AT411625B - Heat exchanger, especially a coiled tube heat exchanger of a water heater, is coated using a plasma stream containing added silicon dioxide, aluminum oxide, silicon compound and-or titanium compound - Google Patents

Heat exchanger, especially a coiled tube heat exchanger of a water heater, is coated using a plasma stream containing added silicon dioxide, aluminum oxide, silicon compound and-or titanium compound Download PDF

Info

Publication number
AT411625B
AT411625B AT7582000A AT7582000A AT411625B AT 411625 B AT411625 B AT 411625B AT 7582000 A AT7582000 A AT 7582000A AT 7582000 A AT7582000 A AT 7582000A AT 411625 B AT411625 B AT 411625B
Authority
AT
Austria
Prior art keywords
heat exchanger
compound
plasma stream
coated
stream containing
Prior art date
Application number
AT7582000A
Other languages
German (de)
Other versions
ATA7582000A (en
Original Assignee
Vaillant Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Vaillant Gmbh filed Critical Vaillant Gmbh
Priority to AT7582000A priority Critical patent/AT411625B/en
Priority to DK00109660.1T priority patent/DK1052308T3/en
Priority to DE50015892T priority patent/DE50015892D1/en
Priority to EP00109660A priority patent/EP1052308B1/en
Priority to AT00109660T priority patent/ATE462024T1/en
Priority to ES00109660T priority patent/ES2340135T3/en
Publication of ATA7582000A publication Critical patent/ATA7582000A/en
Application granted granted Critical
Publication of AT411625B publication Critical patent/AT411625B/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/513Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using plasma jets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/02Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being helically coiled
    • F28D7/024Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being helically coiled the conduits of only one medium being helically coiled tubes, the coils having a cylindrical configuration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F19/00Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers
    • F28F19/02Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers by using coatings, e.g. vitreous or enamel coatings

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Plasma & Fusion (AREA)
  • General Engineering & Computer Science (AREA)
  • Thermal Sciences (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Coating By Spraying Or Casting (AREA)

Abstract

Heat exchanger coating uses a plasma stream containing added SiO2, Al2O3, Si compound and/or Ti compound. A heat exchanger is coated by exposure to a plasma stream which flows through the heat exchanger preferably in the direction of the off-gases and which contains SiO2, Al2O3, Si compound and/or Ti compound added in the liquid or gaseous state.

Description

       

   <Desc/Clms Page number 1> 
 



   Die vorliegende Erfindung bezieht sich auf ein Verfahren gemäss dem Oberbegriff des unab- hängigen Patentanspruches. 



   Wärmetauscher von gasbeheizten Wasserheizern sind im Betrieb einem ständigen Angriff einer korrosiven Umgebung ausgesetzt, wodurch sich eine entsprechend begrenzte Lebensdauer der Wärmetauscher ergibt, auch wenn die Wärmetauscher aus hochwertigen Werkstoffen herge- stellt sind, wie z.B. Edelstahl. 



   Aus der DE 197 14 433 A1 ist ein Verfahren zur Herstellung einer Beschichtung mit einem Titanboritgehalt vom mindestens 80 Gewichts % bekanntgeworden, dessen Aufbringung durch Plasmaspritzen geschieht. 



   Darüber hinaus befasst sich die EP 672 197 B1 mit einem Verfahren zur Herstellung einer Schutzschicht auf von Rauchgasen beaufschlagten Wärmetauscherwänden. Dies geschieht auch mit Hilfe eines Plasmaspritzverfahrens unter Verwendung eines Pulvers aus metallischen, karbidi- schen, oxidkeramischen oder silicidischen Werkstoffen oder deren Mischungen. 



   Ziel der Erfindung ist es, ein Verfahren anzugeben durch das sich eine deutlich höhere Lebens- dauer der Wärmetauscher ergibt, auch wenn diese im Brennwertbetrieb eingesetzt sind. 



   Erfindungsgemäss wird dies bei einem Verfahren der eingangs näher bezeichneten Art durch die kennzeichnenden Merkmale des unabhängigen Patentanspruches erreicht. 



   Durch die vorgeschlagenen Massnahmen wird eine Keramik-, bzw. Silikatbeschichtung auf ein- fache Weise auf den Wärmetauscher aufgebracht, die diesen gegen einen Korrosionsangriff sehr weitgehend schützt. Dabei schützt die Beschichtung gegen den Angriff von Kondensat, wie es bei einem Brennwertbetrieb anfällt, das verschiedene Säuren, wie Schwefelsäure, Salpetersäure u.a., wie auch Chlor-Ionen enthält. 



   Durch die Beschichtung kann die Wandstärke des Wärmetauschers bei gleicher oder höherer Dauerhaltbarkeit des Wärmetauschers auch geringer gehalten werden, wodurch sich ein höherer Wirkungsgrad, sowie ein geringerer Materialverbrauch bei der Herstellung und ein niedrigeres Gewicht des Wärmetauschers ergeben. 



   Weiter ergibt sich auch der Vorteil, dass aufgrund des Umstandes, dass das Grundmaterial des Wärmetauschers mit chemisch aggressiven Medien aus den Verbrennungsgasen aufgrund der Beschichtung nicht in Kontakt kommt, ein geringwertigerer Werkstoff, oder ein Werkstoff mit besse- rer Wärmeleitfähigkeit verwendet werden kann, wie z. B. Messing. 



   Durch die höhere flächenspezifische Wärmeübertragungsleistung aufgrund der geringeren Wandstärke und besseren Wärmeleitfähigkeit des Grundmaterials ist es bei unveränderter Bau- grösse des Wärmetauschers möglich, höhere Wärmeleistungen zu übertragen. 



   Durch die Beschichtung vermindern sich auch die Ablagerungen an dem Wärmetauscher, die in regelmässigen Abständen entfernt werden müssen. 



   Durch die Merkmale des Anspruches 2 ergibt sich eine einfachere Beschichtung, welche sich vorteilhaft in der Grossserienfertigung auswirkt. 



   Die Erfindung wird nun anhand der Zeichnung näher erläutert. Dabei zeigen: Fig. 1 schematisch die Beschichtung einer Rohrwendel im Schnitt und Fig. 2 schematisch die Beschichtung eines montierten Wärmetauschers. 



   Bei der Beschichtung einer Aussenwandung einer Rohrwendel 1 wird in einem Rohr 2 ein Pro- zessgas 3, dem ein Beschichtungswerkstoff 4, wie z.B. Si02 oder A12O3 beigegeben ist, mittels einer Plasmaquelle 10 aktiviert. Das Rohr 2 ist so im hohlen Zentrum der Rohrwendel 1 angeordnet, dass der entstehende Plasmastrom 11und der Beschichtungswerkstoff 4 im wesentlichen radial nach aussen und zwischen den Abständen 14 der einzelnen Rohrwindungen 5 hindurch strömt. 



   Dabei lagert sich der Beschichtungsstoff 4 an der Oberfläche 6 der Rohrwendel 1 ab und bildet eine Schicht, die die Rohrwendel 1 von einem Korrosionsangriff schützt. 



   Die Beschichtung kann bei Atmosphärendruck oder besser unter einem verminderten Druck durchgeführt werden. 



   Bei der Ausführungsform des Verfahrens nach der Fig. 2 wird ein als Rohrwendel 1 ausgebil- deter Wärmetauscher 12, der in einer Brennkammer 7 eines Wasserheizers angeordnet ist, be- schichtet. Dabei wird die offene Unterseite 15 der Brennkammer 7 mit einer Kammer 8 abge- schlossen. In die Kammer 8 werden das Prozessgas 3 und der Beschichtungsstoff 4 zugegeben und mittels der Plasmaquelle 10 aktiviert. 



   Der entstehende Plasmastrom 11nimmt den gleichen Weg wie die beim üblichen Betrieb .der 

 <Desc/Clms Page number 2> 

 Brennkammer durch einen Brenner entstehenden Abgase und durchströmt die Zwischenräume zwischen den einzelnen Windungen 5 der Rohrwendel 1 in radialer Richtung nach aussen. Dieser Weg ist durch eine Unterteilung 13 bedingt. Der beladene Plasmastrom 11 umströmt in weiterer Folge die Unterteilung 13 bzw. deren Peripherie 16, durchströmt die Zwischenräume zwischen den restlichen Windungen 5 und strömt über einen Abgasabzug 9 ab. Der Abgasabzug 9 ist so einge- richtet, dass sich in der Kammer 7 Atmosphärendruck oder Grobvakuum einstellt. Das Beschich- tungsmaterial 4 lagert sich aussen an den Windungen 5 des Wärmetauschers 12 an und bildet die Beschichtung 6. 



   Auf diese Weise ist es auch möglich, bereits montierte Wärmetauscher 12 mit einer Beschich- tung 6 zu versehen und damit deren Korrosionsbeständigkeit zu erhöhen. 



   PATENTANSPRÜCHE : 
1. Verfahren zur Beschichtung eines Wärmetauschers mit einem Plasmaspritzverfahren, wobei der Plasmastrom mittels einer Plasmaquelle aus einem Prozessgas erzeugt wird, dadurch gekennzeichnet, dass der als Rohrwendelwärmetauscher ausgebildete Wärme- tauscher (12) in Richtung der Abgase von dem Plasmastrom durchströmt wird, dem Si02, 
A12O3, SI-Verbindungen (mit Ausnahme von silizidischen Werkstoffen), TI-Verbindungen oder deren Mischung in flüssigem oder gasförmigem Zustand zugesetzt werden.



   <Desc / Clms Page number 1>
 



   The present invention relates to a method according to the preamble of the independent claim.



   Heat exchangers of gas-heated water heaters are exposed to constant attack from a corrosive environment during operation, which results in a correspondingly limited service life of the heat exchangers, even if the heat exchangers are made of high-quality materials, such as Stainless steel.



   DE 197 14 433 A1 has disclosed a method for producing a coating with a titanium borite content of at least 80% by weight, the application of which is carried out by plasma spraying.



   In addition, EP 672 197 B1 deals with a method for producing a protective layer on heat exchanger walls exposed to flue gases. This is also done with the help of a plasma spraying process using a powder made of metallic, carbide, oxide-ceramic or silicide materials or their mixtures.



   The aim of the invention is to provide a method by means of which the heat exchangers have a significantly longer service life, even if they are used in condensing operation.



   According to the invention, this is achieved in a method of the type specified in the introduction by the characterizing features of the independent patent claim.



   As a result of the proposed measures, a ceramic or silicate coating is applied to the heat exchanger in a simple manner, which protects it to a great extent against corrosion. The coating protects against the attack of condensate, as is the case with a condensing boiler that contains various acids such as sulfuric acid, nitric acid and others, as well as chlorine ions.



   The coating allows the wall thickness of the heat exchanger to be kept lower with the same or higher durability of the heat exchanger, which results in higher efficiency, lower material consumption during manufacture and lower weight of the heat exchanger.



   There is also the further advantage that, owing to the fact that the base material of the heat exchanger does not come into contact with chemically aggressive media from the combustion gases owing to the coating, a lower-quality material or a material with better thermal conductivity can be used, such as, for example, , B. brass.



   Due to the higher surface-specific heat transfer capacity due to the smaller wall thickness and better thermal conductivity of the base material, it is possible to transfer higher heat outputs with the same size of the heat exchanger.



   The coating also reduces the deposits on the heat exchanger, which have to be removed at regular intervals.



   The features of claim 2 result in a simpler coating, which has an advantageous effect in large series production.



   The invention will now be explained in more detail with reference to the drawing. 1 shows schematically the coating of a coiled tubing in section and FIG. 2 schematically shows the coating of an assembled heat exchanger.



   When coating an outer wall of a tube coil 1, a process gas 3, to which a coating material 4, such as e.g. Si02 or A12O3 is added, activated by means of a plasma source 10. The tube 2 is arranged in the hollow center of the tube coil 1 such that the resulting plasma stream 11 and the coating material 4 flow essentially radially outwards and between the distances 14 of the individual tube turns 5.



   The coating material 4 is deposited on the surface 6 of the coiled tubing 1 and forms a layer which protects the coiled tubing 1 from a corrosion attack.



   The coating can be carried out at atmospheric pressure or better under a reduced pressure.



   In the embodiment of the method according to FIG. 2, a heat exchanger 12 in the form of a tube coil 1, which is arranged in a combustion chamber 7 of a water heater, is coated. The open underside 15 of the combustion chamber 7 is closed off with a chamber 8. The process gas 3 and the coating material 4 are added to the chamber 8 and activated by means of the plasma source 10.



   The resulting plasma stream 11 takes the same route as that in normal operation

 <Desc / Clms Page number 2>

 Combustion chamber through a burner exhaust gases and flows through the spaces between the individual turns 5 of the tube coil 1 in the radial direction to the outside. This way is conditioned by a subdivision 13. The loaded plasma stream 11 subsequently flows around the subdivision 13 or its periphery 16, flows through the spaces between the remaining turns 5 and flows out via an exhaust gas discharge 9. The exhaust vent 9 is set up such that atmospheric pressure or rough vacuum is established in the chamber 7. The coating material 4 is deposited on the outside of the windings 5 of the heat exchanger 12 and forms the coating 6.



   In this way, it is also possible to provide already installed heat exchangers 12 with a coating 6 and thus to increase their corrosion resistance.



   PATENT CLAIMS:
1. A method for coating a heat exchanger with a plasma spraying method, the plasma stream being generated from a process gas by means of a plasma source, characterized in that the heat exchanger (12) designed as a tubular coil heat exchanger is flowed through in the direction of the exhaust gases by the plasma stream, the Si02,
A12O3, SI compounds (with the exception of silicidic materials), TI compounds or a mixture thereof in a liquid or gaseous state can be added.


    

Claims (1)

2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Beschichtung bei Atmo- sphärendruck oder unter Grobvakuum durchgeführt wird.  2. The method according to claim 1, characterized in that the coating is carried out at atmospheric pressure or under a rough vacuum. HIEZU 2 BLATT ZEICHNUNGEN  THEREFORE 2 SHEET OF DRAWINGS
AT7582000A 1999-05-12 2000-04-28 Heat exchanger, especially a coiled tube heat exchanger of a water heater, is coated using a plasma stream containing added silicon dioxide, aluminum oxide, silicon compound and-or titanium compound AT411625B (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
AT7582000A AT411625B (en) 2000-04-28 2000-04-28 Heat exchanger, especially a coiled tube heat exchanger of a water heater, is coated using a plasma stream containing added silicon dioxide, aluminum oxide, silicon compound and-or titanium compound
DK00109660.1T DK1052308T3 (en) 1999-05-12 2000-05-06 Method of coating a heat exchanger
DE50015892T DE50015892D1 (en) 1999-05-12 2000-05-06 Process for coating a heat exchanger
EP00109660A EP1052308B1 (en) 1999-05-12 2000-05-06 Process for coating of a heat exchanger
AT00109660T ATE462024T1 (en) 1999-05-12 2000-05-06 METHOD FOR COATING A HEAT EXCHANGER
ES00109660T ES2340135T3 (en) 1999-05-12 2000-05-06 PROCEDURE FOR THE COATING OF A HEAT EXCHANGER.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
AT7582000A AT411625B (en) 2000-04-28 2000-04-28 Heat exchanger, especially a coiled tube heat exchanger of a water heater, is coated using a plasma stream containing added silicon dioxide, aluminum oxide, silicon compound and-or titanium compound

Publications (2)

Publication Number Publication Date
ATA7582000A ATA7582000A (en) 2003-08-15
AT411625B true AT411625B (en) 2004-03-25

Family

ID=27625616

Family Applications (1)

Application Number Title Priority Date Filing Date
AT7582000A AT411625B (en) 1999-05-12 2000-04-28 Heat exchanger, especially a coiled tube heat exchanger of a water heater, is coated using a plasma stream containing added silicon dioxide, aluminum oxide, silicon compound and-or titanium compound

Country Status (1)

Country Link
AT (1) AT411625B (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19714433A1 (en) * 1997-04-08 1998-10-15 Hoechst Ag Process for producing a coating containing titanium boride
EP0672197B1 (en) * 1992-06-19 1999-03-31 Häuser &amp; Co. GmbH Process for producing a protective coating on metal walls subject to attack by hot gases, especially flue gases

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0672197B1 (en) * 1992-06-19 1999-03-31 Häuser &amp; Co. GmbH Process for producing a protective coating on metal walls subject to attack by hot gases, especially flue gases
DE19714433A1 (en) * 1997-04-08 1998-10-15 Hoechst Ag Process for producing a coating containing titanium boride

Also Published As

Publication number Publication date
ATA7582000A (en) 2003-08-15

Similar Documents

Publication Publication Date Title
EP1344013B1 (en) Condensation heat-transfer device
DE3924411A1 (en) RIB TUBE HEAT EXCHANGER
DE3206601C2 (en) Reactor composite tube for the thermal cracking or reforming of hydrocarbons
AT411625B (en) Heat exchanger, especially a coiled tube heat exchanger of a water heater, is coated using a plasma stream containing added silicon dioxide, aluminum oxide, silicon compound and-or titanium compound
DE3543051A1 (en) ARRANGEMENT FOR HEAT RECOVERY AND PURIFYING SMOKE GASES
EP1052308B1 (en) Process for coating of a heat exchanger
EP0758731B1 (en) Heat exchange system for water heating
DE10023218A1 (en) Coating a heat exchanger comprises subjecting the heat exchanger to a plasma stream produced from a process gas to which silicon dioxide, aluminum oxide, silicon compounds and/or titanium compounds are added
TW448287B (en) Heating element for a regenerative heat exchanger, and process for producing a heating element
DE3911276C1 (en) Device for recovering (reclaiming) heat from the exhaust gases of firing units (installations, systems)
EP1475597B1 (en) Heating element for regenerative heat exchanger and process for manufacturing same
AT405321B (en) CORROSION-RESISTANT COMPOSITE PIPE, METHOD FOR THE PRODUCTION AND USE THEREOF
EP1143206A2 (en) Heat exchanger for boiler or instantaneous heater
DE2720078C2 (en) Process for increasing the heat-exchanging area of graphite elements in a heat exchanger
DE10312529B3 (en) Waste heat boiler for utilizing waste heat from process for steam production has a displacement body made from graphite coaxially inserted into tubes through which process gas passes
DE3151418A1 (en) Low-temperature heating process, utilising the upper calorific value of fuels
WO1994023260A1 (en) Flue-gas ducts and recuperative heat-exchangers for flue gases
EP1544566A2 (en) Heat exchange element
EP0711954A2 (en) Air/waste gas
JPH0588667B2 (en)
DE20101707U1 (en) Boiler for oil firing
JPH02309153A (en) Hot water supply device
DE2035250B2 (en) Heat-absorbing matrix for regenerative heat exchangers
JPS5871368A (en) Production of corrosion resistant material for sulfuric acid
EP1032788A1 (en) Afterburner for a heating apparatus

Legal Events

Date Code Title Description
MM01 Lapse because of not paying annual fees

Effective date: 20160815