EP0558915B1 - Austenitische Nickel-Legierung - Google Patents

Austenitische Nickel-Legierung Download PDF

Info

Publication number
EP0558915B1
EP0558915B1 EP93101162A EP93101162A EP0558915B1 EP 0558915 B1 EP0558915 B1 EP 0558915B1 EP 93101162 A EP93101162 A EP 93101162A EP 93101162 A EP93101162 A EP 93101162A EP 0558915 B1 EP0558915 B1 EP 0558915B1
Authority
EP
European Patent Office
Prior art keywords
corrosion
chromium
nickel
alloy according
molybdenum alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP93101162A
Other languages
English (en)
French (fr)
Other versions
EP0558915A2 (de
EP0558915A3 (de
Inventor
Michael Dr. Ing. Köhler
Ulrich Dr. Ing. Heubner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Krupp VDM GmbH
Original Assignee
Krupp VDM GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Krupp VDM GmbH filed Critical Krupp VDM GmbH
Publication of EP0558915A2 publication Critical patent/EP0558915A2/de
Publication of EP0558915A3 publication Critical patent/EP0558915A3/xx
Application granted granted Critical
Publication of EP0558915B1 publication Critical patent/EP0558915B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/051Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
    • C22C19/056Alloys based on nickel or cobalt based on nickel with chromium and Mo or W with the maximum Cr content being at least 10% but less than 20%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium

Definitions

  • the invention relates to an austenitic nickel-chromium-molybdenum alloy with high resistance to general corrosion, against crevice, pitting and stress corrosion cracking as well as against intergranular corrosion, and its use for components used in corrosive media.
  • NiMo16CrTi material Mr. 2.4610 according to the steel-iron list of the German Association Ironworkers; Verlag Stahleisen mbH, 7th edition, 1981 in accordance with the US material UNS N06455
  • vanadium for example as a stabilizing element for the known nickel-based materials NiMo16Cr15 (material Mr. 2.4819, according to UNS N10276) and NiCr21Mo14W (material No. 2.4602, according to UNS N06022) is required.
  • the material NiCr22Mo9Nb (material No. 2.4856, according to UNS N06625) is stabilized by the addition of niobium.
  • the level of the alloyed contents of these stabilizing elements is usually 10 to 20 times the carbon content, but also up to 50 to 100 times for the material NiCr22Mo9Nb.
  • the stabilization (binding of the carbon) guarantees the better corrosion resistance of welded components without additional heat treatment.
  • NiMo16CrTi is usually alloyed with 0.25 - 0.5% titanium.
  • titanium binds not only carbon but also nitrogen through the formation of nitrides.
  • the titanium is said to reduce the sensitivity of the material and thus facilitate further processing, for example welding.
  • the resulting titanium nitrides are scattered in the structure of the material and, particularly in the case of larger dimensions, in the form of cloud-like accumulations may be more concentrated locally. This then results in corresponding non-uniformities in the material, which can result in locally uneven removal in the event of greater corrosion and erosion stress.
  • the material loses the smooth-walled surface that is required in many process sequences, which is absolutely necessary to prevent caking, for example the deposit of gypsum in absorbers for flue gas desulfurization.
  • US-A-4 129 464 discloses Ni-Cr-Mo alloys which are corrosion resistant and have good ductility. However, at least the sum of C + Si + Al lies outside the upper limit of the alloy according to the invention specified in claim 1.
  • the invention has for its object to provide a corrosion-resistant and weldable nickel alloy in which locally uneven corrosion removal can be avoided.
  • an austenitic nickel-chromium-molybdenum alloy consisting of (in% mass content): Carbon: up to 0.01% Silicon: up to 0.05%
  • Calcium 0.001 to 0.010%
  • Aluminum 0.05 to 0.30%
  • the nickel alloy according to the invention is characterized by good weldability and corrosion resistance. When using this nickel alloy for objects that are used in corrosive media, locally uneven corrosion removal does not occur.
  • the nickel alloy according to the invention is therefore particularly suitable as a material for structural parts in electrolytic treatment plants for the surface finishing of metal strips, in particular as a material for the production of transport rolls and current rolls for electrolytic strip galvanizing plants, in which there is an absolutely smooth surface of the rolls with regard to the quality of the metal strip to be treated arrives.
  • rolls that were made from the known material 2.4610 it was found that uneven erosion corrosion and abrasive corrosion started on the surface of the rolls in metal strip treatment plants, which reduced the service life of the rolls.
  • the surface damage of the rolls was transferred to the surfaces of the metal strips to be treated and thus led to a severe impairment of the product quality, e.g. that of a galvanized metal strip. This error did not occur when using rollers made of the nickel alloy according to the invention.
  • the rolls had a service life that was previously unknown, which was 5 to 10 times longer than that of rolls made of the known alloy 2.4610.
  • the nickel alloy according to the invention is furthermore suitable as a material for handling chemical process media, such as solutions containing iron (III) and copper (II) chloride hot contaminated mineral acids, formic and acetic acid, with good resistance to moist chlorine gas, hypochlorite and chloride oxide solutions.
  • chemical process media such as solutions containing iron (III) and copper (II) chloride hot contaminated mineral acids, formic and acetic acid, with good resistance to moist chlorine gas, hypochlorite and chloride oxide solutions.
  • the nickel alloy according to the invention is also preferably used as a material for the production of absorber components for the cleaning and desulfurization of flue gases.
  • the nickel alloy according to the invention is also a suitable material for the production of pickling bath containers and associated components as well as systems for the regeneration of pickling media.
  • the general corrosion resistance is given by the chromium and molybdenum contents, which are each 14-18%.
  • the rate of elimination of intermetallic phases for example the so-called ⁇ phase, which is rich in molybdenum and chromium, is reduced by 0.05%.
  • precipitations of molybdenum-rich M6C carbides as well as titanium carbides, titanium nitrides and titanium carbonitrides are suppressed, which are observed with the known alloy 2.4610 and lead to surface damage in oxidizing and reducing media when used.
  • the nitrogen content must not exceed 0.02% to avoid titanium nitrides and titanium carbonitrides.
  • Table 1 shows the analyzes of 5 4.5 ton melts of the alloy according to the invention (alloys A to E) produced in comparison to an alloy corresponding to the material NiMo16Cr16Ti (material No. 2.4610).
  • the batches were produced by melting in an electric arc furnace with subsequent vacuum deoxidation treatment and by additional remelting in an electroslag remelting plant.
  • Hollow bodies with the dimensions: outer diameter 490 mm, inner diameter 290 mm, length 3200 mm were forged using the usual thermoforming processes. The forgings were then solution annealed and quenched in water.
  • the corrosion resistance of the nickel alloy according to the invention was compared to the material NiMo16Cr16Ti (2.4610 or UNS NO6455) in 50% sulfuric acid with the addition of 42 g / l Fe (SO4) 3 x 9 H2O and in 10% HCl each boiling over 24 Hours checked and the mass loss determined thereby converted to a corrosion rate (mm / year).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Preventing Corrosion Or Incrustation Of Metals (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Materials For Medical Uses (AREA)
  • Prevention Of Electric Corrosion (AREA)
  • Powder Metallurgy (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Gas Separation By Absorption (AREA)
  • Fuel Cell (AREA)
  • Arc Welding In General (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

  • Die Erfindung betrifft eine austenitische Nickel-Chrom-Molybdän-Legierung mit hoher Beständigkeit gegen allgemeine Korrosion, gegen Spalt-, Lochfraß- und Spannungsrißkorrosion sowie gegen interkristalline Korrosion, und ihre Verwendung für in korrosiven Medien eingesetzte Bauteile.
  • Austenitische Werkstoffe, die eine gute Beständigkeit gegenüber allgemeiner Korrosion sowohl in oxidierenden als auch reduzierenden Medien und zugleich auch gegenüber Lokalkorrosion besitzen, weisen in der Regel erhöhte Chrom- und Molybdängehalte auf. Dabei ist bekannt, daß Molybdän im Hinblick auf die Beständigkeit gegen Lokalkorrosion einen stärkeren Einfluß ausübt als Chrom. Dies kommt bei der Berechnung der Wirksumme W = % Cr + 3,3 % Mo zum Ausdruck, einer Größe, die als Maß die von der Legierungszusammensetzung her zu erwartende Lokalkorrosionsbeständigkeit beschreibt. Häufig wird auch das Legierungselement Stickstoff mit einem Faktor von 30 in die Berechnung der Wirksumme mit einbezogen, da ihm ebenfalls ein positiver Einfluß auf die Lokalkorrosionsbeständigkeit zugeschrieben wird. Höhere Gehalte an Chrom und Molybdän beeinträchtigen jedoch die Gefügestabilität der Werkstoffe und wirken sich damit nachteilig auf das Verarbeitungsverhalten (Warmumformung, Schweißen etc.) aus. Eine Möglichkeit, die Gefügestabilität zu verbessern, kann durch das Zulegieren von Stickstoff erreicht werden, jedoch sind dieser Maßnahme durch die begrenzte Löslichkeit von Stickstoff in austenitischen Werkstoffen Grenzen gesetzt. Darüber hinaus kann es zur Ausscheidung von Chromnitriden kommen, die die Korrosionsbeständigkeit beeinträchtigen. Höchste Legierungsgehalte an Chrom und Molybdän können nur dann in den Werkstoffen eingestellt werden, wenn parallel der Nickelgehalt angehoben wird. Aufgrund der geringeren Kohlenstofflöslichkeit in Nickelbasiswerkstoffen gegenüber Stählen steigt jedoch die Kohlenstoffaktivität in Nickelbasiswerkstoffen vergleichsweise stärker an. Um eine gute Korrosionsbeständigkeit zu erzielen, insbesondere um die Anfälligkeit gegen interkristalline Korrosion zu reduzieren, ist es nach dem Stand der Technik erforderlich, die bekannte Nickel-Chrom-Molybdän-Legierung NiMo16CrTi (Werkstoff Hr. 2.4610 gemäß Stahl-Eisen-Liste des Vereins Deutscher Eisenhüttenleute; Verlag Stahleisen mbH, 7. Auflage, 1981 entsprechend dem US-Werkstoff UNS N06455) mit Titan zu stabilisieren. Darüber hinaus wird ein Zusatz an Vanadium, beispielsweise als Stabilisierungselement für die bekannten Nickelbasiswerkstoffe NiMo16Cr15 (Werkstoff Hr. 2.4819, entsprechend UNS N10276) sowie NiCr21Mo14W (Werkstoff Nr. 2.4602, entsprechend UNS N06022) gefordert. Der Werkstoff NiCr22Mo9Nb (Werkstoff Nr. 2.4856, entsprechend UNS N06625) wird durch einen Zusatz von Niob stabilisiert. Die Höhe der zulegierten Gehalte dieser Stabilisierungselemente beträgt üblicherweise das 10- bis 20fache des Kohlenstoffgehaltes, geht aber auch beim Werkstoff NiCr22Mo9Nb bis zum 50- bis 100fachen. Die Stabilisierung (Abbinden des Kohlenstoffes) garantiert die bessere Korrosionsbeständigkeit geschweißter Komponenten ohne zusätzliche Wärmebehandlung.
  • Dem Werkstoff NiMo16CrTi werden üblicherweise 0,25 - 0,5 % Titan zulegiert. Nach Untersuchungen von R. W. Kirchner und F. G. Hodge (Werkstoffe und Korrosion, Vol. 24, 1973, 1042-1049) bindet das Titan neben dem Kohlenstoff über die Bildung von Nitriden auch Stickstoff ab. Durch diese Wirkung soll das Titan die Sensibilisierungsneigung des Werkstoffs reduzieren und so die Weiterverarbeitung, z.B. das Schweißen, erleichtern. Nachteilig ist jedoch, daß die entstehenden Titannitride verstreut im Werkstoffgefüge vorliegen und insbesondere bei größeren Abmessungen in Form von wolkenförmigen Ansammlungen örtlich stärker konzentriert sein können. Dies hat dann entsprechende Ungleichmäßigkeiten des Werkstoffes zur Folge, welche sich bei stärkerer Korrosions- und Erosionsbeanspruchung in örtlich ungleichmäßigem Abtrag äußern können. Der Werkstoff verliert dadurch die in vielen Prozeßabläufen erwünschte glattwandige Oberfläche, die unbedingt benötigt wird, um Anbackungen zu vermeiden, z.B. die Ablagerung von Gips in Absorbern für die Rauchgasentschwefelung.
  • US-A-4 129 464 offenbart Ni-Cr-Mo Legierungen, die korrosionsbeständig sind, und eine gute Duktilität aufweisen. Jedoch liegt mindestens die Summe C + Si + Al außerhalb an der in Anspruch 1 angegebenen Obergrenze der erfindungsgemäßen Legierung.
  • Der Erfindung liegt die Aufgabe zugrunde, eine korrosionsbeständige und schweißbare Nickel-Legierung zu schaffen, bei der örtlich ungleichmäßige Korrosionsabträge vermieden werden.
  • Gelöst wird diese Aufgabe durch eine austenitische Nickel-Chrom-Molybdän-Legierung,
    bestehend aus (in % Massengehalt):
    Kohlenstoff: bis 0,01 %
    Silizium: bis 0,05 %
    Mangan: bis 0,50 %
    Phosphor: bis 0,020 %
    Schwefel: bis 0,010 %
    Chrom: 14,0 bis 18,0 %
    Molybdän: 14,0 bis 18,0 %
    Kobalt: bis 2,0 %
    Wolfram: bis 0,5 %
    Calcium: 0,001 bis 0,010 %
    Magnesium: 0,001 bis 0,020 %
    Aluminium: 0,05 bis 0,30 %
    Stickstoff: bis 0,02 %
    Eisen: bis 3,0 %
    Kupfer: bis 0,5 %
    Titan: bis 0,01 %

    Rest Nickel und übliche erschmelzungsbedingte Verunreinigungen,
    wobei die Summe der Gehalte an (Kohlenstoff + Silizium + Titan) auf maximal 0,05 % beschränkt, und die Summe der Elemente (Calcium + Magnesium + Aluminium) in den Grenzen 0,055 bis 0,33 % eingestellt ist.
  • Die erfindungsgemäße Nickel-Legierung zeichnet sich durch gute Schweißbarkeit und Korrosionsbeständigkeit aus. Beim Einsatz dieser Nickel-Legierung für Gegenstände, die in korrosiven Medien eingesetzt werden, treten örtlich ungleichmäßige Korrosionsabträge nicht auf.
  • Die erfindungsgemäße Nickel-Legierung eignet sich daher besonders als Werkstoff für Konstruktionsteile in elektrolytischen Behandlungsanlagen zur Oberflächenveredelung von Metallbändern, insbesondere als Werkstoff zur Herstellung von Transportrollen und Stromrollen für elektrolytische Bandverzinkungsanlagen, bei denen es auf eine absolut glatte Oberfläche der Rollen im Hinblick auf die Qualität des zu behandelnden Metallbandes ankommt. Beim Einsatz von Rollen, die aus dem bekannten Werkstoff 2.4610 gefertigt worden waren, hat sich gezeigt, daß in Metallband-Behandlungsanlagen eine ungleiche Erosionskorrosion sowie abtragende Korrosion auf der Oberfläche der Rollen einsetzte, wodurch sich die Standzeit der Rollen verringerte. Gleichzeitig übertrug sich die Oberflächenbeschädigung der Rollen auf die Oberflächen der zu behandelnden Metallbänder und führte so zu einer starken Beeinträchtigung der Produktqualität, z.B. die eines verzinkten Metallbandes. Beim Einsatz von Rollen, gefertigt aus der erfindungsgemäßen Nickel-Legierung, trat dieser Fehler nicht auf. Die Rollen zeigten im Einsatz eine bisher nicht bekannte Standzeit, die 5 bis 10fach höher lag als bei Rollen aus der bekannten Legierung 2.4610.
  • Wegen ihrer hervorragenden Oberflächenqualität bei Einsatz in korrosiven Medien eignet sich die erfindungsgemäße Nickel-Legierung weiterhin als Werkstoff zur Handhabung chemischer Prozeßmedien, wie Eisen-III- und Kupfer-II-Chlorid enthaltende Lösungen sowie heiße verunreinigte Mineralsäuren, Ameisen- und Essigsäure, mit guter Beständigkeit gegenüber feuchtem Chlorgas, Hypochlorit und Chloridoxidlösungen.
  • Die erfindungsgemäße Nickel-Legierung wird ferner bevorzugt verwendet als Werkstoff zur Herstellung von Absorberkomponenten für die Reinigung und die Entschwefelung von Rauchgasen.
  • Die erfindungsgemäße Nickel-Legierung ist auch ein geeigneter Werkstoff zur Herstellung von Beizbadbehältern und zugehörigen Komponenten sowie von Anlagen zur Regenerierung von Beizmedien.
  • Bei der erfindungsgemäßen Nickel-Legierung ist die allgemeine Korrosionsbeständigkeit gegeben durch die Gehalte an Chrom und Molybdän, die jeweils 14 - 18 % betragen.
    Durch die Begrenzung der Summe der Elemente (Kohlenstoff + Silizium + Titan) auf max. 0,05 % wird die Ausscheidungsgeschwindigkeit von intermetallischen Phasen, z.B. der molybdän- und chromreichen sogenannten µ-Phase reduziert. Gleichzeitig werden auch Ausscheidungen von molybdänreichen M₆C-Karbiden sowie Titankarbiden, Titannitriden und Titankarbonitriden unterdrückt, die bei der bekannten Legierung 2.4610 beobachtet werden und beim Einsatz zur Oberflächenbeschädigung in oxidierenden und reduzierenden Medien führen.
    Der Stickstoffgehalt darf zur Vermeidung der Titannitride und Titankarbonitride einen Wert von 0,02 % nicht überschreiten. Die Elemente Calcium, Magnesium und Aluminium in den vorgegebenen Gehalten desoxidieren und verbessern die Warmformgebungseigenschaften des erfindungsgemäßen Werkstoffs.
    Die Elemente Kobalt, Wolfram, Mangan, Eisen und Kupfer beeinflussen in den angegebenen Höchstgrenzen nicht die guten Werkstoffeigenschaften der erfindungsgemäßen Nickel-Legierung. Diese Elemente können bei der Erschmelzung über den Schrott eingebracht werden.
  • Im folgenden wird die erfindungsgemäße Nickel-Legierung anhand von Versuchsergebnissen näher erläutert:
    Tabelle 1 zeigt die Analysen von 5 betrieblich hergestellten 4,5 to-Schmelzen der erfindungsgemäßen Legierung (Legierungen A bis E) im Vergleich zu einer Legierung entsprechend dem Werkstoff NiMo16Cr16Ti (Werkstoff Nr. 2.4610).
    Die Chargen wurden durch Schmelzen im Elektrolichtbogenofen mit anschließender Vakuumdesoxidationsbehandlung sowie durch zusätzliches Umschmelzen in einer Elektroschlackeumschmelz-Anlage hergestellt.
    Über die üblichen Warmformgebungsverfahren wurden Hohlkörper der Abmessung: Außendurchmesser 490 mm, Innendurchmesser 290 mm, Länge 3200 mm geschmiedet. Die Schmiedeteile wurden anschließend lösungsgeglüht und in Wasser abgeschreckt. Bei der Fertigung der Schmiedeteile konnte gezeigt werden, daß die Warmumformbarkeit durch die legierungstechnischen Maßnahmen bei der erfindungsgemäßen Nickel-Legierung nicht nur erhalten, sondern sogar verbessert werden konnte, denn durch das Zulegieren von Aluminium, Magnesium und Calcium im vorgegebenen Bereich zeigte sich deutlich, daß die Anfälligkeit für die Kantenrißbildung im Vergleich zu Rollen aus der Legierung 2.4610 reduziert war.
    Rollen, gefertigt aus der erfindungsgemäßen Nickel-Legierung, wiesen unter den Korrosionsbedingungen von Elektrolyten in Bandverzinkungsanlagen eine ausgezeichnete Korrosionsbeständigkeit gegen Erosionskorrosion sowie gegen abtragende Korrosion auf und hatten eine 5 bis 10fach höhere Standzeit als Rollen aus der Legierung 2.4610.
  • Die Korrosionsbeständigkeit der erfindungsgemäßen Nickel-Legierung wurde im Vergleich zum Werkstoff NiMo16Cr16Ti (2.4610 bzw. UNS NO6455) in 50 %iger Schwefelsäure mit einem Zusatz von 42 g/l Fe(SO₄)₃ x 9 H₂O sowie in 10 % HCl jeweils kochend über 24 Stunden geprüft und der dabei ermittelte Massenverlust zu einer Korrosionsrate (mm/Jahr) umgerechnet.
  • Durch die oxidierende Wirkung des Eisen-III-Sulfates können dabei bevorzugt Ausscheidungen von M₆C Karbiden als auch von µ-Phase nachgewiesen werden. Die reduzierende Prüfung in HCl weist dagegen bevorzugt die an Molybdän verarmten Zonen in der Umgebung der Mohaltigen Ausscheidungen nach. Die Ergebnisse der Korrosionstests (siehe dazu Tabelle 2) zeigen, daß durch die Zusammensetzung der erfindungsgemäßen austenitischen Nickel-Chrom-Molybdän-Legierung die Korrosionsbeständigkeit nicht gegenüber der herkömmlichen Legierung 2.4610 beeinträchtigt wird, sowohl in Bezug auf die Beständigkeit gegen interkristalline Korrosion als auch auf die Beständigkeit gegen allgemeine abtragende Korrosion.
    Durch diese Tests wurde festgestellt, daß bei der erfindungsgemäßen Nickel-Legierung keine Ausscheidungen von M₆C-Karbiden sowie µ-Phase auftraten.
  • Zum Nachweis der Lokalkorrosionsbeständigkeit wurde die kritische Loch (CPT)- und Spaltkorrosionstemperatur (CCT) der erfindungsgemäßen Legierung A in diversen Medien überprüft.
    • a) In der Testlösung "Grüner Tod", bestehend aus 7 % H₂SO₄, 3 Volumen-% HCl, 1 % CuCl₂, 1 % FeCl₃ x 6 H₂O, wobei die Proben je 5 °C Temperaturstufe für 24 Stunden gehalten wurden, betrug die kritische (CPT)-Temperatur 100 °C und die kritische (CCT)-Temperatur 90°C.
    Für WIG (Wolfram-Inert-Gas)-geschweißte Proben lag die (CPT)-Temperatur bei 95 °C.
    Die kritische Temperatur ist der Temperaturwert, bei der erste Korrosionsangriffe zu beobachten sind.
    Die gemessenen kritischen Temperaturen der erfindungsgemäßen Nickel-Legierung bedeuten eine exzellente Beständigkeit gegen Lochfraß- und Spaltkorrosion, sowohl im gekneteten (gleich dem warmumgeformten) als auch im geschweißten Zustand.
    • b) Beim Test in schwefelsaurer Lösung mit Chloridzusatz (H₂SO₄, pH-Wert = 1; 7 % Chlorionen), in der die Proben bei 105 °C (siedend) für 21 Tage gehalten wurden, wurden keine Lochfraßkorrosions-und keine Spaltkorrosionsangriffe beobachtet.
    Figure imgb0001
    Figure imgb0002

Claims (6)

  1. Austenitische Nickel-Chrom-Molybdän-Legierung mit hoher Beständigkeit gegen allgemeine Korrosion, gegen Spalt-, Lochfraß- und Spannungsrißkorrosion sowie interkristalline Korrosion,
    bestehend aus (in % Massengehalt): Kohlenstoff: bis 0,01 % Silizium: bis 0,05 % Mangan: bis 0,50 % Phosphor: bis 0,020 % Schwefel: bis 0,010 % Chrom: 14,0 bis 18,0 % Molybdän: 14,0 bis 18,0 % Kobalt: bis 2,0 % Wolfram: bis 0,5 % Calcium: 0,001 bis 0,010 % Magnesium: 0,001 bis 0,020 % Aluminium: 0,05 bis 0,30 % Stickstoff: bis 0,02 % Eisen: bis 3,0 % Kupfer: bis 0,5 % Titan: bis 0,01 %
    Rest Nickel und übliche erschmelzungsbedingte Verunreinigungen,
    wobei die Summe der Gehalte an (Kohlenstoff + Silizium + Titan) auf maximal 0,05 % beschränkt, und die Summe der Elemente (Calcium + Magnesium + Aluminium) in den Grenzen 0,055 bis 0,33 % eingestellt ist.
  2. Verwendung einer austenitischen Nickel-Chrom-Molybdän-Legierung nach Anspruch 1 als Werkstoff für Konstruktionsteile in elektrolytischen Behandlungsanlagen zur Oberflächenveredelung von Metallbändern.
  3. Verwendung einer austenitischen Nickel-Chrom-Molybdän-Legierung nach Anspruch 1 als Werkstoff zur Herstellung von Transportrollen und Stromrollen für elektrolytische Bandverzinkungsanlagen.
  4. Verwendung einer austenitischen Nickel-Chrom-Molybdän-Legierung nach Anspruch 1 als Werkstoff zur Handhabung chemischer Prozeßmedien wie Eisen-III- und Kupfer-II-Chlorid enthaltende Lösungen sowie heiße verunreinigte Mineralsäuren, Ameisen- und Essigsäure, mit guter Beständigkeit gegenüber feuchtem Chlorgas, Hypochlorit und Chloridoxidlösungen.
  5. Verwendung einer austenitischen Nickel-Chrom-Molybdän-Legierung nach Anspruch 1 als Werkstoff zur Herstellung von Absorberkomponenten für die Reinigung und die Entschwefelung von Rauchgasen.
  6. Verwendung einer austenitischen Nickel-Chrom-Molybdän-Legierung nach Anspruch 1 als Werkstoff zur Herstellung von Beizbadbehältern und zugehörigen Komponenten sowie von Anlagen zur Regenerierung von Beizbädern.
EP93101162A 1992-02-06 1993-01-27 Austenitische Nickel-Legierung Expired - Lifetime EP0558915B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4203328 1992-02-06
DE4203328A DE4203328C1 (de) 1992-02-06 1992-02-06

Publications (3)

Publication Number Publication Date
EP0558915A2 EP0558915A2 (de) 1993-09-08
EP0558915A3 EP0558915A3 (de) 1994-01-12
EP0558915B1 true EP0558915B1 (de) 1995-09-27

Family

ID=6451036

Family Applications (1)

Application Number Title Priority Date Filing Date
EP93101162A Expired - Lifetime EP0558915B1 (de) 1992-02-06 1993-01-27 Austenitische Nickel-Legierung

Country Status (12)

Country Link
US (1) US5417918A (de)
EP (1) EP0558915B1 (de)
JP (1) JPH05271832A (de)
KR (1) KR100193388B1 (de)
AT (1) ATE128492T1 (de)
BR (1) BR9300503A (de)
CA (1) CA2087995A1 (de)
DE (2) DE4203328C1 (de)
DK (1) DK0558915T3 (de)
ES (1) ES2081644T3 (de)
FI (1) FI103286B (de)
MX (1) MX9300537A (de)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69404937T2 (de) * 1993-09-20 1998-01-15 Mitsubishi Materials Corp Nickellegierung
DE4446266C1 (de) * 1994-12-23 1996-08-14 Krupp Vdm Gmbh Nickellegierung
DE19723491C1 (de) * 1997-06-05 1998-12-03 Krupp Vdm Gmbh Verwendung einer Nickel-Chrom-Molybdän-Legierung
US5972289A (en) * 1998-05-07 1999-10-26 Lockheed Martin Energy Research Corporation High strength, thermally stable, oxidation resistant, nickel-based alloy
US6860948B1 (en) 2003-09-05 2005-03-01 Haynes International, Inc. Age-hardenable, corrosion resistant Ni—Cr—Mo alloys
KR20030003017A (ko) * 2001-06-28 2003-01-09 하이네스인터내셔널인코포레이티드 Ni-Cr-Mo합금의 2-단계 에이징 처리방법 및 결과의합금
US6544362B2 (en) 2001-06-28 2003-04-08 Haynes International, Inc. Two step aging treatment for Ni-Cr-Mo alloys
US6740291B2 (en) * 2002-05-15 2004-05-25 Haynes International, Inc. Ni-Cr-Mo alloys resistant to wet process phosphoric acid and chloride-induced localized attack
US7785532B2 (en) * 2006-08-09 2010-08-31 Haynes International, Inc. Hybrid corrosion-resistant nickel alloys
JP2021183721A (ja) 2020-05-22 2021-12-02 日本製鉄株式会社 Ni基合金管および溶接継手
JP2021183720A (ja) 2020-05-22 2021-12-02 日本製鉄株式会社 Ni基合金管および溶接継手
JP2021183719A (ja) 2020-05-22 2021-12-02 日本製鉄株式会社 Ni基合金管および溶接継手

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2005371B2 (de) * 1970-02-06 1974-01-17 Fried. Krupp Gmbh, 4300 Essen Verfahren zur Herstellung weichmagnetischer Eisen-Nickel-Legierungen
US4043810A (en) * 1971-09-13 1977-08-23 Cabot Corporation Cast thermally stable high temperature nickel-base alloys and casting made therefrom
BE788719A (fr) * 1971-09-13 1973-01-02 Cabot Corp Alliage a base de nickel resistant a l'oxydation aux temperatures elevees et thermiquement stables
ZA74490B (en) * 1973-02-06 1974-11-27 Cabot Corp Nickel-base alloys
JPS5129316A (de) * 1974-09-06 1976-03-12 Nippon Steel Corp
US3969111A (en) * 1975-03-27 1976-07-13 Cabot Corporation Alloy compositions
US4129464A (en) * 1977-08-24 1978-12-12 Cabot Corporation High yield strength Ni-Cr-Mo alloys and methods of producing the same
JPH0674474B2 (ja) * 1986-01-07 1994-09-21 住友金属工業株式会社 耐食性に優れた高強度Ni基合金
JPH0639650B2 (ja) * 1986-01-07 1994-05-25 住友金属工業株式会社 靭性の優れた高耐食性Ni基合金
JPH0674473B2 (ja) * 1986-01-07 1994-09-21 住友金属工業株式会社 高耐食性Ni基合金
JPH028337A (ja) * 1988-06-24 1990-01-11 Nippon Stainless Steel Co Ltd 電気めっき用通電ロールおよびその製造方法

Also Published As

Publication number Publication date
CA2087995A1 (en) 1993-08-07
ES2081644T3 (es) 1996-03-16
DE59300640D1 (de) 1995-11-02
FI103286B1 (fi) 1999-05-31
KR100193388B1 (ko) 1999-06-15
FI930492A0 (fi) 1993-02-04
FI103286B (fi) 1999-05-31
US5417918A (en) 1995-05-23
MX9300537A (es) 1994-07-29
DK0558915T3 (da) 1995-12-27
ATE128492T1 (de) 1995-10-15
EP0558915A2 (de) 1993-09-08
EP0558915A3 (de) 1994-01-12
FI930492A (fi) 1993-08-07
KR930018042A (ko) 1993-09-21
BR9300503A (pt) 1993-09-28
JPH05271832A (ja) 1993-10-19
DE4203328C1 (de) 1993-01-07

Similar Documents

Publication Publication Date Title
AT394056B (de) Verfahren zur herstellung von stahl
DE102012011161B4 (de) Nickel-Chrom-Aluminium-Legierung mit guter Verarbeitbarkeit, Kriechfestigkeit und Korrosionsbeständigkeit
DE3781798T2 (de) Ferritischer rostfreier stahl und verfahren zur herstellung.
DE602004010368T2 (de) Austenitischer rostfreier stahl mit molybdenum
EP2855724B1 (de) Nickel-chrom-legierung mit guter verarbeitbarkeit, kriechfestigkeit und korrosionsbeständigkeit
DE2752083C2 (de) Austenitischer, nichtrostender Stahl
DE60225951T2 (de) Duplexstahllegierung
EP0558915B1 (de) Austenitische Nickel-Legierung
EP0563720A1 (de) Austenitische Nickel-Molybdän-Legierung
DE3117539C2 (de)
DE3114533A1 (de) Rostfreier ferritstahl
DE69015140T2 (de) Hitzebeständiger austenitischer rostfreier Stahl.
DE1301586B (de) Austenitische ausscheidungshaertbare Stahllegierung und Verfahren zu ihrer Waermebehandlung
DE69732386T2 (de) Rostfreier Stahl für Wasser mit zugesetztem Ozon und sein Herstellungsverfahrene
DE3125301A1 (de) Korrosionsbestaendige nickellegierung
DE19723491C1 (de) Verwendung einer Nickel-Chrom-Molybdän-Legierung
DE69106372T2 (de) Legierung mit niedrigem wärmeausdehnungskoeffizient und daraus hergestellter gegenstand.
DE1758825B1 (de) Verwendung einer Nickel-Chrom-Eisen-Legierung
DE1608180B1 (de) Verwendung einer nickel-chrom-stahl-legierung
AT405297B (de) Duplexlegierung für komplex beanspruchte bauteile
DE10215598A1 (de) Nichtrostender Stahl, Verfahren zum Herstellen von spannungsrißfreien Formteilen und Formteil
DE3222292C2 (de)
SE441455B (sv) Stal av austenitisk typ
DE2627443A1 (de) Rostfreie stahllegierung
DE112021004006T5 (de) Hoch korrosionsbeständige Ni-Cr-Mo-N-Legierung mit überlegener Phasenstabilität

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LI LU NL PT SE

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LI LU NL PT SE

17P Request for examination filed

Effective date: 19940119

17Q First examination report despatched

Effective date: 19940616

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LI LU NL PT SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19950927

REF Corresponds to:

Ref document number: 128492

Country of ref document: AT

Date of ref document: 19951015

Kind code of ref document: T

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: 65440

REF Corresponds to:

Ref document number: 59300640

Country of ref document: DE

Date of ref document: 19951102

ITF It: translation for a ep patent filed

Owner name: SOCIETA' ITALIANA BREVETTI S.P.A.

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19951120

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Effective date: 19951227

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19960131

ET Fr: translation filed
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2081644

Country of ref document: ES

Kind code of ref document: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19960402

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

Ref document number: 65440

Country of ref document: IE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20001214

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20001222

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DK

Payment date: 20001227

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20010118

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20010122

Year of fee payment: 9

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020127

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020128

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020131

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020131

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020131

BERE Be: lapsed

Owner name: KRUPP VDM G.M.B.H.

Effective date: 20020131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020801

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20020801

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20120206

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20120123

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20120120

Year of fee payment: 20

Ref country code: GB

Payment date: 20120120

Year of fee payment: 20

Ref country code: IT

Payment date: 20120126

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59300640

Country of ref document: DE

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20130126

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK07

Ref document number: 128492

Country of ref document: AT

Kind code of ref document: T

Effective date: 20130127

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20120111

Year of fee payment: 20

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20130129

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20130126