EP0368767B1 - Procédé continu de fabrication de perchlorate de métal alcalin - Google Patents

Procédé continu de fabrication de perchlorate de métal alcalin Download PDF

Info

Publication number
EP0368767B1
EP0368767B1 EP89420420A EP89420420A EP0368767B1 EP 0368767 B1 EP0368767 B1 EP 0368767B1 EP 89420420 A EP89420420 A EP 89420420A EP 89420420 A EP89420420 A EP 89420420A EP 0368767 B1 EP0368767 B1 EP 0368767B1
Authority
EP
European Patent Office
Prior art keywords
electrolysis
stage
sodium
perchlorate
chlorate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP89420420A
Other languages
German (de)
English (en)
Other versions
EP0368767A1 (fr
Inventor
Jean-Christophe Millet
Michel Jaccaud
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Arkema France SA
Original Assignee
Elf Atochem SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Elf Atochem SA filed Critical Elf Atochem SA
Publication of EP0368767A1 publication Critical patent/EP0368767A1/fr
Application granted granted Critical
Publication of EP0368767B1 publication Critical patent/EP0368767B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/24Halogens or compounds thereof
    • C25B1/26Chlorine; Compounds thereof
    • C25B1/265Chlorates
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/28Per-compounds
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B15/00Operating or servicing cells
    • C25B15/02Process control or regulation
    • C25B15/021Process control or regulation of heating or cooling
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B15/00Operating or servicing cells
    • C25B15/08Supplying or removing reactants or electrolytes; Regeneration of electrolytes
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/17Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof
    • C25B9/19Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms
    • C25B9/23Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms comprising ion-exchange membranes in or on which electrode material is embedded

Definitions

  • the present invention relates to a continuous process for the manufacture of sodium perchlorate by electrolysis of an aqueous chlorate solution of said metal.
  • sodium chlorate and perchlorate of said metal will be designated by chlorate and perchlorate respectively.
  • This consists of electrolyzing the chlorate in a succession of individual electrolytic steps, each step being different from another, dependent on another, and ensuring only a partial electrolysis result compared to the final industrial result. targeted.
  • cascade In a multi-step process, commonly called “cascade", the overall electrolyte balance is disturbed by the electrolyte imbalance of a single step and does not recover by simply decommissioning the failed step.
  • the present invention consists of a continuous process for the manufacture of perchlorate by continuous electrolysis in a single electrolytic step of an electrolyte, this electrolyte being kept uniform with a stationary composition by continuously bringing chlorate and water into this step. , each in an amount equal to that which disappears from this step by electrolytic transformation and by a continuous and final exit from this step of an electrolyte current forming a sample having the same stationary composition, said composition being chosen such that the sample can be deposited directly by cooling perchlorate crystals in monohydrate, dihydrate or anhydrous form, followed from said sample by crystallization of sodium perchlorate by cooling or evaporation of water.
  • the electrolyte is uniform thanks to its agitation due for example to the evolution of gas in the electrolysis, associated if necessary with recirculation external to the latter, for example using a pump.
  • the electrolyte the composition of which, according to the invention, is the same as that of the aqueous perchlorate solution which leaves the single electrolysis step, contains, in the case of the electrolysis of sodium chlorate into perchlorate sodium, preferably at least 100 g. of chlorate per liter to obtain a FARADAY yield exceeding 90%.
  • the electrolysis is carried out in known equipment, such as for example a non-compartmentalized cell with monopolar electrodes, anode based on platinum, such as for example a sheet of solid platinum or platinum deposited on a conductive substrate, cathode for example of mild steel. or bronze.
  • the electrical conditions adopted are those allowing the transformation of chlorate into perchlorate, for example, for sodium perchlorate, an anodic current density ranging for example between about 10 and 70 A / dm 2 and often of the order of 40 A / dm 2 .
  • the pH of the electrolyte can be between fairly distant limits, for example between about 6 to 10. It is reached using for example perchloric acid or an alkali metal hydroxide such as hydroxide. sodium in the case of electrolysis of sodium chlorate.
  • the temperature of the electrolyte is generally between approximately 40 ° C and 90 ° C.
  • Heat exchange means which can be both internal and external to the electrolyte make it possible to maintain it at the chosen value.
  • the simultaneous and continuous addition of the chlorate and of the water which enter the single electrolysis stage can be carried out by bringing into this stage an aqueous chlorate solution containing all the chlorate and all the water necessary for the invention.
  • the concentration of this chlorate solution can be very high, for example 900 g. sodium chlorate per liter, forming the solution at a temperature which is itself high, for example 80 ° C.
  • Relative amounts of chlorate and water such as those indicated for example above can also be achieved by adding chlorate and water separately, the chlorate being used in solid form.
  • the external recirculation current in the single electrolysis step can serve as a vector for the chlorate.
  • Part of it can be supplied in the solid state and the additional part supplied in the form of an aqueous solution, for example in the form of a solution containing 700 g. of chlorate per liter, formed at 20 ° C.
  • the method according to the invention makes it possible to retain the advantage relating to a reduced consumption of platinum found in US Patent No. 3,475,301.
  • perchlorate which constitutes the ultimately targeted production is separated in practically pure solid form directly by crystallization from the aqueous perchlorate solution as it leaves the single electrolysis step according to the invention.
  • the product particularly targeted by the industry is sodium perchlorate monohydrate rather than anhydrous perchlorate or that perchlorate dihydrate, the manufacture of which, depending on the composition of the electrolyte required, is also feasible according to the invention.
  • sodium perchlorate is produced by electrolysis of sodium chlorate in equipment essentially comprising an electrolysis cell with an external recirculation loop, an assembly in which the single electrolysis step is carried out, exchange means calorific, measurement and control of temperature and pH.
  • the electrolysis cell is not compartmentalized and is equipped with monopolar electrodes, platinum anodes and mild steel cathodes, traversed by an electric current such that the anodic current density is equal to 40 A / dm 2 .
  • the gas evolution in the cell and the sufficiently significant recirculation ensure the uniformity of the electrolyte in said cell.
  • the electrolyte contains, for 100 g. of water, 26 g. sodium chlorate, 180 g. sodium perchlorate and 0.3 g. sodium dichromate.
  • the composition of the electrolyte thus fixed is kept stable over time by continuously entering the single electrolysis step 96 cm 3 / h.dm 2 anodic of a sodium chlorate solution at 80 ° C. containing, per liter, 900 g. sodium chlorate, 1.5 g. sodium dichromate and the amount of perchloric acid necessary for the pH of the electrolyte in the electrolytic cell, temperature is 65 ° C, equal to 6.5. 85 cm 3 / h.dm 2 anodic of an aqueous solution which, according to the invention, has the composition of the electrolyte, continuously leaves the single electrolysis stage in order to isolate it directly by crystallization sodium perchlorate monohydrate which represents the targeted production.
  • Example 2 This example is carried out in the equipment and according to the operating process of Example 1.
  • the electrolysis is carried out in particular at the same temperature and at the same pH as in Example 1.
  • the electrolyte this time contains, for 100 g. of water 36 g. sodium chlorate, 220 g. sodium perchlorate and 0.3 g. sodium dichromate.
  • This composition is kept stable over time by continuously entering into the single electrolysis step 46 g / h.dm 2 anodic solid sodium chlorate via the recirculation current, and 84 cm 3 / h. dm 2 anodic of an aqueous solution at 20 ° C containing, per liter, 500 g. sodium chlorate, 1.5 g.
  • Example is also carried out in the equipment and according to the operating process of Example 1.
  • the electrolysis is carried out at the same temperature and at the same pH as in Example 1.
  • the electrolyte contains, per 100 g. of water, 30 g. sodium chlorate and 290 g. sodium perchlorate next to 0.3 g. sodium dichromate.
  • the electrolyte is maintained at this stable composition over time by continuously entering the step single electrolysis 45 g / h.dm 2 anodic of solid sodium chlorate via the recirculation current and 74 cm 3 / h.dm 2 anodic of an aqueous solution of sodium chlorate of Example 2, while leaving the single electrolysis step 66 cm 3 / h.dm 2 anodic aqueous solution of the same composition as the electrolyte and from which the perchlorate produced can be isolated directly in anhydrous form by crystallization.
  • the FARADAY yield expressed as the ratio of the amount of electricity actually used for the conversion of chlorate to perchlorate, in a given time, to the total amount of electricity consumed at the same time, is greater than 90% for the three examples above. It is more than 93%, even in the absence of sodium dichromate by repeating Example 1 with an electrolysis temperature equal to 55 ° C instead of 65 ° C.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Automation & Control Theory (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Cosmetics (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Treatment Of Steel In Its Molten State (AREA)
  • Luminescent Compositions (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Continuous Casting (AREA)

Description

  • La présente invention concerne un procédé continu de fabrication de perchlorate de sodium par électrolyse d'une solution aqueuse de chlorate dudit métal.
  • Dans tout ce qui suit on désignera, sauf précision ou évidence, le chlorate de sodium et le perchlorate dudit métal par chlorate et perchlorate respectivement.
  • L'avantage à opérer en continu est évoqué par exemple dans le brevet français n°1402590. Ce brevet et, par exemple, les brevets des Etats Unis d'Amérique n°3518173, n°3518180, n°3475301 et le brevet anglais n°125608, illustrent la technique connue.
  • Celle-ci consiste à électrolyser le chlorate dans une succession d'étapes électrolytiques individuelles, chaque étape étant différente d'une autre, tributaire d'une autre, et n'assurant qu'un résultat d'électrolyse partiel par rapport au résultat industriel final visé.
  • C'est ainsi en effet qu'est produite jusqu'à aujourd'hui une solution aqueuse de perchlorate sortant de l'électrolyse du chlorate, qui soit telle que le perchlorate puisse en être séparé directement par cristallisation, par exemple par refroidissement ou par évaporation d'eau.
  • En effet il était connu qu'une électrolyse du chlorate en une seule étape n'aboutissait pas à une telle solution dans les conditions pratiques de réalisation de l'étape unique décrites par exemple dans le brevet des Etats Unis d'Amérique n°2512973.
  • Opérer successivement dans un grand nombre d'étapes individuelles est par contre recommandé, par exemple dans le brevet des Etats Unis d'Amérique n°3475301 déjà cité.
  • Dans un procédé en plusieurs étapes, dit communément "en cascade", l'équilibre électrolytique global est perturbé par le déséquilibre électrolytique d'une seule étape et ne se rétablit pas par simple mise hors service de l'étape défaillante.
  • Il a été maintenant trouvé un procédé continu en une seule étape électrolytique qui ne présente pas l'inconvénient ci-dessus et qui délivre une solution de perchlorate conduisant directement par cristalisation au perchlorate solide de degré de pureté élevé.
  • Dans tout ce qui précède et dans tout ce qui suit, on désigne par :
    • étape électrolytique ou étape d'électrolyse, l'ensemble formé de l'électrolyse et de ce qui en sort pour y entrer à nouveau.
    • électrolyte, le liquide auquel sont appliquées dans l'électrolyse les conditions électriques permettant de transformer du chlorate en perchlorate, et qui contient ces deux composés à l'état dissous,
    • solution de perchlorate de laquelle celui-ci est isolable directement par cristallisation : solution qui dépose, par évaporation d'eau ou par refroidissement, le perchlorate solide sous forme monohydrate, dihydrate ou anhydre ; on peut se reporter en la matière à L'ouvrage publié sous la direction de Paul PASCAL, Nouveau traité de Chimie Minérale, 1966, Tome II, fascicule 1, p.353 et figure 37 qui montre le diagramme ternaire NaClO4-NaClO3-H2O.
  • La présente invention consiste en un procédé continu de fabrication de perchlorate par électrolyse en continu en une seule étape électrolytique d'un électrolyte, cet électrolyte étant maintenu uniforme avec une composition stationnaire en faisant entrer en continu dans cette étape du chlorate et de l'eau, chacun en une quantité égale à celle qui disparaît de cette étape par transformation électrolytique et par une sortie continue et définitive de cette étape d'un courant d'électrolyte formant un prélèvement ayant la même composition stationnaire, ladite composition étant choisie de telle sorte que le prélèvement puisse déposer directement par refroidissement des cristaux de perchlorate sous forme monohydrate, dihydrate ou anhydre, suivi à partir dudit prélèvement d'une cristallisation de perchlorate de sodium par refroidissement ou évaporation d'eau.
  • Dans la définition ainsi donnée de l'invention, comme dans tout ce qui suit, on entend par :
    • électrolyte uniforme, un électrolyte qui est le même en tout point de l'espace qu'il occupe, pour ce qui concerne en particulier sa composition, son pH, sa température,
    • composition stationnaire, une composition stable, constante, dans le temps.
  • L'électrolyte est uniforme grâce à son agitation due par exemple au dégagement gazeux dans l'électrolyse, associé le cas échéant à une recirculation externe à celle-ci par exemple à l'aide d'une pompe.
  • L'électrolyte, dont la composition, selon l'invention, est la même que celle de la solution aqueuse de perchlorate qui sort de l'étape unique d'électrolyse, renferme, dans le cas de l'électrolyse du chlorate de sodium en perchlorate de sodium, de préférence au moins 100 g. de chlorate par litre pour obtenir un rendement FARADAY dépassant 90 %.
  • Le maintien de la concentration de l'électrolyte en chlorate et en perchlorate, respectivement, à une valeur constante dans le temps, permet d'éviter une augmentation de la tension aux bornes des électrodes.
  • La consommation énergétique par tonne de perchlorate finalement produit est inférieure à celle concédée en opérant selon les procédés connus.
  • L'électrolyse est réalisée dans un équipement connu, comme par exemple une cellule non compartimentée à électrodes monopolaires, anode à base de platine, comme par exemple une feuille de platine massif ou du platine déposé sur un substrat conducteur, cathode par exemple en acier doux ou en bronze.
  • Les conditions électriques adoptées sont celles permettant la transformation du chlorate en perchlorate, par exemple, pour le perchlorate de sodium, une densité de courant anodique comprise par exemple entre environ 10 et 70 A/dm2 et souvent de l'ordre de 40 A/dm2.
  • Le pH de l'électrolyte peut être compris entre des limites assez éloignées, par exemple entre environ 6 à 10. Il est atteint à l'aide par exemple d'acide perchlorique ou d'un hydroxyde de métal alcalin tel que l'hydroxyde de sodium dans le cas de l'électrolyse du chlorate de sodium.
  • L'eau qui entre dans l'étape unique d'électrolyse avec par exemple les composés ci-dessus ou avec d'autres ingrédients possibles de l'électrolyte tel que le bichromate de sodium, utilisé le plus souvent à raison d'environ 1 g. à 5 g. par litre d'électrolyte dans le cas de l'électrolyse du chlorate de sodium, doit être prise en compte dans la conduite du procédé selon l'invention.
  • Il en est de même le cas échéant de l'eau apportée à l'étape unique d'électrolyse qui a pour origine la cristallisation de la solution aqueuse telle qu'elle sort de ladite étape : condensat d'eau évaporée de ladite solution, eaux-mères et eau de lavage du perchlorate solide produit.
  • La température de l'électrolyte est généralement comprise entre environ 40°C et 90°C. Des moyens d'échange calorifique qui peuvent être aussi bien internes qu'externes à l'électrolyte permettent de la maintenir à la valeur choisie.
  • L'addition simultanée et continue du chlorate et de l'eau qui entrent dans l'étape unique d'électrolyse est réalisable en faisant entrer dans cette étape une solution aqueuse de chlorate contenant tout le chlorate et toute l'eau nécessaires à l'invention. La concentration de cette solution en chlorate peut être très élevée, par exemple 900 g. de chlorate de sodium par litre, en formant la solution à une température elle-même élevée, par exemple 80°C.
  • Des quantités relatives de chlorate et d'eau telles que celles indiquées par exemple ci-dessus peuvent encore être atteintes en additionnant séparément le chlorate et l'eau, le chlorate étant mis en oeuvre sous forme solide. Dans ce cas, le courant de recirculation externe dans l'étape unique d'électrolyse peut servir de vecteur au chlorate.
  • Une partie de celui-ci peut être apportée à l'état solide et la partie complémentaire apportée sous forme de solution aqueuse, par exemple sous forme d'une solution contenant 700 g. de chlorate par litre, formée à 20°C.
  • Le procédé selon l'invention permet de conserver l'avantage relatif à une consommation réduite de platine constaté dans le brevet des Etats Unis d'Amérique n°3475301.
  • Le perchlorate qui constitue la production finalement visée est séparé sous forme solide pratiquement pure directement par cristallisation de la solution aqueuse de perchlorate telle qu'elle sort de l'étape unique d'électrolyse selon l'invention. Dans le cas de la fabrication de perchlorate de sodium, le produit particulièrement visé par l'industrie est le perchlorate de sodium monohydrate plutôt que le perchlorate anhydre ou que le perchlorate dihydrate dont la fabrication, selon la composition de l'électrolyte que l'on s'impose, est aussi réalisable selon l'invention.
  • Les exemples suivants, donnés à titre indicatif mais non limitatif, illustrent l'invention.
  • Exemple 1:
  • Dans cet exemple, du perchlorate de sodium est fabriqué par électrolyse de chlorate de sodium dans un équipement comportant essentiellement une cellule d'électrolyse avec boucle de recirculation externe, ensemble dans lequel est réalisée l'étape unique d'électrolyse, des moyens d'échange calorifique, de mesure et de contrôle de la température et du pH. La cellule d'électrolyse est non compartimentée et est équipée d'électrodes monopolaires, anodes en platine et cathodes en acier doux, parcourues par un courant électrique tel que la densité de courant anodique soit égale à 40 A/dm2. Le dégagement gazeux dans la cellule et la recirculation suffisamment importante assurent l'uniformité de l'électrolyte dans ladite cellule.
  • On forme initialement dans cette dernière, soit directement à partir de ses constituants, soit déjà par électrolyse progressive de chlorate de sodium, un électrolyte qui est une solution aqueuse de chlorate de sodium et de perchlorate de sodium en présence d'une petite quantité de bichromate de sodium, de laquelle le perchlorate de sodium est isolable directement par cristallisation.
  • Dans le cas présent l'électrolyte contient, pour 100 g. d'eau, 26 g. de chlorate de sodium, 180 g. de perchlorate de sodium et 0,3 g. de bichromate de sodium.
  • La composition de l'électrolyte ainsi fixée est maintenue stable dans le temps en faisant entrer en continu dans l'étape unique d'électrolyse 96 cm3/h.dm2 anodique d'une solution de chlorate de sodium à 80°C contenant, par litre, 900 g. de chlorate de sodium, 1,5 g. de bichromate de sodium et la quantité d'acide perchlorique nécessaire pour que, dans la cellule d'électrolyse, le pH de l'électrolyte dont la température est de 65°C, soit égal à 6,5. 85 cm3/h.dm2 anodique d'une solution aqueuse qui, selon l'invention, a la composition de l'électrolyte, sort en continu de l'étape unique d'électrolyse pour en isoler directement par cristallisation le perchlorate de sodium monohydrate qui représente la production visée.
  • Exemple 2 :
  • Cet exemple est réalisé dans l'équipement et selon le processus opératoire de l'exemple 1. L'électrolyse est réalisée en particulier à la même température et au même pH que dans l'exemple 1. L'électrolyte contient cette fois, pour 100 g. d'eau 36 g. de chlorate de sodium, 220 g. de perchlorate de sodium et 0,3 g. de bichromate de sodium. Cette composition est maintenue stable dans le temps en faisant entrer en continu dans l'étape unique d'électrolyse 46 g/h.dm2 anodique de chlorate de sodium solide par l'intermédiaire du courant de recirculation, et 84 cm3/h.dm2 anodique d'une solution aqueuse à 20°C contenant, par litre, 500 g. de chlorate de sodium, 1,5 g. de bichromate de sodium et la quantité d'acide perchlorique nécessaire pour atteindre dans l'électrolyte un pH de 6,5. 76 cm3/h.dm2 anodique de solution aqueuse de perchlorate sort de l'étape unique d'électrolyse d'où le perchlorate de sodium monohydrate peut être recueilli directement par cristallisation.
  • Exemple 3 :
  • Cet exemple est réalisé encore dans l'équipement et selon le processus opératoire de l'exemple 1. L'électrolyse est conduite à la même température et au même pH que dans l'exemple 1.
  • L'électrolyte dont la composition est celle de la solution aqueuse de perchlorate de sodium d'où le perchlorate de sodium fabriqué pourra être isolé directement par cristallisation, contient, pour 100 g. d'eau, 30 g. de chlorate de sodium et 290 g. de perchlorate de sodium à côté de 0,3 g. de bichromate de sodium.
  • L'électrolyte est maintenu à cette composition stable dans le temps en faisant entrer en continu dans l'étape unique d'électrolyse 45 g/h.dm2 anodique de chlorate de sodium solide par l'intermédiaire du courant de recirculation et 74 cm3/h.dm2 anodique d'une solution aqueuse de chlorate de sodium de l'exemple 2, tandis que sort de l'étape unique d'électrolyse 66 cm3/h.dm2 anodique de solution aqueuse de même composition que l'électrolyte et d'où le perchlorate fabriqué peut être isolé directement sous forme anhydre par cristallisation.
  • Le rendement FARADAY, exprimé comme étant le rapport de la quantité d'électricité effectivement utilisée pour la conversion du chlorate en perchlorate, en un temps donné, à la quantité totale d'électricité consommée dans le même temps, est supérieur à 90 % pour les trois exemples ci-dessus. Il est de plus de 93 %, même en l'absence de bichromate de sodium en répétant l'exemple 1 avec une température d'électrolyse égale à 55°C au lieu de 65°C.

Claims (8)

  1. Procédé continu de fabrication de perchlorate de sodium par électrolyse en continu en une seule étape électrolytique d'un électrolyte constitué par une solution aqueuse de chlorate de sodium, de perchlorate de sodium et éventuellement d'autres ingrédients d'électrolyse, cet électrolyte étant maintenu uniforme avec une composition stationnaire en faisant entrer en continu dans cette étape du chlorate de sodium, de l'eau et éventuellement lesdits ingrédients, chacun en une quantité égale à celle qui disparaît de cette étape par transformation électrolytique et par une sortie continue et définitive de cette étape d'un courant d'électrolyte formant un prélèvement ayant la même composition stationnaire, ladite composition étant choisie de telle sorte que le prélèvement puisse déposer directement par refroidissement des cristaux de perchlorate de sodium, anhydre ou monohydrate ou dihydrate, suivi à partir dudit prélèvement d'une cristallisation de perchlorate de sodium par refroidissement ou évaporation d'eau.
  2. Procédé suivant la revendication 1, caractérisé en ce que l'électrolyte contient, par litre, au moins 100 g de chlorate de sodium.
  3. Procédé suivant l'une des revendications 1 à 2, caractérisé en ce que tout le chlorate de sodium et toute l'eau qui entrent dans l'étape unique d'électrolyse sont contenus dans une solution aqueuse de chlorate de sodium.
  4. Procédé suivant l'une des revendications 1 à 2, caractérisé en ce que tout le chlorate de sodium entre sous forme solide dans l'étape unique d'électrolyse.
  5. Procédé suivant l'une des revendications 1 à 2, caractérisé en ce qu'une partie du chlorate de sodium entre sous forme solide dans l'étape unique d'électrolyse, le reste de chlorate de sodium entrant sous forme de solution aqueuse dans ladite étape.
  6. Procédé suivant l'une des revendications 1 à 5, caractérisé en ce que l'électrolyse est réalisée dans une cellule d'électrolyse non compartimentée, équipée d'électrodes monopolaires.
  7. Procédé suivant la revendication 6, caractérisé en ce que le matériau anodique est à base de platine, le matériau cathodique est l'acier doux ou le bronze.
  8. Procédé suivant la revendication 6 ou 7, caractérisé en ce que l'électrolyse est réalisée avec une densité de courant anodique égale à une valeur comprise entre 10 et 70 A/dm2, à une température égale à une valeur comprise entre 40° C et 90° C et à un pH égal à une valeur comprise entre 6 et 10.
EP89420420A 1988-11-09 1989-10-26 Procédé continu de fabrication de perchlorate de métal alcalin Expired - Lifetime EP0368767B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8815137A FR2638766B1 (fr) 1988-11-09 1988-11-09 Procede continu de fabrication de perchlorate de metal alcalin
FR8815137 1988-11-09

Publications (2)

Publication Number Publication Date
EP0368767A1 EP0368767A1 (fr) 1990-05-16
EP0368767B1 true EP0368767B1 (fr) 1997-09-17

Family

ID=9372059

Family Applications (1)

Application Number Title Priority Date Filing Date
EP89420420A Expired - Lifetime EP0368767B1 (fr) 1988-11-09 1989-10-26 Procédé continu de fabrication de perchlorate de métal alcalin

Country Status (21)

Country Link
US (1) US5004527A (fr)
EP (1) EP0368767B1 (fr)
JP (1) JPH0686671B2 (fr)
KR (1) KR920001522B1 (fr)
CN (1) CN1019207B (fr)
AT (1) ATE158348T1 (fr)
AU (1) AU626935B2 (fr)
BR (1) BR8905622A (fr)
CA (1) CA2001847C (fr)
DE (2) DE368767T1 (fr)
DK (1) DK556789A (fr)
ES (1) ES2014400T3 (fr)
FI (1) FI91978C (fr)
FR (1) FR2638766B1 (fr)
GR (2) GR910300032T1 (fr)
IL (1) IL92062A (fr)
MX (1) MX173147B (fr)
NO (1) NO176724C (fr)
NZ (1) NZ231324A (fr)
PT (1) PT92237B (fr)
ZA (1) ZA898559B (fr)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2655061B1 (fr) * 1989-11-29 1993-12-10 Atochem Fabrication de chlorate ou de perchlorate de metal alcalin.
US5131989A (en) * 1991-05-17 1992-07-21 Olin Corporation Process for producing perchloric acid and ammonium perchlorate
AU3227093A (en) * 1991-12-12 1993-07-19 Olin Corporation Process for producing lithium perchlorate
FR2810308B1 (fr) * 2000-06-20 2002-07-26 Atofina Procede de fabrication de perchlorate de sodium anhydre
US20030153661A1 (en) * 2002-01-04 2003-08-14 Crompton Corporation Stability improvement of aluminum hydroxide in PVC compound
JP4778320B2 (ja) * 2006-01-24 2011-09-21 ペルメレック電極株式会社 過塩素酸化合物の電解合成方法
JP4849420B2 (ja) * 2007-06-20 2012-01-11 奥野製薬工業株式会社 エッチング液の電解処理方法
CN102405308B (zh) * 2009-03-26 2014-10-15 株式会社Ihi 高氯酸盐的制造方法及制造装置
JP5392158B2 (ja) * 2010-03-19 2014-01-22 株式会社Ihi 過塩素酸塩の製造装置および製造方法
KR101229007B1 (ko) * 2010-09-03 2013-02-01 한국표준과학연구원 과염소산염의 제조방법
CN103409770B (zh) * 2013-08-01 2016-06-01 株洲市强盛电极有限公司 一种高氯酸盐电解装置及电解工艺
US10318904B2 (en) 2016-05-06 2019-06-11 General Electric Company Computing system to control the use of physical state attainment of assets to meet temporal performance criteria
US10570013B2 (en) * 2016-10-25 2020-02-25 Malvi Technologies, Llc Methods to make ammonium perchlorate

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE514340C (de) * 1929-10-30 1930-12-11 I G Farbenindustrie Akt Ges Elektrolytische Herstellung von Natriumperchlorat
US2512973A (en) * 1945-10-31 1950-06-27 Western Electrochemical Compan Process for making perchlorates
NL129924C (fr) * 1964-10-12 1970-06-15
US3475301A (en) * 1964-11-25 1969-10-28 Hooker Chemical Corp Electrolytic preparation of perchlorates
US3518173A (en) * 1967-12-26 1970-06-30 George J Crane Continuous manufacture of chlorates and perchlorates
US4144144A (en) * 1976-12-23 1979-03-13 Fmc Corporation Electrolytic production of sodium persulfate
US4267025A (en) * 1979-11-26 1981-05-12 Diamond Shamrock Technologies, S.A. Electrodes for electrolytic processes, especially perchlorate production
JPS6092491A (ja) * 1983-10-27 1985-05-24 Ube Ind Ltd 炭酸カリウムの電解方法

Also Published As

Publication number Publication date
GR3025661T3 (en) 1998-03-31
DE68928322D1 (de) 1997-10-23
NO894359D0 (no) 1989-11-02
ZA898559B (en) 1990-08-29
AU4448289A (en) 1990-05-17
US5004527A (en) 1991-04-02
GR910300032T1 (en) 1991-11-15
CN1042574A (zh) 1990-05-30
DE368767T1 (de) 1990-10-18
ATE158348T1 (de) 1997-10-15
EP0368767A1 (fr) 1990-05-16
IL92062A0 (en) 1990-07-12
FI91978B (fi) 1994-05-31
FI91978C (fi) 1994-09-12
IL92062A (en) 1994-02-27
DE68928322T2 (de) 1998-02-26
KR900008065A (ko) 1990-06-02
NO176724B (no) 1995-02-06
JPH02182888A (ja) 1990-07-17
FR2638766A1 (fr) 1990-05-11
FR2638766B1 (fr) 1990-12-14
PT92237A (pt) 1990-05-31
CA2001847C (fr) 1995-08-01
NO894359L (no) 1990-05-10
ES2014400A4 (es) 1990-07-16
FI895318A0 (fi) 1989-11-08
AU626935B2 (en) 1992-08-13
ES2014400T3 (es) 1998-01-01
KR920001522B1 (ko) 1992-02-15
BR8905622A (pt) 1990-06-05
JPH0686671B2 (ja) 1994-11-02
DK556789A (da) 1990-05-10
NZ231324A (en) 1991-10-25
MX173147B (es) 1994-02-02
NO176724C (no) 1995-05-24
CN1019207B (zh) 1992-11-25
DK556789D0 (da) 1989-11-08
PT92237B (pt) 1996-01-31

Similar Documents

Publication Publication Date Title
EP0368767B1 (fr) Procédé continu de fabrication de perchlorate de métal alcalin
FR2810996A1 (fr) Procede d'electrolyse
CA1247047A (fr) Procede pour la production electrolytique d'hydrogene sur une cathode
EP2282983A2 (fr) Procede de production de composes du type cxhyo2 par reduction de dioxyde de carbone (co2) et/ou de monoxyde de carbone (co)
FR2849532A1 (fr) Procede de fabrication d'un compose i-iii-vi2 en couches minces, favorisant l'incorporation d'elements iii
CH679158A5 (fr)
EP0577207B1 (fr) Procédé de fabrication d'une solution aqueuse d'hydroxyde de sodium
FR2803856A1 (fr) Synthese de l'hydroxyde de tetramethylammonium
EP0430830A1 (fr) Fabrication de chlorate ou de perchlorate de métal alcalin
FR2673423A1 (fr) Procede d'elimination de sulfates contenus dans des solutions de chlorates alcalins et production desdits chlorates alcalins.
EP0131978A1 (fr) Procédé de fabrication d'une électrode pour procédés électrochimiques et cathode pour la production électrolytique d'hydrogène
EP0288344A1 (fr) Procédé électrochimique pour récupérer le rhodium métallique à partir de solutions aqueuses de catalyseurs usagés
FR2487385A1 (fr) Procede d'electrolyse d'une solution aqueuse de chlorure de metal alcalin avec mise en oeuvre d'une membrane echangeuse de cations
FR2691479A1 (fr) Procédé de fabrication de chlorate de métal alcalin et dispositif pour sa mise en Óoeuvre.
EP0221790A1 (fr) Procédé de fabrication d'acide glyoxylique par réduction électrochimique d'acide oxalique
EP0197867B1 (fr) Procédé d'amélioration de la pureté des métaux de transition obtenus par électrolyse de leurs halogénures en bain de sels fondus
JPH03100191A (ja) パラ―アミノフェノールの製造方法
FR2977804A1 (fr) Procede de traitement d'effluents liquides en milieu chlorure et separation du zinc et du nickel, installation pour sa mise en oeuvre et application aux effluents industriels metalliferes
BE415445A (fr)
WO1995003438A1 (fr) Procede de reduction electrolytique du bioxyde de carbone
FR2511048A1 (fr) Procede de fabrication de couches d'absorption pour installations solaires
LU85832A1 (fr) Installation pour le depot electrolytique d'une couche de zinc
CH410880A (fr) Procédé de préparation d'un chlorate de métal alcalin
FR2569726A1 (fr) Procede de preparation d'acide glyoxylique par oxydation electrochimique anodique du glyoxal
CH381435A (fr) Procédé de fabrication électrolytique du tantale

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19891030

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE ES FR GB GR IT LI LU NL SE

ITCL It: translation for ep claims filed

Representative=s name: JACOBACCI CASETTA & PERANI S.P.A.

TCAT At: translation of patent claims filed
GBC Gb: translation of claims filed (gb section 78(7)/1977)
TCNL Nl: translation of patent claims filed
DET De: translation of patent claims
RAP3 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ELF ATOCHEM S.A.

17Q First examination report despatched

Effective date: 19920506

APAB Appeal dossier modified

Free format text: ORIGINAL CODE: EPIDOS NOAPE

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE ES FR GB GR IT LI LU NL SE

REF Corresponds to:

Ref document number: 158348

Country of ref document: AT

Date of ref document: 19971015

Kind code of ref document: T

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: CH

Ref legal event code: NV

Representative=s name: A. BRAUN, BRAUN, HERITIER, ESCHMANN AG PATENTANWAE

REF Corresponds to:

Ref document number: 68928322

Country of ref document: DE

Date of ref document: 19971023

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19971002

ITF It: translation for a ep patent filed

Owner name: ING. A. GIAMBROCONO & C. S.R.L.

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2014400

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20021004

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20021011

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20021023

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GR

Payment date: 20021024

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 20021029

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20021031

Year of fee payment: 14

Ref country code: DE

Payment date: 20021031

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20021101

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20021219

Year of fee payment: 14

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031026

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031026

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031026

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031027

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031031

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031031

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031031

BERE Be: lapsed

Owner name: S.A. *ELF ATOCHEM

Effective date: 20031031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040501

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040501

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040504

EUG Se: european patent has lapsed
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20031026

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20040501

APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20061031

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20061124

Year of fee payment: 18

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20080630

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20061010

Year of fee payment: 18

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20071027

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071031

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071027

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071026