensible
DE69901642T3 (de) 1998-03-14 2019-03-21 Agfa Nv Verfahren zur Herstellung einer positiv arbeitenden Druckplatte aus einem wärmeempfindlichem Bildaufzeichnungsmaterial
JP2000219234A (ja) * 1999-01-29 2000-08-08 Bridgestone Sports Co Ltd ゴルフボール用箱
US6865862B2 (en) * 2000-11-20 2005-03-15 C.G. Bretting Mfg. Co., Inc. Log bander apparatus and method
EP1243413B1 (fr) 2001-03-20 2004-05-26 Agfa-Gevaert Procédé pour la fabrication d'un précurseur de type négatif d'une plaque d'impression lithographique thermosensible
JP4268345B2 (ja) * 2001-04-20 2009-05-27 富士フイルム株式会社 平版印刷版用支持体
EP1295717B1 (fr) 2001-09-24 2007-07-25 Agfa Graphics N.V. Précurseur de plaque lithographique positive sensible à la chaleur
EP1297950B1 (fr) 2001-09-27 2007-04-25 Agfa Graphics N.V. Précurseur de plaque d'impression lithographique sensible à la chaleur
EP1366898A3 (fr) 2002-05-29 2004-09-22 Agfa-Gevaert Méthode pour l'impression lithographique utilisant un support en aluminium à surface réutilisable
EP1396338B1 (fr) 2002-09-04 2006-07-19 Agfa-Gevaert Précurseur de plaque d'impression lithographique sensible à la chaleur
US7195859B2 (en) 2002-10-04 2007-03-27 Agfa-Gevaert Method of making a lithographic printing plate precursor
US20060000377A1 (en) * 2002-10-04 2006-01-05 Agfa-Gevaert Method of marking a lithographic printing plate precursor
US7458320B2 (en) 2002-10-15 2008-12-02 Agfa Graphics, N.V. Polymer for heat-sensitive lithographic printing plate precursor
US20060060096A1 (en) * 2002-10-15 2006-03-23 Agfa-Gevaert Polymer for heat-sensitive lithographic printing plate precursor
US7198877B2 (en) 2002-10-15 2007-04-03 Agfa-Gevaert Heat-sensitive lithographic printing plate precursor
DE60321371D1 (de) 2002-10-15 2008-07-10 Agfa Graphics Nv Polymer für wärmeempfindlichen vorläufer einer lithographischen druckplatte
EP1697144A1 (fr) * 2003-12-18 2006-09-06 Agfa-Gevaert N.V. Pr curseur positif de plaque d'impression lithographique
US7467587B2 (en) 2004-04-21 2008-12-23 Agfa Graphics, N.V. Method for accurate exposure of small dots on a heat-sensitive positive-working lithographic printing plate material
US7348126B2 (en) 2004-04-27 2008-03-25 Agfa Graphics N.V. Negative working, heat-sensitive lithographic printing plate precursor
US7425405B2 (en) 2004-07-08 2008-09-16 Agfa Graphics, N.V. Method for making a lithographic printing plate
US7195861B2 (en) 2004-07-08 2007-03-27 Agfa-Gevaert Method for making a negative working, heat-sensitive lithographic printing plate precursor
US7354696B2 (en) 2004-07-08 2008-04-08 Agfa Graphics Nv Method for making a lithographic printing plate
US20070003869A1 (en) * 2005-06-30 2007-01-04 Agfa-Gevaert Heat-sensitive lithographic printing plate-precursor
US7678533B2 (en) 2005-06-30 2010-03-16 Agfa Graphics, N.V. Heat-sensitive lithographic printing plate precursor
US20070003875A1 (en) * 2005-06-30 2007-01-04 Agfa-Gevaert Method for preparing a lithographic printing plate precursor
US8313885B2 (en) 2005-11-10 2012-11-20 Agfa Graphics Nv Lithographic printing plate precursor comprising bi-functional compounds
US7355888B2 (en) * 2005-12-19 2008-04-08 Sandisk Corporation Apparatus for programming non-volatile memory with reduced program disturb using modified pass voltages
US7355889B2 (en) * 2005-12-19 2008-04-08 Sandisk Corporation Method for programming non-volatile memory with reduced program disturb using modified pass voltages
ES2367179T3 (es) 2006-03-17 2011-10-31 Agfa Graphics N.V. Método de preparación de una placa de impresión litográfica.
US7492633B2 (en) * 2006-06-19 2009-02-17 Sandisk Corporation System for increasing programming speed for non-volatile memory by applying counter-transitioning waveforms to word lines
US7349261B2 (en) * 2006-06-19 2008-03-25 Sandisk Corporation Method for increasing programming speed for non-volatile memory by applying counter-transitioning waveforms to word lines
DE602006009919D1 (de) 2006-08-03 2009-12-03 Agfa Graphics Nv Flachdruckplattenträger
US8184478B2 (en) * 2006-09-27 2012-05-22 Sandisk Technologies Inc. Apparatus with reduced program disturb in non-volatile storage
US8189378B2 (en) * 2006-09-27 2012-05-29 Sandisk Technologies Inc. Reducing program disturb in non-volatile storage
ATE516953T1 (de) 2007-04-27 2011-08-15 Agfa Graphics Nv Lithographiedruckplattenvorläufer
DE102007057777B4 (de) * 2007-11-30 2012-03-15 Erbslöh Ag Verfahren zur Herstellung eines Bauteils aus Aluminium und/oder einer Aluminiumlegierung sowie Verwendung des Verfahrens
EP2098376B1 (fr) 2008-03-04 2013-09-18 Agfa Graphics N.V. Procédé pour réaliser un support de plaque d'impression lithographique
US8173221B2 (en) * 2008-03-18 2012-05-08 MCT Research & Development Protective coatings for metals
US20090271562A1 (en) * 2008-04-25 2009-10-29 Sinclair Alan W Method and system for storage address re-mapping for a multi-bank memory device
ATE552111T1 (de) 2008-09-02 2012-04-15 Agfa Graphics Nv Wärmeempfindlicher, positiv arbeitender lithographiedruckformvorläufer
DE102009045762A1 (de) * 2009-10-16 2011-04-21 Henkel Ag & Co. Kgaa Mehrstufiges Verfahren zur Herstellung von alkaliresistenten anodisierten Aluminiumoberflächen
ES2395993T3 (es) 2010-03-19 2013-02-18 Agfa Graphics N.V. Precursor de plancha de impresión litográfica
EP2489512B1 (fr) 2011-02-18 2013-08-28 Agfa Graphics N.V. Précurseur de plaque d'impression lithographique
EP2878452B1 (fr) 2012-07-27 2018-11-28 Fujifilm Corporation Support pour plaque d'impression lithographique et procédé pour sa fabrication
CN104870193B (zh) 2013-01-01 2017-12-22 爱克发印艺公司 (乙烯、乙烯醇缩醛)共聚物和它们在平版印刷版前体中的用途
ITMO20130129A1 (it) * 2013-05-14 2014-11-15 Italtecno S R L Metodo di fissaggio dell'ossido di alluminio.
CN105283807B (zh) 2013-06-18 2019-09-27 爱克发有限公司 制备具有图案化背层的平版印刷版前体的方法
ES2601846T3 (es) 2013-11-07 2017-02-16 Agfa Graphics Nv Precursor termosensible negativo de plancha de impresión litográfica
ES2690059T3 (es) 2014-01-21 2018-11-19 Agfa Nv Cinta transportadora para una impresora de inyección de tinta
EP2933278B1 (fr) 2014-04-17 2018-08-22 Agfa Nv Copolymères (éthylène, acétal de vinyle) et leur utilisation dans des précurseurs de plaque d'impression lithographique
ES2617557T3 (es) 2014-05-15 2017-06-19 Agfa Graphics Nv Copolímeros (de etileno, vinilacetal) y su uso en precursores de plancha de impresión litográfica
ES2660063T3 (es) 2014-06-13 2018-03-20 Agfa Nv Copolímeros (de etileno, vinilacetal) y su uso en precursores de plancha de impresión litográfica
EP2963496B1 (fr) 2014-06-30 2017-04-05 Agfa Graphics NV Précurseur de plaque d'impression lithographique comprenant des copolymères (éthylène, acétal de vinyle)
EP3191302B1 (fr) 2014-09-08 2024-03-13 MCT Holdings LTD Revêtements à base de silicate
PL3017944T3 (pl) 2014-11-06 2017-11-30 Agfa Graphics Nv Sposób wytwarzania prekursora litograficznej płyty drukowej
EP3017943A1 (fr) 2014-11-06 2016-05-11 Agfa Graphics Nv Plaque d'impression lithographique durable
ES2655798T3 (es) 2014-12-08 2018-02-21 Agfa Nv Sistema para reducir los residuos de ablación
EP3121008B1 (fr) 2015-07-23 2018-06-13 Agfa Nv Précurseur de plaque d'impression lithographique comprenant de l'oxyde de graphite
EP3130465B1 (fr) 2015-08-12 2020-05-13 Agfa Nv Précurseur de plaque d'impression lithographique thermosensible
EP3157310A1 (fr) 2015-10-12 2017-04-19 Agfa Graphics Nv Feuille d'entrée de perforation de cartes électriques telles que des cartes de circuit imprimé
EP3170662B1 (fr) 2015-11-20 2019-08-14 Agfa Nv Précurseur de plaque d'impression lithographique
BR112018068753A2 (pt) 2016-03-16 2019-01-22 Agfa Nv método para processar uma chapa de impressão litográfica
EP3239184A1 (fr) 2016-04-25 2017-11-01 Agfa Graphics NV Particules de polymère thermoplastique et précurseur de plaque d'impression lithographique
CN110023840A (zh) 2016-12-01 2019-07-16 爱克发有限公司 制造含有重氮化合物的平版印刷版前体的方法
EP3674796B1 (fr) 2017-08-25 2023-11-22 FUJIFILM Corporation Précurseur de plaque d'impression planographique négative et procédé de fabrication d'une plaque d'impression planographique
EP3715140A1 (fr) 2019-03-29 2020-09-30 Agfa Nv Procédé d'impression

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2882153A (en) * 1954-02-04 1959-04-14 Polychrome Corp Planographic printing plate
US2882152A (en) * 1957-06-21 1959-04-14 Malon H Dickerson High speed developers
US3902976A (en) * 1974-10-01 1975-09-02 S O Litho Corp Corrosion and abrasion resistant aluminum and aluminum alloy plates particularly useful as support members for photolithographic plates and the like
DE3232485A1 (de) * 1982-09-01 1984-03-01 Hoechst Ag, 6230 Frankfurt Verfahren zur nachbehandlung von aluminiumoxidschichten mit alkalisilikat enthaltenden waessrigen loesungen und dessen verwendung bei der herstellung von offsetdruckplattentraegern
DE3406102A1 (de) * 1984-02-21 1985-08-22 Hoechst Ag, 6230 Frankfurt Verfahren zur nachbehandlung von aluminiumoxidschichten mit alkalimetallsilikat enthaltenden waessrigen loesungen und deren verwendung bei der herstellung von offsetdruckplattentraegern

Also Published As

Publication number Publication date
US5556531A (en) 1996-09-17
JPH07316882A (ja) 1995-12-05
US5770315A (en) 1998-06-23
ATE161297T1 (de) 1998-01-15
DE4417907A1 (de) 1995-11-23
KR950032719A (ko) 1995-12-22
EP0683248A1 (fr) 1995-11-22
BR9502487A (pt) 1995-12-19
DE59501119D1 (de) 1998-01-29

Similar Documents

Publication Publication Date Title
EP0683248B1 (fr) Procédé de post-traitement de plaques, feuilles ou bandes et son application comme support pour plaques d'impression
DE3012135C2 (de) Träger für lithographische Druckplatten, Verfahren zu seiner Herstellung und seine Verwendung zur Herstellung von vorsensibilisierten Druckplatten
DE3150278C2 (de) Verfahren zur Herstellung eines Stahlschichtträgers für Flachdruckplatten
EP0121880B1 (fr) Procédé en deux pas pour la préparation de matériaux anodisés d'aluminium en forme plane et leur utilisation dans la fabrication de planches à imprimer offset
EP0105170B1 (fr) Procédé de posttraitement de couches d'oxyde d'aluminium avec des solutions aqueuses contenant du silicate alcalin et son application dans la fabrication des supports pour plaques d'impression
EP0089510B1 (fr) Matériau à base d'aluminium avec une couche superficielle hydrophile, un procédé pour sa préparation et son utilisation comme support pour des plaques d'impression lithographiques
EP0069320A1 (fr) Matériaux de support pour plaques lithographiques, aux propriétés hydrophiles améliorées, procédés pour leur fabrication, et leur utilisation
DE1671614B2 (de) Lithographische druckplatte und verfahren zu ihrer herstellung
DE2251382A1 (de) Verfahren zur herstellung von aluminiumtraegern
DE3030815A1 (de) Elektrolytisches koernungsverfahren
EP0050216B1 (fr) Procédé pour l'oxydation anodique d'aluminium et son utilisation comme support pour planches d'imprimerie
EP0268790B1 (fr) Procédé pour la modification par enlèvement de supports en aluminium ou en alliage de l'aluminium décapés en plusieurs étapes et utilisation de ceux-ci pour la fabrication de plaques offset
EP0043991B1 (fr) Méthode de cuisson de couches photosensibles dans la production de plaques d'impression
DE3222967A1 (de) Verfahren zur abtragenden modifizierung von elektrochemisch aufgerauhten traegermaterialien aus aluminium nd deren verwendung bei der herstellung von offsetdruckplatten
EP0139111B1 (fr) Procédé d'oxidation anodique en deux étapes des matériaux de support en aluminium pour plaques d'impression offset
DE69818204T2 (de) Verfahren zur Herstellung eines Aluminiumträgers für eine Flachdruckplatte
EP0086956B1 (fr) Procédé pour la production de matériaux de support pour des plaques d'impression offset
EP0141056B1 (fr) Procédé d'oxydation anodique en une étape des matériaux supports en aluminium pour plaques d'impression offset
DE2328606A1 (de) Verfahren zum vorbereiten von aluminium fuer die herstellung von lithografischen platten
EP0269851B1 (fr) Support en aluminium ou en alliage d'aluminium pour des plaques offset et son procédé de fabrication
DE1956795A1 (de) Verfahren zur Herstellung von Offsetdruckplatten aus eloxiertem Aluminium
DE69938214T2 (de) Träger für eine lithographische Druckplatte
EP0161461A2 (fr) Procédé d'oxydation anodique d'aluminium et son application comme matériau de support pour plaques d'impression offset
EP0095581B1 (fr) Procédé de post traitement de couches d'oxyde d'aluminium avec des solutions aqueuses contenant silicate alcalin et son application dans la fabrication de supports de plaques d'impression offset
EP0154201B1 (fr) Procédé pour le traitement postérieur de couches d'oxyde d'aluminium avec solutions aqueuses contenant du silicate de métal alcalin et leur utilisation pour la fabrication de supports pour plaques d'impression offset

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE DE FR GB IT NL

17P Request for examination filed

Effective date: 19960522

17Q First examination report despatched

Effective date: 19961017

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: AGFA-GEVAERT AG

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE DE FR GB IT NL

REF Corresponds to:

Ref document number: 161297

Country of ref document: AT

Date of ref document: 19980115

Kind code of ref document: T

REF Corresponds to:

Ref document number: 59501119

Country of ref document: DE

Date of ref document: 19980129

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19980216

ITF It: translation for a ep patent filed

Owner name: SOCIETA' ITALIANA BREVETTI S.P.A.

ET Fr: translation filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19980414

Year of fee payment: 4

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19980513

Year of fee payment: 4

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19980518

Year of fee payment: 4

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19980520

Year of fee payment: 4

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990515

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990515

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990531

BERE Be: lapsed

Owner name: AGFA-GEVAERT A.G.

Effective date: 19990531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19991201

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19990515

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000131

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 19991201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000301

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050515