SK156394A3 - Process for producing a protective coating on heat stressed metal walls - Google Patents

Process for producing a protective coating on heat stressed metal walls Download PDF

Info

Publication number
SK156394A3
SK156394A3 SK1563-94A SK156394A SK156394A3 SK 156394 A3 SK156394 A3 SK 156394A3 SK 156394 A SK156394 A SK 156394A SK 156394 A3 SK156394 A3 SK 156394A3
Authority
SK
Slovakia
Prior art keywords
powder
walls
layer
plasma
protective layer
Prior art date
Application number
SK1563-94A
Other languages
Slovak (sk)
Inventor
Bodo Haeuser
Wilhelm Heesen
Johannes Hermsen
Original Assignee
Thyssen Guss Ag
Thyssen Stahl Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thyssen Guss Ag, Thyssen Stahl Ag filed Critical Thyssen Guss Ag
Publication of SK156394A3 publication Critical patent/SK156394A3/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • C23C4/134Plasma spraying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/16Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed
    • B05B7/22Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed electrically, magnetically or electromagnetically, e.g. by arc
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/10Oxides, borides, carbides, nitrides or silicides; Mixtures thereof

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electromagnetism (AREA)
  • Coating By Spraying Or Casting (AREA)
  • Laminated Bodies (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

A process for producing a protective coating on walls subject to attack by hot gases in a predetermined temperature range, which are made of metal and a predetermined basic material, in combustion plants, heat exchangers or similar installations, in which a powder of metallic, carbide, oxycarbide or silicide materials or mixtures thereof are applied to the metal walls using the plasma jet process. The invention proposes that: a) the surface of the wall is roughened; b) the basic material of the wall is activated; and c) immediately afterwards the powder is applied at room temperature and in atmospheric conditions by the plasma jet process; being d) the composition of the powder selected beforehand so that the stress as a function of the temperature in the unstressed state (at room temperature) found with the aid of the coefficients of heat expansion of the basic material and test-pieces for the transition region between the basic material and the applied coating produced from various powders gives tensile stresses of between 50 and 800 N/mm2 and preferably between 500 and 800 N/mm2, which is reduced to 0 or exhibits slight compression stresses in the predetermined temperature range.

Description

Oblasť technikyTechnical field

Vynález sa týka spôsobu výroby ochrannej vrstvy na steny z kovového základného materiálu, s výhodou spaľovacích zariadení alebo výmeníkov tepla, napadnuté horúcimi plynmi, najmä dymovými plynmi, pri ktorom sa na predom očistené kovové steny na vytvorenie ochrannej vrstvy nanáša prášok z kovových, karbidických, oxidokeramických alebo kremi-BACKGROUND OF THE INVENTION The present invention relates to a process for producing a protective layer on walls of metal base material, preferably combustion devices or heat exchangers, attacked by hot gases, in particular flue gases, in which powdered metal, carbide, oxidoceramic powder is applied to the previously cleaned metal walls. or

čitých látok pure substances alebo zmesí or mixtures týchto these látok. substances. Doterajší stav techniky BACKGROUND OF THE INVENTION Takéto these ochranné protection vrstvy layers sa majú are nanášať deposit napríklad na for example at chladiace cooling steny the walls kotlov na boilers on odpadné waste

teplo, na oceľové konvertory. Tieto steny sú vystavené obzvlášť veľkým zaťaženiam. Na jednu zo strán prúdia asi 1400° až 1800°C horúce dymové plyny naložené popolom a časticami strusky pozdĺž, zatial čo na jednej z ostatných strán panujú tlaky sýtej pary asi 20 až 80 barov. Steny trubky, ochladenej sýtou parou majú pri tom gradienty vnútorného tlaku až 2 bary/min.heat, to steel converters. These walls are subject to particularly high loads. On one side, about 1400 ° to 1800 ° C flows hot flue gases loaded with ash and slag particles along, while on one of the other sides saturated steam pressures of about 20 to 80 bar. The walls of the steam-cooled tube have internal pressure gradients of up to 2 bar / min.

Z DE 23 55 532 C2 je známy spôsob navarovania prášku- kovov a zliatin na predohriatu kovovú podložku predom upravenú pieskovaním, pri ktorom sa kovová podložka zahrieva napred na najmenej 100 ažDE 23 55 532 C2 discloses a method of welding powders and alloys to a pre-heated metal substrate pretreated by sand blasting, in which the metal substrate is heated to at least 100 to 60 ° C.

650°C. Ako pri navarovaní pomocou tyčovej elektródy, tak aj pri navarovaní prášku alebo plameňovom striekaní s následným natavením sa pri nanášaní ochrannej vrstvy základný materiál dosť silne zahrieva, čo vedie k nežiadúcej zmene štruktúry, najmä pri plameňovom striekaní sa teplota natavovania pohybuje v závislosti na použitom striekanom prášku medzi 980 až 1060°C. V dôsledku vnášania veľkého tepla dochádza okrem toho k pretiahnutiu povi ieknutých stien. Pri stavbe týchto stien môže potom dôjsť k problémom a k ďalším nákladom v dôsledku rozmerových nepresností . Keď sa ochranné vrstvy pozdejšie nanášajú týmito známymi spôsobmi, nemôžu pnutia, podmienené teplotou, reagovať v zmysle pretiahnutia, ale vedú pri vstavaných stenových prvkoch k trhlinám v povrchu, najmä v oblasti zvarov. Pri navarovaní má ochranná vrstva hrúbku asi 8 až 10 mm a pri plameňovom striekaní 1 až 2 mm.650 ° C. In both the electrode welding process and the powder welding or flame spraying with subsequent melting, the base material heats up quite strongly when the protective layer is applied, resulting in an undesirable structural change, especially in the flame spraying the melting temperature varies depending on the sprayed powder used. between 980 and 1060 ° C. In addition, due to the introduction of high heat, the coated walls are stretched. Problems and additional costs can then arise in the construction of these walls due to dimensional inaccuracies. When the protective layers are later applied by these known methods, the temperature-dependent stresses cannot react in the sense of elongation, but lead to surface cracks in the built-in wall elements, especially in the weld area. In the case of welding, the protective layer has a thickness of about 8 to 10 mm and, in the case of flame spraying, 1 to 2 mm.

Z DE-AS 26 30 507 je okrem toho známy spôsob výroby ochranných vrstiev na obrobkoch proti ich korózii horúcimi plynmi a/alebo mechanickému opotrebeniu, pri ktorom sa pomocou plazmového vákuu nanáša povliekajúci prášok na tomto vákuovom spôsobe striekania sa nákladom vyrobiť vákuum v pracovnej nie je zvonku prístupná a realizovať U väčších stien, napríklad stien kotli na odpadné teplo to nie jeDE-AS 26 30 507 furthermore discloses a method for producing protective coatings on workpieces against corrosion by hot gases and / or mechanical wear, in which a coating powder is applied by means of a plasma vacuum on this vacuum spraying method to produce a vacuum in a working process. accessible from the outside and realized This is not the case with larger walls, such as the walls of a waste heat boiler

-možné;·’ stnexama vo materiál. Pri musí značným komore, ktorá povlečenie. vstavaných v-possible; · 'stnexama in material. When you have a sizeable chamber that linen. built - in

Podstata vynálezuSUMMARY OF THE INVENTION

Predložený vynález si kladie za základnú úlohu navrhnúť druhovo rovnaký spôsob, pri ktorom nedochádza k uvedeným problémom a najmä sa zabráni pretiahnutiu obrobkkov a pnutiam v základnom materiále vytvárajúcom trhliny.It is an object of the present invention to provide a species-like method in which the problems mentioned do not occur and, in particular, the elongation of the workpieces and the stresses in the crack-forming base material are avoided.

Vyriešenie tejto úlohy podľa vynálezu je uvedené vo význakovej časti patentového nároku 1. Podnároky 2 až 8 obsahujú zmysluplné doplňujúce kroky spôsobu.A solution to this object according to the invention is disclosed in the characterizing part of claim 1. Claims 2 to 8 comprise meaningful additional steps of the method.

Pri spôsobe podľa vynálezu sa pred nanášaním prášku zdrsní za atmosférických podmienok nielen povrch stien spôsobom striekania v plazme, ale sa aktivuje aj základný materiál steny vysoko čistým ušľachtilým korundom tak, že sa vytvoria poruchy v kovovej mriežke, čím sa zvýšia adhézne sily. Bezprostredne potom, skôr ako odstráneniu porúch v mriežke, atmosférických podmienok striekania v plazme na dôjde opäť k sa potom za spôsobom nanesie prášok steny, ktorých povrch si pri tom udrží miestnosti.In the method according to the invention, not only the surface of the walls is roughened under the plasma spraying method under atmospheric conditions before application of the powder, but also the wall base material is activated by high-purity noble corundum so as to create defects in the metal grid, thereby increasing adhesion forces. Immediately thereafter, rather than eliminating the lattice defects, atmospheric plasma spraying conditions occur again, then a wall powder is then applied in a manner, the surface of which retains the room.

približne priemernú teplotuapproximately average temperature

Zloženie prášku je stanovené v závislosti na prítomnom základnom materiále a pozdejších podmienkach prevádzky, najmä v závislosti na predom stanovených oblastiach teploty. Podľa vynálezu majú na prechodovú oblasť medzi základným materiálom -a nanesenou vrstvou v stave bez zaťaženia, to znamená pri teplote miestnosti, činiť napätia v ťahu 50 až 800 N/mm2, s výhodou sa majú pohybovať medzi 500 až 800 N/mm2, táto sa v napred stanovenom teplotnom rozmedzí v podstate zníži na 0 alebo sú v tomto rozmedzí nepatrné tlakové napätia. Tieto stavy napätia /zrovn. pripojený obr./ sa zaistí výpočtom jednak pomocou koeficientov teplotnej rozťažnosti základného materiálu a jednak vzorkov obrobkov, vyrobených z rôznych práškov. Výpočet sa môže preskúšať podľa DIN 50121.The powder composition is determined according to the base material present and the later operating conditions, in particular the predetermined temperature ranges. According to the invention, tensile stresses of 50 to 800 N / mm 2 are to be applied to the transition region between the base material and the applied layer in a no-load state, i.e. at room temperature, preferably between 500 and 800 N / mm 2 , this is substantially reduced to 0 within a predetermined temperature range or there are slight pressure stresses within this range. These voltage / level states. The attached Fig. 1 is ensured by calculating both the thermal expansion coefficients of the base material and the samples of workpieces made of different powders. The calculation can be checked according to DIN 50121.

Pomocou spôsobu podľa vynálezu sa môže vyrobiť napríklad na rovných alebo klenutých stenách spaľovacích zariadení, tepelných výmeníkov, najmä potom na oceľových konventoroch kotlov na odpadné teplo ochranná vrstva necitlivá voči tepelnému šoku a ľahko opraviteľná, pôsobiaca proti korózii horúcimi plynmi a/alebo mechanickému opotrebeniu.By means of the method according to the invention, for example, a protective shock-insensitive and easily repairable layer against corrosion by hot gases and / or mechanical wear can be produced on straight or arched walls of combustion plants, heat exchangers, in particular on steel convectors of waste heat boilers.

Ukázalo sa, že konečná hrúbka vrstvy 0,1 až 0,5 mm, s výhodou 0,15 až 0,25 mm stačí k tomu,aby aj po podstatne dlhšom časovom období ako bolo až doteraz možné, zabránila opotrebeniu, ktoré by stálo za zmienku. Na nanášanie takejto ochrannej vrstvy sa ukázalo byt najmä vhodné 80 kW zariadenie na striekanie v plazme s vnútorným prívodom prášku. Pri tom sa používa prášok s veľkosťou zrna menšou ako 75 pm, s výhodou 20 až 40 pm. Pomocou tohoto prášku je možné nanášať najmä veľmi tenkú vrstvu, ktorá splňuje podmienku necitlivosti voči tepelnému šoku a odolnosti proti korózii horúcimi plynmi . a zabráni veľkému vlastnému pnutiu, podmienenému -laminárnou stavbou vrstvy podmienenou procesom. Celková vrstva sa vyrobí s výhodou u najmenej dvoch prechodov.It has been found that a final layer thickness of 0.1 to 0.5 mm, preferably 0.15 to 0.25 mm, is sufficient to prevent wear which would be worthwhile even after a significantly longer period than hitherto possible. mention. A 80 kW plasma spraying device with an internal powder supply has proven particularly suitable for the application of such a protective layer. In this case, a powder having a grain size of less than 75 [mu] m, preferably 20 to 40 [mu] m, is used. With this powder it is possible to apply in particular a very thin layer which fulfills the condition of insensitivity to heat shock and corrosion resistance by hot gases. and avoids a large self-stress caused by the laminar layer construction of the process. The total layer is preferably produced at at least two passes.

Pred striekaním v plazme sa spracovaný povrch stien zdrsní a aktivuje sa ušľachtilým korundom, s výhodou vysoko čisiýra, bielym ušľachtilým korundom.Prior to plasma spraying, the treated wall surface is roughened and activated with a noble corundum, preferably a high clarity, white noble corundum.

Ďalej sa ukázalo, že je výhodné, ked sa pri spôsobe podľa vynálezu povrch zahreje plazmovým lúčom a v tomto natavené· častice len asi na 40°C, maximálne na 60°C. Tým sa vylúči predovšetkým pretiahnutie stien.Furthermore, it has been found to be advantageous in the method according to the invention to heat the surface by a plasma beam and in this molten particle only to about 40 ° C, to a maximum of 60 ° C. This avoids, in particular, the elongation of the walls.

• S výhodou sa používa prášok obsahujúci zliatinu niklu.Preferably, a powder containing nickel alloy is used.

Ukázalo sa, že by sa povlieknutie plazmou malo realizovať najpozdejšie po 45 minútach, s výhodou najpozdejšie po 30 minútach po aktivovaní povrchu stien.It has been shown that the plasma coating should take place no later than 45 minutes, preferably no later than 30 minutes after the wall surface has been activated.

Konečne sa môže teplota, ktorou sú steny spracované ochrannou vrstvou namáhané pohybovať v oblasti medzi 300 až 1800°C, s výhodou medzi 500 až 1000°C.Finally, the temperature at which the walls treated with the protective layer are subjected to stress can be in the range between 300 and 1800 ° C, preferably between 500 and 1000 ° C.

Prehľad obrázkov na výkreseOverview of the figures in the drawing

Na priloženom obr. 1 je znázornený diagram pnutie-teplota, napríklad chovanie napätia v prechodovej oblasti základného . materiálu a nanesenej ochrannej vrstvy v teplotnej oblasti medziFIG. 1 is a stress-temperature diagram, for example, the stress behavior in the transition region of the base. the material and the applied protective layer in the temperature range between

O a.ž 1800°C. Základom pri tom sú namerané, stredné lineárne koeficienty tepelnej rozťažnosti obidvoch materiálových partnerov; obr. S ukazuje priebeh hrúbky vrstvy zliatiny NiCrBSi v kotli'na odpadné teplo, pri skúšaní viac ako 13300 šarží.0 to 1800 ° C. The basis for this are the measured, linear linear coefficients of thermal expansion of the two material partners; Fig. S shows the course of the thickness of the NiCrBSi alloy layer in the boiler waste heat, when testing more than 13300 batches.

Príklad uskutočnenia vynálezuDETAILED DESCRIPTION OF THE INVENTION

V stave, pri ktorom nie sú povlieknuté plochy steny konvertora kotla na odpadné teplo namáhané, sú v prechodovej oblasti medzi základným materiálom a povliekacím materiálom napätia v ťahu odpovedajúce hodnotám nad 600 N/mm2.In the state in which the coated wall surfaces of the waste heat boiler converter are not stressed, tensile stresses corresponding to values above 600 N / mm 2 are in the transition region between the base material and the coating material.

V pracovnom stave povlieknutej plochy steny konvertora kotla na odpadné teplo je nastriekaná vrstva náhle napadaná vysokými teplotami roztavenej ocele, vystrekujúcej vysoko z konvertora, a horúcej strusky. Na diagrame je znázornený pochod priebehu, napätia, pri ktorom bude neutrálna oblasť napätia prebiehať asi okolo 700°C a nad 700°C sa v prechodovej oblasti budú vytvárať tlakové napätia, ktoré zabránia odlupovaniu vrstvy alebo tvorbe trhlín vo vrstve. Pomocou trubiek stien kotla na odpadné teplo, chladených obvykle vodou, sa v dôsledku namáhania pomaly vytvára opäť stav napätia v tlaku, to znamená, že v diagrame vyznačená čiara priebehu napätia bude prebiehať v opačnom smere. Na obr·.· je znázornený len príklad priebehu napätia závislý na teplote.In the working state of the coated wall surface of the waste heat boiler converter, the sprayed layer is suddenly attacked by the high temperatures of the molten steel spraying high out of the converter and the hot slag. The diagram illustrates the course of stress, at which the neutral stress region will run at about 700 ° C, and above 700 ° C, pressure stresses will be created in the transition region to prevent peeling or cracks in the layer. By means of the wall tubes of the waste heat boiler, usually cooled with water, the stress condition in the compressive state is slowly re-established as a result of the stress, i.e. the stress-line indicated in the diagram will run in the opposite direction. Only an example of a temperature-dependent voltage curve is shown in FIG.

.......Pre iné oblasti namáhania môže.prirodzene prebiehať tak zvaný 0- stav miesto pri ?00°C aj pri 400°C alebo pri 800°C........ For other stress areas, the so-called 0-state can naturally take place at? 00 ° C even at 400 ° C or at 800 ° C.

Na bežne asi pni 1000 °C namáhanú kovovú trubku kotla na odpadné teplo bola nanesená pomocou nanášania striekaním v plazme ochranná vrstva vysoko odolná proti opotrebeniu podľa vynálezu tým, že saOn a normally stressed 1000 ° C metal pipe of a waste heat boiler, a highly wear-resistant protective layer according to the invention was applied by plasma spraying by

a) povrch stien najskôr zdrsnil a zaktivoval vysoko čistým ušľachtilým korundom a(a) the wall surface is first roughened and activated by high-purity noble corundum; and

b) potom sa priamo pri teplote miestnosti a za atmosférických podmienok po striekaní v plazme naniesol prášok, ktorý obsahuje zliatinu niklu, pričom(b) a powder containing nickel alloy is then applied directly at room temperature and under atmospheric conditions after plasma spraying, wherein:

c) sa na trubky kotla na odpadné teplo z ocele najodolnejších proti teplu, predovšetkým zo St 35.8 15 Mo 3 naniesli spôsobom striekania v plazme povlaky z NiCrBSi.c) NiCrBSi coatings were applied to the pipes of the heat-resistant boiler of the most heat-resistant steel, in particular of St 35.8 15 Mo 3, by plasma spraying.

Aj po dlhšej dobe prevádzky boli hodnoty opotrebenia týchto povlieknutých trubiek oveľa nižšie ako pri nechránenej trubke. Pri kombinácii vrstvy NiCrBSi s ešte odolnejšou vrstvou Cr2C3 proti oteru sa prejavovalo počas celej doby podobné chovanie, čo sa týka opotrebenia, najmä potom po dosiahnutí konečnej hrúbky vrstvy 0,15 až 0,35 mm nedošlo počas dlhej doby k žiadnemu podstatnému zníženiu hrúbky vrstvy (porovn. nasledujúci obr. ).Even after prolonged operation, the wear values of these coated pipes were much lower than those of the unprotected pipe. Combining the NiCrBSi layer with an even more wear-resistant Cr2C3 layer exhibited a similar wear behavior throughout the time, especially after reaching a final layer thickness of 0.15 to 0.35 mm, there was no significant reduction in layer thickness over a long period of time ( compare the following figure).

6a6a

PL·/ ^6^9 c?PL · / ^ 6 ^ 9 c?

Claims (9)

PATENTOVÉ NÁROKYPATENT CLAIMS 1. Spôsob výroby ochrannej vrstvy na stenách z kovového materiálu, s výhodou spaľovacích zariadení alebo výmeníkov tepla, napádaných horúcimi plynmi, najmä dymovými plynmi, pri ktorom sa pomocou spôsobu striekania v plazme nanáša na predom vyčistené, kovové steny na vytvorenie ochrannej vrstvy prášok z kovových, karbidických, oxidokeramických alebo kremičitých materiálov alebo zmesi týchto materiálov , sa vyznačuje tým , že sa a/ povrch stien zdrsní a aktivuje sa vysoko čistým ušľachtilým korundom, a b/ potom sa priamo pri teplote miestnosti a za atmosférických podmienok nanáša spôsobom striekania v plazme prášok, pričom c/ sa zloženie prášku zvolí napred tak, aby pnutie zistené pomocou koeficientov tepelnej rozťažnosti základného materiálu a vzorkov obrobkov vyrobených z rôznych práškov na oblasť prechodu medzi základnou látkou a nanesenou vrstvou sa vzalo ako funkcia teploty v nenamáhanom stave / pri teplote miestnosti / napätie v ťahu medzi 50 až 800 N/mm2, s výhodou medzi 500 až 800 N/mm2, ktorá v pláh'óvane j oblasti teplotného namáhania 300 až 1800 °C, s výhodou 600 až 1000 °C sa v podstate zníži v podstate na 0 alebo vykazuje nepatrné tlakové napätia.Method for producing a protective layer on walls of metallic material, preferably combustion devices or heat exchangers, attacked by hot gases, in particular flue gases, in which, by means of a plasma spraying method, metal walls are applied to pre-cleaned metal walls to form a protective layer of metallic powder , carbide, oxidoceramic or siliceous materials, or a mixture of these materials, characterized in that a / the surface of the walls is roughened and activated by high-purity noble corundum, and / or then sprayed directly at room temperature and atmospheric conditions by plasma spraying, wherein c / the powder composition is selected first such that the stresses determined by the thermal expansion coefficients of the base material and of the samples of the workpieces made of different powders on the transition area between the base and the deposited layer are taken as a function of unstressed / room temperature a tensile stress of between 50 and 800 N / mm 2 , preferably between 500 and 800 N / mm 2 , which substantially decreases in the temperature range of 300 to 1800 ° C, preferably 600 to 1000 ° C essentially at 0 or exhibits slight compressive stresses. 2. Spôsob podľa nároku 1, sa vyznačuje tým , že nanesená ochranná vrstva má konečnú hrúbku 0,1 až 0,5 mm, s výhodou 0,15 až 0,25 mm.Method according to claim 1, characterized in that the applied protective layer has a final thickness of 0.1 to 0.5 mm, preferably 0.15 to 0.25 mm. 3. Spôsob podľa nároku značuje tým , že nanáša 80 kW zariadením na vnútorným vedením prášku.Method according to claim 1, characterized in that it applies 80 kW by means of an internal powder guide device. 1 alebo 2, ochranná striekanie sa v y vrstva sa v plazme s1 or 2, a protective spray layer is in plasma with 4 .4. 1 až 3 , sa použije s výhodou vrstvy.1 to 3, preferably a layer is used. Spôsob podľa najmenej jedného z nárokov sa vyznačuje tým , že prášok s veľkosťou zrna menej ako 75 pm, 20 až 40 pm na nanášanie ochrannej z nárokov ý .m , že dvoch preMethod according to at least one of the claims, characterized in that a powder having a grain size of less than 75 µm, 20 to 40 µm for the application of the 5. Spôsob podľa najmenej jedného laž4 , sa vyznačuje t sa ochranná vrstva vyrobí na najmenej chodoch.Method according to at least one to 1 to 4, characterized in that the protective layer is produced on at least the courses. 6. Spôsob podľa najmenej jedného z predchádzajúcich nárokov , s a vyznačuje tým, že sa povrch stien pred striekaním v plazme zdrsní a aktivuje ušľachtilým korundom, s výhodou vysoko čistým korundom.Method according to at least one of the preceding claims, characterized in that the surface of the walls is roughened and activated with noble corundum, preferably highly pure corundum, before the plasma spraying. 7. Spôsob podľa najmenej jedného z predchádzajúcich nárokov , s ä vyznačuje tým , že povrch stien sa zahrieva lúčom plazmy a častice prášku, ktoré sú v ňom natavené, sa zahrejú len až asi na 45 °C, maximálne na 60 °C.Method according to at least one of the preceding claims, characterized in that the surface of the walls is heated by a plasma beam and the powder particles melted therein are only heated up to about 45 ° C, to a maximum of 60 ° C. 8. Spôsob podľa predchádzajúcich nárokov , tým , že sa používa zliatinu niklu.Method according to the preceding claims, characterized in that a nickel alloy is used. najmenej jedného z sa vyznačuje prášok obsahujúci c u 3 e reál i zuj e šie po 45at least one of which is characterized by a powder containing more than 45% more realistic Spôsob podľa nároku tým, že sa za atmosférickýchProcess according to claim 1, characterized in that it is atmospheric 1, sa vyznápovlieknutie plazmou podmienok najpozdejminútach, s výhodou najpozdejšie po 30 minútach po aktivácii povrchu stien.1, plasma deposition is performed at the latest, preferably at the latest 30 minutes after activation of the wall surface. 10. Spôsob podľa nároku 1, sa vyznačuje tým , že teploty namáhania stien sa pohybujú v rozmedzí 300 až 1800 °C, s výhodou 600 až 1000 °C.Method according to claim 1, characterized in that the stresses of the wall are in the range of 300 to 1800 ° C, preferably 600 to 1000 ° C.
SK1563-94A 1992-06-19 1993-06-11 Process for producing a protective coating on heat stressed metal walls SK156394A3 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4220063A DE4220063C1 (en) 1992-06-19 1992-06-19 Process for producing a protective layer on metallic walls exposed to hot gases, in particular flue gases
PCT/EP1993/001483 WO1994000616A1 (en) 1992-06-19 1993-06-11 Process for producing a protective coating on metal walls subject to attack by hot gases, especially flue gases

Publications (1)

Publication Number Publication Date
SK156394A3 true SK156394A3 (en) 1997-02-05

Family

ID=6461363

Family Applications (1)

Application Number Title Priority Date Filing Date
SK1563-94A SK156394A3 (en) 1992-06-19 1993-06-11 Process for producing a protective coating on heat stressed metal walls

Country Status (14)

Country Link
EP (1) EP0672197B1 (en)
JP (1) JP3150697B2 (en)
KR (1) KR950701983A (en)
AT (1) ATE178364T1 (en)
AU (1) AU672009B2 (en)
BR (1) BR9306566A (en)
CA (1) CA2138255A1 (en)
CZ (1) CZ313794A3 (en)
DE (2) DE4220063C1 (en)
ES (1) ES2132237T3 (en)
PL (1) PL171965B1 (en)
RU (1) RU2107744C1 (en)
SK (1) SK156394A3 (en)
WO (1) WO1994000616A1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0727504A3 (en) * 1995-02-14 1996-10-23 Gen Electric Plasma coating process for improved bonding of coatings on substrates
AT411625B (en) * 2000-04-28 2004-03-25 Vaillant Gmbh Heat exchanger, especially a coiled tube heat exchanger of a water heater, is coated using a plasma stream containing added silicon dioxide, aluminum oxide, silicon compound and-or titanium compound
CZ298780B6 (en) * 2003-12-23 2008-01-23 Koexpro Ostrava, A. S. Protective coating of tools and implements for preventing formation of mechanical incentive sparks
DE102007020420B4 (en) 2007-04-27 2011-02-24 Häuser & Co. GmbH Plasma spraying process for coating superheater pipes and using a metal alloy powder
DE102013010126B4 (en) 2013-06-18 2015-12-31 Häuser & Co. GmbH Plasmapulverspritzverfahren and apparatus for coating panels for boiler walls in conjunction with a laser beam device
CN108101062A (en) * 2018-01-17 2018-06-01 江苏中能硅业科技发展有限公司 A kind of preparation process of polycrystalline silicon reducing furnace and its furnace tube inner wall functional layer
JP7370793B2 (en) 2019-09-30 2023-10-30 セコム株式会社 security equipment
JP7370794B2 (en) 2019-09-30 2023-10-30 セコム株式会社 security equipment

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2213350B1 (en) * 1972-11-08 1975-04-11 Sfec
US3911891A (en) * 1973-08-13 1975-10-14 Robert D Dowell Coating for metal surfaces and method for application
DE2630507C3 (en) * 1976-07-07 1983-12-15 MTU Motoren- und Turbinen-Union München GmbH, 8000 München Process for the production of protective layers on workpieces and device for carrying out the process
US4075392A (en) * 1976-09-30 1978-02-21 Eutectic Corporation Alloy-coated ferrous metal substrate
US4588607A (en) * 1984-11-28 1986-05-13 United Technologies Corporation Method of applying continuously graded metallic-ceramic layer on metallic substrates
JP2695835B2 (en) * 1988-05-06 1998-01-14 株式会社日立製作所 Ceramic coated heat resistant material
DE3815436A1 (en) * 1988-05-06 1989-11-16 Muiden Chemie B V DRIVE CHARGES FOR LARGE-CALIBRED BULLETS
DE3821658A1 (en) * 1988-06-27 1989-12-28 Thyssen Guss Ag Process for producing corrosion-resistant and wear-resistant layers on printing press cylinders
CA2053928A1 (en) * 1990-10-24 1992-04-25 Toshihiko Hashimoto Benzopyran derivatives having anti-hypertensive and vasodilartory activity, their preparation and their therapeutic use

Also Published As

Publication number Publication date
EP0672197A1 (en) 1995-09-20
ATE178364T1 (en) 1999-04-15
CZ313794A3 (en) 1995-08-16
EP0672197B1 (en) 1999-03-31
RU94046201A (en) 1996-10-20
JP3150697B2 (en) 2001-03-26
DE4220063C1 (en) 1993-11-18
WO1994000616A1 (en) 1994-01-06
AU4325093A (en) 1994-01-24
RU2107744C1 (en) 1998-03-27
ES2132237T3 (en) 1999-08-16
KR950701983A (en) 1995-05-17
DE59309491D1 (en) 1999-05-06
PL171965B1 (en) 1997-07-31
AU672009B2 (en) 1996-09-19
BR9306566A (en) 1999-01-12
CA2138255A1 (en) 1994-01-06
JPH08501350A (en) 1996-02-13

Similar Documents

Publication Publication Date Title
Kamal et al. Evaluation of cyclic hot corrosion behaviour of detonation gun sprayed Cr3C2–25% NiCr coatings on nickel-and iron-based superalloys
Al-Fadhli et al. The erosion–corrosion behaviour of high velocity oxy-fuel (HVOF) thermally sprayed inconel-625 coatings on different metallic surfaces
US7005200B2 (en) Method for manufacturing articles for high temperature use, and articles made therewith
JP5802372B2 (en) Method for depositing metal film using spray spray
CN104039483A (en) Coating compositions
SK156394A3 (en) Process for producing a protective coating on heat stressed metal walls
Hamatani et al. Mechanical and thermal properties of HVOF sprayed Ni based alloys with carbide
Somasundaram et al. Hot Corrosion Behaviour of HVOF Sprayed (Cr 3 C 2–35% NiCr)+ 5% Si Coatings in the Presence of Na 2 SO 4–60% V 2 O 5 at 700 C
Wang et al. High-temperature sulfur corrosion behavior of h-BN-based ceramic coating prepared by slurry method
GB2117415A (en) Process for coating a heat- resistant alloy base
US20110165334A1 (en) Coating material for metallic base material surface
US6302975B1 (en) Method for increasing fracture toughness in aluminum-based diffusion coatings
Higuera Hidalgo et al. Characterisation of NiCr flame and plasma sprayed coatings for use in high temperature regions of boilers
CN112191485A (en) On-site corrosion prevention process method for heating surface of garbage incinerator
Rezakhani Corrosion behaviours of several thermal spray coatings used on boiler tubes at elevated temperatures
Zhang et al. Corrosion resistance of TiAl–Nb coating on 316L stainless steel in liquid zinc
Purniawan et al. Deposition and post heat treatment of ni-Al/Ni-20Cr on AISI 4140 using twin wire arc spray method
Méndez-Medrano et al. Characterization of flame sprayed NiCrBSiMo coatings deposited with different spraying parameters”
Jiang et al. Process maps for plasma spray Part II: Deposition and properties
JP2002146508A (en) Water cooled steel structure
JP2005265393A (en) Heat transfer pipe for open rack type vaporizer
Sidhu Laser surface remelting to improve the erosion–corrosion resistance of nickel–chromium–aluminium–yttrium (NiCrAlY) plasma spray coatings
Wöllmer et al. Solvothermal modified layers against high temperature corrosion
Feldshtein et al. On the bonding strength of fe-based self-fluxing alloy coating deposited by different methods on the steel substrate
Di Gabriele et al. Characterisation of FeCrAlY Coatings for Applications in Lead Environment