EP0541744A1 - Procede et dispositif d'empilement. - Google Patents

Procede et dispositif d'empilement.

Info

Publication number
EP0541744A1
EP0541744A1 EP92910499A EP92910499A EP0541744A1 EP 0541744 A1 EP0541744 A1 EP 0541744A1 EP 92910499 A EP92910499 A EP 92910499A EP 92910499 A EP92910499 A EP 92910499A EP 0541744 A1 EP0541744 A1 EP 0541744A1
Authority
EP
European Patent Office
Prior art keywords
stack
support
supports
movement
stack support
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP92910499A
Other languages
German (de)
English (en)
Other versions
EP0541744B1 (fr
Inventor
Martin Bluemle
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of EP0541744A1 publication Critical patent/EP0541744A1/fr
Application granted granted Critical
Publication of EP0541744B1 publication Critical patent/EP0541744B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H33/00Forming counted batches in delivery pile or stream of articles
    • B65H33/02Forming counted batches in delivery pile or stream of articles by moving a blade or like member into the pile
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B07SEPARATING SOLIDS FROM SOLIDS; SORTING
    • B07CPOSTAL SORTING; SORTING INDIVIDUAL ARTICLES, OR BULK MATERIAL FIT TO BE SORTED PIECE-MEAL, e.g. BY PICKING
    • B07C1/00Measures preceding sorting according to destination
    • B07C1/02Forming articles into a stream; Arranging articles in a stream, e.g. spacing, orientating
    • B07C1/025Devices for the temporary stacking of objects provided with a stacking and destacking device (interstack device)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2301/00Handling processes for sheets or webs
    • B65H2301/40Type of handling process
    • B65H2301/42Piling, depiling, handling piles
    • B65H2301/421Forming a pile
    • B65H2301/4214Forming a pile of articles on edge
    • B65H2301/42146Forming a pile of articles on edge by introducing articles from above

Definitions

  • the invention relates to a method and an apparatus for stacking, i.e. for forming, holding, separating and transporting stacks, in particular stacks consisting of envelopes or the like behind a depositing device which places continuously and individually arriving envelopes with one of their edges on a stacking surface.
  • a method and a device of the type mentioned are known.
  • the device has a front stack support and a rear stack support, the front stack support serving as a holding element when the stack is being formed, while the rear stack support separates the finished stack from the next and forms a transport unit together with the front stack support.
  • This known device basically works satisfactorily.
  • the invention is based on the problem of further improving this technology and making it even more efficient.
  • the invention provides that during the removal of the one stack and the simultaneous formation of the next stack, several stack supports are simultaneously active and are moved into the movement path of the stack and out of its movement path and along the movement path.
  • stack supports serving as a transport unit at the same time, but there are also further stack supports which are also movable.
  • These further stack supports like the stack supports serving as a transport unit, are movable stack supports into and out of the movement path of the stack and along the movement path of the stack, although the movement along the movement path only affects the area of the stack formation is limited.
  • the stack supports, which can only be moved in the area of the stack formation, are also effective until their function is taken over by the other two stack supports, which also serve as a transport unit.
  • three stack supports are moved from one side transversely to the movement path and along the movement path of the stack and from a second side
  • a fourth stack support is moved into and out of the movement path, and at times during the formation of the stack along the movement path.
  • the three stack supports are preferably moved from bottom to top and back and in the longitudinal direction of the movement path, while the movement of the individual stack supports takes place from top to bottom and back and in the direction of the movement path of the stack.
  • the stack supports operate partly simultaneously and partly alternately and complement one another, a continuous movement sequence is possible without interruption, with the stack also being continuously formed and the overall speed of the individual parts being low overall. This is associated with a high degree of operational safety and thus a low susceptibility to failure.
  • FIG. 1 a schematic diagram as in FIG. 1 with a completed stack and with the stack supports forming the transport unit in one position before they take over the stack
  • 3 shows a schematic diagram as in FIG. 2 with the stack supports forming the transport unit after they have taken over the stack
  • Fig. /> A schematic diagram as in Figures 1 to 3 with a completed stack during removal and a further stack during new formation
  • FIGS. 1 shows a schematic diagram as in FIGS. 1 to with the completed stack completely transported away and the further stack as it is being formed, it still being held by its first, front stack support;
  • FIG. 7 a schematic diagram similar to that according to FIG. 6, the stack being formed being held by its second, front stack support and the other stack supports being in a retracted waiting position from which they are in a ready position move shaft position according to FIG. 1;
  • Fig. 9 Details along the line IX-IX in Fig. 8;
  • Fig. 12 on a larger scale details of the storage of the first front stack support
  • Fig. 13 a schematic diagram as in Fig. 5 of a modified embodiment
  • a device 1 for stacking, for example envelopes 3 coming from a feed station 2, according to FIG. 5, comprises a depositing device 4 with serrated lock washers 5-feeding stations 2 and depositing devices 4- of the type of interest here are known in principle and are not the subject of the present invention Invention.
  • FIG. 5 also shows, the continuously and individually arriving envelopes 3 are placed with one of their edges 6 by the depositing device 4 on a stacking surface 7 of the device 1 and are initially held there by a first, front stacking support 8.
  • the term "front" stack support 8 means that this stack support 8 is in the direction of stack formation - i.e. 5 - in the direction of arrow a in FIG. 5.
  • a second, front stack support 9 takes the place of the first, front stack support 8 and holds the forming stack 10, so that the first, front stack support 8 comes out of the Movement path of the stack 10 can be moved out. This is also shown in FIG. 6.
  • a third front stack support 12 and a stack support 13 in the transport direction take over the stack 11.
  • the two stack supports 12 and 13 together form a transport unit ⁇ unit and transport the finished stack 11 out of the area of the stack formation point, for example, to a turning and nesting station 14 ' as shown in Figures 2 to 5 and 6 respectively.
  • the first front stack support 8 When the two stack supports 12 and 13 serving as transport units take over the stack 11, the first front stack support 8 is simultaneously moved in front of the next part to be stacked.
  • the first front stack support 8 therefore also serves as a separating element between a completed, complete stack 11 and the next stack 10 that is being formed (FIGS. 2 and 3).
  • stack supports 8, 9 and 12, 13 are thus active for forming, holding, separating and transporting stacks 10, 11 and move both in the path of movement of the stacks 10, 11 and out of their path of movement out and they also move along the movement path of the stacks 10, 11.
  • Three stack supports 8, 12 and 13 move from one side transversely to the movement path of the stacks 10, 11 and along the movement path, while the fourth stack support 9 moves from a second side into and out of the path of movement and at times during the stack formation along the path of movement.
  • the second front stack support 9 is pivoted from above in front of the stack 10 that is being formed and moves along the path of movement of the stack 10 during the formation of the stack until it finally swings away again upwards and then moves back in the direction of the depositing device 4.
  • the second front stack support 9 holds the stack 10 that is being formed, while the stack supports 12 and 13 serving as a transport unit, like the first front stack support 8, are in a standby position. In this standby position, the stack supports 8 and 13 are located at a short distance in front of the stack 10 on its side facing the depositing device 4 and project with their free ends 16 somewhat over the stacking surface 7.
  • Fig. 2 the stack 11 has reached its full size.
  • the second front stack support 9 and the third front stack support 12 belonging to the transport unit are located in one plane.
  • the rear stack support 13 and the first front stack support 8 located directly next to it have moved from the ready position according to FIG. 1 to the last part 15 of the complete stack 11. This takes place at a relatively low level, so that initially both the front stack support 12 and the rear stack support 13 rest only on the outside of the stack 11 with their upper ends 16. Then the two stack supports 12 and 13 move according to FIG. 3 upwards on the stack and at the same time somewhat in the direction of movement of the stack 11 to be transported away.
  • the stack 10 or 11 expediently rests in the stack formation area on the upper run of a conveyor belt 17 which is guided around deflecting rollers 18 to 23 and around a driving deflecting roller 24.
  • the transport speed of the two stack supports 12 and 13 forming the transport unit is greater than that of the transport belt 17, so that a gap 25 quickly arises to the next stack 10 being formed (FIG. 4).
  • This next stack 10 which is being formed is held by the first front stack support 8 which, together with the rear stack support 13, had been moved from the ready position according to FIG. 1 to the last part 15 after completion of the stack 10 according to FIG. 2 , whereby this was also initially carried out at a low level, whereupon the first front stack support 8 is moved transversely to the stacking direction from the position according to FIG.
  • the second front stack support 9 moves out of the movement path of the stack 11 when the third front stack support 12 has reached its upper position according to FIG. 3.
  • the stack support 9 pivots out of the path of movement of the stack 11 (FIG. 4).
  • the two transport supports 12 and 13 with the stack 11 have reached the turning and nesting station 14.
  • the newly forming stack 10 has become somewhat larger during this time.
  • 6 shows the situation in which the turning and nesting station 14 has taken over the stack 11 with its turning fork 26.
  • a folding box 27 has already been pushed over the stack 11.
  • the stack supports 12 and 13 serving as a transport unit can therefore be detached from the stack 11, for which purpose they are removed from the stack. According to the exemplary embodiment, this is done by lowering the two stack supports 12 and 13.
  • the second front stack support 9 which can be pivoted in from above, has taken over the securing of the stack 10 which is being formed, as a comparison of FIGS. 5 and 6 shows.
  • the first front stack support 8 With the lowering of the two stack supports 12 and 13, the first front stack support 8 is also lowered according to the exemplary embodiment and is therefore no longer able to hold the stack 10 that is being formed (FIG. 6).
  • the three stack supports 8, 12 and 13, which can be moved from a common side transversely to the path of movement of the stacks 10, 11, then move to a waiting position on the right in FIG. 7 In this waiting position, the free ends 16 of the stack supports 8, 12 and 13 are still below the stacking surface 7 at a level at which they are moved back into the position according to FIG. 7 after the lowering according to FIG. 6. From this lowered level below the stacking surface 7, the stacking supports 8, 12 and 13 are then raised again to the ready position until their upper, free ends 16 are slightly above the level of the stacking surface 7, as is shown in FIG. 1. The steps described above are then repeated.
  • a device 30 is used for mounting and driving the first front stacking support 8 and the stacking supports 12 and 13 serving as a transport unit, which is lifted from the raised position according to FIG. 1 with the aid of a lifting device 31 which is only shown in principle in the figures 6 can be lowered into the position.
  • the device 30 comprises means for storing and guiding and for driving the stack supports 8, 12 and 13 »
  • Both the first front stack support 8 and the two stack supports 12 and 13 forming a transport unit are each arranged on a carriage 32 or 33 and 34 (FIG. 1).
  • the device 30 according to the embodiment has external guide rods 35 and 36 (FIG. 10).
  • the device 30 comprises internal guide rods 37 and 38, only the slide 33 with the stack support 13 and not also the slide 34 with the stack support 12 being shown in FIG. 10 .
  • the pairs of guide rods 35 and 36 as well as 37 and 38 are also preferably at different heights, as can be seen from FIG. 11.
  • An electromagnetic clutch 45 is also fastened to the carriage 32 with the aid of a holder 46. This is shown in principle in FIGS. 10 and 12.
  • the slide 33 of the rear stack support 13 carries a steel plate 47 assigned to the electromagnetic clutch 45 (FIG. 12). The two slides 32 and 33 are therefore temporarily connected to one another by the holding force of the electromagnetic clutch 45.
  • the two carriages 32 and 33 are released in the area of their electromagnetic coupling 45 for separating the two stack supports 8 and 13 from one another with the aid of switches which are not shown in the figures and can be controlled by the carriage itself.
  • the device 30 also includes a piston-cylinder unit 47, which can be, for example, a rodless cylinder, the piston of which, not shown in the figures, abruptly removes the two stack supports 8 and 13 from the waiting position according to FIG. 1 into the separating position 2 moves.
  • the free ends 16 of the two stack supports 8 and 13 are already in the waiting position according to FIG. 1 within the radius of the serrated lock washer 5 in the plane of the storage support 48 of the storage device 4 >, as also shown in FIG. 1.
  • the device 30 is slightly raised by the lifting device 31.
  • the stack 11 is transported from the position according to FIG. 2 or FIG. 3 to the turning and nesting station 14 with the aid of the piston-cylinder unit 47, which for this purpose is connected to the rear stack support 13 and moves it.
  • the piston-cylinder unit 47 also moves the rear stack support 13 back into the starting position or waiting position according to FIG. 7, the slide 32 of the first front stack support 8 with the slide 33 of the rear stack support 13 using the electromagnetic clutch 45 is coupled.
  • the front stack support 12 belonging to the transport unit receives its drive for the return movement from a return spring which is not shown in the figures for reasons of clarity.
  • a toothed belt 51 (FIGS. 10 and 11), which is driven synchronously with the conveyor belt 17 (FIG. 3), is also assigned to the slide 32 of the first front stack support 8. This toothed belt 51 is coupled to or detached from the slide 32 via the clamping cylinder of a pneumatic coupling 52. This is necessary because the carriage 32 is temporarily coupled to the carriage 33 via the electromagnetic clutch 45 and is then moved by the latter.
  • the toothed belt 51 is guided with the aid of a deflection roller 53 at a free end 54 of the device 47 (FIG. 1) and also runs over deflection rollers 55 and 56 which are mounted on the piston-cylinder unit 47 or are height-adjustable together with the latter. Furthermore, the toothed belt 51 is guided over deflection rollers 57 and 58, which are mounted on a carrying and guiding device 59 (FIG. 1) for the device 30 with the piston-cylinder unit 47.
  • a guide and holding device 60 is provided for pivoting and for horizontally moving the second front stack support 9, which can be pivoted in from above in front of the stack 10 that is being formed, the essential details of which can be seen in FIGS. 8 and 9.
  • the stacking support 9 like the stacking support 12, comprises a plurality, preferably four elongated, finger-like elements 61 which are arranged on a carrier 62 and, together with the latter, on arms 63 of a carriage 64, are displaced about an axis 65. are pivotally mounted.
  • the carriage 64 can be moved along guide rods 66, which are part of the guide and holding device 60.
  • a toothed belt 69 which is guided around a drive wheel 67 and a deflection wheel 68 and which can be coupled to or detached from the slide 64, is provided as the drive for the slide 64.
  • a pneumatic clutch 70 is again provided, which is only indicated schematically on the carriage 64 in FIG. 8.
  • the toothed belt 69 is basically driven synchronously with the conveyor belt 17, so that detachment from the toothed belt 69 is necessary when the stack support 9 or the carriage 64 carrying it are moved back to the starting position according to FIGS. 4 and 5.
  • roller spring 71 To retract the carriage 64 is a roller spring 71, which is attached at one end 72 in the region of the drive wheel 67 to the guide and holding device 60 and is also guided around a roller eder drum 73 which is mounted on the carriage 64.
  • Another arm 77 serves as a carrier for the swivel cylinder 74 and connects it to the slide 64.
  • the guide and holding device 60 also includes an upper stack guide element 80 (FIGS. 1, 8) which is carried by vertically adjustable guide rods 81 and through which the finger-like elements 61 of the stack support 9 extend.
  • FIGS. 13 and 14 show a modified device 1a for stacking or for forming, holding, separating and transporting stacks 10a and 11a, however, the same reference numbers with the index a serve for the same parts.
  • the device 1a according to FIGS. 13 and 14 differs from the device 1 described first only in that the second stacking support 9a on a carriage 64 cannot be pivoted but can be moved perpendicular to the stacking surface 7a.
  • the second front stack support 9a is mounted such that it can move in the vertical direction and can also be moved parallel to the stack 10a which is becoming larger by means of the slide 64.
  • the storage and the drive for the carriage 64 in the guiding and holding device 60a can basically be designed in the same way as in the exemplary embodiment described first. There is therefore only a difference insofar as the slide 64a carries a lifting device 90a, for example in the form of a piston-cylinder device, with the aid of which the second front stack support 9a is raised as required, as shown in FIG. 13, or is lowered, as shown in FIG. 14.
  • the carriage 64a has an upwardly extending carrier 91a, to the upper end of which the piston-cylinder device 90a is fastened.
  • a Mitneh ⁇ mer 93a connects the free end of the piston rod 92a with the second front stack support 9a, which is further preferably guided and supported in the carriage 64a.
  • the function and mode of operation of the guiding and holding device 60a with the second front stack support 9, which can be moved parallel and vertically to the stacking surface 7a, when interacting with the first front stack support 8a and the two other stack supports 12a and 13a do not differ from the first execution example described.
  • the stack support 9a is in a raised position.
  • the stack support 8a also releases the newly formed stack 10a, since it is lowered together with the other two stack supports 12a and 13a.
  • the stack support 9a takes over the holding function on the stack 10a, for which purpose it is pushed in front of the stack 10a by the lifting device 90a, as is shown in FIG. 1.
  • the three stacking supports 8, 12 and 13 or 8a, 12a and 13a move together in the vertical direction or perpendicular to the stacking surface 7 or 7a and in the horizontal direction only partially together, namely when the two stacking supports 8 and 13 in particular 7 and 8a and 13a move from the waiting position according to FIG. 7 into the standby position according to FIG. 1 and then via the separation position according to FIG. 2 into the transport and takeover position according to FIG. 3.
  • the stack supports 8, 12 and 13 or 8a, 12a and 13a move largely independently of one another.

Landscapes

  • Pile Receivers (AREA)
  • Stacking Of Articles And Auxiliary Devices (AREA)
  • Sheets, Magazines, And Separation Thereof (AREA)
  • Secondary Cells (AREA)

Abstract

L'invention concerne un procédé et un dispositif pour former, maintenir, séparer et transporter des piles, en particulier des piles (10, 11 ou 10a, 11a) constituées d'enveloppes (3) ou similaires, à l'arrière d'un dispositif de distribution (4, 4a) qui dépose les enveloppes (3, 3a) arrivant en continu ou individuellement par l'un de leur côtés (6, 6a) sur une surface d'empilement (7, 7a). L'invention consiste essentiellement en ce que: les éléments à empiler (3, 3a) sont maintenus tout d'abord, au début de la formation de la pile (10, 10a), par une première béquille avant (8, 8a) se déplaçant dans le sens de la pile (10, 10a) dont la taille augmente (fig. 4); une deuxième béquille avant (9, 9a) remplace ensuite la première béquille avant (8, 8a) (fig. 6); lorsque la pile (10, 11 ou 10a, 11a) (fig. 2) est terminée, une troisième béquille avant (12, 12a) et une béquille arrière (13, 12a) prennent en charge et éloignent la pile (11, 11a); en même temps que la prise en charge de la pile (11, 11a) par la troisième béquille avant (12, 12a) et la béquille arrière (13, 13a), la première béquille avant (8, 8a) intervient, avec la béquille arrière (13, 13a), comme élément de séparation entre la pile terminèe (11, 11a) et les éléments (3, 3a) de la pile suivante à former (10, 10a) et soutient celle-ci.
EP92910499A 1991-05-28 1992-05-19 Procede et dispositif d'empilement Expired - Lifetime EP0541744B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE4117434 1991-05-28
DE4117434A DE4117434A1 (de) 1991-05-28 1991-05-28 Verfahren und vorrichtung zum stapeln
PCT/EP1992/001097 WO1992021599A1 (fr) 1991-05-28 1992-05-19 Procede et dispositif d'empilement

Publications (2)

Publication Number Publication Date
EP0541744A1 true EP0541744A1 (fr) 1993-05-19
EP0541744B1 EP0541744B1 (fr) 1995-09-06

Family

ID=6432626

Family Applications (1)

Application Number Title Priority Date Filing Date
EP92910499A Expired - Lifetime EP0541744B1 (fr) 1991-05-28 1992-05-19 Procede et dispositif d'empilement

Country Status (8)

Country Link
US (1) US5393196A (fr)
EP (1) EP0541744B1 (fr)
JP (1) JPH06500300A (fr)
CA (1) CA2087964C (fr)
DE (2) DE4117434A1 (fr)
ES (1) ES2077416T3 (fr)
FI (1) FI106549B (fr)
WO (1) WO1992021599A1 (fr)

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4202540A1 (de) * 1992-01-30 1993-08-05 Giebeler Gmbh & Co Kg Robert Verfahren und vorrichtung zur herstellung definierter stapel gefalzter oder ungefalzter blaetter oder blattfoermiger gegenstaende
JP4318322B2 (ja) * 1993-05-07 2009-08-19 グラプハ−ホルディング・アクチエンゲゼルシヤフト 並列して起立している刷紙に対して垂直方向で指向して堆積体を形成するための装置
US5392908A (en) * 1994-04-25 1995-02-28 Tee-Lok Corporation Package for shipping, storing, and handling truss plates and method for forming same
US5540422A (en) * 1994-10-24 1996-07-30 Baldwin Technology Corporation Stacker-bundler transfer apparatus
IT1274433B (it) * 1995-05-05 1997-07-17 Civiemme Srl Carrello per un impilatore di segnature
FI98444C (fi) * 1995-08-04 1997-06-25 Mitek Holdings Inc Laitteisto naulalevyjen tai vastaavien pakkaamiseksi
DE19545716C1 (de) * 1995-12-07 1996-09-05 Licentia Gmbh Einrichtung zum automatischen Beschicken der Stoffeingabe einer Briefverteilanlage
IT1286535B1 (it) * 1996-01-30 1998-07-15 Perini Fabio Spa Metodo e dispositivo per separare tra loro gruppi di prodotti laminari e macchina formatrice comprendente detto dispositivo
DE19714185C1 (de) * 1997-04-07 1998-07-23 Siemens Ag Einrichtung zur Bildung eines geschlossenen Stapels von flachen Sendungen
DE19905955C1 (de) * 1999-02-12 2000-05-11 Siemens Ag Verfahren und Vorrichtung zum Entladen eines oben offenen Sendungsbehälters
DE19961513C1 (de) 1999-12-20 2001-01-18 Siemens Ag Stapelvorrichtung für flache, hochkant stehende Sendungen
FR2806066B1 (fr) * 2000-03-09 2002-05-03 Dubuit Mach Dispositif d'alimentation pour alimenter en objets des porte-objets, en particulier pour machine a imprimer, et machine a imprimer equipee d'un tel dispositif
IT1318731B1 (it) * 2000-08-04 2003-09-10 O M T S R L Apparecchiatura per la separazione e l'allontanamento reciproco di due fogli consecutivi mobili secondo una direzione di avanzamento.
DE10040229C1 (de) * 2000-08-17 2001-10-25 Siemens Ag Vorrichtung zum Unterteilen von Stapeln auf einer Unterlage aufrecht stehender, gegen eine seitliche Stützwand sich anlehnender schmaler Sendungen
DE20019858U1 (de) * 2000-11-23 2002-03-28 Hobema Maschf Hermann Vorrichtung zur Abführung von Päckchen, die jeweils aus mehreren gefalteten Einzelstücken aus Papier, Tissue, Nonwoven u.dgl. bestehen, von einer Falzmaschine
DE10241501A1 (de) * 2002-09-07 2004-03-18 Hobema Maschinenfabrik Hermann H. Raths Gmbh & Co Kg Vorrichtung zur Abführung von ein- oder mehrmals in Querrichtung gefalteten Bahnabschnitten aus Papier, Tissue, Nonwoven oder dergleichen von einer Falzmaschine
EP1405809B1 (fr) * 2002-10-02 2009-07-01 Müller Martini Holding AG Dispositif pour former des colis de produits empilés
US6997454B2 (en) * 2002-12-17 2006-02-14 Pitney Bowes Inc. Paddle and paddle support in on-edge mail stackers
ITMI20040927A1 (it) * 2004-05-07 2004-08-07 Omet Srl Procedimento e dispositivo per separare e trasferire verso l'impacchettamento un predeterminato numero di oggetti piatti quali fogli di carta in particolare tovaglioli
DE102006045277B3 (de) * 2006-09-22 2008-03-27 WINKLER + DüNNEBIER AG Verfahren und Vorrichtung zum Zwischenspeichern und Bereitstellen von Reihen
KR100802288B1 (ko) * 2006-12-29 2008-02-11 노틸러스효성 주식회사 지폐입출금장치
EP2159177B1 (fr) * 2008-08-29 2011-11-09 Müller Martini Holding AG Procédé et dispositif de fabrication de piles de feuilles imprimées
FR2983464B1 (fr) 2011-12-05 2014-06-27 Solystic Dispositif d'empilage pour objets plats empiles sur chant et machine de tri postal
DE102012204013A1 (de) 2012-03-14 2013-09-19 Krones Aktiengesellschaft Verfahren und Vorrichtung zur Übergabe von Artikellagen zwischen benachbarten Modulen
DE102012204027A1 (de) 2012-03-14 2013-09-19 Krones Ag Transfereinheit zur horizontalen Verschiebung von Artikellagen zwischen benachbarten Modulen
DE102012022228A1 (de) 2012-11-14 2014-05-15 Winkler + Dünnebier Gmbh Verfahren und Vorrichtung zum Bilden von Produktstapeln von gefalzten oder ungefalzten Produktzuschnitten aus Papier, Zellstoff oder dergleichen
DE102014206988A1 (de) 2014-04-11 2015-10-15 Krones Aktiengesellschaft Verfahren und Vorrichtung zur horizontalen Verschiebung von Artikelgruppen
CN107206555B (zh) * 2015-02-06 2019-12-13 日高精机株式会社 扁平管用翅片的取出装置
DE102015218637A1 (de) 2015-09-28 2017-03-30 Siemens Aktiengesellschaft Verfahren zum Bearbeiten von Postsendungen in einer Postsortiervorrichtung und eine Postsortiervorrichtung

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1182252B (de) * 1963-09-05 1964-11-26 Leipziger Buchbindereimaschine Stapelauslegevorrichtung fuer Bogenlagen
FR2056128A5 (fr) * 1969-07-21 1971-05-14 Polygraph Leipzig
GB1374093A (en) * 1971-12-15 1974-11-13 Masson Scott Thrissell Eng Ltd Apparatus for sorting and handling mail
US3810344A (en) * 1972-03-29 1974-05-14 Procter & Gamble Machine for packaging flexible articles
US3866905A (en) * 1972-10-04 1975-02-18 Bretting C G Mfg Co Inc Separator and transfer device for paper napkins, towels and the like
CH607979A5 (en) * 1977-02-07 1978-12-15 Sisenca Sa Device for handling stackable articles
JPS5936066A (ja) * 1982-08-23 1984-02-28 Mitsubishi Heavy Ind Ltd シ−ト状片のスタツカ装置
FR2537101B1 (fr) * 1982-12-03 1986-12-12 Hotchkiss Brandt Sogeme Dispositif de stockage dynamique d'objets plats
CH661018A5 (de) * 1983-08-15 1987-06-30 Sig Schweiz Industrieges Verfahren und vorrichtung zum abtrennen von gruppen scheibenfoermiger gegenstaende aus einem als strom zulaufenden stapel.
US4772003A (en) * 1987-02-24 1988-09-20 Dainihon Insatsu Kabushiki Kaisha Apparatus for stacking signatures or the like
US4870803A (en) * 1987-05-07 1989-10-03 Winkler & Duennebier Maschinenfabrik Und Eisengiesserei Kg Method and apparatus for packing envelopes in cartons
DE3820523A1 (de) * 1988-05-03 1989-11-16 Winkler Duennebier Kg Masch Vorrichtung zum wenden von kartons
US4824093A (en) * 1988-05-06 1989-04-25 Baldwin Technology Corporation Handling signatures
DE3822103A1 (de) * 1988-06-30 1990-02-08 Winkler Duennebier Kg Masch Vorrichtung zum verschieben von teilen
DE3833347A1 (de) * 1988-09-30 1990-04-05 Burkhardt Gmbh Vereinzelungsvorrichtung fuer flachbeutel
IT1234779B (it) * 1989-02-21 1992-05-26 Silvano Costi Macchina per prelevare gruppi prestabiliti di oggetti piatti, quali buste o fogli di carta da una fila continua in formazione
DE4009731A1 (de) * 1990-03-27 1991-10-02 Helmut Steinhilber Sortiergeraet zur ablage von blattfoermigen aufzeichnungstraegern
DE9102036U1 (fr) * 1991-02-21 1991-05-08 Ekkehard Kempf Gmbh, 7080 Aalen, De

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9221599A1 *

Also Published As

Publication number Publication date
US5393196A (en) 1995-02-28
DE4117434A1 (de) 1992-12-03
EP0541744B1 (fr) 1995-09-06
FI106549B (fi) 2001-02-28
JPH06500300A (ja) 1994-01-13
ES2077416T3 (es) 1995-11-16
FI925895A0 (fi) 1992-12-28
WO1992021599A1 (fr) 1992-12-10
CA2087964A1 (fr) 1992-11-29
FI925895A (fi) 1992-12-28
DE59203570D1 (de) 1995-10-12
CA2087964C (fr) 2003-12-30

Similar Documents

Publication Publication Date Title
EP0541744A1 (fr) Procede et dispositif d'empilement.
AT394987B (de) Vorrichtung zum sortieren von glastafelzuschnitten
EP0847949B1 (fr) Dispositif pour empiler un chant de feuilles imprimées
DE3502611C2 (fr)
EP0773902B1 (fr) Dispositif permettant d'enlever une pile de produits plats d'un point de groupage
DE2363134A1 (de) Verfahren und anordnung zum beladen einer palette mit zeitungsbuendeln
DE19636470C2 (de) Vorrichtung zum Handhaben von Glasscheiben
EP0211404A2 (fr) Dispositif et méthode pour empiler et/ou palettiser spécialement des produits minces d'une imprimerie
EP0085768B1 (fr) Procédé pour former des paquets de barres profilées non intercalées ou intercalées et dispositifs pour la mise en oeuvre du procédé
DE4013066C2 (de) Spulenwechselvorrichtung
EP0132635B1 (fr) Dispositif de chargement pour objets élongés
DE102005002532A1 (de) Vorrichtung und Verfahren zum automatisierten und zeitgleichen Bereitstellen und Wechseln von mindestens zwei Rollen aus Papierbahnen oder dergleichen für einen nachgeordneten Formatschneider
DE2642313C3 (de) Vorrichtung zum Fördern und Stapeln von kontinuierlich von einem Gießband abgegebenen Masseln, insbesondere von quaderförmigen NE-Metallmasseln
DE60102601T2 (de) Verfahren und Vorrichtung zum Fördern von Gegenständen
EP1389597B1 (fr) Méthode et dispositif pour dépiler une pile d'articles disposés en plusieurs couches horizontales
DE19948574A1 (de) Einrichtung zum Vereinzeln und Ausschleusen von in einer Reihe auf einer Rollenbahn abgelegten Stückgütern
CH618939A5 (fr)
DE2166939C3 (de) Maschinelle Einrichtung zum Herstellen von Weichkäse
DE19540147C2 (de) Vorrichtung zum Stapeln und Entstapeln von Transportkisten
DE19519615C2 (de) Vorrichtung für das Stapeln von Profilen
DE10249034C1 (de) Zwischenstapeleinrichtung im Ausleger einer bogenverarbeitenden Maschine, insbesondere Druckmaschine
EP1010655B1 (fr) Dispositif d'enroulement d'une bande
DE3615064A1 (de) Foerdereinrichtung zum transport von werkstuecken
CH685632A5 (de) Transportfahrzeug für Wattewickel.
DE2312048A1 (de) Vorrichtung zum beladen von paletten mit stueckguetern

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19921228

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE ES FR GB IT SE

17Q First examination report despatched

Effective date: 19940608

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES FR GB IT SE

REF Corresponds to:

Ref document number: 59203570

Country of ref document: DE

Date of ref document: 19951012

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19950918

ET Fr: translation filed
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2077416

Country of ref document: ES

Kind code of ref document: T3

ITF It: translation for a ep patent filed

Owner name: STUDIO JAUMANN

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20040514

Year of fee payment: 13

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050520

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20050520

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20070626

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20070726

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20070618

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20070627

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20070619

Year of fee payment: 16

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20080519

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20090119

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080602

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081202

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080519

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080519

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080520