EP0645214B1 - Procede et systeme de rectifiage de billettes - Google Patents

Procede et systeme de rectifiage de billettes Download PDF

Info

Publication number
EP0645214B1
EP0645214B1 EP93904335A EP93904335A EP0645214B1 EP 0645214 B1 EP0645214 B1 EP 0645214B1 EP 93904335 A EP93904335 A EP 93904335A EP 93904335 A EP93904335 A EP 93904335A EP 0645214 B1 EP0645214 B1 EP 0645214B1
Authority
EP
European Patent Office
Prior art keywords
nozzle
grinding
jet
abrasive
defects
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP93904335A
Other languages
German (de)
English (en)
Other versions
EP0645214A1 (fr
EP0645214A4 (en
Inventor
Hiroyuki Matsumura
Yoshikazu Ikemoto
Keiji Tsujita
Hidetaka Tanaka
Kazumi Yawata Works Of Nippon Steel Corp Daitoku
Tomoharu Yawata Works Of Nippon Shimokasa
Fujiya Yawata Works Of Nippon Steel Corp. Nogami
Kenji Yowata Works Of Nippon Steel Corp. Minami
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Heavy Industries Ltd
Nippon Steel Corp
Kawasaki Motors Ltd
Original Assignee
Kawasaki Heavy Industries Ltd
Nippon Steel Corp
Kawasaki Jukogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Heavy Industries Ltd, Nippon Steel Corp, Kawasaki Jukogyo KK filed Critical Kawasaki Heavy Industries Ltd
Publication of EP0645214A1 publication Critical patent/EP0645214A1/fr
Publication of EP0645214A4 publication Critical patent/EP0645214A4/xx
Application granted granted Critical
Publication of EP0645214B1 publication Critical patent/EP0645214B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24CABRASIVE OR RELATED BLASTING WITH PARTICULATE MATERIAL
    • B24C1/00Methods for use of abrasive blasting for producing particular effects; Use of auxiliary equipment in connection with such methods
    • B24C1/04Methods for use of abrasive blasting for producing particular effects; Use of auxiliary equipment in connection with such methods for treating only selected parts of a surface, e.g. for carving stone or glass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24CABRASIVE OR RELATED BLASTING WITH PARTICULATE MATERIAL
    • B24C3/00Abrasive blasting machines or devices; Plants
    • B24C3/08Abrasive blasting machines or devices; Plants essentially adapted for abrasive blasting of travelling stock or travelling workpieces
    • B24C3/10Abrasive blasting machines or devices; Plants essentially adapted for abrasive blasting of travelling stock or travelling workpieces for treating external surfaces
    • B24C3/12Apparatus using nozzles

Definitions

  • the present invention relates to material surface grinding and, in particular, to a grinding method and system for grinding defective surface portions of steel products such as slabs, blooms and billets in continuous casting lines or ingot casting lines or the like and after-processes following the same.
  • Steel products such as blooms, slabs and billets, formed by continuous casting or ingot casting processes, may develop various defects during their casting. Such defects will lead to a reduction in product yield and a deterioration in product quality in after-processes following the casting.
  • Generally adopted means for reconditioning steel products are flame scarfing using a hot scarfer and grinding using a grinder.
  • An example of the flame scarfing method is shown in Japanese Patent Laid-Open No. 52-5644, according to which a gantry frame is arranged to have two supporting beams, on which two movable nozzle operation units for side and upper surface are mounted, respectively.
  • Another example of the flame scarfing method is shown in Japanese Patent Laid-Open No. 52-81048, according to which flame scarfing is performed by using a plurality of transversely arranged torches, making it possible to remove extensive defects without performing auxiliary flame scarfing in transverse direction at the beginning.
  • Japanese Patent Laid-Open No. 48-46993 an example thereof is shown in Japanese Patent Laid-Open No. 48-46993, according to which billets, etc. are ground by using an abrasive wheel whose grinding performance is improved by employing a hydraulic or pneumatic cylinder.
  • Another example of the grinding method is shown in Japanese Patent Laid-Open No. 1-242729, according to which cast stainless steels or other stainless steel products are reconditioned to effectively remove any defective portions therefrom in a specific temperature range, thereby avoiding the problem of the self-hardening property of stainless steels.
  • Japanese Patent Laid-Open No. 51-97894 discloses a method according to which a predetermined type of abrasive is sprayed through nozzles onto the surface of a stainless steel plate to effect wet grinding and descaling at the same time.
  • US-A-4 872 293 discloses an abrasion technique in which an abrasive water jet is used to smooth surfaces wherein the abrasive slurry is recycled after the grinding operation.
  • MANUFACTURING REVIEW vol. 2, no. 2, June 1989, describes a grinding technique in which an abrasive water jet is used to process a metal product while the portion of the metal product to be processed is provided with a mask.
  • a rust removing system which includes a detection system for detecting rusted parts on a surface, an abrasive device for ejecting grinding material onto the surface to remove the rusted parts, said abrasive device including a supply system for the grinding material and a recovery system for recovering used grinding material and recycling it to the supply system, and a grinding controller for receiving information from the detection system and controlling the operation of the abrasive device.
  • the present invention has been made with a view toward solving the problems in the above-described conventional steel reconditioning techniques. It is accordingly an object of the present invention to provide an excellent steel grinding method which makes it possible not only to easily discriminate any defects remaining on the surfaces of steel products after grinding, such discrimination being important when improving working conditions and automating the steel production process, but also to selectively remove defective portions in accordance with the defect.
  • a reduction in product costs is achieved, an improvement in yield is attained and, further, the product quality can be positively guaranteed, thereby contributing much to those fields of the iron industry.
  • a predetermined abrasive in the form of fine particles such as garnet sand, silica sand, alumina, iron sand, or cast-iron grit
  • ultra-high-speed water jet to form an ultra-high-speed abrasive water jet which is continuously ejected through nozzle as jets having a fixed small diameter to impinge with impact upon the surface of steel products such as slabs, thereby automatically removing, without contact, any undesirable defects existing near the surface of such steel products.
  • automatic sensing is performed on the surface and near-surface portions of the steel products before and/or after the grinding so as to search for any defects and to detect the locations, etc. thereof, thereby making it possible to realize a completely automated, unmanned grinding line.
  • a grinding system for grinding the surface of materials such as steel slabs.
  • conventional wet blasting and liquid honing methods are further developed to realize a system for grinding the surface of materials such as steel slabs using an abrasive water jet with an increased pressure (normally 300 kgf/cm2 or more) and an improved energy density and machining efficiency.
  • the system is formed by combining the following sub-systems as needed: a defect detection system for detecting defects on material surfaces; a grinding control system for transmitting signals regarding grinding conditions controlled on the basis of defect information detected by the defect detection system; an abrasive supply system for supplying abrasive in accordance with signals from the grinding control system; a grinding-nozzle-device system adapted to move relative to the material in accordance with signals from the grinding control system; and an abrasive recovery system for recovering the abrasive used for grinding, and restoring it to the abrasive supply system.
  • the defect detection system for detecting defects on material surfaces employs a defect detecting device, which may consist of an image processing apparatus based on magnetic particle inspection or ultrasonic flaw detection, or an apparatus using a telecamera.
  • the method does not involve surface-defect obscuration caused by the influence of heat or the melting of material surface portions, so that the detection of defects after machining is easy to perform. Further, since the turning ON/OFF of the machining operation is easy, no ignition error as involved in flame scarfing occurs. In addition, due to the fact that the method adopts a non-contact-type machining means, the method is relatively free from service-life problems as compared with methods using grinding wheels, which makes it possible to easily construct an automated grinding system.
  • an abrasive circulation system is formed when the abrasive water jet is applied to the grinding of an extensive and continuous surface.
  • a continuous operation is also possible when abrasive water jet nozzles, adapted to make a relative movement with respect to a plurality of steel products, are applied to the grinding of a wide material surface.
  • Figs. 1 through 3 are schematic diagrams showing how a cast slab is ground by means of a high-pressure water jet mixed with abrasive (an abrasive water jet).
  • Numeral 1 indicates a nozzle of a so-called abrasive water jet apparatus.
  • High-pressure water jet at a fixed pressure is supplied to a mixing chamber (not shown) and mixed with an abrasive in the form of fine particles, such as garnet sand, silica sand, alumina, iron sand, or cast-iron grit to form a jet 2 having a fixed small diameter, which is expelled at ultra-high speed onto a steel slab 3 to be ground.
  • Figs. 1 through 3 show how cutting (grinding) is performed when the relative traversing speed of the nozzle 1 with respect to the slab 3 (the nozzle feeding speed or the speed at which the slab 3 is fed) is varied.
  • Fig. 1 shows normal cutting, in which grinding is performed over the entire thickness t of the slab 3.
  • the relative traversing speed of the nozzle is in a low-speed range which is low enough to enable the slab 3 to be cut in a satisfactory manner.
  • Drag lines 4 are formed over the thickness t of the slab 3.
  • Fig. 2 shows a case in which the relative movement of the nozzle 1 and the slab 3 is made at a higher speed than in the case of Fig. 1.
  • the cutting is not effected over the entire thickness t of the slab 3, the cutting depth h1 showing a fluctuation by a difference ⁇ h1 at the bottom portion formed by the cutting.
  • the relative traversing speed between the nozzle 1 and the slab 3 is even higher than in the example of Fig. 2.
  • the cutting depth h2 in this case is smaller than that in Fig. 2.
  • the fluctuation in depth ⁇ h2 is also smaller than that in Fig. 2, with the result that the bottom surface formed by the cut grooves are practically smooth, thus making it possible to perform the so-called groove grinding.
  • the above grinding principle and grinding-speed ranges of the abrasive water jet are applied to the grinding of the surface of a steel slab 3.
  • the surface of the steel slab 3 is subjected, though microscopically, to a positive grinding action due to the the eroding effect of the abrasive grains in the ultra-high-speed water jet, thereby making it possible to remove defects under ideal conditions involving no generation of heat.
  • the sub-system for detecting defects, etc. before and/or after the above-described grinding it is possible to detect defects, etc. existing on or near the surface of the steel slab 3, and the positions and sizes of such defects. Information on these defects is input and fed back to be utilized in the grinding operation, whereby it is possible to stabilize the process for removing defects on the surface, etc. of steel products and to positively guarantee the quality thereof and, further, to realize a completely automated working process.
  • Figs. 4 and 5 show how the steel slab 3 is ground in accordance with an embodiment of the present invention, along with the construction of a nozzle head 4 of a side entrainment type.
  • Abrasive 6 consisting of garnet sand or the like is supplied to a mixing chamber 10 by a negative pressure due to the venturi effect of an ultra-high-speed water jet 9 generated at a water nozzle 8 connected to a high-pressure water piping 7.
  • the water jet 9 and the abrasive 6 are mixed with each other in the interior of the abrasive nozzle 1, which extends from the mixing chamber 10, accelerated and ejected from the abrasive nozzle 1 onto a predetermined portion of the slab 3 as a jet 2 having a predetermined small diameter to grind the surface of the slab 3 in relative movement, based on the grinding principle described above.
  • the axis of the abrasive nozzle 1 is held at the proper angle with respect to the slab 3 in accordance with the kind of the slab and the type of defect, and the abrasive nozzle is caused to make a relative movement with respect to the slab 3 while swinging or rotating at an appropriate speed and pitch so as to sufficiently cover the defects, etc. on the surface, thereby effecting a desired grinding, etc.
  • the abrasive was supplied at a speed of 0.5 kg/min or more, and the high-pressure water was supplied at a pressure of 1000 kgf/cm 2 or more and a flow rate of 2 lit./min., the working distance between the nozzle and the steel being not more than 200 mm.
  • the inpinging angle with respect to the slab 3 ranged, for example, from 10 to 170°, and the relative speed between the slab 3 and the abrasive nozzle 1 when the abrasive nozzle was swung or rotated was approximately 1 to 10 m/min. Under these conditions, very satisfactory results were obtained. Such conditions, however, somewhat differ depending upon the kind of slab, the type of defect and the kind of abrasive 6, etc.
  • Figs. 6 and 7 show in more detail an example of the way the abrasive nozzle 1 is operated. As shown in the drawings, to cope with defects 12, 12', 12'' and 12'', various kinds of swinging modes for the abrasive nozzle 1 can be combined in terms of grinding range, direction and pitch.
  • an appropriate rounding is effected in the boundaries between the surface portions 3' where grinding is performed on the defects 12, 12', 12'' and 12''' and the surface portions and 3'' where no grinding is performed, in order that extremely large differences in thickness may not be generated between these portions.
  • the abrasive nozzle 1 can also perform grinding as in the above case by a rotation within an appropriate radius, instead of swinging, and pitch feed.
  • Fig. 8 is a block diagram showing the entire system including an inspection process.
  • an articulated robot is used as a driving device 13 for the abrasive nozzle 1.
  • Searching results obtained at an inspection stage 14 prior to grinding by a defect detecting mechanism 15 consisting of a CCD camera or the like are input to a defect detection system 16 as information on the defects 12, etc. on the slab 3 (in terms of location, size, depth, etc.), grinding being automatically performed in a grinding (scarfing) stage 17 in accordance with the information.
  • the entire surface of a continuous casting steel product is scanned with a telecamera by a camera driving device which operates in accordance with signals from a camera drive controller in a defect detection system, thereby obtaining defect information in terms of size, configuration, area, depth, etc.
  • the image processing apparatus in defect detection system performs coordinate transformation on the location of any defect and, on the basis of the coordinates thereby obtained, the location is settled as an address on the steel surface.
  • the information from the image processing apparatus in terms of configuration, depth, grinding range, procedures and location is input to a collective-control computer in grinding controller.
  • the input information is supplied to the grinding system to be used as driving instructions for controlling a nozzle drive controller, an abrasive supply system and high-pressure-water generator, etc. to cause the high-pressure fluid nozzle for abrasive water jetting to traverse the steel surface by means of a guide mechanism working on an address basis to perform grinding.
  • this embodiment adopts a system in which the used abrasive 6 is recovered and supplied to an abrasive feeding device 19 for re-utilization, the fragmental abrasive being separated and removed by a recovery/re-feeding device 18.
  • Numeral 20 indicates a high-pressure water generator; numeral 7' indicates a high-pressure water piping; numeral 21 indicates a nozzle drive controller; numeral 22 indicates a grinding controller for overall grinding control; numeral 23 indicates waste abrasive; numeral 24 indicates new abrasive; and numeral 25 indicates an inspection stage.
  • Figs. 9, 10 and 11 show external views of the entire system of the embodiment shown in Fig. 8, in which three articulated robots cooperate to continuously grind the surface of a steel slab 3 or the like in an average tact time of 7 minutes. The slab 3 is fed in the direction indicated by the arrows.
  • the system shown in the drawings comprises a defect detection system 101, an abrasive-water-jet-nozzle device 102, a supply system 103 for supplying high-pressure water and abrasive to the nozzles, and a recovery system 104 for recovering the used abrasive and re-feeding the same to the supply system 103.
  • Information from these systems are input to a grinding controller 105, and the input information is used for controlling the systems by a judgment function of the grinding controller 105.
  • the slab W to be ground is processed through three stages: inspection stage S1, grinding stage S2 and inspection stage S3.
  • inspection stage S1 and S3 may be omitted.
  • the defect detection system 101 comprises a defect detection system 111 for detecting defects on the slab surface prior to grinding, a defect detection system 112 for detecting surface defects during grinding, and a defect detection system 113 for detecting defects on the slab surface after grinding for the next process.
  • the surface defect conditions in each of these stages are detected, and information thereon is input to the grinding controller 105, the abrasive nozzle device 102 and the supply system 103 being controlled in accordance with variations in the information.
  • the abrasive water jet nozzle device 102 comprises a nozzle drive controller 106 controlled by the grinding controller 105, and nozzles 108 driven by a nozzle driver 107.
  • Figs. 13 through 16 show a specific system arrangement for the system shown in Fig. 12.
  • the system shown comprises: a supply system 103 consisting of a high-pressure water generator 31 and an abrasive supply device 32 shown in Fig. 12; and front and rear nozzle devices 121 and 122 for respectively grinding the upper and lower surfaces of slabs, which are reversed by a reversing device 42.
  • Each of the nozzle devices 121 and 122 has three nozzles 108 arranged along the longitudinal dimension of the slabs W produced by a continuous casting machine 41.
  • Each nozzle 108 is attached to the tip of a 6-axis articulated robot 125 provided on a nozzle guide 124 arranged on a base 123 astride a slab moving bed 109.
  • Each nozzle 108 is driven and controlled by the nozzle drive controller 106 and the nozzle driver 107 shown in Fig. 12.
  • a robot and an NC device can be used as the driving devices for the nozzles 108.
  • One or a plurality of articulated robots may be installed on the floor, ceiling or walls, or in a combination of these installation locations.
  • the driving devices may be stationary or, as in the example shown in the drawings, capable of travelling along one axis or more.
  • the abrasive nozzle head may be of a direct injection type, in which the abrasive and water are mixed at high pressure beforehand and expelled at high pressure through the nozzle in a slurry-like state. Further, the nozzles may be operated so as to move in a variety of rotating and swinging movements.
  • a high-pressure water jet is mixed with abrasive and expelled against steel products, thereby making it possible to perform automatic grinding without contact.
  • conventional defect removal means such as flame scarfing and wheel grinding, which have been manually performed under severe working conditions involving noise and heat, can be dispensed with, thus leading to a marked improvement in working conditions (by realizing an unmanned working process, etc.)
  • the method of the present invention provides the excellent effect of making it possible to positively remove any defects existing on or near the surface of a semi-processed steel product, the removal being effected in a stable manner and to a desired depth without involving any fusion or deterioration of the material caused by heat.
  • an excellent system can be provided in which it is possible to perform a continuous operation without deteriorating the function of the abrasive water jet itself, which leads to saving of resources and a reduction in cost.
  • the present invention provides an excellent machining means for the removal of steel surface defects from a semi-processed steel product, which removal has tended to become more and more necessary due to the recent increase in demand for higher quality materials.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Perforating, Stamping-Out Or Severing By Means Other Than Cutting (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)

Claims (15)

  1. Procédé d'extraction de défauts de surface d'un produit d'acier semi-fini produit dans une étape de coulée continue ou une étape ultérieure à une étape de coulée continue, comprenant :
    (a) la détection des défauts de surface du produit d'acier,
    (b) la projection d'au moins un jet de fines particules abrasives mélangées à de l'eau à haute pression sur les défauts de surface du produit d'acier suivant le résultat de la détection de l'étape (a) afin que les défauts de surface soient enlevés, et
    (c) la récupération et la recirculation des fines particules abrasives destinées à être réutilisées dans l'étape (b).
  2. Procédé selon la revendication 1, dans lequel le jet au moins est projeté par une buse au moins (1 ; 108).
  3. Procédé selon la revendication 2, dans lequel un jet au moins de fines particules abrasives transmises à raison de 0,5 kg/min au moins, et de l'eau à haute pression transmise à une pression qui n'est pas inférieure à 1000 bar (kgf/cm2) et avec un débit qui n'est pas inférieur à 2 l/min sont soit mélangées mutuellement auparavant à l'état à haute pression, soit mélangées dans une tête de la buse au moins (1 ; 108) après éjection de l'eau à haute pression pour l'obtention d'eau à haute pression mélangée aux particules abrasives, le jet au moins étant projeté sur la surface du produit d'acier avec un angle d'incidence compris entre 10 et 170° et avec une distance d'usinage entre la buse et la surface d'acier qui ne dépasse pas 200 mm.
  4. Procédé selon la revendication 2 ou 3, dans lequel les défauts de surface détectés dans l'étape (a) sont soumis à une transformation de coordonnées par un système (16 ; 101) de détection de défauts, et la buse (1 ; 108) de projection de liquide à haute pression au moins est entraínée et déplacée d'après les informations obtenues à l'aide de la transformation des coordonnées par le système de détection de défauts.
  5. Procédé selon l'une quelconque des revendications 1 à 4, comprenant en outre une étape d'inspection de la surface du produit d'acier après l'étape (b).
  6. Système d'enlèvement de défauts de surface d'un produit d'acier semi-fini, comprenant un étage de coulée continue ou un étage ultérieur à un étage de coulée continue,
    un système (16 ; 101) de détection de défauts qui comprend un détecteur (15 ; 111) destiné à détecter les défauts de surface du produit d'acier,
    un dispositif (1, 13, 21 ; 102) à buses de projection d'un jet d'eau abrasif, destiné à se déplacer par rapport à la surface du produit d'acier pour projeter au moins un jet de fines particules abrasives mélangées à de l'eau à haute pression sur les défauts de surface afin que ces défauts de surface soient supprimés,
    un système (19, 20 ; 103) d'alimentation en eau à haute pression et en fines particules abrasives du dispositif à buses de projection d'un jet d'eau abrasif,
    un système (18, 104) de récupération des fines particules abrasives utilisées et de recyclage vers le système d'alimentation, et
    un organe (22, 105) de commande d'usinage par abrasion destiné à recevoir les informations du système de détection de défauts et à commander le fonctionnement du dispositif à buses de projection d'un jet d'eau abrasif, le système d'alimentation et le système de récupération.
  7. Système selon la revendication 6, dans lequel le dispositif (1, 13, 21 ; 201) à buses de projection d'un jet d'eau abrasif est destiné à projeter le jet au moins ayant les fines particules abrasives avec un débit qui n'est pas inférieur à 0,5 kg/min, l'eau à haute pression étant transmise à une pression qui n'est pas inférieure à 1000 bar (kgf/cm2) et avec un débit qui n'est pas inférieur à 2 l/min à la surface du produit d'acier avec un angle d'incidence compris entre 10 et 170°, à une distance de travail comprise entre le dispositif à buses et la surface d'acier qui ne dépasse pas 200 mm.
  8. Système selon la revendication 6 ou 7, dans lequel le dispositif à buses de projection d'un jet d'eau abrasif comprend
    au moins une buse (1 ; 108),
    au moins un organe d'entraínement de buse (13 ; 107) destiné à entraíner la buse au moins, et
    au moins un organe (21 ; 106) de commande d'organe d'entraínement de buses destiné à assurer le fonctionnement d'au moins un organe d'entraínement de buse.
  9. Système selon la revendication 8, dans lequel l'organe d'entraínement de buse au moins comprend au moins un robot (13 ; 125).
  10. Système selon la revendication 8, dans lequel l'organe d'entraínement de buse au moins est fixe.
  11. Système selon la revendication 8, dans lequel l'organe d'entraínement de buse au moins peut être déplacé suivant un ou plusieurs axes.
  12. Système selon l'une quelconque des revendications 6 à 11, dans lequel le système d'alimentation comprend un générateur (20 ; 31) d'eau à haute pression et un dispositif (19 ; 32) d'alimentation en fines particules abrasives.
  13. Système selon l'une quelconque des revendications 6 à 12, dans lequel le système de détection de défauts comprend un appareil de traitement d'images mettant en oeuvre une détection ultrasonore de défauts.
  14. Système selon l'une quelconque des revendications 6 à 13, dans lequel la détection de défauts met en oeuvre une caméra de télévision.
  15. Système selon l'une quelconque des revendications 6 à 14, dans lequel le système de détection de défauts comprend au moins un second détecteur (15 ; 112) destiné à détecter les défauts à la surface pendant l'usinage par abrasion ou un troisième détecteur (15'' ; 113) destiné à détecter des défauts à la surface après usinage par abrasion.
EP93904335A 1992-10-21 1993-02-23 Procede et systeme de rectifiage de billettes Expired - Lifetime EP0645214B1 (fr)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP283319/92 1992-10-21
JP28331992 1992-10-21
JP28331992A JPH06126630A (ja) 1992-10-21 1992-10-21 研削システム
PCT/JP1993/000218 WO1994008754A1 (fr) 1992-10-21 1993-02-23 Procede et systeme de rectifiage de billettes

Publications (3)

Publication Number Publication Date
EP0645214A1 EP0645214A1 (fr) 1995-03-29
EP0645214A4 EP0645214A4 (en) 1995-04-19
EP0645214B1 true EP0645214B1 (fr) 1999-07-28

Family

ID=17663929

Family Applications (1)

Application Number Title Priority Date Filing Date
EP93904335A Expired - Lifetime EP0645214B1 (fr) 1992-10-21 1993-02-23 Procede et systeme de rectifiage de billettes

Country Status (10)

Country Link
EP (1) EP0645214B1 (fr)
JP (1) JPH06126630A (fr)
KR (1) KR0161671B1 (fr)
CN (1) CN1095728C (fr)
AU (1) AU670573B2 (fr)
BR (1) BR9305541A (fr)
DE (1) DE69325807T2 (fr)
ES (1) ES2134256T3 (fr)
TW (1) TW245673B (fr)
WO (1) WO1994008754A1 (fr)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5598730A (en) * 1994-08-30 1997-02-04 Snap-On Technologies, Inc. Pre-forge aluminum oxide blasting of forging billets as a scale resistance treatment
KR100591399B1 (ko) * 2004-10-06 2006-06-19 대우조선해양 주식회사 선박의 위보기 전처리 작업용 이동식 블라스팅 장치
TWI496662B (zh) * 2009-06-26 2015-08-21 Sintokogio Ltd Steel ball shot device
CN101972980A (zh) * 2010-09-15 2011-02-16 广州大学 一种机械表面自动强化研磨加工设备
CN102059644A (zh) * 2010-10-27 2011-05-18 广州大学 一种强化研磨智能加工机器人
CN102896584B (zh) * 2011-07-29 2015-07-22 宝山钢铁股份有限公司 一种混合射流清洗的工艺布置方法
CN102873412A (zh) * 2012-10-11 2013-01-16 南京工艺装备制造有限公司 一种水刀加工丝杠滚道的方法
CN103586782B (zh) * 2013-09-30 2016-07-13 杭州浙达精益机电技术股份有限公司 钢管表面磨料喷射除鳞装置
CN103481202B (zh) * 2013-09-30 2016-02-17 杭州浙达精益机电技术股份有限公司 基于浆料抛射和超声导波复合的钢板除鳞装置
CN104308745A (zh) * 2014-09-02 2015-01-28 黄文侃 一种金属车轮毂表面的射流研磨处理工艺
CN104907633B (zh) * 2015-07-09 2017-05-17 上海维宏电子科技股份有限公司 基于数控系统实现切割刀具z轴位置自动校正的方法
US10828746B2 (en) 2015-08-10 2020-11-10 Bando Kiko Co., Ltd. Dressing method and dressing apparatus
CN105081985B (zh) * 2015-08-19 2018-07-10 秦皇岛树诚科技有限公司 一种钢带机械除鳞设备
CN105538166A (zh) * 2016-01-25 2016-05-04 李伟民 一种立体喷砂装置
CN106078529B (zh) * 2016-05-30 2018-10-02 安徽栢林洁具有限公司 一种利用底层磨料处理浴室柜板材的方法
CN106078527B (zh) * 2016-05-30 2018-11-09 安徽栢林洁具有限公司 一种利用磨料处理浴室柜板材的方法
US10363648B2 (en) * 2016-08-04 2019-07-30 C.J. Spray Apparatus, components, methods and systems for use in selectively texturing concrete surfaces
CN106272096B (zh) * 2016-10-21 2018-10-12 贵州大学 一种低碳钢零件渗碳后表面强化方法
CN110014372A (zh) * 2019-04-16 2019-07-16 攀钢集团攀枝花钢铁研究院有限公司 用于清理连铸坯表面杂质的施工方法
CN111559048B (zh) * 2020-04-25 2022-05-10 芜湖荣基实业有限公司 一种高分子塑料生产用熔接装置
CN113021193A (zh) * 2021-03-18 2021-06-25 动力博石(广东)智能装备有限公司 一种采用后混式磨料高压水射流切割印刷电路板的系统
CN113245108A (zh) * 2021-05-28 2021-08-13 纪新刚 水射流处理工件的方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5049125A (fr) * 1973-08-31 1975-05-01
JPS5195938A (ja) * 1975-02-20 1976-08-23 Hyomenshorisochi
JPS53132434A (en) * 1977-04-26 1978-11-18 Ishikawajima Harima Heavy Ind Co Ltd Blasting nozzle
JPS5835449B2 (ja) * 1979-08-31 1983-08-02 中興化成工業株式会社 表面に波型状凹凸部を有する無機質繊維織布管の製造方法
JPS5944187B2 (ja) * 1981-12-25 1984-10-27 日立造船株式会社 除錆機の制御方法
BE895665A (fr) * 1983-01-20 1983-05-16 Centre Rech Metallurgique Perfectionnements aux procedes de conditionnement des produits metalliques
GB2159451A (en) * 1984-05-25 1985-12-04 Hancock Cutting Machines Limit Drive arrangement for hand guided cutting torch
JPS6115937A (ja) * 1984-06-30 1986-01-24 Kobe Steel Ltd ブラインド用アルミニウム合金板
JPS61159373A (ja) * 1984-12-28 1986-07-19 Fuji Photo Film Co Ltd ブラストノズル
KR930008692B1 (ko) * 1986-02-20 1993-09-13 가와사끼 쥬고교 가부시기가이샤 어브레시브 워터 제트 절단방법 및 장치
JPS6316999A (ja) * 1986-07-08 1988-01-23 川崎重工業株式会社 アブレツシブウオ−タジエツト切断装置
CN87210089U (zh) * 1987-07-13 1988-06-22 余兆丰 液体菌种深层培养简易装置
JPH01159373A (ja) * 1987-09-10 1989-06-22 Seiko Epson Corp スパッタリング用ターゲット
US5117366A (en) * 1989-06-28 1992-05-26 Stong Jerald W Automated carving system
JP2963158B2 (ja) * 1990-07-24 1999-10-12 株式会社不二精機製造所 スラリイ圧送式ブラスト装置
FR2669568B1 (fr) * 1990-11-26 1995-02-17 Lorraine Laminage Procede et dispositif d'usinage par flamme de chalumeau pour eliminer par oxycoupage des criques dans des brames dans une installation siderurgique.

Also Published As

Publication number Publication date
CN1095728C (zh) 2002-12-11
TW245673B (fr) 1995-04-21
EP0645214A1 (fr) 1995-03-29
KR0161671B1 (ko) 1998-12-15
AU3574893A (en) 1994-05-09
JPH06126630A (ja) 1994-05-10
DE69325807D1 (de) 1999-09-02
EP0645214A4 (en) 1995-04-19
BR9305541A (pt) 1995-12-26
WO1994008754A1 (fr) 1994-04-28
AU670573B2 (en) 1996-07-25
CN1085840A (zh) 1994-04-27
ES2134256T3 (es) 1999-10-01
DE69325807T2 (de) 2000-03-16

Similar Documents

Publication Publication Date Title
EP0645214B1 (fr) Procede et systeme de rectifiage de billettes
US11920311B2 (en) Mobile waterjet rail repair system
US5791968A (en) Grinding method and grinding system for steels
JPH10175089A (ja) 溶接方法および溶接装置
JP2883230B2 (ja) 鋼片の研削方法
US5193317A (en) Method for grinding metal and metal-alloy stock
JPH0885063A (ja) ウォータジェット研削方法および装置
CN114260759A (zh) 一种铸坯表面缺陷的高效识别与精整方法
JP3280430B2 (ja) 高温スラブの疵研削方法およびその装置
JPH11285829A (ja) 溶接方法および溶接装置
JP2000006025A (ja) ロンジブラスト装置
JP2875745B2 (ja) 数値制御研掃装置
RU2820431C2 (ru) Мобильная водоструйная система ремонта рельса
JP3122545B2 (ja) 圧延用加熱スラブの脱スケール方法
JPH0637075A (ja) 砥石を用いる加工方法
JPH0885059A (ja) 開口疵の除去方法
JPH05112833A (ja) 表面処理鋼板トリム屑の表層処理方法
JPS5819010Y2 (ja) 鋳片溶断スラグ削除装置
JPH0885058A (ja) 開口疵の除去方法
JPH04275875A (ja) 表面処理鋼板の表層処理装置及び電縫鋼管製造設備
CN111757791A (zh) 磨削设备
JP2515445B2 (ja) スラグの付着防止方法
JPH06277829A (ja) スカーフィング装置
JPH06126621A (ja) 無欠陥熱延コイルの製造方法
JP2761358B2 (ja) 金属片の偏在した疵の除去方法および装置

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19940117

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE ES FR IT

A4 Supplementary search report drawn up and despatched
AK Designated contracting states

Kind code of ref document: A4

Designated state(s): DE ES FR IT

17Q First examination report despatched

Effective date: 19970318

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES FR IT

REF Corresponds to:

Ref document number: 69325807

Country of ref document: DE

Date of ref document: 19990902

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2134256

Country of ref document: ES

Kind code of ref document: T3

ITF It: translation for a ep patent filed
ET Fr: translation filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20000223

Year of fee payment: 8

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010224

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20020916

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20041209

Year of fee payment: 13

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050223

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20050418

Year of fee payment: 13

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060901

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20061031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060228