EP0672197B1 - Verfahren zur herstellung einer schutzschicht auf mit heissen gasen, insbesondere rauchgasen beaufschlagten metallischen wänden - Google Patents

Verfahren zur herstellung einer schutzschicht auf mit heissen gasen, insbesondere rauchgasen beaufschlagten metallischen wänden Download PDF

Info

Publication number
EP0672197B1
EP0672197B1 EP93912953A EP93912953A EP0672197B1 EP 0672197 B1 EP0672197 B1 EP 0672197B1 EP 93912953 A EP93912953 A EP 93912953A EP 93912953 A EP93912953 A EP 93912953A EP 0672197 B1 EP0672197 B1 EP 0672197B1
Authority
EP
European Patent Office
Prior art keywords
powder
protective coating
walls
process according
plasma jet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP93912953A
Other languages
English (en)
French (fr)
Other versions
EP0672197A1 (de
Inventor
Bodo Häuser
Wilhelm Heesen
Johannes Hermsen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HAEUSER & CO. GMBH
Original Assignee
Hauser & Co GmbH
Thyssen Stahl AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hauser & Co GmbH, Thyssen Stahl AG filed Critical Hauser & Co GmbH
Publication of EP0672197A1 publication Critical patent/EP0672197A1/de
Application granted granted Critical
Publication of EP0672197B1 publication Critical patent/EP0672197B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • C23C4/134Plasma spraying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/16Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed
    • B05B7/22Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed electrically, magnetically or electromagnetically, e.g. by arc
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/10Oxides, borides, carbides, nitrides or silicides; Mixtures thereof

Definitions

  • the invention relates to a method for producing a protective layer on hot gases, especially flue gases Walls made of metallic base material, preferably from Incinerators or heat exchangers, in which with the help of a Plasma spraying on the previously cleaned, metallic walls to form the protective layer, a powder made of metallic, carbide, oxide ceramic or silicide materials or mixtures of these Materials is applied.
  • Such protective layers should e.g. on cooling walls of waste heat boilers applied to steel converters. These walls are special exposed to high loads. On one side flow approx. 1400 ° - 1800 ° C hot smoke gases loaded with ash and slag particles along, while on the other side saturated steam pressures of approx. 20 - 80 bar rule.
  • the saturated steam-cooled pipe walls are included Internal pressure gradients of up to 2 bar / min.
  • DE 23 55 532 C2 describes a method for powder deposition welding of metals and alloys on a surface prepared by sandblasting, preheated metal pad known, where the metal pad previously is heated to at least 100 to about 650 ° C.
  • Both at Cladding by means of a stick electrode as well as at Powder build-up welding or flame spraying with subsequent melting becomes the base material when the protective layer is applied very strongly heated, which leads to an undesirable structural change.
  • flame spraying in particular, the melting temperature is in Depending on the spray powder used between 980 and 1060 ° C. Due to the high heat input, there is also Warping of the walls to be coated. When installing these walls can then there are problems and additional costs due to the dimensionality come.
  • the protective layer has a thickness of about 8 to 10 mm and with flame spraying from 1 to 2 mm.
  • DE-AS 26 30 507 is also a process for the production of Protective layers on workpieces against hot gas corrosion and / or known mechanical wear, in which by means of plasma spraying Vacuum a made of different alloys Coating powder is applied to the workpiece. With this Vacuum spraying must be done with considerable effort from the outside inaccessible processing chamber creates a vacuum and the Coating can be carried out. With larger, e.g. B. in the waste heat boiler built-in walls this is not possible.
  • the present invention is based on the object propose generic method in which these problems not occur and in particular the distortion of the workpieces and cracking stresses in the base material can be avoided.
  • the composition of the powder is determined as a function of the existing base material and the later operating conditions, in particular the specified temperature ranges.
  • tensile stresses of between 50 and 800 N / mm 2 , preferably between 500 and 800 N / mm 2
  • These stress states are calculated by means of the thermal expansion coefficients of the base material on the one hand and of test workpieces made of different powders on the other hand. The mathematical determination can then be checked in accordance with DIN 50121.
  • heat exchangers especially of waste heat boilers on steel converters
  • Protective layer that is insensitive to thermal shock and easy to repair against hot gas corrosion and / or mechanical wear become.
  • a final layer thickness of 0.1 to 0.5 mm, preferably 0.15 to 0.25 mm is already sufficient to also have a a significantly longer period than previously possible To prevent wear.
  • a protective layer mainly has an 80 KW plasma spray system Inner powder feed proved to be particularly suitable. It will be there Powder with a grain size of less than 75 microns, preferably 20 to 40 ⁇ m used. This powder can be used to make a very thin powder Layer to be applied, which is the condition of insensitivity to thermal shock and meets the resistance to hot gas corrosion, and high residual stress due to the process-related laminar Layer structure, avoids. The entire layer is conveniently in made at least two transitions.
  • the surface of the walls to be treated can be sprayed before plasma spraying with high-grade corundum, preferably with high-purity white high-grade corundum roughened and activated.
  • the inventive Traverse the surface through the plasma jet and the surface inside melted powder particles only to approx. 40 ° C maximum 60 ° C is heated. This can result in warping of the wall surfaces be excluded.
  • a powder containing a Ni alloy is expediently used.
  • the exposure temperature can be covered with a protective layer treated walls in the range between 300 and 1800 ° C, preferably 600 and 1000 ° C.
  • the voltage behavior in the transition zone of the base material and the applied protective layer in the temperature range between 0 and approximately 1200 ° C. is shown as an example in a voltage-temperature diagram.
  • the basis is the measured, average linear thermal expansion coefficient of the two material partners.
  • tensile stresses above 600 N / mm 2 are present in the transition zone between the base material and the coating material.
  • the Spray layer suddenly due to high temperatures from the converter highly sprayed molten steel and the hot slag.
  • the process is due to the voltage curve represented by the neutral voltage range at approx. 700 ° C is passed and is above 700 ° C in the transition zone Build up compressive stresses that cause the layer to flake off or Prevent cracking in the layer.
  • the usual water-cooled pipes of the waste heat boiler walls are built according to the Stress slowly returns to the tensile state, i.e. in the diagram shows the line of the voltage curve in Drive in the opposite direction.
  • the So-called 0 state instead of 700 ° C also at 400 ° or at 800 ° C lie.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electromagnetism (AREA)
  • Coating By Spraying Or Casting (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Laminated Bodies (AREA)
  • Chemical Vapour Deposition (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Description

Die Erfindung bezieht sich auf ein Verfahren zur Herstellung einer Schutzschicht auf mit heißen Gasen, insbesondere Rauchgasen beaufschlagten Wänden aus metallischem Grundwerkstoff, vorzugsweise von Verbrennungsanlagen oder Wärmetauschern, bei dem mit Hilfe eines Plasmaspritzverfahrens auf die zuvor gereinigten, metallischen Wände zur Bildung der Schutzschicht ein Pulver aus metallischen, karbidischen, oxidkeramischen oder silicidischen Werkstoffen oder Mischungen dieser Werkstoffe aufgetragen wird.
Derartige Schutzschichten sollen z.B. auf Kühlwände von Abhitzekesseln an Stahlkonvertern aufgetragen werden. Diese Wände sind besonders hohen Belastungen ausgesetzt. Auf der einen Seite strömen ca. 1400° - 1800° C heiße, mit Asche und Schlackepartikeln beladene Rauchgase entlang, während auf der anderen Seite Sattdampfdrücke von ca. 20 - 80 bar herrschen. Die sattdampfgekühlten Rohrwände haben dabei lnnendruck-Gradienten von bis zu 2 bar/min.
Aus der DE 23 55 532 C2 ist ein Verfahren zum Pulverauftragsschweißen von Metallen und Legierungen auf eine durch Sandstrahlen vorbereitete, vorgewärmte Metallunterlage bekannt, bei dem die Metallunterlage zuvor auf mindestens 100 bis etwa 650° C erhitzt wird. Sowohl beim Auftragsschweißen mittels Stabelektrode als auch beim Pulverauftragsschweißen oder Flammspritzen mit nachträglichem Einschmelzen wird beim Aufbringen der Schutzschicht der Grundwerkstoff sehr stark erhitzt, was zu einer unerwünschten Gefügeänderung führt. Insbesondere bei dem Flammspritzen liegt die Einschmelztemperatur in Abhängigkeit von dem verwendeten Spritzpulver zwischen 980 und 1060° C. Bedingt durch die hohe Wärmeeinbringung kommt es außerdem zum Verzug der zu beschichtenden Wände. Beim Einbau dieser Wände kann es dann zu Problemen und zusätzlichen Kosten wegen der Maßungenadigkeiten kommen. Wenn die Schutzschichten mit diesen bekannten Verfahren nachträglich aufgebracht werden, können die temperaturbedingten Spannungen nicht in Form von Verzug reagieren, sondern führen bei den eingebauten Wandelementen zu Rissen in der Oberfläche, insbesondere im Bereich der Schweißnähte. Beim Auftragsschweißen hat die Schutzschicht eine Dicke von etwa 8 bis 10 mm und beim Flammspritzen von 1 bis 2 mm.
Aus der DE-AS 26 30 507 ist außerdem ein Verfahren zur Herstellung von Schutzschichten auf Werkstücken gegen Heißgaskorrosion und/oder mechanischen Verschleiß bekannt, bei dem mittels Plasmaspritzen im Vakuum ein aus verschiedenen Legierungen bestehendes Beschichtungspulver auf das Werkstück aufgetragen wird. Bei diesem Vakuumspritzverfahren muß mit erheblichem Aufwand in einer von außen nicht zugänglichen Bearbeitungskammer ein Vakuum erzeugt und die Beschichtung durchgeführt werden. Bei größeren, z. B. im Abhitzekessel eingebauten Wänden ist dies nicht möglich.
Der vorliegenden Erfindung liegt die Aufgabe zugrunde, ein gattungsgemäßes Verfahren vorzuschlagen, bei dem diese Probleme nicht auftreten und insbesondere der Verzug der Werkstücke und rißbildende Spannungen im Grundwerkstoff vermieden werden.
Die erfindungsgemäße Lösung der Aufgabe ist im Kennzeichen des Anspruchs 1 wiedergegeben. Die Unteransprüche 2 bis 8 enthalten sinnvolle ergänzende Verfahrensschritte.
Bei dem erfindungsgemäßen Verfahren wird vor dem Auftragen des Pulvers mit dem atmosphärischen Plasmaspritzverfahren nicht nur die Oberfläche der Wände aufgerauht, sondern auch der Grundwerkstoff der Wände in der Weise mit hochreinem Edelkorund aktiviert, daß Störungen im metallischen Gitter erzeugt werden, wodurch die Adhäsionskräfte erhöht werden. Unmittelbar anschließend, bevor diese Störungen im Gitter wieder aufgehoben sind, wird dann unter atmosphärischen wird dann unter atmosphärischen Bedingungen nach dem Plasmaspritzverfahren das Pulver auf die Wände aufgetragen, deren Oberfläche dabei etwa Raumtemperatur behält.
Die Zusammensetzung des Pulvers wird in Abhängigkeit von dem vorhandenen Grundwerkstoff und den späteren Betriebsbedingungen, insbesondere den vorgegebenen Temperaturbereichen, bestimmt. Erfindungsgemäß sollen für den Übergangsbereich zwischen Grundwerkstoff und aufgetragener Schicht im nichtbeanspruchten Zustand, d.h. bei Raumtemperatur, Zugspannungen zwischen 50 und 800 N/mm2, vorzugsweise zwischen 500 und 800 N/mm2 vorliegen, die in dem vorgegebenen beanspruchten Temperaturbereich im wesentlichen auf 0 abgebaut sind oder geringe Druckspannungen aufweisen. Diese Spannungszustände (vgl. beigefügte Figur) werden rechnerisch mit Hilfe der Wärmeausdehnungskoeffizienten von Grundwerkstoff einerseits und von aus verschiedenen Pulvern hergestellten Probewerkstücken andererseits ermittelt. Eine Überprüfung der rechnerischen Bestimmung kann dann nach DIN 50121 durchgeführt werden.
Mit dem erfindungsgemäßen Verfahren kann z.B. auf ebenen oder gebogenen Wänden von Verbrennungsanlagen, Wärmetauschern, insbesondere von Abhitzekesseln an Stahlkonvertern eine wärmeschockunempfindliche und reparaturfreundliche Schutzschicht gegen Heißgaskorrosion und/oder mechanischen Verschleiß erzeugt werden.
Es hat sich gezeigt, daß eine Endschichtdicke von 0,1 bis 0,5 mm, vorzugsweise 0,15 bis 0,25 mm bereits ausreicht, um auch über einen wesentlich längeren Zeitraum als bisher möglich einen nennenswerten Verschleiß zu verhindern. Zur Aufbringung einer derartigen Schutzschicht hat sich vor allem eine 80 KW-Plasmaspritzanlage mit Innenpulverzuführung als besonders geeignet erwiesen. Es wird dabei Pulver mit einer Korngröße von weniger als 75 µm, vorzugsweise 20 bis 40 µm verwendet. Mit diesem Pulver kann insbesondere eine sehr dünne Schicht aufgebracht werden, die die Bedingung der Wärmeschockunempfindlichkeit und der Beständigkeit gegen Heißgaskorrosion erfüllt, und hohe Eigenspannung, bedingt durch den prozeßbedingten laminaren Schichtaufbau, vermeidet. Die Gesamtschicht wird günstigerweise in mindestens zwei Übergängen hergestellt.
Vor dem Plasmaspritzen kann die zu behandelnde Oberfläche der Wände mit Edelkorund, vorzugsweise mit hochreinem weißen Edelkorund aufgerauht und aktiviert werden.
Weiterhin hat es sich als günstig erwiesen, daß beim erfindungsgemäßen Verfahren die Oberfläche durch den Plasmastrahl und die darin aufgeschmolzenen Pulverpartikel nur auf ca. 40° C maximal 60° C erwärmt wird. Hierdurch kann insbesondere ein Verzug der Wandflächen ausgeschlossen werden.
Zweckmäßig wird ein eine Ni-Legierung enthaltendes Pulver verwendet.
Es hat sich gezeigt, daß die atmosphärische Plasmabeschichtung spätestens 45 Min., vorzugsweise spätestens 30 Min. nach der Aktivierung der Oberfläche der Wände durchgeführt werden sollte.
Schließlich kann die Beanspruchungstemperatur der mit einer Schutzschicht behandelten Wände im Bereich zwischen 300 und 1800° C, vorzugsweise 600 und 1000° C liegen.
In der beigefügten Figur wird in einem Spannungs-Temperaturdiagramm beispielhaft das Spannungsverhalten in der Übergangszone des Grundwerkstoffes und der aufgebrachten Schutzschicht im Temperaturbereich zwischen 0 und etwa 1200° C dargestellt. Grundlage sind dabei die gemessenen, mittleren linearen Wärmeausdehnungskoeffizienten der beiden Werkstoffpartner.
Im nichtbeanspruchten Zustand der beschichteten Wandfläche eines Konverter-Abhitzekessels sind in der Übergangszone zwischen dem Grundwerkstoff und dem Beschichtungswerkstoff Zugspannungen oberhalb 600 N/mm2 vorhanden.
Im Betriebszustand der beschichteten Abhitzekessel-Wandfläche wird die Spritzschicht plötzlich durch hohe Temperaturen der aus dem Konverter hochspritzenden Stahlschmelze und der heißen Schlacke beaufschlagt. In dem Diagramm ist der Vorgang durch den Spannungsverlauf dargestellt, indem bei ca. 700° C der neutrale Spannungsbereich durchlaufen wird und sich oberhalb 700° C in der Übergangszone Druckspannungen aufbauen, die ein Abplatzen der Schicht oder die Rißbildung in der Schicht verhindern. Durch die üblicherweise wassergekühlten Rohre der Abhitzekesselwände baut sich nach der Beanspruchung langsam der Zugspannungszustand wieder auf, d.h. in dem Diagramm wird die eingezeichnete Linie des Spannungsverlaufes in umgekehrter Richtung durchfahren. In der Figur ist lediglich ein beispielhafter Spannungsverlauf abhängig von der Temperatur dargestellt. Für andere Beanspruchungsbereiche kann naturgemäß auch der sogenannte 0-Zustand statt bei 700° C auch bei 400° oder bei 800° C liegen.

Claims (8)

  1. Verfahren zur Herstellung einer Schutzschicht auf mit heißen Gasen, insbesondere Rauchgasen beaufschlagten Wänden aus metallischem Grundwerkstoff, vorzugsweise von Verbrennungsanlagen oder Wärmetauschern, bei dem mit Hilfe eines Plasmaspritzverfahrens auf die zuvor gereinigten, metallischen Wände zur Bildung der Schutzschicht ein Pulver aus metallischen, karbidischen, oxidkeramischen oder silicidischen Werkstoffen oder Mischungen dieser Werkstoffe aufgetragen wird,
    dadurch gekennzeichnet, daß
    a) die Oberfläche der Wände mit hochreinem Edelkorund aufgerauht und aktiviert wird und,
    b) unmittelbar anschließend bei Raumtemperatur und unter atmosphärischen Bedingungen nach dem Plasmaspritzverfahren das Pulver aufgetragen wird, wobei
    c) die Zusammensetzung des Pulvers zuvor so gewählt wird, daß die mit Hilfe der Wärmeausdehnungskoeffizienten von Grundwerkstoff und von aus verschiedenen Pulvern hergestellten Probewerkstücken für den Übergangsbereich zwischen Grundwerkstoff und aufgetragener Schicht ermittelte Spannung als Funktion der Temperatur im nichtbeanspruchten Zustand (bei Raumtemperatur) Zugspannungen zwischen 50 und 800 N/mm2, vorzugsweise zwischen 500 und 800 Nmm2, ergibt, die in dem vorgesehenen beanspruchten Temperaturbereich von 300 bis 1800°C, vorzugsweise 600 bis 1000°C im wesentlichen auf 0 abgebaut ist oder geringe Druckspannungen aufweist.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die aufgetragene Schutzschicht eine Enddicke von 0,1 bis 0,5 mm, vorzugsweise 0,15 bis 0,25 mm besitzt.
  3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die Schutzschicht mit einer 80 KW-Plasmaspritzanlage mit Innenpulverzuführung aufgetragen wird.
  4. Verfahren nach mindestens einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß Pulver mit einer Korngröße von weniger als 75 um, vorzugsweise 20 bis 40 µm zum Auftragen der Schutzschicht verwendet wird.
  5. Verfahren nach mindestens einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß die Schutzschicht in mindestens zwei Übergängen hergestellt wird.
  6. Verfahren nach mindestens einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Oberfläche der Wände durch den Plasmastrahl mit den darin aufgeschmolzenen Pulverpartikeln nur bis auf ca. 45° C, maximal 60° C erwärmt wird.
  7. Verfahren nach mindestens einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß ein eine Ni-Legierung enthaltendes Pulver verwendet wird.
  8. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die atmosphärische Plasmabeschichtung spätestens 45 Min., vorzugsweise spätestens 30 Min. nach der Aktivierung der Ober fläche der Wände durchgeführt wird.
EP93912953A 1992-06-19 1993-06-11 Verfahren zur herstellung einer schutzschicht auf mit heissen gasen, insbesondere rauchgasen beaufschlagten metallischen wänden Expired - Lifetime EP0672197B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE4220063A DE4220063C1 (de) 1992-06-19 1992-06-19 Verfahren zur Herstellung einer Schutzschicht auf mit heißen Gasen, insbesondere Rauchgasen beaufschlagten metallischen Wänden
DE4220063 1992-06-19
PCT/EP1993/001483 WO1994000616A1 (de) 1992-06-19 1993-06-11 Verfahren zur herstellung einer schutzschicht auf mit heissen gasen, insbesondere rauchgasen beaufschlagten metallischen wänden

Publications (2)

Publication Number Publication Date
EP0672197A1 EP0672197A1 (de) 1995-09-20
EP0672197B1 true EP0672197B1 (de) 1999-03-31

Family

ID=6461363

Family Applications (1)

Application Number Title Priority Date Filing Date
EP93912953A Expired - Lifetime EP0672197B1 (de) 1992-06-19 1993-06-11 Verfahren zur herstellung einer schutzschicht auf mit heissen gasen, insbesondere rauchgasen beaufschlagten metallischen wänden

Country Status (14)

Country Link
EP (1) EP0672197B1 (de)
JP (1) JP3150697B2 (de)
KR (1) KR950701983A (de)
AT (1) ATE178364T1 (de)
AU (1) AU672009B2 (de)
BR (1) BR9306566A (de)
CA (1) CA2138255A1 (de)
CZ (1) CZ313794A3 (de)
DE (2) DE4220063C1 (de)
ES (1) ES2132237T3 (de)
PL (1) PL171965B1 (de)
RU (1) RU2107744C1 (de)
SK (1) SK156394A3 (de)
WO (1) WO1994000616A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT411625B (de) * 2000-04-28 2004-03-25 Vaillant Gmbh Verfahren zur beschichtung eines wärmetauschers

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0727504A3 (de) * 1995-02-14 1996-10-23 Gen Electric Plasmabeschichtungsverfahren für verbesserte Hafteigenschaften von Beschichtungen auf Gegenständen
CZ298780B6 (cs) * 2003-12-23 2008-01-23 Koexpro Ostrava, A. S. Ochranný povlak nářadí a nástrojů pro zamezení vzniku mechanických zápalných jisker
DE102007020420B4 (de) 2007-04-27 2011-02-24 Häuser & Co. GmbH Plasmaspritzverfahren zur Beschichtung von Überhitzerrohren und Verwendung eines Metalllegierungspulvers
DE102013010126B4 (de) 2013-06-18 2015-12-31 Häuser & Co. GmbH Plasmapulverspritzverfahren und Vorrichtung zur Beschichtung von Paneelen für Kesselwände in Verbindung mit einem Laserstrahlgerät
CN108101062A (zh) * 2018-01-17 2018-06-01 江苏中能硅业科技发展有限公司 一种多晶硅还原炉及其炉筒内壁功能层的制备工艺
JP7370794B2 (ja) 2019-09-30 2023-10-30 セコム株式会社 警備装置
JP7370793B2 (ja) 2019-09-30 2023-10-30 セコム株式会社 警備装置

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2630507A1 (de) * 1976-07-07 1978-01-12 Motoren Turbinen Union Verfahren zur herstellung von schutzschichten auf werkstuecken

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2213350B1 (de) * 1972-11-08 1975-04-11 Sfec
US3911891A (en) * 1973-08-13 1975-10-14 Robert D Dowell Coating for metal surfaces and method for application
US4075392A (en) * 1976-09-30 1978-02-21 Eutectic Corporation Alloy-coated ferrous metal substrate
US4588607A (en) * 1984-11-28 1986-05-13 United Technologies Corporation Method of applying continuously graded metallic-ceramic layer on metallic substrates
JP2695835B2 (ja) * 1988-05-06 1998-01-14 株式会社日立製作所 セラミック被覆耐熱部材
DE3815436A1 (de) * 1988-05-06 1989-11-16 Muiden Chemie B V Treibladungen fuer grosskalibrige geschosse
DE3821658A1 (de) * 1988-06-27 1989-12-28 Thyssen Guss Ag Verfahren zur herstellung von korrosionsbestaendigen und verschleissfesten schichten auf walzen von druckmaschinen
CA2053928A1 (en) * 1990-10-24 1992-04-25 Toshihiko Hashimoto Benzopyran derivatives having anti-hypertensive and vasodilartory activity, their preparation and their therapeutic use

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2630507A1 (de) * 1976-07-07 1978-01-12 Motoren Turbinen Union Verfahren zur herstellung von schutzschichten auf werkstuecken

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT411625B (de) * 2000-04-28 2004-03-25 Vaillant Gmbh Verfahren zur beschichtung eines wärmetauschers

Also Published As

Publication number Publication date
JPH08501350A (ja) 1996-02-13
CZ313794A3 (en) 1995-08-16
KR950701983A (ko) 1995-05-17
CA2138255A1 (en) 1994-01-06
DE4220063C1 (de) 1993-11-18
RU94046201A (ru) 1996-10-20
WO1994000616A1 (de) 1994-01-06
ATE178364T1 (de) 1999-04-15
AU4325093A (en) 1994-01-24
JP3150697B2 (ja) 2001-03-26
PL171965B1 (pl) 1997-07-31
SK156394A3 (en) 1997-02-05
DE59309491D1 (de) 1999-05-06
BR9306566A (pt) 1999-01-12
RU2107744C1 (ru) 1998-03-27
ES2132237T3 (es) 1999-08-16
AU672009B2 (en) 1996-09-19
EP0672197A1 (de) 1995-09-20

Similar Documents

Publication Publication Date Title
EP0776985B1 (de) Verfahren zur Aufbringung einer metallischen Haftschicht für keramische Wärmedämmschichten auf metallische Bauteile
EP0672197B1 (de) Verfahren zur herstellung einer schutzschicht auf mit heissen gasen, insbesondere rauchgasen beaufschlagten metallischen wänden
JP4546867B2 (ja) 耐食性と耐摩耗性に優れた水冷鋼管構造体とその製造方法
DE2149772B1 (de) Schweisszusatzwerkstoff aus haertbaren hartstofflegierungen
DE102016114533A1 (de) Eisenbasierte Legierung zur Herstellung thermisch gespritzter Verschleißschutzschichten
EP1546424B1 (de) Verfahren zum auftragen einer anti-korrosiven niob-oxid schutzschicht mittels thermischen spritzens
DE102007016411B4 (de) Halbzeug aus Molybdän, welches mit einer Schutzschicht versehen ist, und Verfahren zu dessen Herstellung
DE1646667C3 (de) Verfahren zum Aufspritzen einer Keramik- oder Oxidschicht auf einen Grundkörper
US7828913B1 (en) Peritectic, metastable alloys containing tantalum and nickel
JP2001170823A (ja) 金属製構造物の亀裂部の補修方法
EP0933443B1 (de) Verwendung von Stahlpulver auf der Basis Fe-Cr-Si für korrosionsbeständige Beschichtungen
DE10036264A1 (de) Verfahren zur Herstellung einer Oberflächenschicht
EP1985722B1 (de) Plasmaspritzverfahren zur Beschichtung von Überhitzerrohren
DE1059191B (de) Bor-Silizium-Nickel-Legierungen fuer Metallspritz- und Schweisszwecke
DE4409004C2 (de) Hitzebeständiger Mehrschichtverbundwerkstoff und seine Verwendung
DE19651851C1 (de) Verfahren zur Herstellung von mit Platin beschichteten oxidkeramischen Gegenständen
JP2006265588A (ja) 被覆材料、ならびに耐食性、耐摩耗性および耐ヒートクラック性を有する鉄鋼製構造物
DE102004038572B4 (de) Verschleißfester Überzug zum Schutz einer Oberfläche und Verfahren zur Herstellung desselben
AT391947B (de) Tauchpyrometer
JP3286770B2 (ja) 耐食・耐摩耗性皮膜の製造方法
WO2003039805A1 (en) Heat-resistant steel types having improved resistance to (catalytic) carbonization and coking
DE2238592A1 (de) Verfahren zur sicherung hohe temperaturen aufweisender metallischer bauteile gegen verzundern und beschichtungsmaterial zur durchfuehrung dieses verfahrens
DE2419584A1 (de) Duesenstoecke fuer geblaese-schachtoefen und verfahren zu ihrer herstellung
DD273458A1 (de) Verfahren zur verschleissschutzbeschichtung von metallischen werkstoffen mittels hochenergiequelle
KR20040056889A (ko) 내식성과 내마모성이 우수한 텅스텐-카바이드 초경용사코팅 롤

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19950203

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE ES FR GB IT LI LU NL SE

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

17Q First examination report despatched

Effective date: 19980804

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: THYSSEN STAHL AKTIENGESELLSCHAFT

Owner name: HAEUSER & CO. GMBH

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE ES FR GB IT LI LU NL SE

REF Corresponds to:

Ref document number: 178364

Country of ref document: AT

Date of ref document: 19990415

Kind code of ref document: T

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 59309491

Country of ref document: DE

Date of ref document: 19990506

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19990622

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: HAEUSER & CO. GMBH

ET Fr: translation filed
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2132237

Country of ref document: ES

Kind code of ref document: T3

NLXE Nl: other communications concerning ep-patents (part 3 heading xe)

Free format text: PAT. BUL. 08/99 PAGE 1109: CORR.: H?USER & CO. GMBH.

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 20080613

Year of fee payment: 16

Ref country code: ES

Payment date: 20080627

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20080623

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20091223

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20100706

Year of fee payment: 18

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20090612

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20100614

Year of fee payment: 18

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090612

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20100614

Year of fee payment: 18

Ref country code: CH

Payment date: 20100623

Year of fee payment: 18

Ref country code: BE

Payment date: 20100611

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20100401

Year of fee payment: 18

Ref country code: DE

Payment date: 20100625

Year of fee payment: 18

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090611

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090611

BERE Be: lapsed

Owner name: *HAUSER & CO. G.M.B.H.

Effective date: 20110630

REG Reference to a national code

Ref country code: NL

Ref legal event code: V1

Effective date: 20120101

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20110611

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110611

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 178364

Country of ref document: AT

Kind code of ref document: T

Effective date: 20110611

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20120229

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110630

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59309491

Country of ref document: DE

Effective date: 20120103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110630

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110630

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110630

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110611

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110612