EP0677592A1 - Verfahren zur Verbesserung der Haftfestigkeit von thermischen Spritzschichten aus Metallen, Metalloxiden und Hartstoffen - Google Patents

Verfahren zur Verbesserung der Haftfestigkeit von thermischen Spritzschichten aus Metallen, Metalloxiden und Hartstoffen Download PDF

Info

Publication number
EP0677592A1
EP0677592A1 EP95105427A EP95105427A EP0677592A1 EP 0677592 A1 EP0677592 A1 EP 0677592A1 EP 95105427 A EP95105427 A EP 95105427A EP 95105427 A EP95105427 A EP 95105427A EP 0677592 A1 EP0677592 A1 EP 0677592A1
Authority
EP
European Patent Office
Prior art keywords
metals
metal oxides
hard materials
enhancing
spraying
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP95105427A
Other languages
English (en)
French (fr)
Other versions
EP0677592B1 (de
Inventor
Jochen Dr. Spriestersbach
Wolf-Dieter Dr. Schulz
Manfred Seidel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Grillo Werke AG
Original Assignee
Grillo Werke AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Grillo Werke AG filed Critical Grillo Werke AG
Publication of EP0677592A1 publication Critical patent/EP0677592A1/de
Application granted granted Critical
Publication of EP0677592B1 publication Critical patent/EP0677592B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/18After-treatment

Definitions

  • the present invention relates to a method for improving the adhesive strength of thermal spray coatings made from metals, metal oxides and hard materials, in particular from zinc, aluminum and their alloys.
  • Thermal spray coatings play an important role in the surface finishing of metals, but also of plastics, concrete, cardboard, etc. Among other things, they improve the temperature resistance, wear behavior and electrical conductivity of the substrate materials.
  • EP-US 0 451 512 describes a method for coating blades of a rotating, thermal machine, a special protective layer being applied to the blades in the high-speed flame spraying method.
  • This layer can then be given a top layer of polyurethane reaction lacquer on a plastic basis.
  • the surface roughness should be reduced.
  • Two-component paints are therefore preferably used; see. Column 5, line 52 to column 6, line 6. It is about reducing the surface roughness and not about the adhesive strength of the layer applied in the high-speed flame spraying process.
  • DE-PS 38 25 200 describes a method for coating plastic parts, in which the metal layer sprayed onto the roughened plastic surface is impregnated with a plastic.
  • this plastic can be a low-viscosity polyurethane system. This measure guarantees perfect adhesion of the sprayed metal to the plastic, produces a high specific conductivity and guarantees reliable protection against external mechanical attacks; see. Column 1, lines 61 to 65.
  • DE-PS 38 25 200 teaches that the transfer of flame spraying from metals to metals to the coating of plastics with metals leads to considerable difficulties; see. Column 1, lines 41 to 46.
  • Thermal spraying of, for example, zinc, aluminum and their alloys, for example with magnesium is often the only way of protecting against corrosion by metal coatings under construction site conditions, since other processes such as hot-dip galvanizing and galvanizing are hardly possible on site.
  • the production of thermal spray coatings on metals usually requires the following high-quality technology steps: degreasing, blasting, spraying and generally post-treatment.
  • the purity and roughness of the surface of the substrate are of particular importance. It is usually required that a standard degree of purity Sa 3 according to DIN 55928, part 4 is achieved and that the average roughness R z is at least 25 ⁇ m. A certain sharpness of the profile is often necessary.
  • spraying methods for example flame spraying, arc spraying and plasma spraying, since these different methods generate different temperatures that are necessary for the melting of the spraying material.
  • Optimally produced layers have adhesive strengths of 20 to 50 MPa.
  • the spray layers are more or less dense depending on the thickness and type of spray. To ensure adequate protection against corrosion, they usually have densities of 100 to 300 ⁇ m in thickness.
  • one-component, moisture-curing polyurethane paints have only been used to treat heavily rusted or corroded steel substrates, whereby the residual moisture in the substrate is obviously bound and rust residues are solidified on the steel surface.
  • These one-component polyurethane coatings are generally used as low-viscosity solutions in organic solvents, which are able to detect crevices, overlaps and structured substrates with good creeping ability.
  • a one-component, moisture-curing polyurethane varnish is offered, for example, by Steelpaint GmbH, Kitzingen.
  • the adhesive strength increases by the treatment according to the invention in the case of sprayed zinc and sprayed aluminum layers by approximately a factor of 3. In the case of ceramic layers, for example made of aluminum oxide, the adhesive strength increases to approximately 20 to 25 MPa.
  • a degreased workpiece made of steel is prepared by means of compressed air jets up to the degree of cleaning Sa 3 and an average roughness depth R z of 45 ⁇ m. Subsequently, the workpiece prepared in this way is cleaned of any adhering blasting impurities as much as possible using compressed air and provided with a 150 ⁇ m thick spray coating made of zinc.
  • the adhesive strength measurements carried out by forehead deduction result in values between 5 and 7 MPa.
  • the spray metal layer is then thinly coated with a normal, commercially available, low-viscosity 1-component PU coating material by brush application so that no measurable layer build-up takes place. After the coating has hardened, the adhesive strength of the sprayed metal layer, measured by the same method, is 15 to 20 MPa.
  • a degreased steel workpiece is prepared using compressed air jets up to a cleaning level of 2.5 and an average roughness depth R z of 25 ⁇ m. Then a 100 ⁇ m thick ceramic Al2O3 layer is applied to the not cleaned surface by means of powder flame spraying. The adhesive strength measurements carried out result in 12 MPa. The ceramic spray coating is then thinly coated with a normal, commercially available 1-component PU coating material using compressed air spraying. After the coating has hardened, the adhesive strength of the spray ceramic layer is more than 25 MPa.
  • a particular advantage of the method according to the invention is that the adhesive strength of thermal spray coatings is increased reliably and significantly by a simple aftertreatment, so that the service life of the other customary coating systems applied thereon is also significantly increased.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Coating By Spraying Or Casting (AREA)

Abstract

Das Verfahren zur Verbesserung der Haftfestigkeit von thermischen Spritzschichten aus Metallen, Metalloxiden und Hartstoffen, insbesondere aus Zink, Aluminium und deren Legierungen besteht darin, daß die Spritzschichten nach dem Aufspritzen mit einem einkomponentigen, luftfeuchtigkeitshärtenden Polyurethanharz beschichtet werden.

Description

  • Gegenstand der vorliegenden Erfindung ist ein Verfahren zur Verbesserung der Haftfestigkeit von thermischen Spritzschichten aus Metallen, Metalloxiden und Hartstoffen, insbesondere aus Zink, Aluminium und deren Legierungen.
  • Thermische Spritzschichten spielen in der Oberflächenveredlung von Metallen, aber auch von Kunststoffen, Beton, Pappe etc. eine wichtige Rolle. So verbessern sie unter anderem die Temperaturbeständigkeit, das Verschleißverhalten und die elektrische Leitfähigkeit der Substratmaterialien.
  • Die EP-US 0 451 512 beschreibt ein Verfahren zum Beschichten von Schaufeln einer rotierenden, thermischen Maschine, wobei im Hochgeschwindigkeits-Flammspritzverfahren eine spezielle Schutzschicht auf die Schaufeln aufgetragen wird. Diese Schicht kann anschließend eine Deckschicht aus Polyurethan-Reaktionslack auf Kunststoffbasis erhalten. Hier soll die Oberflächenrauhigkeit herabgesetzt werden. Bedingung ist, daß dieser Lack keine hohe und lange Einbrenntemperatur benötigt. Es werden daher vorzugsweise Zweikomponentenlacke verwendet; vgl. Spalte 5, Zeile 52 bis Spalte 6, Zeile 6. Es geht um das Reduzieren der Oberflächenrauhigkeit und nicht um die Haftfestigkeit der im HochgeschwindigkeitsFlammspritzverfahren aufgetragenen Schicht.
  • Die DE-PS 38 25 200 beschreibt ein Verfahren zur Beschichtung von Kunststoffteilen, bei welchem die auf die aufgerauhte Kunststoffoberfläche aufgespritzte Metallschicht mit einem Kunststoff imprägniert wird. Gemäß Anspruch 8 kann dieser Kunststoff ein dünnflüssiges Polyurethansystem sein. Durch diese Maßnahme wird eine einwandfreie Haftung des aufgespritzten Metalls auf dem Kunststoff gewährleistet, eine hohe spezifische Leitfähigkeit hergestellt und ein sicherer Schutz gegen äußere mechanische Angriffe garantiert; vgl. Spalte 1, Zeilen 61 bis 65. Gleichzeitig vermittelt jedoch die DE-PS 38 25 200 die Lehre, daß die Übertragung des Flammspritzens von Metallen auf Metalle auf die Beschichtung von Kunststoffen mit Metallen zu erheblichen Schwierigkeiten führt; vgl. Spalte 1, Zeilen 41 bis 46.
  • Das thermische Spritzen von beispielsweise Zink, Aluminium und deren Legierungen, beispielsweise mit Magnesium, stellt unter Baustellenbedingungen oft die einzige Möglichkeit des Korrosionsschutzes durch Metallüberzüge dar, da andere Verfahren wie Feuerverzinken und Galvanisieren vor Ort kaum möglich sind. Die Herstellung thermischer Spritzüberzüge auf Metallen erfordert die qualitätsgerechte Ausführung meist folgender Technologieschritte: Entfetten, Strahlen, Aufspritzen und im allgemeinen eine Nachbehandlung. Dabei sind die Reinheit und die Rauheit der Oberfläche des Substrates von besonderer Bedeutung. Meist wird gefordert, daß ein Normreinheitsgrad Sa 3 nach DIN 55928, Teil 4 erreicht wird und daß die mittlere Rauheit Rz mindestens 25 µm beträgt. Eine gewisse Scharfkantigkeit des Profils ist oftmals notwendig.
  • Je nach Spritzwerkstoff und Substrat werden verschiedene Spritzverfahren angewendet, zum Beispiel das Flammspritzen, das Lichtbogenspritzen und das Plasmaspritzen, da diese verschiedenen Verfahren unterschiedliche Temperaturen erzeugen, die für das Aufschmelzen des Spritzwerkstoffes notwendig sind.
  • Optimal hergestellte Schichten weisen dabei Haftfestigkeiten von 20 bis 50 MPa auf. Die Spritzschichten sind je nach Dicke und Spritzart mehr oder minder dicht. Um einen ausreichenden Korrosionsschutz zu gewährleisten, weisen sie meist Dichten von 100 bis 300 µm Dicke auf.
  • Während die an thermische Spritzschichten gestellten Beständigkeits-Anforderungen durch das jeweilige Spritzmaterial im allgemeinen erfüllt werden, läßt in der Praxis sehr oft die Haftfestigkeit der thermischen Spritzschichten auf Metallen zu wünschen übrig. Die Ursache hierfür sind oft Fehler in der Oberflächenvorbereitung oder auch beim Spritzen selbst. Insbesondere für den Korrosionsschutz, der möglichst 30 und mehr Jahre beständig sein soll, sind derartige Fehler von großer Bedeutung. Das gleiche gilt für Beschichtungen mit Metalloxiden und Hartstoffen, an die hohe Anforderungen betreffs mechanischer Beständigkeit gestellt werden.
  • Es bestand somit die Aufgabe, die Haftfestigkeit von thermischen Spritzschichten nachhaltig zu verbessern und damit die Qualität der erzielten Überzüge zu erhöhen.
  • Diese Aufgabe konnte jetzt überraschenderweise dadurch gelöst werden, daß die Spritzschichten nach dem Aufspritzen mit einem einkomponentigen, luftfeuchtigkeitshärtenden Polyurethanharz beschichtet werden.
  • Einkomponentige, luftfeuchtigkeitshärtende Polyurethanlacke wurden bisher ausschließlich verwendet, um stark verrostete bzw. korrodierte Stahluntergründe zu behandeln, wobei offensichtlich die Restfeuchte im Untergrund gebunden und Rostreste auf der Stahloberfläche verfestigt werden. Diese einkomponentigen Polyurethanlacke kommen im allgemeinen als niedrigviskose Lösungen in organischen Lösungsmitteln zur Anwendung, die in der Lage sind, Spalten, Überlappungen und strukturierte Untergründe durch gute Kriechfähigkeit zu erfassen.
  • Ein einkomponentiger, luftfeuchtigkeitshärtender Polyurethanlack wird beispielsweise von der Firma Steelpaint GmbH, Kitzingen angeboten.
  • Versuche der Anmelderin, andere typische Grundierungen für den Korrosionsschutz einzusetzen, haben zu keinen entsprechenden Ergebnissen geführt. Als Beispiele hierfür seien genannt Alkydharze, Epoxyharze oder PVC-Harze.
  • Es gibt bisher keine eindeutige Erklärung für diese Ergebnisse, jedoch spricht einiges dafür, daß die Urethangruppen des eingesetzten Lackes in der Lage sind, mit Hydroxylgruppen zu reagieren, wobei nicht nur Reste von Feuchtigkeit gebunden werden, sondern auch feste Bindungen zwischen dem aufgespritzten Metall und dem Polyurethanharz entstehen. Es sind auch keine großen Mengen notwendig. Es genügt vielmehr, eine sehr dünne Schicht aufzutragen, die in die Poren des Spritzmetalls eindringt, ohne einen geschlossenen Film zu bilden. Diese dünnen Schichten können beispielsweise aufgetragen werden durch Streichen, Rollen oder Sprühen, wobei jedoch zu vermeiden ist, daß ein meßbarer Schichtaufbau stattfindet. Nach der Aushärtung dieses Urethanlackes können dann alle üblichen Beschichtungssysteme aufgetragen werden, die sich mit Polyurethanharzen vertragen.
  • Die Haftfestigkeit erhöht sich durch die erfindungsgemäße Behandlung bei Spritzzink und Spritzaluminiumschichten etwa um den Faktor 3. Bei keramischen Schichten, beispielsweise aus Aluminiumoxid, erhöht sich die Haftfestigkeit bis auf etwa 20 bis 25 MPa.
  • In den nachfolgenden Beispielen ist das erfindungsgemäße Verfahren näher erläutert.
  • Beispiel 1
  • Ein entfettetes Werkstück aus Stahl wird mittels Druckluftstrahlen bis zum Säuberungsgrad Sa 3 und einer mittleren Rauhtiefe Rz von 45 µm vorbereitet. Anschließend wird das so vorbereitete Werkstück von anhaftenden Strahlverunreinigungen so gut wie möglich mittels Druckluft gesäubert und mit einer 150 µm dicken Spritzschicht aus Zink versehen. Die vorgenommenen Haftfestigkeitsmessungen mittels Stirnabzug ergeben Werte zwischen 5 und 7 MPa. Anschließend wird die Spritzmetallschicht mit einem normalen, handelsüblichen niedrigviskosen 1K-PUR-Beschichtungsstoff dünn mittels Pinselauftrag so beschichtet, daß kein meßbarer Schichtaufbau stattfindet. Nach Aushärtung der Beschichtung beträgt die Haftfestigkeit der Spritzmetallschicht, gemessen nach dem gleichen Verfahren, 15 bis 20 MPa.
  • Beispiel 2
  • Ein entfettetes Werkstück aus Stahl wird mittels Druckluftstrahlen bis zum Säuberungsgrad 2,5 und einer mittleren Rauhtiefe Rz von 25 µm vorbereitet. Anschließend wird auf die nicht weiter gesäuberte Oberfläche eine 100 µm dicke keramische Al₂O₃-Schicht mittels Pulverflammspritzen aufgebracht. Die vorgenommenen Haftfestigkeitsmessungen ergeben 12 MPa. Anschließend wird die keramische Spritzschicht mit einem normalen, handelsüblichen 1K-PUR-Beschichtungsstoff dünn mittels Druckluftspritzen beschichtet. Nach Aushärtung der Beschichtung beträgt die Haftfestigkeit der Spritzkeramikschicht mehr als 25 MPa.
  • Ein besonderer Vorteil des erfindungsgemäßen Verfahrens besteht darin, daß durch eine einfache Nachbehandlung die Haftfestigkeit von thermischen Spritzschichten zuverlässig und bedeutend erhöht wird, so daß die Lebensdauer der darauf aufgebrachten weiteren üblichen Beschichtungssysteme ebenfalls deutlich erhöht wird.

Claims (3)

  1. Verfahren zur Verbesserung der Haftfestigkeit von thermischen Spritzschichten aus Metallen, Metalloxiden und Hartstoffen, insbesondere aus Zink, Aluminium und deren Legierungen, dadurch gekennzeichnet, daß die Spritzschichten nach dem Aufspritzen mit einem einkomponentigen, luftfeuchtigkeitshärtenden Polyurethanharz beschichtet werden.
  2. Verfahren gemäß Anspruch 1, dadurch gekennzeichnet, daß das Polyurethanharz als niedrigviskose Lösung in organischen Lösungsmitteln aufgetragen wird.
  3. Verfahren gemäß Anspruch 1 oder 2, dadurch gekennzeichnet, daß auf die Spritzschichten nach dem Aushärten des Polyurethanharzes übliche Beschichtungssysteme aufgetragen werden.
EP95105427A 1994-04-14 1995-04-11 Verfahren zur Verbesserung der Haftfestigkeit von thermischen Spritzschichten aus Metallen, Metalloxiden und Hartstoffen Expired - Lifetime EP0677592B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4412795 1994-04-14
DE4412795 1994-04-14

Publications (2)

Publication Number Publication Date
EP0677592A1 true EP0677592A1 (de) 1995-10-18
EP0677592B1 EP0677592B1 (de) 1998-12-30

Family

ID=6515339

Family Applications (1)

Application Number Title Priority Date Filing Date
EP95105427A Expired - Lifetime EP0677592B1 (de) 1994-04-14 1995-04-11 Verfahren zur Verbesserung der Haftfestigkeit von thermischen Spritzschichten aus Metallen, Metalloxiden und Hartstoffen

Country Status (3)

Country Link
EP (1) EP0677592B1 (de)
AT (1) ATE175246T1 (de)
DE (1) DE59504660D1 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0853135A1 (de) * 1996-05-24 1998-07-15 Nippon Steel Hardfacing Co., Ltd. Verfahren zur verstärkung gesprühter beschichtungen
DE19748105C1 (de) * 1997-10-31 1998-10-29 Grillo Werke Ag Verfahren zur Verbesserung der Korrosionsbeständigkeit von Stahlbeton
CN113005796A (zh) * 2021-03-01 2021-06-22 江苏卓尔诺光电科技有限公司 一种耐腐蚀海工光缆用镀锌钢绞线及其制备工艺

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1115121A (fr) * 1954-11-26 1956-04-19 Schneider Werke G M B H Procédé de revêtement d'objets en métaux ferreux et objets obtenus par ce procédé
FR1355378A (fr) * 1962-05-07 1964-03-13 Metallurg Ges Fuer Metallurg P Procédé pour couvrir des objets d'une couche de matière plastique
DE2121167A1 (de) * 1970-04-29 1971-11-11 Ici Ltd Metallisierte Filme und Verfahren zu deren Herstellung
JPS5440885A (en) * 1977-09-07 1979-03-31 Iwasaki Electric Co Ltd Laminate with metal base and its making method
JPS57171472A (en) * 1981-04-16 1982-10-22 Sumitomo Metal Ind Ltd Corrosion-inhibition of steel material to be used under atmosphere in contact with strong alkali of concrete
EP0125582A2 (de) * 1983-05-11 1984-11-21 Henkel Kommanditgesellschaft auf Aktien Verwendung eines expandierenden Polyurethanklebstoffes zum Verbinden vom Dämmstoffen mit Gebäudeteilen
EP0143360A2 (de) * 1983-11-02 1985-06-05 Kleinert, Viktor Beschichtungsmasse für Stahl und Eisen, deren Verwendung, und Verfahren zur Erzeugung eines Schutzüberzuges
DE3531892A1 (de) * 1984-09-07 1986-03-20 Nippon Steel Corp., Tokio/Tokyo Stahlgegenstand mit einer antikorrosiven hochleistungsbeschichtung
JPS62136276A (ja) * 1985-12-09 1987-06-19 Toho Kasei Kk 定着用ヒ−トロ−ルの加工方法
EP0351728A2 (de) * 1988-07-21 1990-01-24 Teroson GmbH Verfahren zur Erzeugung eines Dicht- und Klebmittelstranges.
DE3825200C1 (en) * 1988-07-25 1990-02-01 Aeg Isolier- Und Kunststoff Gmbh, 3500 Kassel, De Process for coating plastic components with metals
JPH03249187A (ja) * 1990-02-27 1991-11-07 Hino Motors Ltd 自動車用外装部品の光輝処理方法

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1115121A (fr) * 1954-11-26 1956-04-19 Schneider Werke G M B H Procédé de revêtement d'objets en métaux ferreux et objets obtenus par ce procédé
FR1355378A (fr) * 1962-05-07 1964-03-13 Metallurg Ges Fuer Metallurg P Procédé pour couvrir des objets d'une couche de matière plastique
DE2121167A1 (de) * 1970-04-29 1971-11-11 Ici Ltd Metallisierte Filme und Verfahren zu deren Herstellung
JPS5440885A (en) * 1977-09-07 1979-03-31 Iwasaki Electric Co Ltd Laminate with metal base and its making method
JPS57171472A (en) * 1981-04-16 1982-10-22 Sumitomo Metal Ind Ltd Corrosion-inhibition of steel material to be used under atmosphere in contact with strong alkali of concrete
EP0125582A2 (de) * 1983-05-11 1984-11-21 Henkel Kommanditgesellschaft auf Aktien Verwendung eines expandierenden Polyurethanklebstoffes zum Verbinden vom Dämmstoffen mit Gebäudeteilen
EP0143360A2 (de) * 1983-11-02 1985-06-05 Kleinert, Viktor Beschichtungsmasse für Stahl und Eisen, deren Verwendung, und Verfahren zur Erzeugung eines Schutzüberzuges
DE3531892A1 (de) * 1984-09-07 1986-03-20 Nippon Steel Corp., Tokio/Tokyo Stahlgegenstand mit einer antikorrosiven hochleistungsbeschichtung
JPS62136276A (ja) * 1985-12-09 1987-06-19 Toho Kasei Kk 定着用ヒ−トロ−ルの加工方法
EP0351728A2 (de) * 1988-07-21 1990-01-24 Teroson GmbH Verfahren zur Erzeugung eines Dicht- und Klebmittelstranges.
DE3825200C1 (en) * 1988-07-25 1990-02-01 Aeg Isolier- Und Kunststoff Gmbh, 3500 Kassel, De Process for coating plastic components with metals
JPH03249187A (ja) * 1990-02-27 1991-11-07 Hino Motors Ltd 自動車用外装部品の光輝処理方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
DATABASE WPI Derwent World Patents Index; AN 79-35904b c19 *
JURGEN FOCK: "feuchtigkeitshartende polyurethanklebstoffe", ADHASION, vol. 32, no. 10, MUNCHEN,DE, pages 13 - 19, XP000023533 *
PATENT ABSTRACTS OF JAPAN vol. 11, no. 365 (C - 460) 27 November 1987 (1987-11-27) *
PATENT ABSTRACTS OF JAPAN vol. 16, no. 43 (C - 0907) 4 February 1992 (1992-02-04) *
PATENT ABSTRACTS OF JAPAN vol. 7, no. 14 (C - 146) 20 January 1983 (1983-01-20) *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0853135A1 (de) * 1996-05-24 1998-07-15 Nippon Steel Hardfacing Co., Ltd. Verfahren zur verstärkung gesprühter beschichtungen
EP0853135A4 (de) * 1996-05-24 2000-10-25 Nippon Steel Hardfacing Verfahren zur verstärkung gesprühter beschichtungen
DE19748105C1 (de) * 1997-10-31 1998-10-29 Grillo Werke Ag Verfahren zur Verbesserung der Korrosionsbeständigkeit von Stahlbeton
WO1999023282A1 (de) * 1997-10-31 1999-05-14 Grillo-Werke Ag Verfahren zur verbesserung der korrosionsbeständigkeit von stahlbeton
US6224943B1 (en) 1997-10-31 2001-05-01 Grillo-Werke Ag Method for improving the corrosion resistance of reinforced concrete
CN113005796A (zh) * 2021-03-01 2021-06-22 江苏卓尔诺光电科技有限公司 一种耐腐蚀海工光缆用镀锌钢绞线及其制备工艺

Also Published As

Publication number Publication date
EP0677592B1 (de) 1998-12-30
ATE175246T1 (de) 1999-01-15
DE59504660D1 (de) 1999-02-11

Similar Documents

Publication Publication Date Title
EP0582950B1 (de) Faserverstärkte Kunststoffwalze mit äusserer, verschleissfester, füllerhaltiger Kunststoffschicht
WO2008135292A1 (de) Korrosionsschutzsystem für metalle und pigment hierfür
EP3554721B1 (de) Verfahren zum beschichten von kfz-felgen
DE102006026575A1 (de) Funktionale Direktbeschichtung einer Aluminiumfolie
DE2446250A1 (de) Verfahren zum herstellen eines festhaftenden organischen ueberzuges auf einem metallischen substrat
DE19748105C1 (de) Verfahren zur Verbesserung der Korrosionsbeständigkeit von Stahlbeton
EP0677592B1 (de) Verfahren zur Verbesserung der Haftfestigkeit von thermischen Spritzschichten aus Metallen, Metalloxiden und Hartstoffen
DE4439924A1 (de) Verwendung von kohlenstoffhaltigen Schichten
EP1444381A1 (de) Verfahren zur herstellung von dunklen schutzschichten auf flacherzeugnissen aus titanzink
EP1090165A2 (de) Schichtsystem zum korrosionsschutz von leichtmetallen und leichtmetalllegierungen
EP0508306A1 (de) Verfahren zur Korrosionsschiutzbeschichtung von Werkstücken aus Stahl
DE3326701A1 (de) Verfahren zur aufbringung eines rauhen oberflaechenbelages auf einem werkstueck
DE102004007361B4 (de) Verfahren zur Modifizierung von verzinkten Stahloberflächen und Schwarzstahloberflächen
WO1999004064A2 (de) Elektro-tauchbeschichtung
EP0154384B1 (de) Verfahren zur Vorbereitung von Zinkoberflächen für die Lackierung
DE300836C (de)
DE4333894C1 (de) Verfahren zur Harzvergütung einer Metalloberfläche
DE4435050A1 (de) Verfahren zur Oberflächenbehandlung von Karosserien und/oder Karosserieteilen
DE1261787B (de) Verfahren zum Aufbringen eines starken Kunststoffueberzuges auf Rotationskoerper
CH687330A5 (de) Behandlung von Metalloberflächen mittels Silikaten zur Verbesserung der Haftung von Beschichtungen.
DE2236191B2 (de) Verfahren zur dekorativen Beschichtung eines Metallgegenstandes
DE341856C (de) Verfahren zur Erzeugung eines glasurartigen, mineralischen UEberzugs auf Eisen auf kaltem Wege
DE1923030A1 (de) Verbundmaterial fuer Lager und Verfahren zu dessen Herstellung
DE1810563A1 (de) Korrosionsgeschuetzte Stahlkette,insbesondere fuer den Untertagebergbau
DE19847531C1 (de) Verfahren zum Aufbringen einer Schutzschicht

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT DE ES FR GB IT PT

17P Request for examination filed

Effective date: 19951216

17Q First examination report despatched

Effective date: 19970418

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT DE ES FR GB IT PT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19981230

Ref country code: ES

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19981230

REF Corresponds to:

Ref document number: 175246

Country of ref document: AT

Date of ref document: 19990115

Kind code of ref document: T

REF Corresponds to:

Ref document number: 59504660

Country of ref document: DE

Date of ref document: 19990211

ITF It: translation for a ep patent filed

Owner name: ING. C. GREGORJ S.P.A.

ET Fr: translation filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PT

Payment date: 19990401

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990411

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 19981230

GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]

Effective date: 19981230

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20000417

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20001031

REG Reference to a national code

Ref country code: PT

Ref legal event code: MM4A

Free format text: LAPSE DUE TO NON-PAYMENT OF FEES

Effective date: 20001031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 20010430

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20040621

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050411

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20051101