EP0646292B1 - Elektrisch leitende dichtungsmasse für zündkerzen - Google Patents

Elektrisch leitende dichtungsmasse für zündkerzen Download PDF

Info

Publication number
EP0646292B1
EP0646292B1 EP94906837A EP94906837A EP0646292B1 EP 0646292 B1 EP0646292 B1 EP 0646292B1 EP 94906837 A EP94906837 A EP 94906837A EP 94906837 A EP94906837 A EP 94906837A EP 0646292 B1 EP0646292 B1 EP 0646292B1
Authority
EP
European Patent Office
Prior art keywords
sealing compound
graphite
resistance
spark
sealing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP94906837A
Other languages
English (en)
French (fr)
Other versions
EP0646292A1 (de
Inventor
Rudolf Pollner
Alfons Scheuring
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP0646292A1 publication Critical patent/EP0646292A1/de
Application granted granted Critical
Publication of EP0646292B1 publication Critical patent/EP0646292B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T13/00Sparking plugs
    • H01T13/20Sparking plugs characterised by features of the electrodes or insulation
    • H01T13/34Sparking plugs characterised by features of the electrodes or insulation characterised by the mounting of electrodes in insulation, e.g. by embedding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T13/00Sparking plugs
    • H01T13/40Sparking plugs structurally combined with other devices
    • H01T13/41Sparking plugs structurally combined with other devices with interference suppressing or shielding means

Definitions

  • the invention relates to an electrically conductive sealant for a contact package for spark plugs according to the preamble of the main claim. Sealing compounds are used to seal the center electrode in the insulator body of the spark plug and to suppress sparks.
  • the meltdown is also referred to as resistance meltdown.
  • the resistance fuse consists of an electrically well-conductive contact package on the connection-side and on the ignition-side part of the center electrode and an intermediate resistance package.
  • spark plugs with a known composition of the sealing compound of the contact package fail at high thermal loads because the soot contained in the contact package burns out at the center electrode. Replacing the soot with metal powder also fails due to insufficient stability under high electrical loads.
  • the resistance package consists of glass and other inorganic additives as fillers, which do not melt at the melting temperatures used, and carbon as an electrically conductive component.
  • the carbon is added as carbon black and / or by means of a carbon-forming organic binder. From DE-PS 32 26 340 u. a. known to use carboxymethyl cellulose (CMC) as organic binder.
  • CMC carboxymethyl cellulose
  • the sealing compound according to the invention for the contact package with the characterizing features of claim 1 has the advantage that the sealing compound used to produce the contact package can be processed much better than with the finely divided soot that tends to agglomerate.
  • the measures specified in the subclaims allow advantageous developments of the resistance melting specified in the main claim. Because of the higher tendency of fine-grained graphite to oxidize, it is particularly advantageous if the graphite has the smallest possible grain fraction below 5 ⁇ m. To The grain size is limited at the top by the number of contact points between the graphite grains, which becomes smaller and smaller as the grain size increases. A particularly narrow particle size distribution with an average particle size between approximately 20 and 50 ⁇ m, preferably from 30 to 40 ⁇ m, is particularly expedient, the fraction of the particle size below 10 ⁇ m being less than 5% and the particle size above 96 ⁇ m below 10%.
  • the contact package can contain up to 4 vol.% Fine-grained aluminum powder as a reducing agent.
  • a particularly good stability at high electrical loads is achieved if, after the sealing compound has melted, the contact package on the connection-side part of the center electrode is stronger than the contact package on the ignition-side center electrode.
  • the spark plug shown consists of an insulator 11, which is flanged in a gas-tight manner in a metallic plug housing 10, in the insulator bore 12 of which a connection-side center electrode 13 and an ignition-side center electrode 14 are inserted.
  • a resistance seal 15, 16, 17 is inserted, which electrically connects the connection-side center electrode 13 to the ignition-side center electrode 14.
  • the resistance fuse consists of a first center electrode 13 on the connection side Adjacent contact package 15, a second contact package 15 in contact with the ignition-side center electrode 14 and a resistance package 17 arranged between the two contact packages 15, 16.
  • the composition of the contact packages 15 and 16 and the resistance package 17 will be discussed further below.
  • the ground electrode of the spark plug is designated 18.
  • the minimum height between the ignition-side center electrode 14 and the resistance package 17 is 0.5 mm and between the resistance package 17 and the connection-side center electrode 13 2 mm.
  • the reason for this requirement lies in the sealing function of the contact packets 15, 16 against the ingress of oxygen during the melting process.
  • oxygen advances to the resistance package 17, part of the carbon is oxidized, which partially increases the resistance value.
  • the spark plug is operated under high electrical load, more energy is converted at the point with the increased resistance value. This increases the temperature at this point, which can lead to the failure of the candle.
  • Resistance or electrically conductive sealing compounds are used for the two contact packages 15, 16 and the resistance package 17.
  • the sealing compounds of both the contact packs 15, 16 and the resistor pack 17 contain a Li-Ca borosilicate glass of the following composition in mass percentage: SiO 2 51 Al 2 O 3 1 CaO 7 B 2 O 3 37 Li 2 O 4th
  • the electrically conductive sealing compound used to produce the contact packets 15, 16 has the following composition in% by volume: Glass (grain size 63 to 400 ⁇ m) 64.2 SiC (grain size 150 to 210 ⁇ m) 15.0 Aluminum powder (grain size approx. 8 ⁇ m) 0.8 Graphite (grain size 5 to 80 ⁇ m) 20.0
  • a resistance premix is produced to produce the resistance mass.
  • the resistance premix for a 6 kiloohm resistor has the following composition in mass percent: Thermal soot 3.7 ZrO 2 81.0 Glass (grain size ⁇ 63 ⁇ m) 15.3
  • the resistance premix is finally combined with additional glass and fused alumina in the following composition in vol.%: Glass (grain size 63 to 400 m) 59.0 Melting corundum (grain size 120 to 250 m) 25.0 Resistance premix 16.0
  • the glass and the fused alumina are mixed dry.
  • the pre-ground resistance premix is then coated onto the coarse glass and corundum grains using an aqueous solution of purified Ca-carboxymethyl cellulose (CMC).
  • CMC Ca-carboxymethyl cellulose
  • the proportion of CMC in the finished resistance mass is 0.1 to 1.0 mass%, preferably 0.2 mass%.
  • the mixture is finally dried and the coarse constituents are destroyed or separated off by sieving.
  • the resistance value of the resistor package 17 can be adjusted by changing the amount of soot, the resistance premix and the amount of CMC.
  • the electrically conductive sealing compound of the ignition-side contact package 16 is filled into the insulator bore 12 of the insulator 11 with an inserted ignition-side center electrode 14 and pre-pressed by means of a stamp.
  • the connection-side center electrode 13 is placed and pressed onto the upper contact package 15.
  • the pre-assembled insulator 11 is heated to a temperature of 850 to 900 ° C. At these temperatures, the connection-side center electrode 13 is pressed into the softened contact mass of the contact package 15.
  • the filling quantities of the electrically conductive sealing compounds and the resistance compound are selected so that after filling and pressing, the connection-side center electrode 13 protrudes about 6 to 8 mm beyond the end face of the insulator 11, and that after heating and pressing in the center electrode 13, the following package heights are obtained will: ignition-side contact package 0.5 to 2 mm Resistance package 5 to 8 mm connection-side contact package > 2 mm
  • Spark plugs with the resistance meltdown according to the invention were operated in comparison to spark plugs with soot and graphite as the conductive phase in the contact package in an engine at high thermal load.
  • resistance increases of up to> 20 megohms occurred after only about 200 hours of operation.
  • These spark plugs showed a clear porous seam around the center electrode head, which was caused by the burning out of soot due to the high thermal load during engine operation.
  • the spark plugs with the resistance melting according to the invention according to the exemplary embodiment described showed only slight changes in resistance even after 500 operating hours and there was no discernible porosity around the center electrode head, which would have indicated oxidation of the graphite.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Spark Plugs (AREA)

Abstract

Es wird eine elektrisch leitende Dichtungsmasse für ein Kontaktpaket für Zündkerzen vorgeschlagen, welches zwischen einem anschlußseitigen und einem zündseitigen Teil einer Mittelelektrode angeordnet ist, wobei die Dichtungsmasse im wesentlichen eine schmelzbare Glaskomponente und eine pulverförmige, elektrisch leitende Komponente enthält. Die elektrisch leitende Komponente der Dichtungsmasse besteht ausschliesslich aus Graphit mit 10 bis 30 Vol. % bezogen auf die Pulverbestandteile der Dichtungsmasse.

Description

    Stand der Technik
  • Die Erfindung bezieht sich auf eine elektrisch leitende Dichtungsmasse für ein Kontaktpaket für Zündkerzen nach der Gattung des Hauptanspruchs. Dichtungsmassen dienen zur dichten Einschmelzung der Mittelelektrode im Isolatorkörper der Zündkerze sowie zur Funkenentstörung. Die Einschmelzung wird auch als Widerstandseinschmelzung bezeichnet. Dabei besteht die Widerstandseinschmelzung aus je einem elektrisch gut leitenden Kontaktpaket am anschlußseitigen und am zündseitgen Teil der Mittelelektrode und aus einem dazwischenliegenden Widerstandspaket.
  • Aus der DE-PS 22 45 403 ist eine gattungsbildende Dichtungsmasse für ein Kontaktpaket bekannt, welche Borsilikatglas als schmelzbare Komponente und als elektrisch leitende Komponente Graphit und Ruß enthält. Es wird außerdem darauf hingewiesen, daß Dichtungsmassen, die nur Graphit als leitfähige Komponente enthalten, wegen der benötigten hohen Volumenanteile an Graphit und den daraus resultierenden Schwierigkeiten bei der Aufbereitung sowie wegen unzureichender Gasdichtheit nicht geeignet sind.
  • Es konnte beobachtet werden, daß Zündkerzen mit bekannter Zusammensetzung der Dichtungsmasse des Kontaktpakets bei hoher thermischer Belastung dadurch ausfallen, daß der im Kontaktpaket enthaltene Ruß an der Mittelelektrode ausbrennt. Auch der Ersatz des Rußes durch Metallpulver scheitert an unzureichender Stabilität bei hoher elektrischer Belastung.
  • Das Widerstandspaket besteht aus Glas und anderen anorganischen Zusätzen als Füllstoffe, die bei den angewandten Einschmelztemperaturen nicht schmelzen, sowie aus Kohlenstoff als elektrisch leitfähige Komponente. Der Kohlenstoff wird dabei als Ruß und/oder mittels eines Kohlenstoff bildenden organischen Binder zugesetzt. Aus der DE-PS 32 26 340 ist u. a. bekannt, als organischen Binder Carboxymethylcellulose (CMC) einzusetzen.
  • Vorteile der Erfindung
  • Es wurde gefunden, daß der für die Funktion als Dicht- und Kontaktpaket für Widerstandseinschmelzungen notwendige Graphitanteil nicht so hoch eingestellt sein muß, daß der in der DE-PS 22 45 403 genannte Nachteil auftritt. Im Gegensatz dazu besitzt die erfindungsgemäße Dichtungsmasse für das Kontaktpaket mit den kennzeichnenden Merkmalen des Anspruchs 1 den Vorteil, daß sich die zur Herstellung des Kontaktpakets eingesetzte Dichtungsmasse deutlich besser aufbereiten läßt als mit dem feinteiligen und zur Agglomeration neigenden Ruß.
  • Durch die in den Unteransprüchen angegebenen Maßnahmen sind vorteilhafte Weiterbildungen der im Hauptanspruch angegebenen Widerstandseinschmelzung möglich. Wegen der höheren Oxidationsneigung von feinkörnigem Graphit ist es besonders vorteilhaft, wenn der Graphit einen möglichst geringen Kornanteil unter 5 µm besitzt. Nach oben hin wird die Korngröße durch die mit zunehmender Korngröße immer geringer werdende Zahl von Kontaktstellen zwischen den Graphitkörnern begrenzt. Als besonders zweckmäßig ist eine möglichst enge Kornverteilung mit einer mittleren Korngröße zwischen ca. 20 und 50 µm, vorzugsweise von 30 bis 40 µm, wobei der Anteil der Korngröße unter 10 µm kleiner 5% und der Korngröße über 96 µm unter 10% liegen sollte. Zur Verminderung der Oxidation des Graphits kann das Kontaktpaket als Reduktionsmittel bis zu 4 Vol.% feinkörniges Aluminiumpulver enthalten. Eine besonders gute Stabilität bei hoher elektrischer Belastung wird erreicht, wenn nach dem Einschmelzen der Dichtungsmasse das Kontaktpaket am anschlußseitigen Teil der Mittelelektrode stärke ist als das Kontaktpaket an der zündseitigen Mittelelektrode.
  • Zeichnung
  • Ein Ausführungsbeispiel der Erfindung ist in der Zeichnung dargestellt und in der nachfolgenden Beschreibung näher erläutert. Die einzige Figur zeigt eine Zündkerze in Schnittdarstelung.
  • Auführungsbeispiel
  • Die dargestellte Zündkerze besteht aus einem in ein metallisches Kerzengehäuse 10 gasdicht eingebördelten Isolator 11, in dessen Isolatorbohrung 12 eine anschlußseitige Mittelelektrode 13 und eine zündseitige Mittelelektrode 14 eingesetzt sind. Im mittleren Abschnitt der Isolatorbohrung 12 ist eine Widerstandseinschmelzung 15, 16, 17 eingesetzt, welche die anschlußseitige Mittelelektrode 13 mit der zündseitigen Mittelelektrode 14 elektrisch verbindet. Die Widerstandseinschmelzung besteht im vorliegenden Ausführungsbeispiel aus einem ersten an die anschlußseitige Mittelelektrode 13 angrenzenden Kontaktpaket 15, einem mit der zündseitigen Mittelelektrode 14 in Kontakt stehenden zweiten Kontaktpaket 15 und einem zwischen den beiden Kontaktpaketen 15, 16 angeordneten Widerstandspaket 17. Auf die Zusammensetzung der Kontaktpakete 15 und 16 sowie des Widerstandspakets 17 wird weiter unten eingegangen. Die Masseelektrode der Zündkerze ist mit 18 bezeichnet.
  • Im eingeschmolzenen Zustand beträgt die Mindesthöhe zwischen der zündseitigen Mittelelektrode 14 und dem Widerstandspaket 17 0,5 mm und zwischen dem Widerstandspaket 17 und der anschlußseitigen Mittelelektrode 13 2 mm. Der Grund für diese Forderung liegt in der Abdichtfunktion der Kontaktpakete 15, 16 gegen eindringenden Sauerstoff beim Einschmelzprozeß. Wenn Sauerstoff bis zum Widerstandspaket 17 vordringt, wird ein Teil des Kohlenstoffs oxidiert, wodurch der Widerstandswert partiell erhöht wird. Beim Betrieb der Zündkerze unter hoher elektrischer Belastung wird an der Stelle mit dem erhöhten Widerstandswert mehr Energie umgesetzt. Dadurch erhöht sich die Temperatur an dieser Stelle, was zum Ausfall der Kerze führen kann.
  • Für die beiden Kontaktpakete 15, 16 und das Widerstandspaket 17 werden Widerstands- bzw. elektrisch leitfähige Dichtungsmassen eingesetzt. Die Dichtungsmassen sowohl der Kontaktpakete 15, 16 als auch des Widerstandspaketes 17 enthalten im vorliegenden Ausführungsbeispiel ein Li-Ca-Borosilikatglas folgender Zusammensetzung in Masseprozent:
    SiO2 51
    Al2O3 1
    CaO 7
    B2O3 37
    Li2O 4
  • Die zur Herstellung der Kontaktpaxete 15, 16 eingesetzte elektrisch leitende Dichtmasse besitzt folgende Zusammensetzung in Vol.%:
    Glas (Korngröße 63 bis 400 µm) 64,2
    SiC (Korngröße 150 bis 210 µm) 15,0
    Aluminiumpulver (Korngröße ca. 8 µm) 0,8
    Graphit (Korngröße 5 bis 80 µm) 20,0
  • Glas, SiC und das Aluminiumpulver werden trocken gemischt. Anschließend wird der Graphit mittels einer wässrigen Dextrinlösung als Binder auf die Proben Glas, SiC- und Aluminiumkörner aufpaniert. Der Anteil an Dextrin beträgt ca. 1%. Danach wird die Mischung getrocknet. Grobanteile werden anschließend durch Absieben zerstört bzw. abgetrennt.
  • Zur Herstellung der Widerstandsmasse wird eine Widerstandsvormischung erzeugt. Die Widerstandsvormischung für einen 6-Kiloohm-Widerstand besitzt folgende Zusammensetzung in Masseprozent:
    Thermalruß 3,7
    ZrO2 81,0
    Glas (Korngröße < 63 µm) 15,3
  • Die Widerstandsvormischung wird schließlich mit weiterem Glas und Schmelzkorund in folgender Zusammensetzung in Vol.% zusammengebracht:
    Glas (Korngröße 63 bis 400 m) 59,0
    Schmelzkorund (Korngröße 120 bis 250 m) 25,0
    Widerstandsvormischung 16,0
  • Das Glas und der Schmelzkorund werden trocken gemischt. Anschließend wird die vorgemahlene Widerstandsvormischung mittels einer wässrigen Lösung von gereinigter Ca-Carboxymethylcellulose (CMC) auf die groben Glas- und Korundkörner aufpaniert. Der Anteil an CMC in der fertigen Widerstandsmasse beträgt 0,1 bis 1,0 Masse%, vorzugsweise 0,2 Masse%. Die Mischung wird schließlich getrocknet und die Grobbestandteile werden durch Absieben zerstört bzw. abgetrennt. Der Widerstandswert des Widerstandspakets 17 kann durch Änderung des Rußanteils, der Widerstandsvormischung und der CMC-Menge eingestellt werden.
  • Zur Herstellung der Widerstandseinschmelzung wird in die Isolatorbohrung 12 des Isolators 11 mit eingelegter zündseitiger Mittelelektrode 14 zuerst die elektrisch leitende Dichtmasse des zündseitigen Kontaktpakets 16, dann die Widerstandsmasse des Widerstandspakets 17 und schließlich die elektrisch leitende Dichtmasse des Kontaktpakets 15 eingefüllt und mittels eines Stempels vorgepreßt. Auf das obere Kontaktpaket 15 wird die anschlußseitige Mittelelektrode 13 aufgesetzt und angepreßt. Der so vormontierte Isolator 11 wird auf eine Temperatur von 850 bis 900°C erhitzt. Bei diesen Temperaturen wird die anschlußseitige Mittelelektrode 13 in die erweichte Kontaktmasse des Kontaktpakets 15 eingedrückt.
  • Die Füllmengen der elektrisch leitenden Dichtungsmassen und der Widerstandsmasse werden so gewählt, daß nach dem Füllen und dem Vorpressen die anschlußseitige Mittelelektrode 13 ca. 6 bis 8 mm über die Stirnfläche des Isolators 11 hinausragt, und daß nach Erhitzen und Eindrücken der Mittelelektrode 13 folgende Pakethöhen erhalten werden:
    zündseitiges Kontaktpaket 0,5 bis 2 mm
    Widerstandspaket 5 bis 8 mm
    anschlußseitiges Kontaktpaket > 2 mm
  • Zündkerzen mit der erfindungsgemäßen Widerstandseinschmelzung wurden im Vergleich zu Zündkerzen mit Ruß und Graphit als leitfähige Phase im Kontaktpaket in einem Motor bei hoher thermischer Belastung betrieben. Bei den Zündkerzen mit den rußhaltigen Kontaktpaketen traten bereits nach ca. 200 Betriebsstunden Widerstandserhöhungen bis zu >20 Megaohm auf. Bei diesen Zündkerzen war ein deutlicher poröser Saum um den Mittelelektrodenkopf erkennbar, der durch Ausbrennen von Ruß aufgrund der hohen thermischen Belastung im Motorbetrieb entstanden ist. Die Zündkerzen mit der erfindungsgemäßen Widerstandseinschmelzung gemäß dem beschriebenen Ausführungsbeispiel zeigten selbst nach 500 Betriebsstunden nur geringe Widerstandsänderungen und es war keinerlei Porosität um den Mittelelektrodenkopf erkennbar, die auf eine Oxidation des Graphits hingewiesen hätte.
  • Folgende Tabelle zeigt die Prüfungsergebnisse von Kontaktpaketen verschiedener Zusammensetzung und Höhe.
    Leitfähige Komponente im Kontaktpaket Höhe Kontaktpak. an zündseitiger Mittelelektrode/anschlußseitiger Mittelektrode Ausfälle in % *) nach h
    Fe + Graphit 1,0 / 3,5 25% 110 h
    Graphit 2,0 / 4,5 0% 200 h
    *) Ausfall: R-Anstieg > 30%

Claims (8)

  1. Elektrisch leitende Dichtungsmasse für eine Zündkerze zum Einschmelzen zwischen einem anschlußseitigen und einem zündseitigen Teil einer Mittelelektrode, die im wesentlichen eine schmelzbare Glaskomponente und eine pulverförmige, elektrisch leitende Komponente enthält, dadurch gekennzeichnet, daß die elektrisch leitende Komponente Graphit enthält, welcher zumindest annähernd frei von Kristallstrukturen des Rußes ist, wobei der Ruß allenfalls als Verunreinigung im Graphit vorliegt.
  2. Dichtungsmasse nach Anspruch 1, dadurch gekennzeichnet, daß der Graphit frei von Kristallstrukturen des Rußes ist.
  3. Dichtungsmasse nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß der Graphit mit 10 bis 30 Vol.% bezogen auf die in der Dichtungsmasse enthaltenen Pulverbestandteile eingesetzt ist.
  4. Dichtungsmasse nach Anspruch 3, dadurch gekennzeichnet, daß der Graphit mit 18 bis 22 Vol.% bezogen auf die in der Dichtungsmasse enthaltenen Pulverbestandteile eingesetzt ist.
  5. Dichtungsmasse nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß der Graphit eine mittlere Korngröße von 20 bis 50 µm aufweist.
  6. Dichtungsmasse nach Anspruch 5, dadurch gekennzeichnet, daß der Graphit eine Korngröße von 30 bis 40 µm aufweist, und daß der Anteil der mittleren Korngröße unter 10 µm < 5% und der Anteil der Korngröße über 96 µm < 10% ist.
  7. Dichtungsmasse nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Dichtungsmasse an der anschlußseitigen Mittelelektrode (13) ein anschlußseitiges Kontaktpakt (15) und an der zündseitigen Mittelelektrode (14) ein zündseitiges Kontaktpaket (16) bildet und daß die in Achsrichtung der Mittelelektrode (13, 14) gemessene Höhe des anschlußseitigen Kontaktpakets (15) größer ist als die Höhe des zündseitigen Kontaktpakets (16).
  8. Dichtungsmasse nach Anspruch 7, dadurch gekennzeichnet, daß zwischen dem anschlußseitigen Kontaktpaket (15) und dem zündseitigen Kontaktpaket (16) ein Widerstandspaket (17) angeordnet ist und daß der Abstand zwischen der dichtungsseitigen Stirnfläche der zündseitigen Mittelelektrode (14) und dem Widerstandspaket (17) mindestens 0,5 und der Abstand zwischen der dichtungsseitigen Stirnfläche der anschlußseitigen Mittelelektrode (13) und dem Widerstandspaket (17) mindestens 2 Millimeter beträgt.
EP94906837A 1993-03-02 1994-02-05 Elektrisch leitende dichtungsmasse für zündkerzen Expired - Lifetime EP0646292B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE4306402A DE4306402A1 (de) 1993-03-02 1993-03-02 Elektrisch leitende Dichtungsmasse für Zündkerzen
DE4306402 1993-03-02
PCT/DE1994/000115 WO1994021015A1 (de) 1993-03-02 1994-02-05 Elektrisch leitende dichtungsmasse für zündkerzen

Publications (2)

Publication Number Publication Date
EP0646292A1 EP0646292A1 (de) 1995-04-05
EP0646292B1 true EP0646292B1 (de) 1997-07-16

Family

ID=6481692

Family Applications (1)

Application Number Title Priority Date Filing Date
EP94906837A Expired - Lifetime EP0646292B1 (de) 1993-03-02 1994-02-05 Elektrisch leitende dichtungsmasse für zündkerzen

Country Status (7)

Country Link
US (1) US5565730A (de)
EP (1) EP0646292B1 (de)
JP (1) JPH07506698A (de)
KR (1) KR100289758B1 (de)
CN (1) CN1038628C (de)
DE (2) DE4306402A1 (de)
WO (1) WO1994021015A1 (de)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19612508C2 (de) * 1996-03-29 2000-05-04 Bremi Auto Elektrik Ernst Brem Verbindungsstecker
JP3813708B2 (ja) * 1996-09-12 2006-08-23 日本特殊陶業株式会社 スパークプラグの製造方法
JP3819586B2 (ja) * 1997-04-23 2006-09-13 日本特殊陶業株式会社 抵抗体入りスパークプラグ、スパークプラグ用抵抗体組成物及び抵抗体入りスパークプラグの製造方法
US6467756B1 (en) * 1998-05-20 2002-10-22 Western Profiles Limited Post and rail system using extrudable plastic posts
US6426586B1 (en) * 1999-02-12 2002-07-30 Alliedsignal Inc. Contact glass composition for use in spark plugs
US7365480B2 (en) 2004-04-30 2008-04-29 Ngk Spark Plug Co., Ltd. Spark plug
JP4922980B2 (ja) * 2008-03-31 2012-04-25 日本特殊陶業株式会社 スパークプラグ
DE102011101769A1 (de) * 2011-05-17 2012-11-22 Minebea Co., Ltd. Spindelmotor mit fluiddynamischem Lagersystem
DE102014112225B4 (de) * 2014-08-26 2016-07-07 Federal-Mogul Ignition Gmbh Zündkerze mit Entstörelement
JP6612499B2 (ja) * 2014-11-25 2019-11-27 株式会社デンソー スパークプラグ
JP6628767B2 (ja) 2017-07-20 2020-01-15 日本特殊陶業株式会社 スパークプラグ

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2245404C3 (de) * 1972-09-15 1978-08-31 Robert Bosch Gmbh, 7000 Stuttgart Massewiderstand, insbesondere für Zündkerzen, sowie Verfahren zur Herstellung desselben
DE2245403C2 (de) * 1972-09-15 1984-04-05 Robert Bosch Gmbh, 7000 Stuttgart Elektrisch leitende Dichtungsmasse für Zündkerzen, sowie Verfahren zur Herstellung derselben
JPS534131A (en) * 1976-06-29 1978-01-14 Ngk Spark Plug Co Ltd Ignition plug containing low noise resistance
US4193012A (en) * 1978-10-10 1980-03-11 Champion Spark Plug Company Spark plug seal
JPS5613687A (en) * 1979-07-13 1981-02-10 Hitachi Ltd Resistance glass sealed ignition plug
JPS5812302A (ja) * 1981-07-16 1983-01-24 日本特殊陶業株式会社 抵抗入り点火栓用抵抗体組成物
DE3147291A1 (de) * 1981-11-28 1983-06-01 Robert Bosch Gmbh, 7000 Stuttgart Sensor
US4795944A (en) * 1987-08-10 1989-01-03 General Motors Corporation Metallized glass seal resistor composition

Also Published As

Publication number Publication date
KR950701462A (ko) 1995-03-23
DE4306402A1 (de) 1994-09-08
CN1038628C (zh) 1998-06-03
EP0646292A1 (de) 1995-04-05
KR100289758B1 (ko) 2001-05-15
US5565730A (en) 1996-10-15
WO1994021015A1 (de) 1994-09-15
DE59403368D1 (de) 1997-08-21
JPH07506698A (ja) 1995-07-20
CN1103540A (zh) 1995-06-07

Similar Documents

Publication Publication Date Title
DE2245404C3 (de) Massewiderstand, insbesondere für Zündkerzen, sowie Verfahren zur Herstellung desselben
DE60107735T2 (de) Zündkerze
EP0646292B1 (de) Elektrisch leitende dichtungsmasse für zündkerzen
DE60224475T2 (de) Zündkerze
DE3501558C3 (de) Pulvermischung zur Herstellung eines elektrischen Widerstands in einer Zündkerze
DE2245403C2 (de) Elektrisch leitende Dichtungsmasse für Zündkerzen, sowie Verfahren zur Herstellung derselben
DE2816358C2 (de)
DE3512158C2 (de)
DE2854071A1 (de) Zuendkerzen-isolator
DE60101925T2 (de) Zündkerze
DE60204388T2 (de) Zündkerze
EP1268355B1 (de) Glaskeramik, verfahren zu deren herstellung und zündkerze mit einer derartigen glaskeramik
DE60107183T3 (de) Zündkerze
EP1131865A1 (de) Elektrisch leitende dichtmasse für zündkerzen
DE2455023B2 (de) Zündkerze mit einem Widerstand aus einer glasartigen Masse
DE1814548C3 (de) Widerstand für Zündkerzen für Brennkraftmaschinen
DE10229338B4 (de) Zündkerze und Zündkerzenisolator
DE60101193T2 (de) Zündkerze
EP1268354B1 (de) Glas und glaspulvermischung sowie deren verwendung zur herstellung einer glaskeramik
DE4203250A1 (de) Silber-nickel-verbundwerkstoff fuer elektrische kontakte und elektroden
DE10348778B3 (de) Elektrode für eine Zündkerze und Verfahren zum Herstellen einer Elektrode
DE3546922C2 (de) Pulvermischungen zur Herstellung eines elektrischen Widerstands in Zündkerzen und ihre Verwendung
DE102020207440A1 (de) Zündkerze
DE102013219941B4 (de) Zündkerze
DE102018117394B4 (de) Zündkerze

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT

17P Request for examination filed

Effective date: 19950315

17Q First examination report despatched

Effective date: 19951113

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

ET Fr: translation filed
REF Corresponds to:

Ref document number: 59403368

Country of ref document: DE

Date of ref document: 19970821

ITF It: translation for a ep patent filed

Owner name: STUDIO JAUMANN

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19970919

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20060215

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20060221

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20060228

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20070418

Year of fee payment: 14

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20070205

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20071030

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070205

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080902

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070205