EP0519485A1 - Treibmittel für Gasgeneratoren - Google Patents

Treibmittel für Gasgeneratoren Download PDF

Info

Publication number
EP0519485A1
EP0519485A1 EP92110353A EP92110353A EP0519485A1 EP 0519485 A1 EP0519485 A1 EP 0519485A1 EP 92110353 A EP92110353 A EP 92110353A EP 92110353 A EP92110353 A EP 92110353A EP 0519485 A1 EP0519485 A1 EP 0519485A1
Authority
EP
European Patent Office
Prior art keywords
derivatives
propellant
nitrate
salts
radical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP92110353A
Other languages
English (en)
French (fr)
Inventor
Klaus Dr. Redecker
Waldemar Dr. Weuter
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Delphi Technologies Inc
Original Assignee
Dynamit Nobel AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dynamit Nobel AG filed Critical Dynamit Nobel AG
Publication of EP0519485A1 publication Critical patent/EP0519485A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C06EXPLOSIVES; MATCHES
    • C06DMEANS FOR GENERATING SMOKE OR MIST; GAS-ATTACK COMPOSITIONS; GENERATION OF GAS FOR BLASTING OR PROPULSION (CHEMICAL PART)
    • C06D5/00Generation of pressure gas, e.g. for blasting cartridges, starting cartridges, rockets
    • C06D5/06Generation of pressure gas, e.g. for blasting cartridges, starting cartridges, rockets by reaction of two or more solids
    • CCHEMISTRY; METALLURGY
    • C06EXPLOSIVES; MATCHES
    • C06BEXPLOSIVES OR THERMIC COMPOSITIONS; MANUFACTURE THEREOF; USE OF SINGLE SUBSTANCES AS EXPLOSIVES
    • C06B43/00Compositions characterised by explosive or thermic constituents not provided for in groups C06B25/00 - C06B41/00

Definitions

  • Gas generators are finding increasing interest in saving lives, for example in vehicles.
  • the most widely used gas generation mixture in the world contains sodium azide.
  • sodium azide is toxic, which requires special measures in the manufacture of the raw material, the gas mixture, its processing, quality control and disposal. This applies in particular to the scrapping of vehicles.
  • DE-A-21 42 578 describes a compressed propellant charge for rapidly inflating a hollow body by reacting tetrazylazen with oxygen carriers.
  • DE-A-18 06 550 proposes a propellant gas-generating, cool gas-producing propellant based on ammonium nitrate, activated carbon and an endothermic decomposing or sublimating compound.
  • this system supplies a large proportion of water vapor, which is disadvantageous because water leads to a sharp increase in temperature due to its high heat of condensation.
  • DE-A-12 22 418 describes mixtures which develop pressurized gas on the basis of inorganic perchlorate oxidizers, polymeric fuel binders and a coolant.
  • preparations with high levels of chlorate or perchlorate lead to chlorine levels in the reaction gases.
  • EP-A-372 733 describes an unsatisfactory mixture since the propellant charge of the proposed airbag contains about 40% ammonium perchlorate.
  • Even nitrocellulose and nitroglycerin masses can be found in the literature. Such proposals cannot be used for use in life-saving systems. Nitrocellulose and nitroglycerin mixtures or other carbon-rich, energetic compounds are eliminated due to the formation of carbon monoxide.
  • the propellants of DE-A-12 50 318 which contain aminotetrazole, potassium dichromate, calcium resinate and metallic silicon, do not meet today's safety requirements. The same applies to DE-C-20 04 620, whose charge gas-generating charge contains azotetrazole and / or ditetrazole and chlorates or perchlorates.
  • the propellants of US Pat. No. 3,734,789 which contain 5-aminotetrazole nitrate and polyisoprene binder, burn off quickly, but also generate carbon monoxide in concentrations which are hazardous to health due to the carbon-rich binder fraction.
  • the invention is therefore based on the object of providing gas sets whose production and processing or handling are harmless and whose reaction products are not toxic.
  • the nitrogen-containing compounds to be used according to the invention are those which, when mixed with oxidizing agents, form mainly CO2, N2 and H2O in their thermal / chemical reaction, but do not develop gases such as CO or NO x in concentrations which are hazardous to health. It is particularly important that the addition of binders is not absolutely necessary.
  • R1 is preferably hydrogen, amino, hydroxy, carboxyl, a methyl, ethyl, propyl or isopropyl, butyl, isobutyl or tert-butyl, n-pentyl, n-hexyl or n-heptyl radical, one Methylamino, ethylamino, dimethylamino, n-heptylamino, n-octylamino or n-decylamino, a phenylamino, a phenyl, nitrophenyl or aminophenyl group.
  • R2 or R3 is preferably hydrogen, a methyl or ethyl radical, a phenyl, nitrophenyl or aminophenyl radical.
  • the tetrazole derivatives are particularly preferred: 5-aminotetrazole, sodium, potassium or calcium 5-aminotetrazolate, 1- (4-aminophenyl) tetrazole, 1- (4-nitrophenyl) tetrazole, 1-methyl-5-dimethylamino-tetrazole, 1-methyl 5-methylaminotetrazole, 1-methyl-tetrazole, 1-phenyl-5-aminotetrazole, 1-phenyl-5-hydroxy-tetrazole, 1-phenyl-tetrazole, 2-ethyl-5-aminotetrazole, 2-methyl- 5-amino-tetrazole, 2-methyl-5-carboxyl-tetrazole, 2-methyl-5-methylamino-tetrazole, 2-methyl-tetrazole, 2-phenyl-tetrazole, 5- (p-tolyl) -tetrazole, 5- Diallyl-aminotetrazole, 5-dimethylamino-tetrazole
  • cyanic acid derivatives 1,3,5-triazine, cyanuric acid ester and / or cyanuric acid amide (melamine) as triazine derivatives and biuret, guanidine, nitroguanidine, guanidine nitrate, aminoguanidine, guanidine nitrate, aminoguanidine as urea derivatives.
  • Triaminoguanidine nitrate aminoguanidine hydrogen carbonate, azodicarboxylic acid diamide, dicyandiamidine nitrate, dicyandiamidine sulfate, tetrazene and / or semicarbazide nitrate are used.
  • the mixtures according to the invention have high thermal and climatic stability, which is a prerequisite for a perfect effect even after long storage.
  • Nitrates of ammonium, sodium, potassium, magnesium, calcium or iron, preferably sodium nitrate or peroxides of zinc, calcium, strontium or magnesium can be used as the oxidizing agent.
  • the peroxides are used with an oxygen value that can be obtained from stable compounds. For zinc peroxide, this is about 11 to 14% by weight.
  • the corresponding molar ratio of nitrogen-containing compound to peroxide is in the range from 1: 2 to 5.5.
  • Calcium peroxide can have an active oxygen value of, for example, 18.62% by weight and grain sizes of 15.5 ⁇ m and is advantageously used in a molar ratio of nitrogenous compound / peroxide of 1: 3.
  • the above-mentioned peroxides can be used in a molar ratio of 1: 1 to 20.
  • Calcium and / or zinc peroxide is preferably used. Mixtures of the peroxides with one another or with other oxidizing agents can also be used.
  • Other oxidizing agents are, for example, the above-mentioned nitrates of ammonium, sodium, potassium, magnesium, calcium or iron, preferably sodium nitrate.
  • the alkaline hydrolysis products can cause reactions with the other components of the mixture.
  • coating the peroxides with inorganic or organic materials by methods known per se is expedient. Such a coating also offers the advantage of better handling, since the blowing agent treated in this way no longer produces dust.
  • the mixtures of the tetrazole or its derivatives to be used according to the invention with the compounds from groups A), B) and / or C) enable the propellants to be graded with respect to their reaction rate and the vapors and gases that develop.
  • a gradation that is necessary in order to be able to use the propellants according to the invention as widely as possible.
  • the propellant charges according to the invention must be mixed in a targeted manner. This is the only way to find the optimal one To achieve effect.
  • the efficiency of the propellants according to the invention is influenced not only by the composition, but also by the ignition, and also by the insulation caused by the construction and by the outflow behavior of the developing swaths and gases.
  • the efficiency can be assessed, for example, by determining the gas pressure increase gradient of the respective mixture in the design-related, predetermined external environment and the type of ignition selected.
  • the developing gas concentrations, especially those of the gases hazardous to health, must not exceed certain maximum values. These values result from the MAK values (or from the TLV values in the USA). From these values together with the permitted exposure times, technical requirements are created which the respective propellant charges have to meet. When defining these requirements, for example, the different passenger cells are also taken into account. In order to meet these requirements, it is necessary to mix the respective propellant in a targeted manner.
  • the gas temperature can be kept low by adding diammonium oxalate, oxalic acid diamide, dicyandiamide or carbonates or bicarbonates. If thermal stability is not important and smoke formation is to be avoided when inorganic carbonates or bicarbonates are added, aminoguanidine bicarbonate can be used as the organic bicarbonate. Additional additives can be oxalic acid or urea, which are generally added in an amount of up to 5% by weight, based on the mixture.
  • Metal powders of iron, magnesium, zirconium or titanium can be added as reducing agents, which in contrast to non-metal boron do not have a strong influence on the rate of combustion, but in the latter case they do have a strong influence on the heat of the reaction and the reaction products.
  • the proportion of reducing agents can be up to 5% by weight.
  • Catalysts are metal complexes, of which ferrocene is mentioned here by way of example, the addition of which increases the reaction rate significantly by up to about 3% by weight.
  • the gas sets described in accordance with the invention are produced by mixing the components by methods known per se, if appropriate with the preparation of a harmless premix, to which further components are added.
  • This mixture can already be used in powdered form. Demixing due to different density of the components can be countered by granulating the mixture.
  • the mixture will be molded by pressing or similar measures.
  • pressing aids can be added to the mixture.
  • graphite, molybdenum disulfide, Teflon, talc, zinc stearate or boron nitride come into question. These agents work even in the smallest amounts and do not or only slightly influence the properties and the burning behavior.
  • One such method is to add additives such as salts to the mixture before the actual molding process, which can be removed by extraction with water or solvents after the molding.
  • Another method is to add substances which are not very thermally resistant and which decompose when the molding is heated.
  • the surface of the mixture can also be increased by adding hollow microspheres made of glass or plastics to the mixture prior to pressing.
  • the density of the compact to be achieved in this way can deviate by up to 20% from that of the untreated compact, this value being intended only as a rough guide and not a limitation. This treatment leads to an extreme acceleration of the burning process.
  • a further treatment of the moldings can consist in a surface coating.
  • protection against environmental influences is achieved in particular.
  • Such a measure can also be used to increase the strength of the molded body.
  • suitable fibers for stabilization would also have to be provided here.
  • a side effect of the coating is the reduction of the abrasion during the transport stress of the parts.
  • the moldings treated in this way can be introduced in bulk or directed into appropriate pressure-resistant containers. They are ignited using conventional methods with the aid of ignition kits or thermal charges, the resulting gases possibly filling the life-saving system in a split second after flowing through a suitable filter.
  • the propellants according to the invention are particularly suitable for so-called airbags, impact bags, which are used in motor vehicles or aircraft to protect the occupants.
  • the airbag In the event of a motor vehicle crash, the airbag must be filled with gas quantities of approximately 50 to 300 liters within a very short time, depending on the system and car size.
  • the propellants according to the invention are also suitable for use in belt tensioners.
  • Life saving systems containing the propellants according to the invention are also the subject of the present invention.
  • 5-ATZ and ZnO2 as components for non-toxic gas sets, are homogenized together in a weight ratio of 1 to 7 (this corresponds to a molar ratio of approx. 1: 5) in plastic containers in a tumble mixer for 1-2 hours. 3.0 g of the sample are reacted as bulk in a 25 ml stainless steel pressure bomb by means of an electrically heatable Fe wire and the pressure-time profile is recorded by means of a piezoelectric measuring device. After about 30 ms, a maximum gas pressure of about 200 bar arises, which is mainly due to the formation of CO2, N2, O2 and H2O. The reaction has a strongly exothermic character of approx.
  • the gas set mixtures described in Examples 1 to 24 can also be used in compressed form.
  • Example 1 As described in Example 1, further mixtures of gas-generating components and oxygen suppliers such as zinc peroxide with an active oxygen content of 13.07% by weight and an average grain size of 11.8 ⁇ m or, in the case of sodium nitrate, with an average grain size of ⁇ 45 ⁇ m produced.
  • gas-generating components and oxygen suppliers such as zinc peroxide with an active oxygen content of 13.07% by weight and an average grain size of 11.8 ⁇ m or, in the case of sodium nitrate, with an average grain size of ⁇ 45 ⁇ m produced.
  • Table 4 below contains further information on the mixtures.
  • Table 5 shows the values for the maximum pressure (bar) and the time in ms to the maximum pressure, which are in the range of those described in Example 1 for a gas set consisting of 5-aminotetrazole and zinc peroxide. In addition, the time between 40-60% of the maximum pressure was determined. Table 5 Example No. Maxim Pressure (bar) Time (ms) to maxim. print up to 40-60% of the max. print 26 359 30th 1.2 27th 217 123 13.1 28 352 29 1.5 29 473 39 1.3 30th 549 14 0.5 31 917 7 0.2 32 148 220 20.1
  • the parameters required for the respective gas set can be set by coordinating the parameters and adding other components.
  • the components are suitable for the production of gas sets due to their miscibility, processability, compressibility for shaping and compatibility with one another and with additional additives as well as their safety-related characteristics.
  • the mixtures of Examples 33 to 44 were made of zinc peroxide (active oxygen content 12.8% by weight, average particle size 4.8 ⁇ m), aminotetrazole (average particle size ⁇ 125 ⁇ m), sodium nitrate (particle size ⁇ 45 ⁇ m) and the listed components with a grain size of ⁇ 125 ⁇ m.
  • the additionally listed components are described in the literature.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Air Bags (AREA)
  • Catalysts (AREA)

Abstract

Ein Treibmittel für Gasgeneratoren, insbesondere für Lebensrettungssysteme, enthält ein oder mehrere Tetrazolderivat(e) oder jeweils ein oder mehrere Verbindungen aus den Gruppen A) Cyansäurederivate und deren Salze, B) Triazin und Triazinderivate, C) Harnstoff, dessen Salze, Derivate und Abkömmlinge und deren Salze wobei die genannten Verbindungen auch als Mischungen vorliegen können und ein Oxidationsmittel aus der Gruppe der Nitrate von Ammonium, Natrium, Kalium, Magnesium, Calcium und Eisen und/oder Peroxide von Zink, Calcium, Strontium oder Magnesium, wobei weitere gaserzeugende Komponenten, Kühlmittel, Reduktionsmittel, Katalysatoren und/oder Porositätserzeuger zugesetzt sein können.

Description

  • Gasgeneratoren finden zunehmendes Interesse zur Lebensrettung beispielsweise in Fahrzeugen. Weltweit enthält die am meisten eingesetzte Mischung zur Erzeugung von Gas Natriumazid. Natriumazid ist jedoch giftig, was besondere Maßnahmen bei der Herstellung des Rohstoffs, der Gassatzmischung, seiner Verarbeitung, Qualitätskontrolle und Entsorgung erfordert. Dies gilt insbesondere bei der Verschrottung von Fahrzeugen.
  • Es hat nicht an Versuchen gefehlt, anstelle von Natriumazid andere Stoffe einzusetzen. So beschreibt die DE-A-21 42 578 einen verpreßten Treibsatz zum schnellen Aufblasen eines Hohlkörpers durch Umsetzung von Tetrazylazen mit Sauerstoffträgern. Die DE-A-18 06 550 schlägt einen druckgaserzeugenden, kühle Gase liefernden Treibsatz auf der Basis von Ammoniumnitrat, Aktivkohle und einer sich endotherm zersetzenden oder sublimierenden Verbindung vor. Dieses System liefert jedoch einen großen Anteil von Wasserdampf, was nachteilig ist, weil Wasser wegen seiner hohen Kondensationswärme zu einer starken Temperaturerhöhung führt.
  • Die DE-A-12 22 418 beschreibt Druckgas entwickelnde Gemische auf der Basis von anorganischen Perchloratoxidatoren, polymeren Brennstoffbindemitteln und einem Kühlmittel. Zubereitungen mit hohen Anteilen an Chlorat oder Perchlorat führen jedoch zu Chloranteilen in den Reaktionsgasen. So beschreibt auch die EP-A-372 733 ein unbefriedigendes Gemisch, da der Treibsatz des vorgeschlagenen Airbags etwa 40 % Ammoniumperchlorat enthält. Selbst Nitrocellulose und Nitroglycerin-Massen finden sich in der Literatur. Für die Verwendung in Lebensrettungssystemen sind solche Vorschläge nicht brauchbar. Nitrocellulose und Nitroglyceringemische oder auch andere kohlenstoffreiche, energetische Verbindungen scheiden wegen der Bildung von Kohlenmonoxid aus.
  • Auch die Treibsätze der DE-A-12 50 318, die Aminotetrazol, Kaliumdichromat, Calciumresinat und metallisches Silicium enthalten, genügen den heutigen Sicherheitsanforderungen nicht. Das gleiche gilt für die DE-C-20 04 620, deren Druckgas erzeugende Ladung Azotetrazol und/oder Ditetrazol und Chlorate oder Perchlorate enthalten. Die Treibsätze der US-A-3 734 789, die 5-Aminotetrazolnitrat und Polyisoprenbinder enthalten, brennen zwar schnell ab, erzeugen jedoch durch den kohlenstoffreichen Binderanteil auch Kohlenmonoxid in gesundheitsgefährdenden Konzentrationen.
  • Der Erfindung liegt somit die Aufgabe zugrunde, Gassätze bereitzustellen, deren Herstellung und Verarbeitung bzw. Handhabung unbedenklich und deren Umsetzungsprodukte nicht toxisch sind.
  • Diese Aufgabe wird gelöst durch ein Treibmittel für Gasgeneratoren, die als stickstoffhaltige Verbindung a) ein oder mehrere Tetrazolderivat(e) der Formel
    Figure imgb0001

    enthalten, worin R₁ und R₂ oder R₃ gleich oder verschieden sein können, jedoch entweder R₂ oder R₃ vorliegt und die Bedeutung haben: Wasserstoff, Hydroxy, Amino, Carboxyl, einen Alkylrest mit 1 bis 7 Kohlenstoffatomen, einen Alkenylrest mit 2 bis 7 Kohlenstoffatomen, einen Alkylaminorest mit 1 bis 10 Kohlenstoffatomen, einen Arylrest, gegebenenfalls substituiert mit einem oder mehreren Substituenten, die gleich oder verschieden sein können, ausgewählt aus der Aminogruppe, der Nitrogruppe, den Alkylresten mit 1 bis 4 Kohlenstoffatomen oder einen Arylaminorest, bei dem der Arylrest gegebenenfalls substituiert sein kann oder deren Natrium-, Kalium- und Guanidiniumsalze
    oder die als stickstoffhaltige Verbindungen
    b) jeweils ein oder mehrere Verbindungen aus den Gruppen
    • A) Cyansäurederivate und deren Salze,
    • B) Triazin und Triazinderivate,
    • C) Harnstoff, dessen Salze, Derivate und Abkömmlinge und deren Salze enthalten,
    wobei die unter a) und b) genannten Verbindungen auch als Mischungen vorliegen können
    und ein Oxidationsmittel aus der Gruppe der Peroxide oder aus der Gruppe der Peroxide zusammen mit Oxidationsmitteln aus der Gruppe der Nitrate enthalten.
  • Die erfindungsgemäß einzusetzenden stickstoffhaltigen Verbindungen sind solche, die im Gemisch mit Oxidationsmitteln bei ihrer thermisch/chemischen Umsetzung hauptsächlich CO₂, N₂ und H₂O bilden, jedoch keine Gase wie CO oder NOx in gesundheitsgefährdenden Konzentrationen entwickeln. Von besonderer Bedeutung ist, daß der Zusatz von Bindemitteln nicht unbedingt notwendig ist.
  • R₁ bedeutet vorzugsweise Wasserstoff, Amino, Hydroxy, Carboxyl, einen Methyl-, Ethyl-, Propyl- oder Isopropyl-, Butyl-, Isobutyl- oder tert.-Butyl, n-Pentyl-, n-Hexyl- oder n-Heptylrest, einen Methylamino-, Ethylamino-, Dimethylamino, n-Heptylamino-, n-Octylamino- oder n-Decylaminorest, einen Phenylaminorest, einen Phenyl-, Nitrophenyl- oder Aminophenylrest.
  • R₂ oder R₃ bedeutet vorzugsweise Wasserstoff, einen Methyl- oder Ethylrest, einen Phenyl-, Nitrophenyl- oder Aminophenylrest.
  • Besonders bevorzugt sind die Tetrazolderivate:
    5-Aminotetrazol, Natrium-, Kalium- oder Calcium-5-aminotetrazolat, 1-(4-Aminophenyl)-tetrazol,1-(4-Nitrophenyl)-tetrazol, 1-Methyl-5-dimethylamino-tetrazol, 1-Methyl-5-methylaminotetrazol, 1-Methyl-tetrazol, 1-Phenyl-5-amino-tetrazol, 1-Phenyl-5-hydroxy-tetrazol, 1-Phenyl-tetrazol, 2-Ethyl-5-amino-tetrazol, 2-Methyl-5-amino-tetrazol, 2-Methyl-5-carboxyl-tetrazol, 2-Methyl-5-methylamino-tetrazol, 2-Methyl-tetrazol, 2-Phenyl-tetrazol, 5-(p-Tolyl)-tetrazol, 5-Diallyl-amino-tetra-zol, 5-Dimethylamino-tetrazol, 5-Ethylamino-tetrazol, 5-Hydroxy-tetrazol, 5-Methyl-tetrazol, 5-Methyl-amino-tetrazol, 5-Methyl-amino-tetrazol, 5-n-Decylamino-tetrazol, 5-n-Heptyl-amino-tetrazol, 5-n-Octylamino-tetrazol, 5-Phenyltetrazol, 5-Phenyl-amino-tetrazol oder Bis(amino-guanidin)azo-tetrazol.
  • Als Cyansäurederivate werden bevorzugt Natriumcyanat, Cyanursäure, 1-Cyanguanidin, und/oder Dinatriumcyanamid, als Triazinderivate 1,3,5-Triazin, Cyanursäureester und/oder Cyanursäureamid (Melamin) und als Harnstoffderivate Biuret, Guanidin, Nitroguanidin, Guanidinnitrat, Aminoguanidin, Aminoguanidinnitrat, Triaminoguanidinnitrat, Aminoguanidinhydrogencarbonat, Azodicarbonsäurediamid, Dicyandiamidinnitrat, Dicyandiamidinsulfat, Tetrazen und/oder Semicarbazidnitrat eingesetzt.
  • Neben der gesundheitlichen Unbedenklichkeit besitzen die erfindungsgemäßen Gemische eine hohe thermische und klimatische Stabilität, die Voraussetzung für eine einwandfreie Wirkung auch nach langer Lagerung ist.
  • Als Oxidationsmittel können Nitrate von Ammonium, Natrium, Kalium, Magnesium, Calcium oder Eisen, vorzugsweise Natriumnitrat oder Peroxide von Zink, Calcium, Strontium oder Magnesium eingesetzt werden.
  • Die Peroxide werden dabei mit einem Sauerstoffwert eingesetzt, wie er aus stabilen Verbindungen erhalten werden kann. Für Zinkperoxid liegt dieser bei etwa 11 bis 14 Gew.-%. Das entsprechende Molverhältnis von stickstoffhaltiger Verbindung zu Peroxid liegt dabei im Bereich von 1:2 bis 5,5. Calciumperoxid kann einen aktiven Sauerstoffwert von beispielsweise 18,62 Gew.-% und Korngrößen von 15,5 µm aufweisen und wird vorteilhaft im Molverhältnis stickstoffhaltige Verbindung/Peroxid von 1:3 eingesetzt. Im allgemeinen können die obengenannten Peroxide im Molverhältnis 1:1 bis 20 eingesetzt werden.
  • Bevorzugt eingesetzt wird Calcium- und/oder Zinkperoxid. Es können auch Mischungen der Peroxide untereinander oder solche mit anderen Oxidationsmitteln eingesetzt werden. Andere Oxidationsmittel sind beispielsweise die oben erwähnten Nitrate von Ammonium, Natrium, Kalium, Magnesium, Calcium oder Eisen, vorzugsweise Natriumnitrat.
  • Bei Einsatz von Magnesium- und insbesondere Calcium- oder Strontiumperoxid kann es durch die alkalisch wirkenden Hydrolyseprodukte zu Reaktionen mit den übrigen Komponenten des Gemischs kommen. Hier ist eine Beschichtung der Peroxide mit anorganischen oder organischen Materialien nach an sich bekannten Verfahren zweckmäßig. Eine solche Beschichtung bietet darüberhinaus den Vorteil der besseren Handhabbarkeit, da das solchermaßen behandelte Treibmittel nicht mehr staubt.
  • Die erfindungsgemäß einzusetzenden Mischungen aus dem Tetrazol bzw. dessen Derivaten mit den Verbindungen aus den Gruppen A), B) und/oder C) ermöglichen eine feingradige Abstufung der Treibmittel in bezug auf ihre Reaktionsgeschwindigkeit und auf die sich entwickelnden Schwaden und Gase. Eine Abstufung, die erforderlich ist, um die erfindungsgemäßen Treibmittel möglichst vielfältig einsetzen zu können. Je nach Vorgabe der Konstruktion des Generatorgehäuses eines, beispielsweise, Airbags oder eines Gurtstrammers müssen die erfindungsgemäßen Treibsätze gezielt gemischt werden. Nur so ist es möglich, eine jeweils optimale Wirkung zu erreichen. Beeinflußt wird der Wirkungsgrad der erfindungsgemäßen Treibsätze nämlich nicht nur durch die Zusammensetzung, sondern weiterhin durch die Anzündung, und auch von der, durch die Konstruktion bedingte Verdämmung und durch das Abströmverhalten der sich entwickelnden Schwaden und Gase. Die Beurteilung des Wirkungsgrades kann beispielsweise erfolgen durch die Ermittlung des Gasdruckanstiegsgradienten der jeweiligen Mischung in der jeweils konstruktiv bedingten, vorgegebenen äußeren Umgebung und der gewählten Art der Anzündung. Die sich entwickelnden Gaskonzentrationen, insbesondere die der gesundheitsgefährdenden Gase dürfen bestimmte Maximalwerte nicht überschreiten. Diese Werte ergeben sich aus den MAK-Werten (bzw. aus den TLV-Werten in den USA). Aus diesen Werten zusammen mit den erlaubten Expositionszeiten werden technische Anforderungen erstellt, die die jeweiligen Treibsätze zu erfüllen haben. Bei der Festlegung dieser Anforderungen gehen beispielsweise auch die unterschiedlichen Fahrgastzellen ein. Um diese Anforderungen zu erfüllen, bedarf es der gezielten Abmischung des jeweiligen Treibsatzes.
  • Die in den Tabellen angegebenen Werte wurden ermittelt, indem in einem Näpfchen in loser Schüttung 4 g des jeweiligen Treibsatzes in einer Druckbombe von 25 ml Volumen mit einem Glühdraht gezündet wurden. Nach der Anzündung wurde eine Druck-/Zeit-Kurve aufgezeichnet. Die anfallenden Werte wurden folgendermaßen ausgewertet:
    • (1) maximaler Druck(bar): bei gleicher Einwaage sind Unterschiede direkt den entstandenen Gasvolumina zuzuschreiben. Diese werden durch Gasausbeute und Wärmetönung der Reaktion bestimmt.
    • (2) Gasdruckanstieg für den Bereich von 40-60 % vom maximalen Druck: In diesem Bereich wird die Kurve nicht mehr verfälscht durch den Anbrand bzw. das Abkühlverhalten der Schwaden durch die innere Bombenoberfläche. Die angegebenen Zeiten in Millisekunden (ms) geben den Druckanstieg wieder und bedeuten unterschiedliche Umsetzungsgeschwindigkeiten. Solche Werte erhält man auch in den jeweiligen Anwendungsfällen, beispielsweise in den diversen, konstruktiv veränderten Gasgeneratorgehäusen. Sie erlauben eine präzise Abstimmung der erfindungsgemäßen Treibsätze im Hinblick auf die Leistungsanforderungen. Durch die Angabe der Druckanstiegszeiten im Bereich von 40-60% vom maximalen Druck wird die Umsetzungsgeschwindigkeit der erfindungsgemäßen Treibsätze ausreichend charakterisiert. Die Zeiten für die Umsetzung bis zum Auftreten des maximalen Druckes dienen zur zusätzlichen Information.
  • Ein Niedrighalten der Gastemperatur kann gezielt durch Zugabe von Diammoniumoxalat, Oxalsäurediamid, Dicyandiamid oder Carbonaten bzw. Bicarbonaten erreicht werden. Sofern es auf die thermische Stabilität nicht ankommt und die Rauchbildung bei Zugabe anorganischer Carbonate oder Bicarbonate vermieden werden soll, kann als organisches Bicarbonat Aminoguanidinbicarbonat eingesetzt werden. Weitere Zuschläge können Oxalsäure oder Harnstoff sein, welche im allgemeinen in einer Menge bis zu 5 Gew.-%, bezogen auf das Gemisch, hinzugegeben werden.
  • Als Reduktionsmittel können Metallpulver von Eisen, Magnesium, Zirkonium oder Titan zugesetzt werden, die im Gegensatz zum Nichtmetall Bor keinen starken Einfluß auf die Abbrandgeschwindigkeit, bei letzterem wohl aber auf die Wärmetönung der Umsetzung und die Reaktionsprodukte haben. Der Anteil der Reduktionsmittel kann bis zu 5 Gew.-% betragen.
  • Als Katalysatoren für eine so heterogen zusammengesetzte Mischung eignen sich Verbindungen, die Einfluß nehmen auf die Zersetzung von Peroxiden wie z.B. Metalle oder ihre Oxide, z.B. Mangandioxid. Zusätze von Vanadiumpentoxid oder Cerdioxid führen zu einer Erhöhung der Umsetzungsgeschwindigkeit. Bei Zugabe bis 5 Gew.-% Molybdän(VI)-oxid wird sie nur wenig verändert, wie auch in Anwesenheit von Cer(III)nitrat- Hexahydrat. Diese Zusätze sind in Mengen bis zu wenigen Gew.-% wirksam. Weitere Katalysatoren sind Metallkomplexe, von denen hier beispielhaft Ferrocen genannt sei, dessen Zusatz bis zu etwa 3 Gew.-% die Umsetzungsgeschwindigkeit deutlich steigert.
  • Die Herstellung der erfindungsgemäß beschriebenen Gassätze erfolgt durch Mischen der Komponenten nach an sich bekannten Verfahren, ggf. unter Herstellung einer ungefährlichen Vormischung, der weitere Komponenten zugefügt werden. Diese Mischung kann bereits in gepulverter Form eingesetzt werden. Entmischung durch unterschiedliche Dichte der Komponenten kann durch Granulieren der Mischung begegnet werden.
  • In den weitaus häufigsten Anwendungsfällen wird man das Gemisch durch Verpressen oder ähnliche Maßnahmen formen. Zur Vereinfachung dieses Verfahrens können der Mischung Preßhilfen zugesetzt werden. Als solche kommen Graphit, Molybdändisulfid, Teflon, Talkum, Zinkstearat oder Bornitrid in Frage. Diese Mittel wirken bereits in geringsten Mengen und beeinflussen die Eigenschaften und das Abbrandverhalten nicht oder nur geringfügig.
  • In manchen Fällen kann es vorteilhaft sein, die Abbrandcharakteristik des Preßlings durch Porositätserzeugung zu beeinflussen. Eine solche Methode besteht darin, vor dem eigentlichen Formvorgang der Mischung Zusätze wie Salze zuzufügen, die durch Extraktion mit Wasser oder Lösungsmitteln nach der Formgebung wieder entfernt werden können. Eine andere Methode besteht in der Zugabe von thermisch wenig widerstandsfähigen Stoffen, die sich beim Ausheizen des Formlings zersetzen. Die Oberfläche des Gemischs kann auch dadurch vergrößert werden, daß der Mischung vor dem Verpressen Mikrohohlkugeln aus Glas oder Kunststoffen zugesetzt werden. Die hierdurch zu erzielende Dichte des Preßlings kann etwa bis zu 20% von der des unbehandelten Preßlings abweichen, wobei dieser Wert nur ein grober Richtwert sein soll und keine Einschränkung bedeutet. Diese Behandlung führt zu einer extremen Beschleunigung des Abbrennvorgangs.
  • Eine weitere Behandlung der Formlinge kann in einer Oberflächenbeschichtung bestehen. Hierbei wird neben der Beeinflussung der Abbrandcharakteristik insbesondere ein Schutz gegen Umwelteinflüsse erreicht. Eine solche Maßnahme kann auch zur Festigkeitssteigerung des Formkörpers angebracht sein. In Extremfällen wäre hier zusätzlich die Verwendung geeigneter Fasern zur Stabilisierung vorzusehen. Ein Nebeneffekt der Beschichtung ist die Verringerung des Abriebs bei der Transportbeanspruchung der Teile.
  • Die so behandelten Formlinge können in loser Schüttung oder gerichtet in entsprechende druckfeste Behälter eingebracht werden. Sie werden nach üblichen Verfahren mit Hilfe von Anzündsätzen oder thermischen Aufladungen angezündet, wobei die entstehenden Gase ggf. nach Durchströmen eines geeigneten Filters zur Füllung des Lebensrettungssystems in Sekundenbruchteilen führen.
  • Die erfindungsgemäßen Treibmittel eignen sich in besonderer Weise für sogenannte Airbags, Prallsäcke, die in Kraftfahrzeugen oder Flugzeugen zum Schutz der Insassen eingesetzt werden. Bei dem Aufprall eines Kraftfahrzeugs muß der Airbag innerhalb kürzester Zeit mit Gasmengen von etwa 50 bis 300 Litern, je nach System und Wagengröße, gefüllt werden. Die erfindungsgemäßen Treibmittel sind auch geeignet für den Einsatz in Gurtstrammern.
  • Lebensrettungssysteme, die die erfindungsgemäßen Treibmittel enthalten, sind ebenfalls Gegenstand der vorliegenden Erfindung.
  • Beispiel 1
  • 167 g (aus Aminoguanidinsulfat, Natriumnitrit und Salpetersäure dargestelltes) 5-Aminotetrazol (5-ATZ) werden aus ca. 600 ml Wasser unter ständigem Rühren umkristallisiert, nach Filtration bei 110°C getrocknet, gemahlen und mit einem 250 µm Sieb von groben Anteilen abgetrennt (5-ATZ Spezifikation; Schmp./Zers.: > 203°C, mittlere Korngröße 80 µm und H₂O-Anteil < 0,05 %). ZnO₂ wird aus ZnSO₄ x 7H₂O und Wasserstoffperoxid in Ammoniakwasser dargestellt, mit verd. Essigsäure sowie Wasser gewaschen und bei 60°C getrocknet (Spezifikation von ZnO₂: 13,47 Gew.-% akt. Sauerstoff, mittlere Korngröße 10,3 µm).
    5-ATZ und ZnO₂, als Komponenten für nicht toxische Gassätze, werden zusammen im Gewichtsverhältnis 1 zu 7 (dies entspricht einem Molverhältnis ca. 1:5) in Plastikbehältern im Taumel-Mischer 1-2 Std. lang homogenisiert. 3,0 g der Probe werden als Schüttgut in einer 25 ml großen Edelstahldruckbombe durch einen elektrisch aufheizbaren Fe-Draht zur Reaktion gebracht und der Druck-Zeitverlauf mittels einer piezoelektrischen Meßeinrichtung aufgenommen. Es entsteht nach ca. 30 ms ein maximaler Gasdruck von etwa 200 bar, der hauptsächlich auf die Bildung von CO₂, N₂, O₂ und H₂O zurückzuführen ist. Die Reaktion hat einen stark exothermem Charakter von ca. 471 cal/g (ca. 1970 J/g). Als Reaktionsrückstand verbleibt ZnO. Der CO-Anteil entspricht der Forderung. Der Verpuffungspunkt liegt bei 219 °C, die Reibempfindlichkeit bei 240 N, die Schlagempfindlichkeit bei 20 J.
  • Beispiele 2 bis 24
  • Die Verwendung von 5-ATZ und ZnO₂ als Komponenten in nicht toxischen Gassätzen entspricht Beispiel 1 unter Verwendung von weiteren Zusätzen. Die folgenden Beispiele 2 bis 24 beschreiben die Umsetzung der in bekannter Weise hergestellten Gemische. Die Ergebnisse sind in den Tabellen 1 bis 4 zusammengefaßt.
    Figure imgb0002
    Figure imgb0003
    Figure imgb0004
  • Beispiel 25
  • Die in den Beispielen 1 bis 24 beschriebenen Gassatzmischungen können auch in gepreßter Form eingesetzt werden. Eine Mischung aus 10 g 5-ATZ (H₂O-Anteil < 0,1 %, Schmelzpunkt (Zers.) > 203°C, Korngröße 200-250 µm), 43,9 g ZnO₂ (12,85 Gew.-% akt. Sauerstoff, Korngröße ca. 14 µm) und 23,5 g NH₄NO₃ (Schmelzpunkt 167 - 169°C, Korngröße 315 - 250 µm), Molverhältnis 1:3:2,5; werden entsprechend Beispiel 1 vermischt und zu Tabletten (Durchmesser = 6 mm, Höhe = 2,77 mm, Dichte = 2,18 g/cm³, Radiale Druckkraft = 155,5 +/- 28,4 N) mit 4 t Preßdruck verpreßt. Das Abbrandverhalten der Preßlinge, entsprechend Beispiel 1 geprüft, ist langsamer als das des Schüttguts und erfordert 0,1 g B/KNO₃ oder Ti/ZnO₂ als Anzündmischung. Die Umsatzgeschwindigkeit steigt mit Senkung des Preßdrucks und fällt mit der Größe des Preßguts. Der Rückstand aus den Umsetzungen bleibt weitgehend in Form der Preßlinge erhalten.
  • Beispiele 26 bis 32
  • Wie in Beispiel 1 beschrieben, wurden weitere Mischungen aus gaserzeugenden Komponenten und Sauerstofflieferanten wie Zinkperoxid mit einem aktiven Sauerstoffanteil von 13,07 Gew.-% und einer mittleren Korngröße von 11,8 µm bzw. im Falle des Natriumnitrats mit einer mittleren Korngröße < 45 µm hergestellt.
  • Die nachfolgende Tabelle 4 enthält weitere Angaben zu den Mischungen. Tabelle 4
    Komponente Schmp. (°C) Molverhältnisse der Mischung
    26 27 28 29 30 31 32
    5-Aminotetrazol 206-208 1
    Kalium-5-aminotetrazolat 269 1
    Bis(aminoguanidin) azotetrazol 224-226 1
    Nitroguanidin 252 1
    Guanidinnitrat 210-214 1
    Semicarbazidnitrat 115-119 1
    1-Cyanguanidin 208-210 1
    Zinkperoxid 200(Zers) 2,48 2,48 10,64 1,42 1,42 0,71 4,25
    Natriumnitrat - 0,83 0,83 3,55 0,47 0,47 0,24 1,42
  • Die Komponenten wurden in Behältern aus Kunststoff 1/2 h lang mit einem Taumelmischer, 1/2 h mit einem Vibrator und erneut 1/2 h lang mit einem Taumelmischer homogenisiert.
    4 g der so homogenisierten Mischung werden wie in Beispiel 1 beschrieben in eine Edelstahldruckbombe eingebracht und unter Verschluß nach Anzündung mit einem Glühdraht zur Umsetzung gebracht. Gemessen wurden
    • der entstehende Druck (bar) bis zum Maximalwert
    • die Zeit (Millisekunden, ms) bis zum Maximalwert des Druckes
    • Der Druckanstiegsgradient (dp/dt) zwischen einem Druck, der 40 bis 60 % vom Maximalwert des Druckes erreicht. Als Maß diente die Anstiegszeit.
  • Nachfolgende Tabelle 5 zeigt die Werte für den maximalen Druck (bar) und die Zeit in ms bis zum maximalen Druck, die im Bereich derjenigen liegen, wie sie in Beispiel 1 für einen Gassatz aus 5-Aminotetrazol und Zinkperoxid beschrieben werden. Zusätzlich wurde noch die Zeit zwischen 40-60 % des maximalen Druckes bestimmt. Tabelle 5
    Beispiel-Nr. Maxim. Druck (bar) Zeit (ms)
    bis maxim. Druck bis 40-60 % vom max. Druck
    26 359 30 1,2
    27 217 123 13,1
    28 352 29 1,5
    29 473 39 1,3
    30 549 14 0,5
    31 917 7 0,2
    32 148 220 20,1
  • Durch Abstimmung der Parameter und Zumischung weiterer Komponenten lassen sich die für den jeweiligen Gassatz notwendigen Vorgaben einstellen.
  • Eine weitere Probe der zuvor genannten Mischungen wurde auf physikalische und sicherheitstechnische Eigenschaften untersucht. Die Ergebnisse sind in Tabelle 6 beschrieben. Tabelle 6
    Beisp. Nr. Verpuffungspunkt (°C) * Reib- Schlag- Explosionswärme (J/g)
    empfindlichkeiten *
    (N) (J)
    26 180 >360 7,5 2451
    27 207 >360 10 2293
    28 197 >360 4 2411
    29 215 >360 20 2964
    30 364 >360 15 2777
    31 210 >360 2 3128
    32 194 >360 30 2101
    * Die Bestimmung erfolgte nach der Methode der Bundesanstalt für Materialprüfung (BAM) in Berlin.
  • Die Komponenten sind aufgrund ihrer Mischbarkeit, Verarbeitbarkeit, Verpreßbarkeit zur Formgebung sowie Verträglichkeit untereinander und mit weiteren Zuschlägen sowie ihrer sicherheitstechnischen Kenndaten für die Herstellung von Gassätzen geeignet.
  • Beispiele 33 bis 44
  • Wie in den Beispielen 26-32 beschrieben, wurden die Mischungen der Beispiele 33 bis 44 aus Zinkperoxid (aktiver Sauerstoffanteil 12,8 Gew.-%, mittlere Korngröße 4,8 µm), Aminotetrazol (mittlere Korngröße ≦ 125 µm), Natriumnitrat (Korngröße ≦ 45 µm) und die aufgelisteten Komponenten mit einer Korngröße ≦ 125 µm hergestellt.
  • Die Reibempfindlichkeit, gemessen nach der Methode der BAM, war in allen Fällen > 360 N. Die zusätzlich aufgelisteten Komponenten sind in der Literatur beschrieben.
  • Die nachfolgenden Tabellen 7 und 8 enthalten weitere Angaben zu den Mischungen.
    Figure imgb0005
    Figure imgb0006
    Figure imgb0007

Claims (13)

  1. Treibmittel für Gasgeneratoren aus stickstoffhaltigen Verbindungen, dadurch gekennzeichnet, daß sie
    a) ein oder mehrere Tetrazolderivat(e) der Formel
    Figure imgb0008
    enthalten, worin R₁ und R₂ oder R₃ gleich oder verschieden sein können, jedoch entweder R₂ oder R₃ vorliegt und die Bedeutung haben: Wasserstoff, Hydroxy, Amino, Carboxyl, einen Alkylrest mit 1 bis 7 Kohlenstoffatomen, einen Alkenylrest mit 2 bis 7 Kohlenstoffatomen, einen Alkylaminorest mit 1 bis 10 Kohlenstoffatomen, einen Arylrest, gegebenenfalls substituiert mit einem oder mehreren Substituenten, die gleich oder verschieden sein können, ausgewählt aus der Aminogruppe, der Nitrogruppe, den Alkylresten mit 1 bis 4 Kohlenstoffatomen oder einen Arylaminorest, bei dem der Arylrest gegebenenfalls substituiert sein kann oder deren Natrium-, Kalium- und Guanidiniumsalze

    oder daß sie
    b) jeweils ein oder mehrere Verbindungen aus den Gruppen
    A) Cyansäurederivate und deren Salze,
    B) Triazin und Triazinderivate,
    C) Harnstoff, dessen Salze, Derivate und Abkömmling und deren Salze enthalten,
    wobei die unter a) und b) genannten Verbindungen auch als Mischungen vorliegen können

    und ein Oxidationsmittel aus der Gruppe der Peroxide oder aus der Gruppe der Peroxide zusammen mit Oxidationsmitteln aus der Gruppe der Nitrate enthalten.
  2. Treibmittel gemäß Anspruch 1, dadurch gekennzeichnet, daß R₁ und R₂ oder R₃ gleich oder verschieden sein können, jedoch entweder R₂ oder R₃ vorliegt und Wasserstoff, Amino, Methyl, Phenyl, Nitrophenyl oder Aminophenyl

    oder

    R₁ Amino, Hydroxy oder Carboxyl und R₂ oder R₃ Wasserstoff, Methyl oder Phenyl bedeutet.
  3. Treibmittel gemäß einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, daß als Derivate des Tetrazols 5-Aminotetrazol, Kalium-5-aminotetrazolat und/oder Bis(aminoguanidin)azotetrazol,

    als Cyansäurederivate Natriumcyanat, Cyanursäure, 1-Cyanguanidin, und/oder Dinatriumcyanamid,

    als Triazinderivate 1,3,5-Triazin, Cyanursäureester und/oder Cyanursäureamid (Melamin)

    und/oder als Harnstoffderivate Biuret, Guanidin, Nitroguanidin, Guanidinnitrat, Aminoguanidin, Aminoguanidinnitrat, Aminoguanidinhydrogencarbonat, Azodicarbonsäurediamid, Dicyandiamidinnitrat, Dicyandiamidinsulfat, Tetrazen und/oder Semicarbazidnitrat enthalten sind.
  4. Treibmittel gemäß einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß Nitrate von Ammonium, Natrium, Kalium, Magnesium, Calcium oder Eisen, vorzugsweise Natriumnitrat und/oder Peroxide von Zink, Calcium, Strontium oder Magnesium, vorzugsweise Zinkperoxid als Oxidationsmittel enthalten sind.
  5. Treibmittel nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß das Molverhältnis von stickstoffhaltiger Verbindung/Oxidationsmittel im Bereich von 1:1 bis 20 liegt.
  6. Treibmittel nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß das Molverhältnis von stickstoffhaltiger Verbindung zu Zinkperoxid im Bereich von 1:2 bis 5,5, von stickstoffhaltiger Verbindung zu Calciumperoxid im Bereich 1:3 liegt.
  7. Treibmittel nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß als weitere Zusätze Kühlmittel, Reduktionsmittel und Katalysatoren enthalten sind.
  8. Treibmittel nach Anspruch 7, dadurch gekennzeichnet, daß Ferrocen als Katalysator enthalten ist.
  9. Verfahren zur Herstellung eines Treibmittels für Gasgeneratoren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß man das oder die Tetrazolderivat(e) und/oder das oder die Verbindungen aus den Gruppen A), B) und/oder C) mit dem oder den Oxidationsmittel(n) und gegebenenfalls mit weiteren Zusätzen vermischt und das Gemisch homogenisiert.
  10. Verfahren nach Anspruch 9, dadurch gekennzeichnet, daß man das Treibmittel, falls erforderlich, unter Einsatz von Preßhilfen wie Graphit, Molybdänsulfid, Teflon, Talkum, Zinkstearat oder Bornitrid verpreßt.
  11. Verfahren nach Anspruch 10, dadurch gekennzeichnet, daß man die Preßlinge beschichtet.
  12. Verfahren nach Anspruch 10 oder 11, dadurch gekennzeichnet, daß man zur Steuerung der Abbrandgeschwindigkeit eine definierte Porosität der Preßlinge erzeugt.
  13. Lebensrettungssystem, enthaltend ein Treibmittel nach einem der Ansprüche 1 bis 8.
EP92110353A 1991-06-21 1992-06-19 Treibmittel für Gasgeneratoren Withdrawn EP0519485A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4120599 1991-06-21
DE4120599 1991-06-21

Publications (1)

Publication Number Publication Date
EP0519485A1 true EP0519485A1 (de) 1992-12-23

Family

ID=6434491

Family Applications (1)

Application Number Title Priority Date Filing Date
EP92110353A Withdrawn EP0519485A1 (de) 1991-06-21 1992-06-19 Treibmittel für Gasgeneratoren

Country Status (4)

Country Link
US (2) US20030145923A1 (de)
EP (1) EP0519485A1 (de)
CZ (1) CZ291570B6 (de)
DE (1) DE4220019A1 (de)

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4411654A1 (de) * 1993-10-20 1995-04-27 Temic Bayern Chem Airbag Gmbh Gaserzeugendes Gemisch
EP0659711A2 (de) * 1993-12-10 1995-06-28 Morton International, Inc. Verfahrenshilfsmittel für gaserzeugende Zusammensetzungen
EP0659714A2 (de) * 1993-12-10 1995-06-28 Morton International, Inc. Gaserzeugende Zusammensetzung zur Verwendung in Aluminiumbauteilen
EP0661253A2 (de) * 1993-12-10 1995-07-05 Morton International, Inc. Gaserzeugende Zusammensetzungen, wobei als Brennstoff Dicyanamid-Salze benutzt werden
WO1995018780A1 (en) * 1994-01-10 1995-07-13 Thiokol Corporation Non-azide gas generant compositions containing dicyanamide salts
US5451682A (en) * 1994-01-10 1995-09-19 Thiokol Corporation Method for synthesizing 5-aminotetrazole
US5467715A (en) * 1993-12-10 1995-11-21 Morton International, Inc. Gas generant compositions
US5468866A (en) * 1994-01-04 1995-11-21 Thiokol Corporation Methods for synthesizing and processing bis-(1(2)H-tetrazol-5-yl)-amine
EP0694511A1 (de) * 1994-02-15 1996-01-31 Nippon Koki Co., Ltd. Gaserzeugende zusammensetzung, verfahren zu dessen tablettierung und verfahren zum transport
US5516377A (en) * 1994-01-10 1996-05-14 Thiokol Corporation Gas generating compositions based on salts of 5-nitraminotetrazole
EP0712384A1 (de) * 1993-08-02 1996-05-22 Thiokol Corporation Wasserfreie gaserzeugende tetrazolzusammensetzung und verfahren zur herstellung
EP0723530A1 (de) * 1993-08-02 1996-07-31 Thiokol Corporation Verfahren zur herstellung einer wasserfreien gaserzeugenden tetrazol enthaltenden zusammensetzung
DE19505568A1 (de) * 1995-02-18 1996-08-22 Dynamit Nobel Ag Gaserzeugende Mischungen
WO1997023434A1 (de) * 1995-12-23 1997-07-03 Dynamit Nobel Gmbh Explosivstoff- Und Systemtechnik Initialsprengstoff-freie anzündmischung
EP0795528A1 (de) * 1996-03-15 1997-09-17 Morton International, Inc. Nitratamine und basisches, zweiwertiges Kupfernitrat und/oder dreiwertiges Kobalttrianintrinitrat enthaltende gaserzeugende Zusammensetzungen
WO1997042142A1 (de) * 1996-05-02 1997-11-13 Trw Airbag Systems Gmbh & Co. Kg Gaserzeugendes, azidfreies stoffgemisch
EP0811589A1 (de) * 1996-06-03 1997-12-10 Daicel Chemical Industries, Ltd. Gaserzeugende Zusammensetzung
EP0813512A1 (de) * 1995-03-03 1997-12-29 Primex Technologies, Inc. Thermisch stabile gaserzeugende zusammensetzung
WO1998003450A1 (en) * 1994-12-13 1998-01-29 United Technologies Corporation Breathable gas generators
EP0844223A1 (de) * 1996-11-26 1998-05-27 Nederlandse Organisatie voor Toegepast Natuurwetenschappelijk Onderzoek TNO Gaserzeugende Zusammensetzung für einen Airbag
WO1998055428A1 (en) * 1997-05-21 1998-12-10 Försvarets Forskningsanstalt New chemical compound, explosive containing the compound and use of the compound in gas generators
FR2772370A1 (fr) * 1997-12-12 1999-06-18 Poudres & Explosifs Ste Nale Compositions pyrotechniques generatrices de gaz non toxiques a base de perchlorate d'ammonium
EP0950040A2 (de) * 1996-08-12 1999-10-20 Automotive Systems Laboratory Inc. Selektive nichtkatalytische reduktion (sncr) von giftigen abgasen in luftsackaufblasvorrichtungen
EP0951923A1 (de) 1998-01-29 1999-10-27 Primex Aerospace Company Chemisch aktive Feuerunterdrückungszusammensetzung
EP1036781A1 (de) * 1997-03-21 2000-09-20 Daicel Chemical Industries, Ltd. Gaserzeugende zusammensetzung für einen airbag mit nur geringer rückstandsmenge
EP1062189A2 (de) * 1998-03-12 2000-12-27 Automotive Systems Laboratory Inc. Azidfreie gasgeneratoren mit hoher ausbeute
US6241281B1 (en) 1996-07-25 2001-06-05 Cordant Technologies Inc. Metal complexes for use as gas generants
US6550808B1 (en) 2000-11-17 2003-04-22 Autoliv Asp. Inc. Guanylurea nitrate in gas generation
US6602365B1 (en) 2000-11-17 2003-08-05 Autoliv Asp, Inc. Gas generation via metal complexes of guanylurea nitrate
EP2038146A2 (de) * 2006-05-05 2009-03-25 TK Holdings Inc. Gaserzeugungszusammensetzungen
US9199886B2 (en) 1994-01-19 2015-12-01 Orbital Atk, Inc. Metal complexes for use as gas generants

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4423088A1 (de) * 1994-07-01 1996-01-04 Temic Bayern Chem Airbag Gmbh Gaserzeugendes, azidfreies Stoffgemisch
DE19531288A1 (de) * 1995-08-25 1997-02-27 Temic Bayern Chem Airbag Gmbh Pyrotechnische Gasgeneratoren mit verbessertem Anbrennverhalten
DE10338928A1 (de) * 2003-08-21 2005-04-07 Rhodius Gmbh Filtereinsatz sowie Gasgenerator mit einem derartigen Filtereinsatz
WO2008054530A2 (en) 2006-05-05 2008-05-08 Tk Holdings, Inc. Gas generant compositions
DE112007002257T5 (de) * 2006-09-30 2009-07-30 TK Holdings, Inc., Armada Gaserzeugungsmittelzusammensetzungen
FR2950624B1 (fr) * 2009-09-25 2013-05-10 Snpe Materiaux Energetiques Compose pyrotechnique generateur de gaz
CZ304078B6 (cs) * 2011-12-19 2013-10-02 Sellier & Bellot Speciální paliva vhodná pro pyrotechnické smesi emitující v blízké IR oblasti
WO2014061355A1 (ja) 2012-10-15 2014-04-24 積水化学工業株式会社 ガス発生材及びマイクロポンプ
JP5639137B2 (ja) * 2012-10-15 2014-12-10 積水化学工業株式会社 ガス発生材及びマイクロポンプ
WO2017205257A1 (en) 2016-05-23 2017-11-30 Tk Holdings Inc. Gas generating compositions and methods of making and using thereof
JPWO2020188931A1 (de) * 2019-03-15 2020-09-24

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2063586A1 (de) * 1969-12-26 1971-07-22 Asahi Kasei Kogyo K.K., Osaka (Japan) Gasbildende Masse
US4386979A (en) * 1979-07-19 1983-06-07 Jackson Jr Charles H Gas generating compositions
DE3933554C1 (en) * 1989-10-07 1990-11-15 Bayern-Chemie Gesellschaft Fuer Flugchemische Antriebe Mbh, 8261 Aschau, De Propellant charge for air bag gas generator - is partially covered by sheath of borate, aluminate or silica
EP0482852A1 (de) * 1990-10-25 1992-04-29 Automotive Systems Laboratory Inc. Gaserzeugende, azidfreie Zusammensetzung, die leicht zu filternde Verbrennungsprodukte ergibt

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2981616A (en) * 1956-10-01 1961-04-25 North American Aviation Inc Gas generator grain
US3929530A (en) * 1966-11-21 1975-12-30 Dow Chemical Co Pyrotechnic disseminating formulation
US3962297A (en) * 1969-03-07 1976-06-08 The United States Of America As Represented By The Secretary Of The Army High burning rate catalyst
US3729574A (en) * 1969-05-16 1973-04-24 A Weiner Connector and electrical component assembly
US3954528A (en) * 1970-11-06 1976-05-04 The United States Of America As Represented By The Secretary Of The Navy Solid gas generating and gun propellant composition containing triaminoguanidine nitrate and synthetic polymer binder
US3862866A (en) * 1971-08-02 1975-01-28 Specialty Products Dev Corp Gas generator composition and method
US3725154A (en) * 1972-06-23 1973-04-03 Us Navy Mesa burning gas generator propellant
FR2228043B1 (de) * 1972-10-17 1977-03-04 Poudres & Explosifs Ste Nale
FR2316204A1 (fr) * 1975-07-03 1977-01-28 Poudres & Explosifs Ste Nale Une composition pyrotechnique eclairante generatrice de gaz
US4369079A (en) * 1980-12-31 1983-01-18 Thiokol Corporation Solid non-azide nitrogen gas generant compositions
US4370181A (en) * 1980-12-31 1983-01-25 Thiokol Corporation Pyrotechnic non-azide gas generants based on a non-hydrogen containing tetrazole compound
US5149384A (en) * 1983-11-02 1992-09-22 Universal Propulsion Company, Inc. Propellant material
US4608102A (en) * 1984-11-14 1986-08-26 Omark Industries, Inc. Primer composition
US4948439A (en) * 1988-12-02 1990-08-14 Automotive Systems Laboratory, Inc. Composition and process for inflating a safety crash bag
US5139588A (en) * 1990-10-23 1992-08-18 Automotive Systems Laboratory, Inc. Composition for controlling oxides of nitrogen
US5197758A (en) * 1991-10-09 1993-03-30 Morton International, Inc. Non-azide gas generant formulation, method, and apparatus
US5542688A (en) * 1992-10-27 1996-08-06 Atlantic Research Corporation Two-part igniter for gas generating compositions
US5682014A (en) * 1993-08-02 1997-10-28 Thiokol Corporation Bitetrazoleamine gas generant compositions
US5516377A (en) * 1994-01-10 1996-05-14 Thiokol Corporation Gas generating compositions based on salts of 5-nitraminotetrazole

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2063586A1 (de) * 1969-12-26 1971-07-22 Asahi Kasei Kogyo K.K., Osaka (Japan) Gasbildende Masse
US4386979A (en) * 1979-07-19 1983-06-07 Jackson Jr Charles H Gas generating compositions
DE3933554C1 (en) * 1989-10-07 1990-11-15 Bayern-Chemie Gesellschaft Fuer Flugchemische Antriebe Mbh, 8261 Aschau, De Propellant charge for air bag gas generator - is partially covered by sheath of borate, aluminate or silica
EP0482852A1 (de) * 1990-10-25 1992-04-29 Automotive Systems Laboratory Inc. Gaserzeugende, azidfreie Zusammensetzung, die leicht zu filternde Verbrennungsprodukte ergibt

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CHEMICAL ABSTRACTS, vol. 084, no. 18, 3. Mai 1976, Columbus, Ohio, US; abstract no. 124138e, H. SHIMIZU ET AL. 'Gas-forming compositions' Seite 138 ; *

Cited By (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0723530A4 (de) * 1993-08-02 1996-09-25 Thiokol Corp Verfahren zur herstellung einer wasserfreien gaserzeugenden tetrazol enthaltenden zusammensetzung
EP0712384A1 (de) * 1993-08-02 1996-05-22 Thiokol Corporation Wasserfreie gaserzeugende tetrazolzusammensetzung und verfahren zur herstellung
EP0712384A4 (de) * 1993-08-02 1996-09-25 Thiokol Corp Wasserfreie gaserzeugende tetrazolzusammensetzung und verfahren zur herstellung
EP0723530A1 (de) * 1993-08-02 1996-07-31 Thiokol Corporation Verfahren zur herstellung einer wasserfreien gaserzeugenden tetrazol enthaltenden zusammensetzung
DE4411654A1 (de) * 1993-10-20 1995-04-27 Temic Bayern Chem Airbag Gmbh Gaserzeugendes Gemisch
EP0659714A3 (de) * 1993-12-10 1995-09-13 Morton Int Inc Gaserzeugende Zusammensetzung zur Verwendung in Aluminiumbauteilen.
EP0661253A3 (de) * 1993-12-10 1995-09-13 Morton Int Inc Gaserzeugende Zusammensetzungen, wobei als Brennstoff Dicyanamid-Salze benutzt werden.
US5544687A (en) * 1993-12-10 1996-08-13 Morton International, Inc. Gas generant compositions using dicyanamide salts as fuel
EP0659711A3 (de) * 1993-12-10 1995-08-09 Morton Int Inc Verfahrenshilfsmittel für gaserzeugende Zusammensetzungen.
US5467715A (en) * 1993-12-10 1995-11-21 Morton International, Inc. Gas generant compositions
US5529647A (en) * 1993-12-10 1996-06-25 Morton International, Inc. Gas generant composition for use with aluminum components
EP0661253A2 (de) * 1993-12-10 1995-07-05 Morton International, Inc. Gaserzeugende Zusammensetzungen, wobei als Brennstoff Dicyanamid-Salze benutzt werden
US5518054A (en) * 1993-12-10 1996-05-21 Morton International, Inc. Processing aids for gas generants
EP0659714A2 (de) * 1993-12-10 1995-06-28 Morton International, Inc. Gaserzeugende Zusammensetzung zur Verwendung in Aluminiumbauteilen
EP0659711A2 (de) * 1993-12-10 1995-06-28 Morton International, Inc. Verfahrenshilfsmittel für gaserzeugende Zusammensetzungen
US5468866A (en) * 1994-01-04 1995-11-21 Thiokol Corporation Methods for synthesizing and processing bis-(1(2)H-tetrazol-5-yl)-amine
WO1995018780A1 (en) * 1994-01-10 1995-07-13 Thiokol Corporation Non-azide gas generant compositions containing dicyanamide salts
US5516377A (en) * 1994-01-10 1996-05-14 Thiokol Corporation Gas generating compositions based on salts of 5-nitraminotetrazole
US5451682A (en) * 1994-01-10 1995-09-19 Thiokol Corporation Method for synthesizing 5-aminotetrazole
US9199886B2 (en) 1994-01-19 2015-12-01 Orbital Atk, Inc. Metal complexes for use as gas generants
EP0694511A1 (de) * 1994-02-15 1996-01-31 Nippon Koki Co., Ltd. Gaserzeugende zusammensetzung, verfahren zu dessen tablettierung und verfahren zum transport
EP0694511A4 (de) * 1994-02-15 1997-02-26 Nippon Koki Kk Gaserzeugende zusammensetzung, verfahren zu dessen tablettierung und verfahren zum transport
WO1998003450A1 (en) * 1994-12-13 1998-01-29 United Technologies Corporation Breathable gas generators
DE19505568A1 (de) * 1995-02-18 1996-08-22 Dynamit Nobel Ag Gaserzeugende Mischungen
WO1996026169A1 (de) * 1995-02-18 1996-08-29 Dynamit Nobel Gmbh Gaserzeugende mischungen
CZ298208B6 (cs) * 1995-02-18 2007-07-25 Delphi Technologies, Inc. Látka produkující plyn z dusíkatých sloucenin, zpusob výroby této látky, systém záchrany zivota tvorený plynovým generátorem s látkou produkující plyn a pouzití látky produkující plyn
EP0813512A4 (de) * 1995-03-03 1999-03-17 Primex Tech Inc Thermisch stabile gaserzeugende zusammensetzung
EP0813512A1 (de) * 1995-03-03 1997-12-29 Primex Technologies, Inc. Thermisch stabile gaserzeugende zusammensetzung
WO1997023434A1 (de) * 1995-12-23 1997-07-03 Dynamit Nobel Gmbh Explosivstoff- Und Systemtechnik Initialsprengstoff-freie anzündmischung
EP0795528A1 (de) * 1996-03-15 1997-09-17 Morton International, Inc. Nitratamine und basisches, zweiwertiges Kupfernitrat und/oder dreiwertiges Kobalttrianintrinitrat enthaltende gaserzeugende Zusammensetzungen
WO1997042142A1 (de) * 1996-05-02 1997-11-13 Trw Airbag Systems Gmbh & Co. Kg Gaserzeugendes, azidfreies stoffgemisch
EP0811589A1 (de) * 1996-06-03 1997-12-10 Daicel Chemical Industries, Ltd. Gaserzeugende Zusammensetzung
US6241281B1 (en) 1996-07-25 2001-06-05 Cordant Technologies Inc. Metal complexes for use as gas generants
EP0950040A2 (de) * 1996-08-12 1999-10-20 Automotive Systems Laboratory Inc. Selektive nichtkatalytische reduktion (sncr) von giftigen abgasen in luftsackaufblasvorrichtungen
EP0950040A4 (de) * 1996-08-12 1999-12-22 Automotive Systems Lab Selektive nichtkatalytische reduktion (sncr) von giftigen abgasen in luftsackaufblasvorrichtungen
EP0844223A1 (de) * 1996-11-26 1998-05-27 Nederlandse Organisatie voor Toegepast Natuurwetenschappelijk Onderzoek TNO Gaserzeugende Zusammensetzung für einen Airbag
NL1004618C2 (nl) * 1996-11-26 1998-05-27 Tno Gas genererend preparaat en toepassing daarvan in een airbag.
EP1036781A1 (de) * 1997-03-21 2000-09-20 Daicel Chemical Industries, Ltd. Gaserzeugende zusammensetzung für einen airbag mit nur geringer rückstandsmenge
EP1036781A4 (de) * 1997-03-21 2000-09-20 Daicel Chem Gaserzeugende zusammensetzung für einen airbag mit nur geringer rückstandsmenge
WO1998055428A1 (en) * 1997-05-21 1998-12-10 Försvarets Forskningsanstalt New chemical compound, explosive containing the compound and use of the compound in gas generators
US6291711B2 (en) 1997-05-21 2001-09-18 Totalforsvarets Forskningsinstitut (Foi) Guanylurea dinitramide, an explosive, propellant, rocket motor charge and gas generator
FR2772370A1 (fr) * 1997-12-12 1999-06-18 Poudres & Explosifs Ste Nale Compositions pyrotechniques generatrices de gaz non toxiques a base de perchlorate d'ammonium
WO1999031029A1 (fr) * 1997-12-12 1999-06-24 Societe Nationale Des Poudres Et Explosifs Compositions pyrotechniques generatrices de gaz non toxiques a base de perchlorate d'ammonium
US6533878B1 (en) 1997-12-12 2003-03-18 Societe Nationale Des Poudres Et Explosifs Pyrotechnic compositions generating non-toxic gases based on ammonium perchlorate
EP0951923A1 (de) 1998-01-29 1999-10-27 Primex Aerospace Company Chemisch aktive Feuerunterdrückungszusammensetzung
EP1062189A2 (de) * 1998-03-12 2000-12-27 Automotive Systems Laboratory Inc. Azidfreie gasgeneratoren mit hoher ausbeute
EP1062189A4 (de) * 1998-03-12 2002-10-09 Automotive Systems Lab Azidfreie gasgeneratoren mit hoher ausbeute
US6602365B1 (en) 2000-11-17 2003-08-05 Autoliv Asp, Inc. Gas generation via metal complexes of guanylurea nitrate
US6550808B1 (en) 2000-11-17 2003-04-22 Autoliv Asp. Inc. Guanylurea nitrate in gas generation
EP2038146A2 (de) * 2006-05-05 2009-03-25 TK Holdings Inc. Gaserzeugungszusammensetzungen
EP2038146A4 (de) * 2006-05-05 2009-09-30 Tk Holdings Inc Gaserzeugungszusammensetzungen

Also Published As

Publication number Publication date
CZ189792A3 (en) 1993-01-13
CZ291570B6 (cs) 2003-04-16
US20030145923A1 (en) 2003-08-07
US20040226639A1 (en) 2004-11-18
DE4220019A1 (de) 1992-12-24

Similar Documents

Publication Publication Date Title
EP0519485A1 (de) Treibmittel für Gasgeneratoren
DE69729881T2 (de) Azidfreie gaserzeugende zusammensetzungen
DE69001893T2 (de) Zusammensetzung und Verfahren zum Aufblasen eines Sicherheitsluftsackes.
DE69730202T2 (de) Azidfreie, gaserzeugende zusammensetzungen
DE69216532T2 (de) Azidfreie gaserzeugende Zusammensetzungen
US5531941A (en) Process for preparing azide-free gas generant composition
WO1996026169A1 (de) Gaserzeugende mischungen
DE69004787T2 (de) Gaserzeugende Azid enthaltende Zusammensetzung für aufblasbare Vorrichtungen.
US6306232B1 (en) Thermally stable nonazide automotive airbag propellants
US5783773A (en) Low-residue azide-free gas generant composition
EP0949225B1 (de) Azidfreie, gaserzeugende Zusammensetzung
DE69220412T2 (de) Verfahren zur Kontrolle der Menge von Stickoxiden im generierten Gas für Airbags
EP0905108B1 (de) Partikelfreies gaserzeugendes Gemisch
DE69830372T2 (de) Gaserzeugende zusammensetzung und formmasse davon
DE112005000805T5 (de) Gaserzeugungssystem
DE112006000826T5 (de) Gaserzeugungszusammensetzungen
EP3000799A1 (de) Gaserzeugungsmittelzusammensetzung mit reduzierter feststoffaustragmenge eines gasgenerators
JP2010502544A (ja) 押出し成形可能なガス発生剤
DE10034287C2 (de) Gaserzeugende Zusammensetzung, die Guanylharnstoff-Dinitramid aufweist und deren Verwendung
DE102005042812B4 (de) Gasbildende Zusammensetzung
DE19730872A1 (de) Pyrotechnische Mischung als Treibmittel oder als Gassatz mit Kohlenmonoxid-reduzierten Schwaden
EP1162183B1 (de) Anzündmischung zur Verwendung in Gasgeneratoren
WO1998017607A1 (de) Gaserzeugendes, azidfreies feststoffgemisch
DE19840993A1 (de) Verwendung eines gaserzeugenden Gemisches als Anzündmischung in einem Gasgenerator
DE19925442A1 (de) Kaltbrennende, auf Ammoniumnitrat basierende Gaserzeugungszusammensetzung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE ES FR GB IT NL PT SE

17P Request for examination filed

Effective date: 19930505

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: DYNAMIT NOBEL GMBH EXPLOSIVSTOFF- UND SYSTEMTECHNI

17Q First examination report despatched

Effective date: 20000901

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: DELPHI TECHNOLOGIES, INC.

17Q First examination report despatched

Effective date: 20000901

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Effective date: 20170106