EP0933443B1 - Verwendung von Stahlpulver auf der Basis Fe-Cr-Si für korrosionsbeständige Beschichtungen - Google Patents

Verwendung von Stahlpulver auf der Basis Fe-Cr-Si für korrosionsbeständige Beschichtungen Download PDF

Info

Publication number
EP0933443B1
EP0933443B1 EP99101813A EP99101813A EP0933443B1 EP 0933443 B1 EP0933443 B1 EP 0933443B1 EP 99101813 A EP99101813 A EP 99101813A EP 99101813 A EP99101813 A EP 99101813A EP 0933443 B1 EP0933443 B1 EP 0933443B1
Authority
EP
European Patent Office
Prior art keywords
corrosion
alloy
chromium
silicon
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP99101813A
Other languages
English (en)
French (fr)
Other versions
EP0933443A1 (de
Inventor
Carsten Schroer
Michael Dr. Spiegel
Hans Jürgen Prof. Dr. Grabke
Gerhard Dr. Sauthoff
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Max Planck Institut fuer Eisenforschung
Original Assignee
Max Planck Institut fuer Eisenforschung
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Max Planck Institut fuer Eisenforschung filed Critical Max Planck Institut fuer Eisenforschung
Publication of EP0933443A1 publication Critical patent/EP0933443A1/de
Application granted granted Critical
Publication of EP0933443B1 publication Critical patent/EP0933443B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • C22C33/0257Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements
    • C22C33/0278Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements with at least one alloying element having a minimum content above 5%
    • C22C33/0285Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements with at least one alloying element having a minimum content above 5% with Cr, Co, or Ni having a minimum content higher than 5%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/34Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/06Metallic material
    • C23C4/073Metallic material containing MCrAl or MCrAlY alloys, where M is nickel, cobalt or iron, with or without non-metal elements

Definitions

  • the invention relates to coatings made of ferritic Steel alloys on metal components, primarily low alloy steel, preferably pipes and Pipe walls, for the purpose of corrosion protection against hot media containing chlorine and / or chloride and / or sulfate e.g. for plant components for thermal Waste disposal or copper refining.
  • coated pipes in plants for thermal waste disposal has the advantage that the mechanically stressed pipe cross-section low-alloy steel and the component after thermal / mechanical criteria can be designed.
  • the materials with the required high Corrosion resistance are only considered comparative thin layer used on the pipe surface.
  • the Requirements for the mechanical properties of the Coating material are low, so that at its selection only the corrosion resistance and the Adhesion to the low-alloy substrate is crucial are.
  • the coating of corrosively highly stressed Heat exchanger tubes in such systems are used primarily for Repair of corrosion damage as well as for prevention critical positions, already done.
  • Variants used such as Alloy 625, one Nickel based alloy with 21.5% chromium, 9% molybdenum, 3.6% niobium and 2.5% iron and smaller proportions Al, Ti, Mn, Si and C, or NiCrBSi solders, the im Compared to iron higher resistance of nickel against chlorine corrosion.
  • the invention is based on the idea that also ferritic steel alloys can be used provided that their chromium and silicon contents are sufficiently high are, so that the formation is very stable, the material passivating oxides also among those described above Corrosion conditions are preferred.
  • the advantage such ferritic coatings lies in their low-alloy substrate material practically the same thermal expansion, which also ensures adhesion Thermal cycling is guaranteed.
  • the high thermal conductivity of ferritic steel has an advantageous effect on heat transfer and therefore the surface temperature of the coating.
  • Such coatings can be found in all plants in which gases containing chlorine and / or chloride and / or sulfate-containing dusts and deposits Cause corrosion problems, e.g. when burning Household waste, biomass and chemical waste as well as at Copper refining, used promisingly.
  • the corrosion resistance of the alloys has been confirmed in aging experiments at 600 ° C.
  • the samples of the alloys examined were completely embedded in deposits that come from the heat exchanger tubes of a waste incineration plant.
  • the deposits were renewed every 2 weeks.
  • the reaction gas consisted of 5 vol.% O 2 containing nitrogen, to which 500 vol. Ppm HCl had been added.
  • the water content of the gases dried in a P 2 O 5 column was ⁇ 3 ⁇ 10 -5 mbar.
  • the samples have been exposed to these conditions for various times (previously up to a maximum of 8 weeks).
  • the loss of material due to corrosion has been determined mechanically and chemically by pickling in alkaline KMnO 4 solution and inhibited hydrochloric acid on the basis of the decrease in mass after removal of the corrosion products and deposits.
  • the time-dependent material losses .DELTA.m due to corrosion determined in this way are plotted in FIG. 1 for various FeCrSi alloys and for Alloy 625.
  • the corrosion rates of the FeCrSi alloys used according to the invention are up to an order of magnitude lower than that of Alloy 625, the material which is now predominantly used for coating.
  • the comparative alloy Fe-30Cr-2Si which therefore contains less silicon than the steels to be used according to the invention, also has a significantly higher decrease in mass of 0.06 mg / mm 2 after 14 days.
  • the local corrosion can be determined when the Take the minimum layer thickness into account by adding the am Cross section of the corrosive sample determined maximum Depth of the dimples in the metal surface from the area-specific mass change calculated cross-sectional decrease is added.
  • Powder made from the FeCrSi alloy to be used according to the invention can be made by direct Atomizing the alloy melt or by induction drip melting rod-shaped electrodes from the corresponding alloy. The latter procedure was with Success in producing smaller amounts of Fe-35Cr-5Si powder applied.
  • the application methods are thermal Spraying process provided. Due to requirements the tightness of the layer comes here in particular Flame spraying in question. Using high-speed flame spraying have already successfully applied coatings be performed, which also the desired Ensure protection against corrosion.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Powder Metallurgy (AREA)
  • Paints Or Removers (AREA)

Description

Die Erfindung betrifft Beschichtungen aus ferritischen Stahllegierungen auf Metall-Bauteilen, vornehmlich niedriglegiertem Stahl, vorzugsweise Rohren und Rohrwänden, zum Zwecke des Korrosionsschutzes gegen heiße chlor- und/oder chlorid- und/oder sulfathaltige Medien z.B. für Anlagenbauteile für die thermische Müllentsorgung oder Kupferraffinierung.
In Anlagen zur Energie- und Stoffumwandlung ist bei der Wahl der Prozeßparameter oftmals ein Spielraum gegeben, der es erlaubt, den Prozeß so zu führen, daß die Anforderungen an die Warmfestigkeit der für die notwendigen Bauteile einzusetzenden Werkstoffe von niedriglegierten Stählen erfüllt werden können. So wird man z.B. bei Kraftwerksanlagen, die den elektrischen Strom über eine Dampf-Turbine erzeugen, den Heißdampf-Zustand so wählen, daß die materialaufwendigen Wärmetauscher aus niedriglegiertem Stahl gefertigt werden können. Die Wirkungsgradverbesserung beim Übergang zu höheren Temperaturen und Drücken rechtfertigt die Mehrkosten für hochlegierte, austenitische Werkstoffe in der Regel nicht.
In Anlagen zur thermischen Müllentsorgung wird die Standzeit der Wärmetauscher jedoch nicht durch die thermischen und mechanischen Eigenschaften, sondern vielmehr durch den Korrosionswiderstand des Rohrwerkstoffes bestimmt, der demnach als wichtiges Kriterium bei der Wahl der Werkstoffe und der Prozeßführung berücksichtigt werden muß.
Die in solchen Anlagen in Abhängigkeit von Rauchgas- und Rohrwandtemperatur auftretenden Korrosionsvorgänge setzen sich in komplizierter Weise aus der chlorkatalysierten aktiven Oxidation, die in Gegenwart von chlorhaltigen Gasen oder Chloriden in oxidierenden Atmosphären auftritt und hauptsächlich das Eisen aus dem Rohrwerkstoff verbraucht, sowie Auflösungs-/Ausscheidungsvorgängen der schützenden Metall-Oxide in den sich auf der Rohrwand bildenden Sulfat- und Chloridschmelzen, wodurch eine Passivierung des Rohrwerkstoffes zusätzlich erschwert wird, zusammen. Unter solchen Bedingungen weisen selbst hochlegierte Stähle nur unbefriedigende Korrosionswiderstände auf.
Neuere Entwicklungen zeigen zwar, daß Rohre aus Nickelbasiswerkstoffen einen erhöhten Widerstand gegenüber diesen Korrosionsvorgängen aufweisen, aufgrund des hohen für Nickel zu zahlenden Preises ist jedoch das Aufbringen einer korrosionsbeständigen ferritischen Beschichtung auf Rohre aus niedriglegiertem Stahl die kostengünstigere Alternative.
Der Einsatz beschichteter Rohre in Anlagen zur thermischen Müllentsorgung hat den Vorteil, daß der mechanisch beanspruchte Rohrquerschnitt.weiterhin aus niedriglegiertem Stahl gefertigt und das Bauteil nach thermisch/mechanischen Kriterien ausgelegt werden kann. Die Materialien mit dem geforderten hohen Korrosionswiderstand werden lediglich als vergleichsweise dünne Schicht auf der Rohroberfläche verwendet. Die Anforderungen an die mechanischen Eigenschaften des Beschichtungswerkstoffes sind dabei gering, so daß bei dessen Auswahl nur der Korrosionswiderstand und die Haftung auf dem niedriglegierten Substrat entscheidend sind.
Das Beschichten korrosiv hochbeanspruchter Wärmetauscherrohre in solchen Anlagen wird, vor allem zur Reparatur von Korrosionsschäden sowie zur Prävention an kritischen Positionen, bereits durchgeführt. Dazu wird auf bekannte Werkstoffe bzw. von diesen abgeleitete Varianten zurückgegriffen, wie z.B. Alloy 625, eine Nickelbasislegierung mit 21,5 % Chrom, 9 % Molybdän, 3,6 % Niob und 2,5 % Eisen sowie kleineren Anteilen an Al, Ti, Mn, Si und C, oder NiCrBSi-Loten, wobei der im Vergleich zum Eisen höhere Widerstand des Nickels gegenüber Chlorkorrosion ausgenutzt werden soll.
Neben dem voranstehend erläuterten Stand der Technik ist aus US 5,643,531 ein Verfahren zur Herstellung von Schutzbelägen für Rohre in Speisewasservorwärmern von großtechnischen Feuerungsanlagen, welche Temperaturen von bis zu 400°C ausgesetzt sein können, bekannt. Dabei soll eine Reduzierung des erosiven Abtrages aufgrund des Kontaktes der Rohre mit dem großen Anteil an Flugasche im Abgas erreicht werden. Hierzu wird eine Schicht aus einem Stahlpulver auf die Rohre aufgebracht, das neben Eisen zwingend die Elemente Chrom, Mangan, Kohlenstoff, Silizium, Molybdän und Aluminium vorschreibt. Der Aluminium-Gehalt beträgt dabei 3 % bis 13 %. Aufgrund dieser hohen Aluminium-Gehalte kommt es bei der bekannten Beschichtung zur Bildung von Hartphasen, die dem Werkstoff die gewünschte Verschleißfähigkeit verleihen. Gleichzeitig bilden die aus der US 5,643,531 bekannten Legierungen aufgrund der Anwesenheit von Aluminium jedoch bei tiefen und mittleren Temperaturen durch Kristallumwandlung eine intermetallische Verbindung (Eisenaluminid), die sowohl spröde ist als auch durch ihre mit der Umwandlung verbundene Volumenänderung Mikrorisse und Spannungen im Gefüge der Beschichtung erzeugen. Dies führt zu einer Verringerung der Korrosionsbeständigkeit.
Der Erfindung liegt der Gedanke zugrunde, daß auch auf ferritische Stahllegierungen zurückgegriffen werden kann, sofern deren Chrom- und Siliziumgehalte ausreichend hoch sind, so daß die Bildung sehr stabiler, den Werkstoff passivierender Oxide auch unter den oben beschriebenen Korrosionsbedingungen bevorzugt stattfindet. Der Vorteil solcher ferritischer Beschichtungen liegt in deren dem niedriglegierten Substratwerkstoff praktisch gleichen thermischen Ausdehnung, wodurch die Haftung auch bei Temperaturwechselbeanspruchung gewährleistet ist. Die hohe thermische Leitfähigkeit des ferritischen Stahls wirkt sich vorteilhaft auf den Wärmeübergang und damit die Oberflächentemperatur der Beschichtung aus.
Rein ferritische Eisenbasislegierungen, die, den durchgeführten Experimenten entsprechend, als ein solcher Beschichtungswerkstoff in Frage kommen, haben eine Zusammensetzung von (in Masse-%)
  • mehr als 20 bis 50 % Cr
  • 5 bis 10 % Si
  • Rest Fe, einschließlich erschmelzungsbedingter Verunreinigung sowie fakultativen Zusätzen von
  • bis 4 % B
  • bis 5 % Mn
  • bis 1 % Mo
  • bis 0,1 % C,
  • die dem Absenken der Schmelztemperatur und somit der Verbesserung der Auftragseigenschaften dienen.
    Stähle mit weniger als 20 % Chrom und weniger als 3 % Silizium erfüllen nicht die Anforderungen an Korrosionsbeständigkeit gegenüber den erwähnten Medien. Mehr als 50 % Chrom ergab keine weitere Verbesserung hinsichtlich Korrosionsbeständigkeit, verteuert nur den Stahl. Bei einem Gehalt von über 10 % Silizium verschlechterte sich wieder die Korrosionsbeständigkeit gegenüber den erwähnten Medien. Optimale Legierungsgehalte wurden mit 25 bis 50 % Chrom und 5 bis 8 % Silizium ermittelt.
    Nach den bisherigen experimentellen Testergebnisse weisen die Legierungen
  • Fe-35Cr-5Si
  • Fe-30Cr-5Si
  • Fe-30Cr-5Si-1B
  • den höchsten Korrosionswiderstand auf.
    Solche Beschichtungen können in allen Anlagen, in denen chlorhaltige Gase und/oder chlorid- und/oder sulfathaltige Stäube und Ablagerungen zu Korrosionsproblemen führen, z.B. bei der Verbrennung von Hausmüll, Biomasse und Chemieabfällen sowie bei der Kupferraffination, erfolgversprechend eingesetzt werden.
    Beispiel
    Die Korrosionsbeständigkeit der Legierungen ist in Auslagerungsexperimenten bei 600 °C bestätigt worden. Die Proben der untersuchten Legierungen waren dabei vollständig in Ablagerungen eingebettet, die von den Wärmetauscherrohren einer Müllverbrennungsanlage stammen. Die Ablagerungen sind nach jeweils 2 Wochen Auslagerung erneuert worden. Das Reaktionsgas bestand aus 5 Vol.-% O2 enthaltendem Stickstoff, dem 500 Vol.-ppm HCl zugesetzt worden sind. Der Wassergehalt der in einer P2O5-Säule getrockneten Gase betrug < 3 x 10-5 mbar.
    Die Proben sind für verschiedene Zeiten diesen Bedingungen ausgesetzt worden (bisher bis max. 8 Wochen). Der Materialverlust durch Korrosion ist anhand der Massenabnahme nach Entfernen der Korrosionsprodukte und Ablagerungsreste mechanisch und chemisch durch Beizen in alkalischer KMnO4-Lösung und inhibierter Salzsäure bestimmt worden.
    In Fig. 1 sind die auf diese Weise bestimmten zeitabhängigen Materialverluste Δm durch Korrosion für diverse FeCrSi-Legierungen sowie für Alloy 625 aufgetragen. Die Korrosionsgeschwindigkeiten der erfindungsgemäß verwendeten FeCrSi-Legierungen liegen bis zu einer Größenordnung unter der von Alloy 625, dem jetzt vorwiegend zur Beschichtung eingesetzten Werkstoff. Die Vergleichslegierung Fe-30Cr-2Si, die also weniger Silizium enthält als die erfindungsgemäß zu verwendenden Stähle hat nach 14 Tagen ebenfalls eine deutlich höhere Massenabnahme von 0,06 mg/mm2.
    Mit der beschriebenen Methode zur Bestimmung der Materialverluste lassen sich nur über die gesamte Probenoberfläche gemittelte Werte erfassen. Unter den untersuchten Bedingungen ist jedoch lokale Korrosion zu beobachten, die an den von dieser betroffenen Stellen zu. einer größeren Querschnittsabnahme als der aus der flächenspezifischen Massenabnahme berechneten führt. Bei der Festlegung einer zu fordernden Mindestdicke der aufzutragenden Beschichtung ist die lokale Korrosion zu berücksichtigen, da der Durchtritt des korrosiven Mediums an einer solchen Stelle zum Versagen des gesamten Rohres führen kann.
    Die lokale Korrosion läßt sich bei der Festlegung der Mindestschichtdicke berücksichtigen, indem die am Querschliff der korrodierenden Probe bestimmte maximale Tiefe der entstehenden Grübchen in der Metalloberfläche zur aus der flächenspezifischen Massenänderung berechneten Querschnittsabnahme addiert wird.
    Nach 8 Wochen Auslagerung unter simulierten Müllverbrennungsbedingungen liegt die aus den Massenabnahmen berechnete Querschnittsabnahme der erfindungsgemäß zu verwendenden Fe-Cr-Si-Legierungen nur bei etwa 0,02 mm. Die Tiefe der durch lokale Korrosion entstandenen Grübchen beträgt etwa 0,03 mm, so daß für diesen Zeitraum mit einer maximalen Querschnittsabnahme von 0,05 mm zu rechnen ist. Im Vergleich dazu beträgt die aus der Massenänderung berechnete Querschnittsabnahme von Alloy 625 im selben Zeitraum 0,24 mm. Die lokale Korrosion ist mit einem Zuschlag von etwa 0,04 mm zu berücksichtigen.
    Pulver aus der erfindungsgemäß zu verwendenden FeCrSi-Legierung können hergestellt werden durch direktes Verdüsen der Legierungsschmelze oder durch Induktions-Abtropf-Schmelzen stabförmiger Elektroden aus der entsprechenden Legierung. Letzteres Verfahren wurde mit Erfolg zur Herstellung kleinerer Mengen von Fe-35Cr-5Si-Pulver angewendet. Als Auftragsverfahren sind thermische Spritzverfahren vorgesehen. Aufgrund der Anforderungen an die Dichtigkeit der Schicht kommt dabei insbesondere das Flammspritzen in Frage. Mittels Hochgeschwindigkeits-Flammspritzen konnten bereits erfolgreich Beschichtungen durchgeführt werden, die auch den gewünschten Korrosionsschutz gewährleisten.

    Claims (3)

    1. Verwendung von Pulver einer ferritischen Stahllegierung mit (in Masse-%)
      mehr als 20 bis 50 % Chrom,
      5 bis 10 % Silizium,
      sowie wahlweise
      bis 4 % B,
      bis 5 % Mn,
      bis 1 % Mo,
      bis 0,1 % C
      und als Rest Eisen, einschließlich unvermeidbarer Verunreinigungen
      zum thermischen Beschichten von Metallteilen, die im Betrieb dem Korrosionsangriff durch heiße chlor- und/oder chlorid- und/oder sulfathaltige Medien ausgesetzt sind.
    2. Verwendung gemäß Anspruch 1, dadurch gekennzeichnet, daß die Stahllegierung (in Masse-%)
      25 bis 50 % Chrom und
      5 bis 8 % Silizium enthält.
    3. Verwendung gemäß Anspruch 1 oder 2, dadurch gekennzeichnet, daß es sich bei den Bauteilen um Anlagen zur thermischen Müllentsorgung oder zum Raffinieren von Kupfer handelt.
    EP99101813A 1998-01-28 1999-01-28 Verwendung von Stahlpulver auf der Basis Fe-Cr-Si für korrosionsbeständige Beschichtungen Expired - Lifetime EP0933443B1 (de)

    Applications Claiming Priority (2)

    Application Number Priority Date Filing Date Title
    DE19803084A DE19803084B4 (de) 1998-01-28 1998-01-28 Verwendung von Stahlpulver auf der Basis Fe-Cr-Si für korrosionsbeständige Beschichtungen
    DE19803084 1998-01-28

    Publications (2)

    Publication Number Publication Date
    EP0933443A1 EP0933443A1 (de) 1999-08-04
    EP0933443B1 true EP0933443B1 (de) 2002-04-03

    Family

    ID=7855816

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP99101813A Expired - Lifetime EP0933443B1 (de) 1998-01-28 1999-01-28 Verwendung von Stahlpulver auf der Basis Fe-Cr-Si für korrosionsbeständige Beschichtungen

    Country Status (4)

    Country Link
    EP (1) EP0933443B1 (de)
    AT (1) ATE215617T1 (de)
    DE (1) DE19803084B4 (de)
    DK (1) DK0933443T3 (de)

    Families Citing this family (3)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    ES2299458T3 (es) * 2000-11-07 2008-06-01 Sulzer Metco Osu Gmbh Metodo de recubrimiento de superficie resistente a desgaste y/o corrosion y medios para la realizacion del mismo.
    CN109628830A (zh) * 2018-12-28 2019-04-16 西安交通大学 一种核反应堆燃料包壳及包壳涂层用的FeCrSi合金材料及热处理方法
    TWI758215B (zh) * 2021-07-28 2022-03-11 國立清華大學 高鉻矽耐蝕鋼及其用途

    Family Cites Families (10)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    AT186656B (de) * 1952-09-10 1956-09-10 Schoeller Bleckmann Stahlwerke Legierungen für Gegenstände, die bei hohen Temperaturen, insbesondere gegen Vanadinpentoxyd widerstandsfähig sein sollen
    DE8717405U1 (de) * 1987-07-08 1989-03-09 Castolin S.A., Lausanne-St. Sulpice, Waadt/Vaud, Ch
    DE3901028A1 (de) * 1989-01-14 1990-07-19 Bayer Ag Nichtrostende knet- und gusswerkstoffe sowie schweisszusatzwerkstoffe fuer mit heisser, konzentrierter schwefelsaeure beaufschlagte bauteile
    JPH0379750A (ja) * 1989-08-21 1991-04-04 Kobe Steel Ltd 鉄系溶射用粉末および溶射皮膜を有する機械・工作部品
    US5643531A (en) * 1989-12-12 1997-07-01 Samsung Heavy Industry Co., Ltd. Ferrous alloy composition and manufacture and coating methods of mechanical products using the same
    DE4104832A1 (de) * 1991-02-16 1992-08-20 Castolin Sa Vorrichtung aus metall zum verschliessen von koksoefen und verfahren zu deren herstellung
    KR100253543B1 (ko) * 1992-04-30 2000-04-15 에모또 간지 가공성이 우수한 Fe-Cr합금
    JPH07243792A (ja) * 1994-03-03 1995-09-19 Kubota Corp ボイラ用被覆鋼管
    JPH0813117A (ja) * 1994-07-04 1996-01-16 Daiichi Meteko Kk 耐摩耗性および耐焼き付き性に優れた溶射皮膜を形成したアルミニウム合金部材
    US6171657B1 (en) * 1995-12-18 2001-01-09 Bender Machine, Inc. Method of coating yankee dryers against wear

    Also Published As

    Publication number Publication date
    DK0933443T3 (da) 2002-07-08
    ATE215617T1 (de) 2002-04-15
    EP0933443A1 (de) 1999-08-04
    DE19803084A1 (de) 1999-07-29
    DE19803084B4 (de) 2005-07-28

    Similar Documents

    Publication Publication Date Title
    CN110004392B (zh) 一种耐高温腐蚀耐磨损的非晶态热喷涂材料
    DE2744189A1 (de) Verfahren zur verbesserung der verschleisseigenschaften von eisenmetallteilen
    CN102021567A (zh) 一种制造锅炉管防腐涂层的镍基合金粉末
    EP0933443B1 (de) Verwendung von Stahlpulver auf der Basis Fe-Cr-Si für korrosionsbeständige Beschichtungen
    RU2649218C1 (ru) Способ формирования антикоррозионного покрытия на изделиях из низкоуглеродистой стали
    JPH0426741A (ja) 高温、高濃度硫酸用Pd添加ステンレス鋼
    CN116117383B (zh) 高硬耐蚀金属基陶瓷复合焊丝及其制备方法
    US5620805A (en) Alloy and multilayer steel tube having corrosion resistance in fuel combustion environment containing V, Na, S and Cl
    JP5942532B2 (ja) 耐食性に優れた鋼材
    EP0672197B1 (de) Verfahren zur herstellung einer schutzschicht auf mit heissen gasen, insbesondere rauchgasen beaufschlagten metallischen wänden
    DE19703035C2 (de) Verwendung einer austenitischen Nickel-Chrom-Molybdän-Silizium-Legierung mit hoher Korrosionsbeständigkeit gegen heiße chlorhaltige Gase und Chloride
    DE3730442A1 (de) Verfahren zum schuetzen von metallischen flaechen gegen die korrosion durch oxide von vanadium und/oder natrium
    US7828913B1 (en) Peritectic, metastable alloys containing tantalum and nickel
    DE102021106624A1 (de) Verwendung einer Nickel-Chrom-Eisen-Legierung
    JP2992226B2 (ja) 耐食性を有するニッケル合金及びそれらの合金から作られる建設部材
    JP3067477B2 (ja) 耐食性、延性に優れた高Si含有ステンレス溶接鋼管の製造方法
    JPS61243157A (ja) 高Al耐熱合金鋼
    EP3499172A1 (de) Überhitzer enthaltend eine verbrennungsgasen ausgesetzte rohranordnung enthaltend längstnahtgeschweisste rohre für dampferzeuger mit korrosiven rauchgasen
    CH654334A5 (de) Verfahren zur bildung einer korrosionsbestaendigen oxidischen schicht auf einem metallischen substrat sowie verwendung dieser schicht.
    JP2796460B2 (ja) 高Si含有ステンレス鋼の溶接材料
    DE102007020420B4 (de) Plasmaspritzverfahren zur Beschichtung von Überhitzerrohren und Verwendung eines Metalllegierungspulvers
    DE3243228C1 (de) Verwendung einer korrosionsbeständigen Oxidschicht
    JP2020158853A (ja) 鋼材およびその製造方法
    JPH05156410A (ja) 高温、高濃度硫酸用ステンレス鋼
    JPH07109018B2 (ja) V、Na、S、Clの存在する燃焼環境において耐食性を有する合金および複層鋼管

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    AK Designated contracting states

    Kind code of ref document: A1

    Designated state(s): AT DK FR IT NL

    AX Request for extension of the european patent

    Free format text: AL;LT;LV;MK;RO;SI

    17P Request for examination filed

    Effective date: 19991214

    AKX Designation fees paid

    Free format text: AT BE CH CY DE LI

    RBV Designated contracting states (corrected)

    Designated state(s): AT DK FR IT NL

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: 8566

    17Q First examination report despatched

    Effective date: 20001206

    GRAG Despatch of communication of intention to grant

    Free format text: ORIGINAL CODE: EPIDOS AGRA

    GRAG Despatch of communication of intention to grant

    Free format text: ORIGINAL CODE: EPIDOS AGRA

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    AK Designated contracting states

    Kind code of ref document: B1

    Designated state(s): AT DK FR IT NL

    REF Corresponds to:

    Ref document number: 215617

    Country of ref document: AT

    Date of ref document: 20020415

    Kind code of ref document: T

    REG Reference to a national code

    Ref country code: DK

    Ref legal event code: T3

    ET Fr: translation filed
    ET Fr: translation filed
    PLBE No opposition filed within time limit

    Free format text: ORIGINAL CODE: 0009261

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

    26N No opposition filed

    Effective date: 20030106

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: DK

    Payment date: 20110118

    Year of fee payment: 13

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: FR

    Payment date: 20110125

    Year of fee payment: 13

    Ref country code: NL

    Payment date: 20110124

    Year of fee payment: 13

    Ref country code: IT

    Payment date: 20110125

    Year of fee payment: 13

    Ref country code: AT

    Payment date: 20110120

    Year of fee payment: 13

    REG Reference to a national code

    Ref country code: NL

    Ref legal event code: V1

    Effective date: 20120801

    REG Reference to a national code

    Ref country code: DK

    Ref legal event code: EBP

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: ST

    Effective date: 20120928

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: IT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20120128

    REG Reference to a national code

    Ref country code: AT

    Ref legal event code: MM01

    Ref document number: 215617

    Country of ref document: AT

    Kind code of ref document: T

    Effective date: 20120128

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: FR

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20120131

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: AT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20120128

    Ref country code: NL

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20120801

    Ref country code: DK

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20120131