EP0568883B1 - Fehlermanagement-System für Fehler in Schuppenformationen von Druckprodukten - Google Patents
Fehlermanagement-System für Fehler in Schuppenformationen von Druckprodukten Download PDFInfo
- Publication number
- EP0568883B1 EP0568883B1 EP93106682A EP93106682A EP0568883B1 EP 0568883 B1 EP0568883 B1 EP 0568883B1 EP 93106682 A EP93106682 A EP 93106682A EP 93106682 A EP93106682 A EP 93106682A EP 0568883 B1 EP0568883 B1 EP 0568883B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- management system
- fault management
- fault
- controlled
- products
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 230000015572 biosynthetic process Effects 0.000 title claims description 13
- 238000005755 formation reaction Methods 0.000 title description 12
- 238000005259 measurement Methods 0.000 claims description 50
- 238000012545 processing Methods 0.000 claims description 24
- 230000002596 correlated effect Effects 0.000 claims description 12
- 230000032258 transport Effects 0.000 claims description 12
- 238000000034 method Methods 0.000 claims description 11
- 230000008569 process Effects 0.000 claims description 11
- 239000000872 buffer Substances 0.000 claims description 10
- 238000006243 chemical reaction Methods 0.000 claims description 6
- 238000004519 manufacturing process Methods 0.000 claims description 3
- 230000007246 mechanism Effects 0.000 claims description 2
- 239000000047 product Substances 0.000 claims 8
- 230000004913 activation Effects 0.000 claims 1
- 239000006227 byproduct Substances 0.000 claims 1
- 239000002131 composite material Substances 0.000 claims 1
- 238000010924 continuous production Methods 0.000 claims 1
- 230000009849 deactivation Effects 0.000 claims 1
- 230000002950 deficient Effects 0.000 description 24
- 230000000875 corresponding effect Effects 0.000 description 18
- 238000001514 detection method Methods 0.000 description 9
- 238000010586 diagram Methods 0.000 description 8
- 230000007547 defect Effects 0.000 description 7
- 238000012546 transfer Methods 0.000 description 5
- 230000009471 action Effects 0.000 description 4
- 230000001276 controlling effect Effects 0.000 description 2
- 230000001934 delay Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000003780 insertion Methods 0.000 description 2
- 230000037431 insertion Effects 0.000 description 2
- 238000011144 upstream manufacturing Methods 0.000 description 2
- 238000012937 correction Methods 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 230000010363 phase shift Effects 0.000 description 1
- 206010037844 rash Diseases 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65H—HANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
- B65H29/00—Delivering or advancing articles from machines; Advancing articles to or into piles
- B65H29/66—Advancing articles in overlapping streams
- B65H29/669—Advancing articles in overlapping streams ending an overlapping stream
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65H—HANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
- B65H43/00—Use of control, checking, or safety devices, e.g. automatic devices comprising an element for sensing a variable
- B65H43/04—Use of control, checking, or safety devices, e.g. automatic devices comprising an element for sensing a variable detecting, or responding to, presence of faulty articles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65H—HANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
- B65H2301/00—Handling processes for sheets or webs
- B65H2301/40—Type of handling process
- B65H2301/44—Moving, forwarding, guiding material
- B65H2301/447—Moving, forwarding, guiding material transferring material between transport devices
- B65H2301/4471—Grippers, e.g. moved in paths enclosing an area
- B65H2301/44712—Grippers, e.g. moved in paths enclosing an area carried by chains or bands
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65H—HANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
- B65H2301/00—Handling processes for sheets or webs
- B65H2301/40—Type of handling process
- B65H2301/44—Moving, forwarding, guiding material
- B65H2301/447—Moving, forwarding, guiding material transferring material between transport devices
- B65H2301/4473—Belts, endless moving elements on which the material is in surface contact
- B65H2301/44732—Belts, endless moving elements on which the material is in surface contact transporting articles in overlapping stream
Definitions
- the invention lies in the field of further processing of printed products, in particular printed products in scale formation, and relates to a system consisting of means and functions according to the preamble of the independent patent claim for error management of errors in the scale formation.
- Print products are laid out in shingle formation, for example from rotary presses, from unwinding stations from winding or from feeders from stacks.
- Print products in scale formation are processed further directly in scale formation or first converted into another transport formation, for example into a conveying stream of print products hanging individually from clamps, and in this form are led to further processing.
- Scale streams of printed products contain flaws, for example in the form of defective products, missing products, shifted products or multiple-used locations. Due to these defects For example, defective products, gaps in defined product sequences (e.g. address sequences) or even production interruptions arise during further processing, which must be prevented if possible.
- errors in scale formation are at least partially corrected by connecting further devices between the device producing a scale flow and the device further processing the scale flow, which, independently of the higher-level process, are concerned with eliminating fault points from the scale flow, so that an as error-free shingled stream as possible is available for further processing.
- Such devices are, for example, scale buffers, by means of which gaps in scale flows can be closed.
- Such devices are complex and take up space, in particular if the scale flow for the intermediate device also has to be converted. Under no circumstances is such a device capable of eliminating all the fault points that occur, so that several may be necessary for the highest demands. Since the devices mentioned function in isolation, they require their own sensor and control systems, which can be very complex. In particular, they are also not suitable for processing differentiated shingled streams, that is to say shingled streams with, for example, two different, alternating product distances.
- the error management system should be able to be optimized in an application-specific manner in such a way that it has an effect with minimal additional equipment prevent defects in the scale formation (regardless of their frequency and type) for further processing or limit it to a tolerable level.
- the system should be applicable to any type of shingled stream, i.e. it should be independent of the type of overlap (front edge below or above), the orientation of the products (folds at the front or back) and the thickness of the products, and in particular it should be be applicable for differentiated scale flows.
- FIG. 1 shows a rough functional diagram of the error management system according to the invention.
- This has an observation element 1, an interpretation element 2, a control element 3 and at least one controlled element 4.1, 4.2 and 4.3.
- the observation element 1 is arranged in the region of the scale stream S.
- the controlled elements 4.1 / 2/3 are elements, if possible, which are used for transport, further processing or conversion into other transport formations and which may be specially equipped, in particular controllable, for their additional function for error processing. They are all arranged downstream of the product flow observation element.
- the observation element 1 observes the shingled stream S supplied for further processing and delivers a measurement signal corresponding to the shed stream to the interpretation element 2.
- the interpretation element 2 compares the measurement signal of the observation element 1 with corresponding setpoints and uses this comparison to detect fault points in the shed stream which, depending on the embodiment, also differ Assigns error types (blank space, defective product, moved product or multiple-occupancy). If the interpretation element detects an error, it generates an error pulse and, depending on the type of error, forwards it to at least one input of the control element 3 assigned to a specific controlled element.
- the control element 3 generates a control pulse for the controlled element (4.1, 4.2 or 4.3) from the error pulse and delays it this corresponds to the time required for the transport of the fault location from the observation point to the controlled element, such that the reaction of the controlled element caused by the control pulse occurs when the fault location passes its area of effect.
- the reaction of the controlled element consists in converting a fault location that cannot be directly eliminated into an eliminable one (ejecting faulty or multiple products, which creates an empty space), eliminating an eliminable fault location (closing the blank space) and / or suppressing further processing of the fault location (fault location pass through further processing step without further processing).
- the interpretation element 2 needs setpoints and tolerance ranges that have to be matched to the product to be processed (e.g. product thickness) and to the scale flow to be processed (e.g. type of overlap, product distance) and saved. Tolerance ranges are also entered and saved or are fixed in the interpretation element.
- the interpretation element can also be designed to be self-learning.
- the control unit For the generation of the control pulses and their delay, the control unit requires data about the controlled elements and about the arrangement (in relation to the product flow) of the observation element and the controlled elements (e.g. distance from the area of the observation element to the area of the controlled element in number of cycles necessary for the transport over this route) and data about the products to be processed (e.g. product length). These data are also entered and stored in the control element or are predefined therein.
- Additional error impulses can be fed to the control element from a device arranged further upstream of the product, for example messages from the rotary press with regard to waste gaps or printing errors which can lead to defective products.
- the control element processes such messages in the same way as error signals of the interpretation element, taking into account the distance between the reporting element and the controlled element.
- the error management system is subordinate to the same system cycle, to which all transport and further processing elements within the scope of the system must also be subordinate. Therefore, even with a functional connection between, for example, the rotary press and a controlled element of the fault management system, it is a prerequisite that the scale flow between the rotary press and the controlled element is not re-clocked.
- the system according to the invention makes it possible, by means of appropriate control of devices which are advantageously also necessary for further processing, to eliminate application-specific errors in the incoming stream of flakes, to convert them and / or to let them run through the further processing in such a way that no or at most tolerable, defective products are produced.
- observation element interpretation element
- control element control element
- controlled elements can therefore be different, but their functions remain the same.
- the faults that can be detected by the fault management system according to the invention are mainly: vacancies in the shingle stream, locations in the shingle stream occupied with an incorrect number of products (positions), locations in the shingle stream occupied with defective products, and products that are positioned so strongly displaced in relation to neighboring products in the conveying direction that they cannot be processed further without correction.
- the fault management system treats empty spaces, for example by closing them, or by controlling the further processing in such a way that the empty space happens without further processing. It treats areas occupied by a defective product, for example by ejecting the defective product and further processing the resulting empty space in the manner mentioned. For example, it treats multiply occupied positions as if they were occupied by a faulty product or ignores them if they are saved in a subsequent scale buffer. It treats areas with a shifted product, depending on the size of the shift, as a space with an immediately preceding or immediately following multiple-occupied position or ignores it.
- FIG. 2 shows an example of an application of the error management system according to the invention.
- the observation element 1 and the interpretation element 2 are equipped, for example, in such a way that vacancies, multiple-occupied locations and locations occupied with a defective product can be distinguished.
- the stream of shingles runs on a conveyor belt 21, in the area of which the observation element 1 is arranged, into the area of the fault management system. It is then taken over by a pre-clocking element 22, on which the products are positioned exactly in the conveying direction by cams engaging the rear edges of the products. Products that are very strongly displaced are removed by the Pre-clock element 22 is converted into multiple-occupied positions and corresponding empty spaces, which is why the error management system need not be set up for the detection of shifted products.
- the stream of shingles is taken over by a clamp conveyor 23 and transferred by the latter to a clamp buffer 24, which delivers the products to an insertion drum 25.
- the controlled elements are a switch 10 which separates discharged products into defective and multiple products, a triggering device 20 which acts on the clamps of the clamp transporter 23 so that they can be opened above the switch 10, and a controlled takeover of the products by the clamps of the clip buffer 24 at its input 30.
- the triggering app 20 opens the brackets that have taken the wrong number of products (multiple positions) or a faulty product.
- the switch 10 depending on the position (double arrow W), guides the defective products that have been removed according to arrow F, for example from the process, the products from Multiple positions according to arrow M, for example in a return to the process.
- the discharge creates empty spaces in the product flow.
- no clamp is transported further if the corresponding clamp of the transporter 23 has no product to transfer (empty space), whereby empty spaces are closed.
- the function of the error management system for the application shown in FIG. 2 is now as follows:
- the shingled stream with defects passes the observation point with the observation element 1.
- the observation element supplies a measurement signal to the interpretation element 2.
- the interpretation element generates error signals for those with a fault Product occupied positions (a), for multiple occupied positions (b) and for spaces (c).
- error pulses are forwarded to inputs of the control element 3, which are each assigned to one of the controlled elements (10, 20, 30) (d, e, f), namely: for locations (a) occupied with defective product to the input d for positioning the switch 10 to the right in the figure such that the defective product to the left of the switch can be removed from the process according to arrow F, at the input e for the triggering device for opening the clamp which transports the defective product, and on the entrance f for closing the gap created by the removal; for multiple occupied points (b) at the input d for positioning the switch 10 in the figure to the left, such that the products on the right of the switch according to arrow M, for example, can be returned to the process, to the input e for the triggering device Opening the bracket that transports the wrong number of products and to the entrance f to close the gap; for spaces at the exit f to close the gap.
- the arrangement shown is only one example of an application, of which an infinite number are conceivable.
- the application shown could also function differently than described: for example, the defective products could also be discharged during the transfer from the pre-clock 22 to the staple transporter 23, so that the triggering device 20 would only have to convert multiple-used positions into empty spaces and the switch 10 would be unnecessary.
- the clamp control at a transfer point is usually so slow with a movement template it is realized that several clamps each move in different closing states in the area of the template, the effort to control individual clips that should not close in this area would be greater than the control of the triggering device 20.
- the one triggering device 20 and switch 10 use two release devices and no switch.
- the observation element 2 is generally an element that observes the shingled stream. Observation elements can be assigned to two groups: those that deliver a clocked signal, that is, a signal that delivers a meaningful measurement result once per system cycle, and those that deliver a continuous signal. For example, an observation element can measure the thickness of the entire scale stream or the thickness of each element of the scale stream.
- Devices other than observation element 1 can also be used, for example sensor arrangements with which the distance between the shingled stream and a fixed reference point is measured in a contactless manner, sensor arrangements with which patterns on the top of the shingled stream are detected, or many others .
- FIGS. 3a to 3d now show, by way of example, the measurement signal of an observation element 1, which corresponds to the device according to Swiss patent application No. 510/92 (2/19/92, P0560), in the case of various fault locations in the scale stream.
- observation element 1 which corresponds to the device according to Swiss patent application No. 510/92 (2/19/92, P0560)
- FIGS. 3a to 3d show, by way of example, the measurement signal of an observation element 1, which corresponds to the device according to Swiss patent application No. 510/92 (2/19/92, P0560), in the case of various fault locations in the scale stream.
- the corresponding application please refer to the corresponding application.
- FIG. 3a shows an error-free scale flow S with conveying direction F and the corresponding, continuous signal MS from the observation point over an observation time of seven cycles (T.1 to T.7).
- the measurement signal MS has a deflection for the edges of the printed products lying on top of the scale flow in each cycle, the time of which within the cycle corresponds to the position of this leading edge in the scale flow and the height of the product in the edge area.
- FIG. 3b shows, in comparison to FIG. 3a, a shingled stream S which has an empty space in cycle T.7. Accordingly, the deflection is missing in cycle T.7 of the measurement signal.
- An empty space can therefore be detected by an interpretation element by scanning the measurement signal MS cyclically on an edge. If the edge is missing in one cycle, an error pulse is generated for an empty space generated.
- a height scan can also be used to detect an empty space. In the case of an empty space, the maximum height reached by the measurement signal within the cycle is below a lower tolerance limit (see description of FIG. 3c).
- FIG. 3c shows a shingled stream with a double occupancy in cycle T.5. Accordingly, the deflection of the measurement signal in cycle T.5 is twice as high. For a product with a faulty thickness (missing or excess pages), the height of the deflection is correspondingly high. A scan of the deflection height can therefore be used to detect multiply occupied or incorrectly occupied locations. According to the set tolerance ranges, for example, double products in a stream of simple products, single or more than double products in a stream of double products and / or defective products in any stream can be determined.
- a tolerance range of +75% / - 50% (based on the thickness of the product) is sufficient to detect double products and empty spaces in a stream of simple products (without detection of defective products). If the measured thickness is more than 175%, there are two products, if it is less than 50% there is no product. For example, a tolerance range of ⁇ 45% (based on the thickness of two products) is used for the detection of locations occupied by an incorrect number of products in a stream of double products. If the measured thickness is more than 145%, there are three or more products, if it is less than 55%, there is one or no product.
- FIG. 3d shows a scale flow in which the product is shifted in cycle T.4 in such a way that the corresponding deflection falls in cycle T.5 and cycle T.4 must be interpreted as an empty space.
- a shifted product can be detected as a cycle without deflection (T.4) with an immediately following or immediately preceding cycle with a double edge.
- the tolerance range of such a detection is approximately ⁇ 50% (based on the distance between the products), i.e. a shift by more than half of the target distance is detected as a shifted product.
- the system cycle can be divided into two areas, whereby an edge is expected in one area of the cycle and not in the other area.
- observation elements deliver different measurement signals.
- observation elements that continuously measure a quantity that correlates with the thickness of the current or the individual products all of the errors mentioned can be detected with one flank and one height scan per system cycle if the measurement accuracy is sufficient.
- observation elements that deliver a clocked measurement signal it is sensibly only scanned for the height, that is to say that a signal of this type cannot, for example, be used to distinguish between a strongly shifted product and an empty space combined with a double product. For this reason, observation elements that deliver clocked measurement signals are advantageously used on well-clocked scale streams.
- Measuring signals that are correlated with the entire thickness of the shingled stream are more complex to process because fault locations extend over several cycles, which is particularly evident at the beginning and at the end of a shingled stream and in the case of larger interruptions. If this has to be included in the interpretation of the measurement, the setpoints for cycles following an error location must be changed according to the length of the product and the location of the error.
- FIG. 4 now shows an exemplary block diagram for an interpretation element 2 for interpreting the measurement signal of an observation element in the form of a device according to the Swiss application No. 510/92 (February 19, 1992, P0560), as they are also used in the application of FIG. 2 could.
- the stream of shingles is, for example, a stream of double products.
- the observation element delivers a continuous measurement signal MS. This is correlated with the height of the product edges on the scale stream.
- the measurement signal is processed by the interpretation unit in cycles, that is, a cycle is interpreted as faulty in a certain way and a corresponding error signal is generated or it is interpreted as good and no error signal is generated.
- the measurement signal MS is fed to an edge scan 41, in which it is scanned for the number of edges occurring in cycles. If a clock has no edge, an error signal is generated for an empty space (c, FIG. 2), if it has more than one edge, an error signal for a shifted product (which, for example, is to be treated as a multiple-occupied position, b, FIG. 2) 2) generated.
- the measurement signal is further fed to a first, coarse height scan 42. If the maximum height reached in one cycle lies outside the tolerance range, an error signal is generated for a location occupied by an incorrect number of products (b, FIG. 2). After that the measurement signal is also fed to a second height scan 43 with a significantly narrower tolerance range.
- an error signal for a defective product (a, FIG. 2) is generated.
- a pulse for a counter Z can be generated for a cycle that has an edge and a height that is within the narrow tolerance, so that the counter counts all good digits of the scale stream.
- a height below the lower tolerance limit must be interpreted as a blank (c) in the first height scan 42. If defective products and multiple products are to be discharged at the same location, the rough height scan 42 is unnecessary. If defective products need not be recognized, the second, fine height scan 43 is unnecessary.
- the shingled stream treated is a differentiated stream, in which, for example, pairs of products are conveyed, the product distance within the pair being smaller than between pairs, two or no flank alternately fall into one system cycle.
- the edge scan can then be set up in such a way that error signals are generated if edges occur in the empty cycle and if more or less than two edges occur in the other cycle.
- the system clock can also be divided into clock areas such that a pattern of clock areas with an edge and clock areas without an edge is created.
- the edge scanning is omitted and, depending on the size of the shift, shifted products are not detected or are detected as a combination of a multiple-occupied position and a blank space. If the measurement resolution of the observation element is not large enough or the background of the measurement is unstable, the detection of defective products (missing pages etc.) becomes difficult or impossible. If the measurement signal is correlated with the thickness of the entire stream of shingles, the interpretation of the height scan must not only be matched to the product at the top of the shingle stream, but also to all products below it.
- the observation element can deliver an analog or a digital measurement signal.
- the functions of the interpretation element can be implemented in hardware or software.
- the necessary functions of the conversion of the measurement signal e.g. analog / digital converter
- the edge scan e.g. flip / flop circuit
- the height scan e.g. comparator circuit
- the limit values for the height sensing are determined, for example, by potentiometers which are connected upstream of the comparator setpoint inputs and / or by fixed resistors.
- the thickness of the product can be determined by the observation element during a calibration measurement and the corresponding mean setpoint can be set in the form of a reference voltage by the settings of a potentiometer.
- Figure 5 shows schematically the setting of this setpoint.
- the product thickness D is plotted on the abscissa and the comparison voltage UV is plotted on the right.
- Each comparison voltage is assigned, for example, two upper and two lower tolerance limits TG.1 / 2/3/4.
- the measurement voltage U is plotted on the ordinate.
- the thickness of a product measured in a calibration measurement is D0, the detection of which by the observation element generates a measurement voltage U0.
- the comparison voltage is now set, for example, in such a way that the comparison of U and UV gives a result within the narrower tolerance limits TG.1 and TG.2.
- the setpoint UV0 and the corresponding tolerance limits TG0.1 / 2/3/4 are determined.
- the setpoint UV0 is kept constant and the corresponding tolerance limits TGgr.3 and TG0.4 are compared with the effective, constantly changing measured value U.
- FIG. 6 shows a block diagram of an exemplary control element 3.
- the control element generates control pulses for the controlled elements from the error pulses generated by the interpretation element by essentially delaying them according to the distance between the observation point of the observation element and the action point of the controlled element and, if necessary, converting them in such a way that it is suitable for controlling the controlled element.
- the distance between the two positions is processed as the number of system cycles, which is necessary for the promotion of a product from one position to another.
- the necessary delay corresponds to the effective distance between the observation point and the action point. If the leading edge is observed and the rear edge is knitted, the effective distance between the observation point and the point of action must be increased by the product length. If the rear edge is observed and the front edge is worked, the effective distance between the observation point and the effective point must be shortened by the length of the product.
- the block diagram shown in FIG. 6 applies, for example, to the control element which is used for the exemplary application shown in FIG. 2, but can also be used for other applications with three or less controlled elements.
- the inputs for error pulses are designated in a manner corresponding to FIG. 2 with the reference symbols d, e and f, and the outputs for the control pulses with the reference symbols of the controlled elements 10, 20 and 30.
- the control element also has an input L for inputting the product length, which must be converted into cycles in a conversion element 61. It also has an input for the system clock T, which is advantageously converted into a faster control clock by a divider 62.
- the control element essentially consists of units which operate in parallel to one another and which each cause the delay of a control pulse intended for a specific controlled element. These consist of a first delay unit 63, which causes a delay by the product length and which can optionally be bypassed (switch 64), and a second delay unit 65, which is set according to the distance between the observation point and the point of action of the corresponding controlled element (input 66) .
- the block diagram shown is not applicable for the control of a controlled element which acts on the leading edge while the trailing edge is observed (negative delay).
- the switches 64 for the inputs d and e must be bypassed and the corresponding switch for the input f first delay unit can be set, since the leading edges are observed and the controlled elements 10 and 20 act on the leading edges and only the controlled element 30 acts on the trailing edges.
- control element can be implemented, for example, with correspondingly adjustable shift registers. It can also be implemented in software.
- FIG. 7 shows the operating and setting panel for a combined, hardware-based interpretation and control element. This shows which parameters can be set and which are hard-wired.
- the corresponding combined element can be used for the controlled elimination of multiply occupied locations from scale streams of individual products or of double products.
- buttons 71, 72 and 73 there are three selection buttons 71, 72 and 73.
- button 71 the height scanning of the interpretation unit is activated
- button 72 the edge scanning.
- Edge scanning and / or height scanning can be activated.
- button 73 a product length-related delay can be activated / deactivated.
- the figure shows an entry point 74 for entering the product length.
- the left area of the panel is used for calibration measurement and the visual display of defects. It comprises an arrangement of light-emitting diodes 75, 76, 77 and 78 and a taring button 79.
- the light-emitting diodes are wired to the comparators (see FIG. 8) in such a way that the green light-emitting diode 75 lights up when the measured value is within the tolerance limits TG.1 and TG .2 ( Figure 5) lies.
- the yellow LEDs 76 and 77 light up when the measured value is between TG.2 and TG.3 or between TG.1 and TG.4.
- the red LED 78 lights up when the measured value lies outside the range between TG.3 and TG.4.
- the calibration setting is carried out in that a product or a number of products corresponding to the scale flow is detected by the observation element and the tare button 79 is set such that the green light-emitting diode 75 and the two yellow light-emitting diodes 76 and 77 light up.
- the position of the buoyancy control 79 is no longer changed.
- the diodes light up in accordance with the measurement, in particular the lighting up of the red diode 78 indicates a fault location.
- FIG. 8 shows the wiring of the calibration and error detection function (height scanning) which is based on this area (75, 76, 77, 78, 79) of the panel described in connection with FIG. 7 and its function.
- the controlled elements are mostly known elements that do not need to be described in more detail here.
- the best way to discharge defective products or multiple products is to use a release device that acts on a clamp that transports such a product.
- Brackets that can be individually controlled by a triggering device are known, for example, from Swiss patent 644816 (F113) by the same applicant.
- F113 Swiss patent 644816
- a suitable arrangement with a quick-release cylinder, which acts on the release mechanism of the clip can be used, for example, as the release device.
- a clamp buffer can be used to close gaps, as shown in FIG.
- a corresponding clip buffer is known from US Patent No. US-4887809 (F245) by the same applicant.
- other types of buffers or gap closers can also be used.
- fault management systems as described can also work together in parallel or in series.
- a parallel network of error management systems is conceivable for a further processing system in which several streams of shingles converge, such as for insertion or collection. All shingled streams can be processed by one fault management system, whereby fault pulses from one shingled stream can also be directed to controlled elements of the other shingled streams, for example to prevent the production of defective products.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Controlling Sheets Or Webs (AREA)
- Separation, Sorting, Adjustment, Or Bending Of Sheets To Be Conveyed (AREA)
- Feeding Of Articles By Means Other Than Belts Or Rollers (AREA)
- Discharge By Other Means (AREA)
Description
- Die Erfindung liegt auf dem Gebiete der Weiterverarbeitung von Druckprodukten, insbesondere von Druckprodukten in Schuppenformation, und betrifft ein System bestehend aus Mitteln und Funktionen gemäss dem Oberbegriff des unabhängigen Patentanspruches zum Fehlermanagement von Fehlern in der Schuppenformation.
- Druckprodukte werden in Schupperformation ausgelegt, beispielsweise von Rotationspressen, von Abwickelstationen ab Wickeln oder von Anlegern ab Stapeln. Druckprodukte in Schuppenformation werden direkt in Schuppenformation weiterverarbeitet oder zuerst in eine andere Transportformation, beispielsweise in einen Förderstrom von einzeln an Klammern hängenden Druckprodukten verwandelt und in dieser Form zu einer Weiterverarbeitung geführt.
- Schuppenströme von Druckprodukten enthalten Fehlerstellen, beispielsweise in Form von fehlerhaften Produkten, fehlenden Produkten, verschobenen Produkten oder mehrfach belegten Stellen. Bedingt durch diese Fehlerstellen entstehen bei der Weiterverarbeitung beispielsweise fehlerhafte Produkte, Lücken in definierten Produktefolgen (beispielsweise Adressfolgen) oder gar Produktionsunterbrüche, was nach Möglichkeit verhindert werden muss.
- Gemäss dem Stande der Technik werden Fehler in Schuppenformationen wenigstens teilweise behoben, indem zwischen die einen Schuppenstrom erzeugende Vorrichtung und die den Schuppenstrom weiterverarbeitende Vorrichtung weitere Vorrichtungen geschaltet werden, die sich, unabhängig vom übergeordneten Prozess, isoliert damit befassen, Fehlerstellen aus dem Schuppenstrom zu eliminieren, damit für die Weiterverarbeitung ein möglichst fehlerfreier Schuppenstrom zur Verfügung steht. Derartige Vorrichtungen sind beispielsweise Schuppenpuffer, durch die Lücken in Schuppenströmen geschlossen werden können Derartige Vorrichtungen sind aufwendig und beanspruchen Platz, insbesondere dann, wenn der Schuppenstrom für die zwischengeschaltete Vorrichtung zusätzlich auch umgewandelt werden muss. In keinem Falle ist eine derartige Vorrichtung fähig, alle auftretenden Fehlerstellen zu beheben, sodass für höchste Ansprüche mehrere notwendig werden können Da die genannten Vorrichtungen isoliert funktionieren, benötigen sie eigene Sensor- und Steuersysteme, die sehr aufwendig sein können. Insbesondere sind sie auch nicht geeignet, um differenzierte Schuppenströme, das heisst Schuppenströme mit beispielsweise zwei verschiedenen, sich abwechselnden Produkteabständen zu verarbeiten.
- Es ist nun die Aufgabe der Erfindung ein Fehlermanagement-System, bestehend aus Mitteln und Funktionen, zu schaffen, mit dem Fehlerstellen in einer Schuppenformation von Druckprodukten, die einer Weiterverarbeitung zugeführt wird, mit einem optimierten Aufwand verarbeitet werden. Das Fehlermanagement-System soll anwendungsspezifisch derart optimiert werden können, dass es bei einem minimalen, apparativen Mehraufwand Auswirkungen von Fehlerstellen der Schuppenformation (unabhängig von deren Häufigkeit und Art) auf die Weiterverarbeitung verhindern oder auf ein tolerierbares Mass beschränken kann. Das System soll anwendbar sein für jede Art von Schuppenstrom, das heisst, es soll unabhängig von der Überlappungsart (Vorderkante unten oder oben), von der Orientierung der Produkte (Falt vorne oder hinten) und von der Dicke der Produkte sein und es soll insbesondere auch für differenzierte Schuppenströme anwendbar sein.
- Diese Aufgabe wird gelöst durch das Fehlermanagement-System gemäss dem unabhängigen Patentanspruch. Das System soll anhand der folgenden Figuren beschrieben werden. Dabei zeigen:
- Figur 1
- ein Funktionsschema des erfindungsgemässen Fehlermanagement-Systems;
- Figur 2
- eine beispielhafte Anwendung des erfindungsgemässen Fehlermanagement-Systems;
- Figuren 3a bis d
- verschiedene Fehlerstellen in einem Schuppenstrom mit den entsprechenden Messsignalen eines beispielhaften Beobachtungselementes.
- Figur 4
- ein Blockschema für eine beispielhafte Ausführungsform des Interpretationselements;
- Figur 5
- ein Schema für die Eichung eines Interpretationselements;
- Figur 6
- ein Blockschema einer beispielhaften Ausführungsform des Steuerelementes;
- Figur 7
- ein Bedienungspannel für eine beispielhafte Ausführungsform eines kombinierten Interpretations- und Steuerelementes.
- Figur 8
- Verdrahtung einer beispielhaften Eich- und Fehlerdetektionsfunktion.
- Figur 1 zeigt ein grobes Funktionsschema des erfindungsgemässen Fehlermanagement-Systems. Dieses weist ein Beobachtungselement 1, ein Interpretationselement 2, ein Steuerelement 3 und mindestens ein gesteuertes Element 4.1, 4.2 und 4.3 auf. Das Beobachtungselement 1 ist im Bereiche des Schuppenstromes S angeordnet. Die gesteuerten Elemente 4.1/2/3 sind möglichst Elemente, die dem Transport, der Weiterverarbeitung oder der Umwandlung in andere Transportformationen dienen und die für ihre Zusatzfunktion zur Fehlerbearbeitung möglicherweise speziell ausgerüstet, insbesondere steuerbar sind. Sie sind alle vom Beobachtungselement Produktestromabwärts angeordnet.
- Das Beobachtungselement 1 beobachtet den der Weiterverarbeitung zugeführten Schuppenstrom S und liefert ein dem Schuppenstrom entsprechendes Messsignal an das Interpretationselement 2. Das Interpretationselement 2 vergleicht das Messsignal des Beobachtungselements 1 mit entsprechenden Sollwerten und detektiert anhand dieses Vergleichs Fehlerstellen des Schuppenstroms, die es je nach Ausführungsform auch verschiedenen Fehlerarten (Leerstelle, fehlerhaftes Produkt, verschobenes Produkt oder mehrfach belegte Stelle) zuordnet. Detektiert das Interpretationselement einen Fehler, generiert es einen Fehlerimpuls und leitet diesen je nach Fehlerart mindestens einem, einem bestimmten gesteuerten Element zugeordneten Eingang des Steuerelementes 3 zu. Das Steuerelement 3 erzeugt aus dem Fehlerimpuls einen Steuerimpuls für das gesteuerte Element (4.1, 4.2 oder 4.3) und verzögert diesen entsprechend der für den Transport der Fehlerstelle von der Beobachtungsstelle zum gesteuerten Element benötigten Zeitspanne, derart, dass die durch den Steuerimpuls bewirkte Reaktion des gesteuerten Elements eintritt, wenn die Fehlerstelle seinen Wirkungsbereich passiert. Die Reaktion des gesteuerten Elementes besteht darin, eine nicht direkt eliminierbare Fehlerstelle in eine eliminierbare umzuwandeln (fehlerhaftes oder mehrfaches Produkt ausschleusen, wodurch eine Leerstelle entsteht), eine eliminierbare Fehlerstelle zu eliminieren (Leerstelle schliessen) und/oder eine Weiterverarbeitung der Fehlerstelle zu unterdrücken (Fehlerstelle durch Weiterverarbeitungsschritt passieren lassen ohne Weiterverarbeitung).
- Das Interpretationselement 2, braucht zum Detektieren und Interpretieren der Fehlerstellen Sollwerte und Toleranzbereiche, die auf das zu verarbeitende Produkt (z.B. Produktedicke) und auf den zu verarbeitenden Schuppenstrom (z.B Überlappungsart, Produkteabstand) abgestimmt sein müssen Sollwerte werden beispielsweise durch Eichmessungen erzeugt und gespeichert oder eingegeben und gespeichert. Toleranzbereiche werden ebenfalls eingegeben und gespeichert oder sind im Interpretationselement fest vorgegeben. Das Interpretationselement kann auch selbstlernend ausgelegt sein.
- Die Steuereinheit benötigt für die Erzeugung der Steuerimpulse und deren Verzögerung Daten über die gesteuerten Elemente und über die Anordnung (in Bezug auf den Produktestrom) des Beobachtungselementes und der gesteuerten Elemente (z.B. Distanz vom Bereich des Beobachtungselementes zum Bereich des gesteuerten Elementes in Anzahl Takten, die für den Transport über diese Strecke notwendig ist) und Daten über die zu verarbeitenden Produkte (z.B. Produktelänge). Auch diese Daten werden in das Steuerelement eingegeben und gespeichert oder sind darin fest vorgegeben.
- Dem Steuerelement können zusätzliche Fehlerimpulse von einer weiter Produktestrom-aufwärts angeordneten Vorrichtung zugeleitet werden, beispielsweise Meldungen der Rotationspresse bezüglich Makulaturlücken oder drucktechnischen Fehlleistungen, die zu fehlerhaften Produkten führen können. Das Steuerelement verarbeitet derartige Meldungen in derselben Weise wie Fehlersignale des Interpretationselementes unter Berücksichtigung der Distanz zwischen meldendem Element und gesteuertem Element.
- Das Fehlermanagement-System ist demselben Systemtakt untergeordnet, dem auch alle Transport- und Weiterverarbeitungselemente im Wirkungsbereich des Systems untergeordnet sein müssen. Deshalb ist es auch bei einer funktionellen Verbindung zwischen beispielsweise Rotationspresse und einem gesteuerten Element des Fehlermanagement-Systems Voraussetzung, dass der Schuppenstrom zwischen der Rotationspresse und dem gesteuerten Element nicht neu eingetaktet wird.
- Das erfindungsgemässe System erlaubt es, durch entsprechende Steuerung von vorteilhafterweise für die Weiterverarbeitung ebenfalls notwendigen Vorrichtungen, anwendungsspezifisch Fehler des einlaufenden Schuppenstromes zu eliminieren, zu wandeln und/oder derart durch die Weiterverarbeitung laufen zu lassen, dass keine oder höchstens tolerierbare, fehlerhafte Produkte entstehen.
- Anwendungsspezifisch können deshalb die Ausführungsformen von Beobachtungselement, Interpretationselement, Steuerelement und gesteuerten Elementen verschieden sein, ihre Funktionen bleiben aber dieselben.
- Die von dem erfindungsgemässen Fehlermanagement-System erfassbaren Fehler sind hauptsächlich: Leerstellen im Schuppenstrom, mit einer falschen Anzahl von Produkten (mehrfach) belegte Stellen im Schuppenstrom, mit fehlerhaften Produkten belegte Stellen im Schuppenstrom und Produkte, die gegenüber Nachbarprodukten in Förderrichtung derart stark verschoben positioniert sind, dass sie ohne Korrektur nicht weiterverarbeitet werden können.
- Das erfindungsgemässe Fehlermanagement-System behandelt Leerstellen beispielsweise dadurch dass es sie schliesst, oder dass es die Weiterverarbeitung derart steuert, dass die Leerstelle ohne Weiterverarbeitung passiert. Es behandelt mit einem fehlerhaften Produkt belegte Stellen, indem es beispielsweise das fehlerhafte Produkt ausschleust und die dadurch entstandene Leerstelle in der erwähnten Weise weiterbehandelt. Es behandelt mehrfach belegte Stellen beispielsweise wie mit einem fehlerhaften Produkt belegte Stellen oder ignoriert sie, wenn sie in einem folgenden Schuppenpuffer aufgehoben werden. Es behandelt Stellen mit einem verschobenen Produkt, je nach Grösse der Verschiebung als Leerstelle mit unmittelbar vorausgehender oder unmittelbar nachfolgender mehrfach belegter Stelle oder ignoriert sie.
- Figur 2 zeigt eine beispielhafte Anwendung des erfindungsgemässen Fehlermanagement-Systems. Das Beobachtungselement 1 und das Interpretationselement 2 sind für diese Anwendung beispielsweise derart ausgerüstet, dass Leerstellen, mehrfach belegte Stellen und mit einem fehlerhaften Produkt belegte Stellen unterschieden werden können. Der Schuppenstrom läuft auf einem Förderband 21, in dessen Bereich das Beobachtungselement 1 angeordnet ist, in den Bereich des Fehlermanagement-Systems ein. Er wird dann von einem Vortaktelement 22 übernommen, auf dem durch an den Hinterkanten der Produkte angreifende Nocken die Produkte in Förderrichtung exakt positioniert werden Produkte, die sehr stark verschoben sind, werden durch das Vortaktelement 22 zu mehrfach belegten Stellen und entsprechenden Leerstellen umgewandelt, weshalb das Fehlermanagement-System nicht für die Detektierung von verschobenen Produkten eingerichtet zu sein braucht. Vom Vortaktelement 22 wird der Schuppenstrom von einem Klammertransporteur 23 übernommen und von diesem an einen Klammerpuffer 24 übergeben, der die Produkte an eine Einstecktrommel 25 abgibt. Die gesteuerten Elemente sind eine Weiche 10, die ausgeschleuste Produkte in fehlerhafte und mehrfache Produkte trennt, ein Auslöseapparat 20, der auf die Klammern des Klammertransporteurs 23 wirkt, sodass sie über der Weiche 10 geöffnet werden können, und eine gesteuerte Übernahme der Produkte durch die Klammem des Klammerpuffers 24 an dessen Eingang 30.
- Der Auslöseappart 20 öffnet die Klammern, die eine falsche Anzahl von Produkten (mehrfach belegte Stelle) oder ein fehlerhaftes Produkt ergriffen haben Die Weiche 10 leitet je nach Position (Doppelpfeil W) die ausgeschleusten fehlerhaften Produkte entsprechend Pfeil F beispielsweise aus dem Prozess, die Produkte von mehrfach belegten Stellen gemäss Pfeil M beispielsweise in eine Rückführung in den Prozess. Durch die Ausschleusung entstehen Leerstelle im Produktestrom. Am gesteuerten Eingang 30 zum Klammerpuffer 24 wird keine Klammer weitertransportiert, wenn die entsprechende Klammer des Transporteurs 23 kein Produkt zu übergeben hat (Leerstelle), wodurch Leerstellen geschlossen werden.
- Die Funktion des Fehlermanagement-Systems für die in der Figur 2 dargestellte Anwendung ist nun die folgende: Der mit Fehlerstellen behaftete Schuppenstrom passiert die Beobachtungsstelle mit dem Beobachtungselement 1. Das Beobachtungselement liefert ein Messsignal an das Interpretationselement 2. Das Interpretationselement generiert Fehlersignale für mit einem fehlerhaften Produkt belegte Stellen (a), für mehrfach belegte Stellen (b) und für Leerstellen (c). Diese Fehlerimpulse werden weitergeleitet an Eingänge des Steuerelementes 3, die je einem der gesteuerten Elemente (10, 20, 30) zugeordnet sind (d, e, f), und zwar: für mit fehlerhaftem Produkt belegte Stellen (a) an den Eingang d für eine Positionierung der Weiche 10 in der Figur nach rechts, derart, dass das fehlerhafte Produkt links der Weiche gemäss Pfeil F aus dem Prozess abgeführt werden kann, an den Eingang e für den Auslöseappartat zum Öffnen der Klammer, die das fehlerhafte Produkt transportiert, und an den Eingang f für die Schliessung der durch die Ausschleusung entstehenden Lücke; für mehrfach belegte Stellen (b) an den Eingang d für eine Positionierung der Weiche 10 in der Figur nach links, derart, dass die Produkte rechts der Weiche gemäss Pfeil M beispielsweise in den Prozess zurückgeführt werden können, an den Eingang e für den Auslöseapparat zum Öffnen der Klammer, die die falsche Anzahl von Produkten transportiert und an den Eingang f zur Schliessung der entstehenden Lücke; für Leerstellen an den Ausgang f zur Schliessung der Lücke.
- Am Ausgang 26 des Klammerpuffers, wo die Produkte beispielsweise in eine Einstecktrommel 25 eingeführt werden, steht ein Produktestrom zur Verfügung, der keine fehlerhaften Produkte, keine mehrfachen Produkte und keine Leerstellen aufweist.
- Die dargestellte Anordnung ist nur ein Beispiel für eine Anwendung, von denen unendlich viele vorstellbar sind. Auch die dargestellte Anwendung könnte anders als beschrieben funktionieren: beispielsweise könnten die fehlerhaften Produkte auch bei der Übergabe vom Vortakter 22 an den Klammertransporteur 23 ausgeschleust werden, sodass der Auslöseapparat 20 nur noch mehrfach belegte Stellen in Leerstellen umwandeln müsste und die Weiche 10 sich erübrigen würde. Da aber die Klammersteuerung an einer Übergabestelle üblicherweise mit einer Bewegungsschablone derart langsam realisiert wird, dass mehrere Klammern jeweils in verschiedenen Schliesszuständen sich im Bereiche der Schablone bewegen, wäre der Aufwand zum Steuren einzelner Klammern, die in diesem Bereiche nicht schliessen sollten, grösser als die Steuerung des Auslöseapparates 20. Selbstverständlich wäre es auch möglich anstelle des einen Auslöseapparates 20 und der Weiche 10 zwei Auslöseapparate und keine Weiche zu verwenden.
- Das Beobachtungselement 2 ist allgemein ein Element, das den Schuppenstrom beobachtet. Beobachtungselemente können zwei Gruppen zugeordnet werden: solche, die ein getaktetes Signal liefern, das heisst ein Signal, das einmal pro Systemtakt ein sinnvolles Messresultat liefert, und solche, die ein kontinuierliches Signal liefern. Ein Beobachtungselement kann beispielsweise die Dicke des gesamten Schuppenstromes oder die Dicke jedes Elementes des Schuppenstromes messen.
- Vorrichtungen, die Dicken messen und als Beobachtungselemente eingesetzt werden können, sind beispielsweise:
- eine Abtastrolle, deren Ausschlag gegenüber einer Ruhelage (Nullage) als Messsignal erfasst wird und die ein kontinuierliches, mit der Gesamtdicke des Schuppenstromes korreliertes Messsignal liefert;
- eine Vorrichtung gemäss der deutschen Offenlegungsschrift Nr. 3419436 (F160) derselben Anmelderin, die ein getaktetes, mit der Dicke des gesamten Schuppenstromes korreliertes Messsignal liefert;
- eine Vorrichtung gemäss der schweizerischen Patentanmeldung Nr. 510/92 (19.2.92, P0560) derselben Anmelderin, die im wesentlichen ein kontinuierliches, mit den oben auf dem Schuppenstrom liegenden Produktekanten korreliertes Messsignal liefert;
- eine Vorrichtung gemäss der schweizerischen Patentanmeldung Nr. 3231/90 (5.10.90, P0453) derselben Anmelderin, die ein getaktetes, mit der Dicke des jeweils obersten Produktes des Schuppenstromes korreliertes Messsignal liefert.
- Es sind auch andere Vorrichtungen als Beobachtungselement 1 einsetzbar, beispielsweise sensorische Anordnungen, mit denen berührungslos die Distanz zwischen dem Schupperstrom und einer ortsfesten Bezugsstelle kontinuierlich oder getaktet gemessen wird, sensorische Anordnungen, mit denen Muster auf der Oberseite des Schuppenstromes erfasst werden, oder viele andere mehr.
- Figuren 3a bis 3d zeigen nun beispielhaft das Messsignal eines Beobachtungselementes 1, das der Vorrichtung gemäss der schweizerischen Patentanmeldung Nr. 510/92 (19.2.92, P0560) entspricht, im Falle von verschiedenen Fehlerstellen im Schuppenstrom. Für eine detaillierte Beschreibung sei auf die entsprechende Anmeldeschrift verwiesen.
- Figur 3a zeigt über eine Beobachtungszeit von sieben Takten (T.1 bis T.7) einen fehlerfreien Schuppenstrom S mit Förderrichtung F und das entsprechende, kontinuierliche Signal MS der Beobachtungsstelle. Das Messsignal MS weist für die auf dem Schuppenstrom obenliegenden Kanten der Druckprodukte in jedem Takt einen Ausschlag auf, der in seinem zeitlichen Auftreten innerhalb des Taktes der Lage dieser Vorderkante im Schuppenstrom, in seiner Höhe der Dicke des Produktes im Kantenbereich entspricht.
- Figur 3b zeigt im Vergleich zu Figur 3a einen Schuppenstrom S, der im Takt T.7 eine Leerstelle aufweist. Entsprechend fehlt im Takt T.7 des Messsignales der Ausschlag. Eine Leerstelle kann also von einem Interpretationselement detektiert werden, indem dieses das Messsignal MS taktweise auf eine Flanke abtastet. Fehlt in einem Takt die Flanke, wird ein Fehlerimpuls für eine Leerstelle generiert. Statt einer Flankenabtastung kann auch eine Höhenabtastung verwendet werden, um eine Leerstelle zu detektieren. Dabei liegt im Falle einer Leerstelle die vom Messsignal innerhalb des Taktes maximal erreichte Höhe unter einer unteren Toleranzgrenze (siehe Beschreibung der Figur 3c).
- Figur 3c zeigt einen Schuppenstrom mit einer doppelt belegten Stelle im Takt T.5. Entsprechend zeigt der Ausschlag des Messsignales im Takt T.5 eine doppelte Höhe. Für ein Produkt mit einer fehlerhaften Dicke (fehlende oder überzählige Seiten) ist die Höhe des Ausschlags entsprechend hoch. Zur Detektierung von mehrfach belegten oder fehlerhaft belegten Stellen kann also eine Abtastung der Ausschlagshöhe herangezogen werden. Entsprechend den gesetzten Toleranzbereichen können beispielsweise Doppelprodukte in einem Strom von einfachen Produkten, einfache oder mehr als doppelte Produkte in einem Strom von Doppelprodukten und/oder fehlerhafte Produkte in irgend einem Strom festgestellt werden.
- Es zeigt sich, dass zum Detektieren von Doppelprodukten und Leerstellen in einem Strom von einfachen Produkten (ohne Detektierung von fehlerhaften Produkten) ein Toleranzbereich von +75%/-50% (bezogen auf die Dicke des Produktes) genügend ist. Beträgt die gemessene Dicke mehr als 175%, sind zwei Produkte vorhanden, beträgt sie weniger als 50% ist kein Produkt vorhanden. Für die Detektierung von mit einer falschen Anzahl von Produkten belegten Stellen in einem Strom von Doppelprodukten wird beispielsweise ein Toleranzbereich von ±45% (bezogen auf die Dicke von zwei Produkten) angewendet. Beträgt die gemessene Dicke mehr als 145%, sind drei oder mehr Produkte vorhanden, ist die weniger als 55%, ist ein oder kein Produkt vorhanden.
- Figur 3d zeigt einen Schuppenstrom, in dem das Produkt im Takt T.4 verschoben ist, derart, dass der entsprechende Ausschlag in den Takt T.5 fällt und Takt T.4 als Leerstelle interpretiert werden muss. Wird das Messsignal taktweise auch auf doppelte Flanken abgetastet, kann ein verschobenes Produkt als Takt ohne Ausschlag (T.4) mit unmittelbar folgendem oder unmittelbar vorhergehendem Takt mit Doppelflanke detektiert werden. Ist die Phasenverschiebung zwischen Systemtakt und Schuppenstrom an der Beobachtungsstelle derart, dass die Kante des Produktes in die Mitte des Systemtaktes fällt, ist der Toleranzbereich einer derartigen Detektierung etwa ±50% (bezogen auf den Abstand zwischen den Produkten), das heisst, eine Verschiebung um mehr als die Hälfte des Sollabstandes wird als verschobenes Produkt detektiert. Zur Verkleinerung des Toleranzbereiches kann der Systemtakt aufgeteilt werden in zwei Bereiche, wobei im einen Bereich des Taktes eine Kante erwartet wird, im anderen Bereich nicht.
- Verschiedene Beobachtungselemente liefern verschiedene Messsignale. Mit Beobachtungselementen, die kontinuierlich eine mit der Dicke des Stromes oder der einzelnen Produkte korrelierende Grösse messen, können mit einer Flanken- und einer Höhenabtastung pro Systemtakt alle genannten Fehler detektiert werden, wenn die Messgenauigkeit ausreicht. Mit Beobachtungselementen, die ein getaktetes Messsignal liefern, wird dieses sinnvollerweise nur auf die Höhe abgetastet, das heisst, dass aus einem derartigen Signal beispielsweise nicht unterschieden werden kann zwischen einem stark verschobenen Produkt und einer mit einem Doppelprodukt kombinierten Leerstelle. Beobachtungselemente, die getaktete Messsignale liefern, werden aus diesem Grunde vorteilhafterweise an gut getakteten Schuppenströmen angewendet.
- Messsignale, die korreliert sind mit der gesamten Dicke des Schuppenstromes, sind aufwendiger zu verarbeiten, da sich Fehlerstellen über mehrere Takte erstrecken, was insbesondere am Anfang und am Schluss eines Schuppenstromes und bei grösseren Unterbrüchen offensichtlich ist. Muss dies in die Interpretation der Messung mit einbezogen werden, müssen die Sollwerte für auf eine Fehlerstelle folgende Takte entsprechend der Länge des Produktes und entsprechend der Fehlerstelle verändert werden.
- Figur 4 zeigt nun ein beispielhaftes Blockschema für ein Interpretationselement 2 zur Interpretation des Messsignales eines Beobachtungselementes in der Form einer Vorrichtung gemäss der schweizerischen Anmeldung Nr. 510/92 (19.2.92, P0560), wie sie auch in der Anwendung der Figur 2 eingesetzt werden könnte. Der Schuppenstrom sei beispielsweise ein Strom von doppelten Produkten. Das Beobachtungselement liefert ein kontinuierliches Messsignal MS. Dieses ist korreliert mit der Höhe der auf dem Schuppenstrom obenliegenden Produktekanten. Das Messsignal wird von der Interpretationseinheit taktweise bearbeitet, das heisst, ein Takt wird als auf eine bestimmte Art fehlerhaft interpretiert und ein entsprechendes Fehlersignal generiert oder er wird als gut interpretiert und es wird kein Fehlersignal generiert.
- Das Messsignal MS wird einer Flankenabtastung 41 zugeführt, in der es taktweise auf Anzahl auftretende Flanken abgetastet wird. Weist ein Takt keine Flanke auf, wird ein Fehlersignal für eine Leerstelle (c, Figur 2) generiert, weist es mehr als eine Flanke auf, wird ein Fehlersignal für ein verschobenes Produkt (das beispielsweise als mehrfach belegte Stelle behandelt werden soll, b, Figur 2) generiert. Das Messsignal wird weiter einer ersten, groben Höhenabtastung 42 zugeführt. Liegt die in einem Takt maximal erreichte Höhe ausserhalb des Toleranzbereiches, wird ein Fehlersignal für eine mit einer falschen Anzahl von Produkten belegten Stelle (b, Figur 2) erzeugt. Danach wird das Messsignal auch einer zweiten Höhenabtastung 43 mit bedeutend engerem Toleranzbereich zugeführt. Liegt die Höhe ausserhalb des Toleranzbereiches, wird ein Fehlersignal für ein fehlerhaftes Produkt (a, Figur 2) erzeugt. Für einen Takt, der eine Flanke und eine innerhalb der engen Toleranz liegende Höhe aufweist, kann ein Impuls für einen Zähler Z generiert werden, sodass der Zähler alle guten Stellen des Schuppenstromes auszählt.
- Wird mit derselben Anordnung ein Strom mit einzelnen Produkten behandelt, muss in der ersten Höhenabtastung 42 eine Höhe unter der unteren Toleranzgrenze als Leerstelle (c) interpretiert werden. Sollen fehlerhafte Produkte und mehrfache Produkte an derselben Stelle ausgeschleust werden, erübrigt sich die grobe Höhenabtastung 42. Müssen fehlerhafte Produkte nicht erkannt werden, erübrigt sich die zweite, feine Höhenabtastung 43.
- Ist der behandelte Schuppenstrom ein differenzierter Strom, in dem beispielsweise Paare von Produkten gefördert werden, wobei der Produkteabstand innerhalb des Paares kleiner ist als zwischen Paaren, fallen in einen Systemtakt abwechslungsweise zwei oder keine Flanke. Die Flankenabtastung kann dann derart eingerichtet werden, dass Fehlersignale erzeugt werden, wenn im leeren Takt Flanken auftreten und wenn im anderen Takt mehr oder weniger als zwei Flanken auftreten. Der Systemtakt kann für differenzierte Ströme auch aufgeteilt werden in Taktbereiche derart, dass ein Muster von Taktbereichen mit Flanke und Taktbereichen ohne Flanke entsteht.
- Liefert das Beobachtungselement ein getaktetes Signal, fällt die Flankenabtastung weg und verschobene Produkte werden je nach Grösse der Verschiebung nicht oder als Kombination von mehrfach belegter Stelle und Leerstelle detektiert. Ist die Messauflösung des Beobachtungselementes nicht gross genug oder der Hintergrund der Messung unruhig, wird die Detektierung von fehlerhaften Produkten (fehlende Seiten etc.) schwierig oder unmöglich. Ist das Messsignal korreliert mit der Dicke des gesamten Schuppenstromes ist die Interpretation der Höhenabtastung nicht nur auf das im Schuppenstrom zuoberst liegend Produkt, sondern auch auf alle darunter liegenden Produkte abzustimmen.
- Das Beobachtungselement kann je nach Ausführungsart ein analoges oder ein digitales Messsignal liefern. Die Funktionen des Interpretationselements können hardwaremässig oder softwaremässig realisiert werden. Für beide Fälle entsprechen die notwendigen Funktionen der unter Umständen notwendigen Wandlung des Messsignales (z.B. analog/digital Wandler), der Flankenabtastung (z.B. Flip/Flop-Schaltung) und der Höhenabtastung (z.B. Vergleicherschaltung) dem Stande der Technik und müssen hier nicht detailliert beschrieben werden.
- Für ein analoges Messsignal in Form einer Messspannung U und eine hardwaremässige Interpretationseinheit werden die Grenzwerte für die Höhenabtastung beispielsweise durch Potentiometer, die den Sollwerteingängen der Vergleicher vorgeschaltet sind, und/oder durch feste Widerstände bestimmt. Die Dicke des Produktes kann bei einer Eichmessung durch das Beobachtungselement erfasst und der entsprechende mittlere Sollwert in Form einer Vergleichsspannung durch die Einstellungen eines Potentiometers eingestellt werden. Die Figur 5 zeigt schematisch die Einstellung dieses Sollwertes. Auf der Abszisse ist gegen links die Produktedicke D, gegen rechts die Vergleichsspannung UV aufgetragen. Jeder Vergleichsspannung sind beispielsweise zwei obere und zwei untere Toleranzgrenzen TG.1/2/3/4 zugeordnet. Auf der Ordinate ist die Messspannung U aufgetragen.
- Die Dicke eines in einer Eichmessung vermessenen Produktes sei D₀, deren Erfassung durch das Beobachtungselement eine Messspannung U₀ erzeugt. Die Vergleichsspannung wird nun beispielsweise derart eingestellt, dass der Vergleich von U und UV ein Resultat innerhalb der engeren Toleranzgrenzen TG.1 und TG.2 ergibt. Damit ist der Sollwert UV₀ und die entsprechenden Toleranzgrenzen TG₀.1/2/3/4 bestimmt. Bei der Abtastung des Schuppenstromes wird der Sollwert UV₀ konstant gehalten und die entsprechenden Toleranzgrenzen TG₀.3 und TG₀.4 mit dem effektiven, sich dauernd verändernden Messwert U verglichen.
- Figur 6 zeigt ein Blockschema eines beispielhaften Steuerelementes 3. Das Steuerelement generiert aus den vom Interpretationselement erzeugten Fehlerimpulsen Steuerimpulse für die gesteuerten Elemente, indem es diese im wesentlichen entsprechend der Distanz zwischen Beobachtungsstelle des Beobachtungselements und Wirkungsstelle des gesteuerten Elementes verzögert und wenn nötig derart umwandelt, dass er zur Ansteuerung des gesteuerten Elementes geeignet ist. Die Distanz zwischen den beiden Stellen wird als Anzahl Systemtakte, die für eine Förderung eines Produktes von der einen Stelle zur anderen notwendig ist, verarbeitet.
- Beobachtet das Beobachtungselement dieselbe Produktekante (vordere oder hintere Kante), auf die das gesteuerte Element wirkt, entspricht die notwendige Verzögerung der effektiven Distanz zwischen Beobachtungsstelle und Wirkungsstelle. Wird die Vorderkante beobachtet und auf die Hinterkante gewirkt, muss die effektive Distanz zwischen Beobachtungsstelle und Wirkungsstelle um die Produktlänge vergrössert werden. Wird die hintere Kante beobachtet und auf die vordere gewirkt, muss die effektive Distanz zwischen Beobachtungsstelle und Wirkungsstelle um die Länge des Produktes verkürzt werden.
- Damit die Verzögerungen möglichst genau an die Distanzen und die Produktelänge angepasst werden können, ist es vorteilhaft, den Systemtakt für die Steuereinheit zu teilen.
- Das in der Figur 6 dargestellte Blockschema gilt beispielsweise für das Steuerelement, das für die in der Figur 2 dargestellte beispielhafte Anwendung zum Einsatz kommt, kann aber für andere Anwendungen mit drei oder weniger gesteuerten Elementen ebenfalls angewendet werden. Die Eingänge für Fehlerimpulse sind in einer der Figur 2 entsprechenden Weise mit den Bezugszeichen d, e und f, die Ausgänge für die Steuerimpulse mit den Bezugszeichen der gesteuerten Elemente 10, 20 und 30 bezeichnet. Das Steuerelement besitzt auch einen Eingang L zur Eingabe der Produktelänge, die in einem Umrechnungselement 61 in Takte umgerechnet werden muss. Es besitzt auch einen Eingang für den Systemtakt T, der vorteilhafterweise durch einen Teiler 62 in einen schnelleren Steuertakt umgewandelt wird. Das Steuerelement besteht im wesentlichen aus parallel zueinander funktionierenden Einheiten, die je die Verzögerung eines für ein bestimmtes gesteuertes Element bestimmten Steuerimpulses bewirkt. Diese bestehen aus einer ersten Verzögerungseinheit 63, die eine Verzögerung um die Produktelänge bewirkt und die wahlweise bypassiert werden kann (Schalter 64), und einer zweiten Verzögerungseinheit 65, die entsprechend der Distanz zwischen Beobachtungsstelle und Wirkungsstelle des entsprechenden gesteuerten Elementes (Eingang 66) eingestellt ist. Das dargestellte Blockschema ist nicht anwendbar für die Steuerung eines gesteuerten Elementes, das an der Vorderkante angreift, während die Hinterkante beobachtet wird (negative Verzögerung).
- Für die Anwendung gemäss Figur 2 müssen die Schalter 64 für die Eingänge d und e auf Bypass und der entsprechende Schalter für den Eingang f auf erste Verzögerungseinheit gestellt sein, da die Vorderkanten beobachtet werden und die gesteuerten Elemente 10 und 20 auf die Vorderkanten wirken und nur das gesteuerte Element 30 auf die Hinterkanten wirkt.
- Das Steuerelement kann hardwaremässig beispielsweise mit entsprechend einstellbaren Schieberegistern realisiert werden. Es kann auch softwaremässig realisiert werden.
- Figur 7 zeigt das Bedienungs- und Einstellpannel für ein kombiniertes, hardwaremässiges Interpretations- und Steuerelement. Daraus ist ersichtlich, welche Parameter einstellbar, welche fest verdrahtet sind. Das entsprechende kombinierte Element ist anwendbar zur gesteuerten Elimination von mehrfach belegten Stellen aus Schuppenströmen von einzelnen Produkten oder von Doppelprodukten.
- Im rechten Teil sind drei Wahlknöpfe 71, 72 und 73 angebracht. Mit Wahlknopf 71 wird die Höhenabtastung der Interpretationseinheit aktiviert, mit Wahlknopf 72 die Flankenabtastung. Es können Flankenabtastung und/oder Höhenabtastung aktiviert werden. Mit Wahlknopf 73 kann eine Produktlängebedingte Verzögerung aktiviert/desaktiviert werden. Im mittleren Teil zeigt die Figur eine Eingabestelle 74 für die Eingabe der Produktlänge.
- Der linke Bereich des Pannels dient der Eichmessung und der optischen Anzeige von Fehlerstellen. Es umfasst eine Anordnung von Leuchtdioden 75, 76, 77 und 78 und einen Tarierknopf 79. Die Leuchtdioden sind derart mit den Vergleichern verdrahtet (siehe Figur 8), dass die grüne Leuchtdiode 75 leuchtet, wenn der Messwert innerhalb der Toleranzgrenzen TG.1 und TG.2 (Figur 5) liegt. Die gelben Leuchtdioden 76 bzw. 77 leuchten, wenn der Messwert zwischen TG.2 und TG.3 bzw. zwischen TG.1 und TG.4 liegt. Die rote Leuchtdiode 78 leuchtet, wenn der Messwert ausserhalb dem Bereich zwischen TG.3 und TG.4 liegt. Die Eicheinstellung wird vorgenommen, indem ein Produkt oder eine dem Schuppenstrom entsprechende Anzahl von Produkten vom Beobachtungselement erfasst wird und der Tarierknopf 79 derart eingestellt wird, dass die grüne Leuchtdiode 75 und die beiden gelben Leuchtdioden 76 und 77 leuchten. Im Betrieb wird die Stellung des Tarierknopfes 79 nicht mehr verändert. Die Dioden leuchten entsprechend der Messung, insbesondere zeigt das Aufleuchten der roten Diode 78 eine Fehlerstelle an.
- Figur 8 zeigt die Verdrahtung der Eich- und Fehlerdetektionsfunktion (Höhenabtastung) die diesem Bereich (75, 76, 77, 78, 79) des im Zusammenhang mit der Figur 7 beschriebenen Pannels und seiner Funktion zugrunde liegt.
- Die gesteuerten Elemente sind meist bekannte Elemente, die hier nicht näher beschrieben werden müssen. Zum Ausschleusen von fehlerhaften Produkten oder mehrfach-Produkten eignet sich am besten ein Auslöseapparat, der auf eine Klammer wirkt, die ein derartiges Produkt transportiert. Durch einen Auslöseapparat einzeln ansteuerbare Klammern sind bekannt beispielsweise aus der schweizerischen Patentschrift 644816 (F113) derselben Anmelderin. Wie bereits erwähnt, ist es vorteilhafter die auszuschleusenden Produkte an einer Übergabe mit einer Klammer zu ergreifen und später die Klammer durch einen Auslöseapparat zu öffnen, als sie bei der Übergabe nicht zu schliessen. Als Auslöseapparat kann beispielsweise eine entsprechende Anordnung mit einem Schnellschaltzylinder, der auf den Auslösemechanismus der Klammer wirkt, zur Anwendung kommen.
- Zur Schliessung von Lücken kann wie in der Figur 2 dargestellt ein Klammerpuffer zur Anwendung kommen. Ein entsprechender Klammerpuffer ist bekannt aus der amerikanischen Patentschrift Nr. US-4887809 (F245) derselben Anmelderin. Selbstverständlich können auch andere Arten von Puffern oder Lückenschliessern zur Anwendung kommen. Es ist jedoch vorteilhaft, die Lücken am Ende des Wirkungsbereiches des Fehlermanagement-Systems anzuordnen und eine solche Ausführungsform einer lückenschliessenden Vorrichtung zu wählen, für die der Produktestrom möglichst nicht in eine andere Transportformation gebracht werden muss und für die es nicht möglich ist, dass beispielsweise wieder mehrfach belegte Stellen entstehen.
- Es versteht sich, dass mehrere Fehlermanagement-Systeme, wie sie beschrieben wurden, auch parallel oder seriell zusammenarbeiten können. Insbesondere ist eine paralleler Verbund von Fehlermanagement-Systemen denkbar für ein Weiterverarbeitungssystem, in dem mehrere Schuppenströme zusammenlaufen, wie zum Beispiel zum Einstecken oder Sammeln. Alle Schuppenströme können dabei von je einem Fehlermanagement-System bearbeitet werden, wobei Fehlerimpulse von einem Schuppenstrom auch auf gesteuerte Elemente der anderen Schuppenströme geleitet werden können, beispielsweise zur Verhinderung der Herstellung von fehlerhaften Produkten.
Claims (22)
- System zum Fehlermanagement für die Weiterverarbeitung eines Schuppenstromes von flächigen Produkten insbesondere von Druckprodukten, dadurch gekennzeichnet, dass es ein Beobachtungselement (1) zur Erzeugung eines mit dem Schuppenstrom (S) korrelierten Messsignales (MS), ein Interpretationselement (2) zur Interpretation des Messsignales und zum Generieren von Fehlerimpulsen beim Auftreten von Leerstellen, mehrfach belegten Stellen, mit fehlerhaften Produkten belegten Stellen oder mit in Förderrichtung verschobenen Produkten belegten Stellen, ein Steuerelement (3) zum Generieren von mit den Fehlersignalen korrelierten Steuersignalen und mindestens ein vom Beobachtungselement Produktestrom-abwärts angeordnetes, gesteuertes Element (4.1/2/3, 10, 20, 30) zur Eliminierung von Fehlerstellen, zur Verwandlung von Fehlerstellen in andere Fehlerstellen oder zur entsprechend gesteuerten Weiterverarbeitung von Fehlerstellen aufweist und dass Interpretationselement, Steuerelement und gesteuerte Elemente demselben Systemtakt unterworfen sind.
- System zum Fehlermanagement nach Anspruch 1, dadurch gekennzeichnet, dass das Beobachtungselement (1) eine Sensoranordnung zur getakteten Erzeugung eines mit der Dicke der im Schuppenstrom geförderten Produkte korrelierten Messsignals ist, die ebenfalls dem Systemtakt unterworfen ist.
- System zum Fehlermanagement nach Anspruch 1, dadurch gekennzeichnet, dass das Beobachtungselement (1) eine Sensoranordnung zur kontinuierlichen Erzeugung eines mit der Dicke der im Schuppenstrom geförderten Produkte korrelierten Messsignals (MS) ist.
- System zum Fehlermanagement nach Anspruch 3, dadurch gekennzeichnet, dass das Messsignal des Beobachtungselementes mit der Dicke der auf dem Schuppenstrom obenliegenden Kante der Druckprodukte korreliert ist.
- System zum Fehlermanagement nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass das Interpretationselement (2) Abtast- und Vergleichsmittel (42, 43) zum taktweisen Abtasten des Messsignales auf Höhe und zum Vergleichen der Messsignalhöhe mit mindesten einer Toleranzgrenze aufweist.
- System zum Fehlermanagement nach Anspruch 5, dadurch gekennzeichnet, dass das Interpretationselement (2) Eingabemittel zum Eingeben von Toleranzgrenzen aufweist.
- System zum Fehlermanagement nach Anspruch 5, dadurch gekennzeichnet, dass das Interpretationsmittel (2) Einstellmittel (79) zum Einstellen von Sollwerten, denen Toleranzgrenzen fest zugeordnet sind, entsprechend einer Eichmessung aufweist.
- System zum Fehlermanagement nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass das Interpretationselement (2) Mittel zur Flankenabtastung (41) des Messsignales aufweist.
- System zum Fehlermanagement nach einem der Ansprüche 5 bis 8, dadurch gekennzeichnet, dass das Interpretationselement (2) sowohl Mittel für eine taktweise Höhenabtastung (42, 43) und Mittel für eine Flankenabtastung (41) aufweist und dass sie zudem Schaltmittel (71, 72) aufweist zum wahlweisen Aktivieren oder Desaktivieren der Abtastmittel.
- System zum Fehlermanagement nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass das Steuerelement (3) mindestens ein Verzögerungsmittel (65) zur Verzögerung eines vom Interpretationselement erzeugten Fehlersignales aufweist.
- System zum Fehlermanagement nach Anspruch 10, dadurch gekennzeichnet, dass das Verzögerungsmittel (65) entsprechend der Distanz zwischen der Beobachtungsstelle des Beobachtungselementes und einem gesteuerten Element einstellbar ist
- System zum Fehlermanagement nach einem der Ansprüche 9 oder 10, dadurch gekennzeichnet, dass die Steuereinheit (3) mindestens ein weiteres Verzögerungsmittel (63) aufweist, das entsprechend der Produktelänge einstellbar ist.
- System zum Fehlermanagement nach einem der Ansprüche 10 bis 12, dadurch gekennzeichnet, dass die Verzögerungsmittel (63, 65) Schieberegister sind.
- System zum Fehlermanagement nach einem der Ansprüche 10 bis 13, dadurch gekennzeichnet, dass das Steuerelement (3) einen Taktteiler (62) aufweist.
- System zum Fehlermanagement nach einem der Ansprüche 1 bis 14, dadurch gekennzeichnet, dass das oder die gesteuerten Elemente (4.1/2/3, 10, 20, 30) gesteuerte Mittel zum Schliessen von Lücken, zum Ausschleusen von Produkten oder zum Unterbrechen einer Weiterverarbeitung aufweist / aufweisen.
- System zum Fehlermanagement nach Anspruch 15, dadurch gekennzeichnet, dass ein gesteuertes Mittel ein Auslöseapparat zur gesteuerten Öffnung einer einzelnen Transportklammer ist.
- System zum Fehlermanagement nach Anspruch 16, dadurch gekennzeichnet, dass der Auslöseapparat einen Schnellschaltzylinder aufweist, der gesteuert auf den Öffnungsmechanismus einer seinen Bereich passierenden Transportklammer wirkt.
- System zum Fehlermanagement nach Anspruch 15, dadurch gekennzeichnet, dass ein gesteuertes Element der Eingang eines Klammerpuffers ist.
- System zum Fehlermanagement nach einem der Ansprüche 1 bis 18, dadurch gekennzeichnet, dass das Steuerelement auch Fehlerimpulse von anderen Prozesseinheiten verarbeitet.
- System zum Fehlermanagement nach Anspruch 19, dadurch gekennzeichnet, dass das Steuerelement Fehlerimpulse der die Schuppenformation auslegenden Rotationspresse verarbeitet.
- System zum Fehlermanagement nach einem der Ansprüche 1 bis 20, dadurch gekennzeichnet, dass seine gesteuerten Elemente auch von anderen Prozesseinheiten angesteuert werden.
- System zum Fehlermanagement nach Anspruch 21, dadurch gekennzeichnet, dass mindestens eines seiner gesteuerten Elemente gleichzeitig gesteuertes Element von anderen, in einem Verbund parallel arbeitenden Fehlermanagement-Systemen ist.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CH1467/92 | 1992-05-07 | ||
CH146792 | 1992-05-07 |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0568883A1 EP0568883A1 (de) | 1993-11-10 |
EP0568883B1 true EP0568883B1 (de) | 1995-08-30 |
Family
ID=4211170
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP93106682A Expired - Lifetime EP0568883B1 (de) | 1992-05-07 | 1993-04-24 | Fehlermanagement-System für Fehler in Schuppenformationen von Druckprodukten |
Country Status (5)
Country | Link |
---|---|
US (1) | US5446670A (de) |
EP (1) | EP0568883B1 (de) |
JP (1) | JP2818531B2 (de) |
DE (1) | DE59300522D1 (de) |
FI (1) | FI932048A (de) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5543708A (en) * | 1994-02-09 | 1996-08-06 | Ferag Ag | Method and apparatus for controlling continuously conveyed printed products |
CH689773A5 (de) * | 1995-02-16 | 1999-10-29 | Ferag Ag | Vorrichtung zum Vergleichmaessigen des Abstandes zwischen aufeinanderfolgenden flaechigen Produkten. |
JP2009137758A (ja) * | 2007-12-11 | 2009-06-25 | Ryobi Ltd | 枚葉印刷機の枚葉紙検知装置 |
CA2710749A1 (en) | 2008-01-24 | 2009-07-30 | Ferag Ag | Method of, and apparatus for, conveying sheet-like products |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3899165A (en) * | 1972-10-02 | 1975-08-12 | Donnelley & Sons Co | Signature collating and binding system |
CH630583A5 (de) * | 1978-06-30 | 1982-06-30 | Ferag Ag | Vorrichtung zum wegfoerdern von in einem schuppenstrom anfallenden flaechigen erzeugnissen, insbesondere druckprodukten. |
US4231567A (en) * | 1978-12-01 | 1980-11-04 | Xerox Corporation | Method and apparatus for clearing jams in copiers |
CH644816A5 (de) * | 1980-02-08 | 1984-08-31 | Ferag Ag | Foerdereinrichtung, inbesondere fuer druckprodukte, mit an einem umlaufenden zugorgan verankerten greifzangen. |
CH660350A5 (de) * | 1983-06-14 | 1987-04-15 | Ferag Ag | Einrichtung zum feststellen mehrfach belegter plaetze in einem kontinuierlich gefoerderten strom von gleichmaessige abstaende voneinander aufweisenden druckprodukten sowie verwendung dieser einrichtung. |
SE460722B (sv) * | 1983-07-11 | 1989-11-13 | Ferag Ag | Foerfarande och anordning foer att framstaella staplar av boejliga alster, saerskilt tryckprodukter och anvaendningen av dessa staplar saasom buffertstaplar |
US4799661A (en) * | 1987-04-21 | 1989-01-24 | Craftsman Printing Company | Apparatus for compiling sheets in a binding line |
US4765502A (en) * | 1987-06-19 | 1988-08-23 | Pitney Bowes Inc. | Apparatus for nonstop operation of an inserter system with multiple document feeding capability |
JPS6448741A (en) * | 1987-08-12 | 1989-02-23 | Fujitsu Ltd | Jam processing method for printer |
CH680285A5 (de) * | 1987-10-02 | 1992-07-31 | Ferag Ag | |
JPH0749197B2 (ja) * | 1988-04-08 | 1995-05-31 | 富士写真フイルム株式会社 | ウエブ切断ラインの制御装置 |
US5197382A (en) * | 1989-10-13 | 1993-03-30 | Am International, Inc. | Copy sheet proofing system |
DE4005910A1 (de) * | 1990-02-24 | 1991-09-05 | Heidelberger Druckmasch Ag | Bogentrennvorrichtung in einer druckmaschine |
EP0479717B1 (de) * | 1990-10-05 | 1995-03-22 | Ferag AG | Dickenmessung an Druckprodukten in einem Schuppenstrom |
DE59205602D1 (de) * | 1992-02-19 | 1996-04-11 | Ferag Ag | Doppelbogenerkennung |
-
1993
- 1993-04-24 EP EP93106682A patent/EP0568883B1/de not_active Expired - Lifetime
- 1993-04-24 DE DE59300522T patent/DE59300522D1/de not_active Expired - Lifetime
- 1993-05-06 US US08/058,466 patent/US5446670A/en not_active Expired - Lifetime
- 1993-05-06 FI FI932048A patent/FI932048A/fi unknown
- 1993-05-07 JP JP5106898A patent/JP2818531B2/ja not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JP2818531B2 (ja) | 1998-10-30 |
FI932048A (fi) | 1993-11-08 |
DE59300522D1 (de) | 1995-10-05 |
FI932048A0 (fi) | 1993-05-06 |
EP0568883A1 (de) | 1993-11-10 |
US5446670A (en) | 1995-08-29 |
JPH0664834A (ja) | 1994-03-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE2653261C2 (de) | Verfahren zum Betrieb eines Kopiergerätes und Steuerung zur Durchführung des Verfahrens | |
EP0722418B1 (de) | Papierhandhabungssystem | |
EP2363363A2 (de) | Verfahren und Vorrichtung zur Richtungsumkehr beim Transport von Gegenständen | |
EP1214691B1 (de) | Verfahren und vorrichtung zur verarbeitung von bedruckstoffen | |
EP2460749B1 (de) | Verfahren zum Betrieb eines Transportsystems | |
DE69904399T2 (de) | Zusammentragsystem mit Bogenzuführfehleranzeigefunktion | |
EP0568883B1 (de) | Fehlermanagement-System für Fehler in Schuppenformationen von Druckprodukten | |
EP0870582B1 (de) | Verfahren, Vorrichtung und Schneideeinrichtung zum Ausscheiden einzelner Blechabschnitte aus einer Mehrzahl von Blechabschnitten | |
EP3251852B1 (de) | Vorrichtung und verfahren zur weiterverarbeitung von druckprodukten | |
EP0358065B1 (de) | Anordnung zur Tabloid-Weiterverarbeitung | |
DE3935056C2 (de) | Verfahren zur Kontrolle des Bogendurchlaufs in einer Falzmaschine und Vorrichtung zur Durchführung des Verfahrens | |
DE19936369C1 (de) | Verfahren und Vorrichtung zur Korrektur der Lücken zwischen Sendungen | |
EP1086918B1 (de) | Verfahren und Vorrichtung zur Erkennung eines wahren Produktstaus in einem Falzapparat | |
EP1208053B1 (de) | Verfahren und vorrichtung zur verarbeitung von wertpapieren | |
DE102007002090B4 (de) | Verfahren und Vorrichtung zum Nähen von Dokumenten | |
DE19633448B4 (de) | Bäckereimaschine, insbesondere Teigwickelmaschine | |
EP2383214B1 (de) | Zusammentragvorrichtung | |
DE102017208165B4 (de) | Bogenverarbeitende Maschine mit Bogenführungszylindern und einer Auslage und Verfahren zum Betreiben einer bogenverarbeitenden Maschine | |
DE19743020C2 (de) | Vorrichtung sowie Verfahren zur Vereinzelung von Druckprodukten | |
EP0696364B1 (de) | Einzelblatt-zuführeinrichtung für ein elektrografisches druck- oder kopiergerät | |
DE19528828C1 (de) | Verfahren zur Steuerung einer Briefverteilanlage | |
DD200563A1 (de) | Einrichtung zur erkennung und auswertung der fehlerhaften zufuehrung von bedruckstoffen | |
DE3320381A1 (de) | Verfahren zum quer- und laengsfalten von waeschestuecken und vorrichtung zur durchfuehrung des verfahrens | |
CH712300B1 (de) | Verfahren zur Erzielung eines definierbaren Schuppenabstandes. | |
DE102006012330C5 (de) | Bogendruckmaschine mit Nachverarbeitungseinheit |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): CH DE GB IT LI |
|
17P | Request for examination filed |
Effective date: 19930904 |
|
17Q | First examination report despatched |
Effective date: 19950111 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): CH DE GB IT LI |
|
REF | Corresponds to: |
Ref document number: 59300522 Country of ref document: DE Date of ref document: 19951005 |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 19951002 |
|
ITF | It: translation for a ep patent filed | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
REG | Reference to a national code |
Ref country code: GB Ref legal event code: IF02 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PFA Owner name: FERAG AG Free format text: FERAG AG#ZUERICHSTRASSE 74#8340 HINWIL (CH) -TRANSFER TO- FERAG AG#PATENTABTEILUNG Z. H. MARKUS FELIX ZUERICHSTRASSE 74#8340 HINWIL (CH) |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED. Effective date: 20050424 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 20110420 Year of fee payment: 19 Ref country code: DE Payment date: 20110421 Year of fee payment: 19 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20110421 Year of fee payment: 19 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20120424 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20120430 Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20120424 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20120430 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 59300522 Country of ref document: DE Effective date: 20121101 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20121101 |