EP0340550A2 - Elektrisches Heizelement mit PTC-Element - Google Patents

Elektrisches Heizelement mit PTC-Element Download PDF

Info

Publication number
EP0340550A2
EP0340550A2 EP89107143A EP89107143A EP0340550A2 EP 0340550 A2 EP0340550 A2 EP 0340550A2 EP 89107143 A EP89107143 A EP 89107143A EP 89107143 A EP89107143 A EP 89107143A EP 0340550 A2 EP0340550 A2 EP 0340550A2
Authority
EP
European Patent Office
Prior art keywords
housing
heating element
contact
contact plates
ptc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP89107143A
Other languages
English (en)
French (fr)
Other versions
EP0340550A3 (en
EP0340550B1 (de
Inventor
Hanno Roller
Roland Starck
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eichenauer Heizelemente GmbH and Co KG
Original Assignee
Fritz Eichenauer GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fritz Eichenauer GmbH and Co KG filed Critical Fritz Eichenauer GmbH and Co KG
Publication of EP0340550A2 publication Critical patent/EP0340550A2/de
Publication of EP0340550A3 publication Critical patent/EP0340550A3/de
Application granted granted Critical
Publication of EP0340550B1 publication Critical patent/EP0340550B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/10Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor
    • H05B3/12Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material
    • H05B3/14Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material the material being non-metallic
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/02Heaters using heating elements having a positive temperature coefficient

Definitions

  • the invention relates to an electrical heating element with a contact unit formed from at least one PTC element and contact plates resting thereon on both sides and with a housing.
  • Such a heating element is described in DE-GM 78 38 558.
  • flat PTC elements are placed between two contact plates, covered with a thin film, preferably made of mica, pushed into a jacket tube and this is then subsequently on both sides resulting free flanks are still pressed, so that a "bell-shaped" contour is created in the cut.
  • the Brinell hardness for pipe materials commonly used in these and usual cases is typically in the range from 22 to 38.
  • the disadvantage of this heating element is that the heat coupling of the PTC module decreases with increasing operating time and thus the heating element falls into a lower working range (temperature range) and the power is then no longer sufficient and the desired heating process can no longer be carried out.
  • the reason for this is the negative change in the pressing force on the PTC component, caused by the peculiarity of the material made of aluminum, which softens during temperature treatment and no longer has spring properties.
  • an electrical resistance heating element is described with at least one PTC element arranged between two contact plates, this contact unit being inserted into a sleeve made of electrically insulating, thermally conductive elastomeric material in such a way that through the sleeve in the plane there is a vertical pressure on the contact plates, which is given by the inherent elasticity of the sleeve.
  • the resistance bodies consist of ceramic PTC material, centrally within a housing made of an electrically insulating, vulcanized plastic, to which an electrically insulating and heat-conducting metal connection has been added.
  • the interior between the PTC elements and the sleeve is filled with a vulcanizing plastic, to which an electrically insulating and heat-conducting metal compound, preferably magnesium oxide, is also added.
  • the invention has for its object to provide an electrical heating element with positive electrical resistance, which gives a multiple (3 to 4 times) of the previously possible power and thus opens up a larger area of application.
  • the above object is achieved in an electrical heating element with a PTC element of the type mentioned above in that the contact plates and the housing have a Brinell hardness of 80 to 100, that in the uncompressed state of the heating element the contact plates are curved and with their convex side on rest on the PTC elements that the housing consists of dimensionally stable light metal and in the uncompressed state has a contact arrangement convex facing inner wall with a finite radius of curvature that is greater than the radius of curvature of the contact plates.
  • the PTC modules are between two segment plates bent outwards in the manner of a segment of a circle, which are larger than the contact areas of the PTC modules and in a mask made of electrically insulating material, such as a mica plate with recesses or a dimensionally stable plate made of binder bound, crushed mica (trademark Multimica), are laid. Recesses for connecting the connecting wires are provided on the connecting plates.
  • This contact arrangement with the PTC components fixed in the mask and the contact plates curved in the shape of a circular arc is inserted into an elliptical sleeve made of polyimide film (Kapton) and as such a package is inserted smoothly into the light metal housing from a rectangular extruded profile - i.e. without clamping - and mechanically pressed.
  • Kapton polyimide film
  • the long sides of the housing made of rectangular extruded profile are convexly curved inwards, this curvature having a larger radius r1 than the radius r2 of the contact plates.
  • a spring tension is built up, which acts as a pressing force on the contact surfaces of the PTC elements, which does not subside even when the heating element is heated and used for a long time.
  • no decrease in the pressing force was found compared to known heating elements.
  • the narrow sides of the sleeves made of rectangular, extruded aluminum-metal have a greater thickness in cross section in their central region than in their contact region with the upper and lower top wall, and in particular are convex both outwards and inwards.
  • the Brinell hardness of the material used is between 80 and 100.
  • the material for the contact plates and the aluminum extruded profile is preferably Al Mg Si1 alloy (composition MG 0.6-1.2; Si 0.75-1.3; Mn 0 , 4-1.0; Cr 0-0.3; balance Al) was used.
  • the said aluminum material ensures a progressive and permanent spring pressure on the PTC components lying between the contact plates in the configuration which is arranged with the outside of the contact plate and the inside of the sleeve opposite arrangement and the formation of the barrel-shaped narrow sides of the rectangular sleeve that a 3 to 4 times higher power - 35 to 40 W / qcm - compared to the known and previously described types of installation (approx. 8 W / qcm) constant and above longer periods of time is achieved.
  • the performance of PTC elements depends on the quality of the heat dissipation.
  • the resistance and thus the performance of a PTC element is determined by the internal temperature of the PTC element, which as such cannot be measured or can only be measured with difficulty.
  • the surface temperature is measured on the surface of the contact arrangement, that is to say the back of the contact elements.
  • good heat extraction much lower temperatures are measured with stationary power dissipation than with good or optimal heat extraction (the temperature inside the PTC element is necessarily the same in both cases). With good heat extraction, higher temperatures according to DIN standard are achieved and a disproportionately higher output.
  • a heating element produced in this way which is primarily used to heat liquids such as water, can also be produced from an extrusion that is open on both sides, the two open edges then being water-tightly cast with resin, or from a sleeve with a bottom arranged on one side .
  • the heating element 1 shown in perspective in FIG. 1 has a sleeve 2 made of extruded aluminum alloy with the material no. 32315.71-32318.72, in which the initially open sides 3 and 4 are sealed or closed, and from which connections 5 and 6 emerge on one side.
  • the grooves 21, 22 shown in the outer longitudinal edge of the contact plates 12, 13 serve to receive the electrical connections 5 and 6 (FIG. 2).
  • An electrical heating element according to the invention is produced, in particular, by inserting the contact arrangement with contact plates (12, 13) convexly facing the PTC elements into an opening of a housing made of light metal with convex inward-arching inner walls and exceeding the cross-sectional dimension of the contact arrangement, and then housing (2) and contact plates (12, 13) are pressed.
  • FIG. 2 shows a cross section through a unit 1 a for further processing to form a heating element 1. It has a contact unit A on the PTC resistance element 14 which has this mask 15 and contact plates 12, 13.
  • the contact unit A is inserted into the housing 2 with the interposition of an insulating sheath 16.
  • the essentially rectangular housing 2 is barrel-shaped in section on the narrow sides 8, 9.
  • the two longitudinal sides 10, 11 are curved inwards with the radius r1, that is to say with their convex sides facing the contact unit A.
  • the PTC element inserted between the two contact plates 12, 13 is placed against a displacement in a mask 15 made of electrically insulating material such as mica or resin-bound mica fibers (Multimica).
  • the contact plates 12, 13 consist of the same material as the housing.
  • the thickness of the mask 15 is smaller than that of the PTC element 14.
  • the contact unit with the contact plates 12, 13, the PTC element 14 and the mask 15 is provided with a covering 16 made of electrically insulating material, thermostable polyimide film, under the name " Kapton "commercially available, surrounded.
  • the contact unit made of the contact plates 12, 13 held together by the sheath 16 of electrically insulating material with the PTC resistance bodies 14 lying in between in the mask 15 can be inserted relatively easily into the aluminum sleeve 2 during manufacture.
  • the contact plates 12, 13 are bent at a radius r2 to the outside against the inner sides 17, 18 of the rectangular aluminum housing 2 of the heating element 1, that is to say with their concave side facing the adjacent housing wall.
  • the radius r2 is smaller than the radius r1 of the two inwardly bent longitudinal sides 10 and 11 of the housing.
  • the aluminum housing 2 After installation of the contact unit A provided with the electrically insulating sheath 16, the aluminum housing 2 is pressed by pressing the aluminum housing 2 and the longitudinal sides 10, 11 and the contact is deformed compared to the unloaded, relaxed, by the mentioned radii r1 of the housing walls 10, 11 and r2 of the contact plates 12, 13, a permanent spring force is built up, which due to the use of the relatively hard aluminum alloys for the rectangular sleeve 2 and the contact plates 12, 13 remains constant and thus ensures optimal decoupling of the energy supplied via the electrical connections 5 and 6.
  • the two, preferably barrel-shaped, narrow sides 8 and 9 form abutments of the outwardly directed spring force of the contact plates 12, 13.
  • this heating element 1 it was found that the barrel forces of narrow sides 8.9, the occurring spring forces directed vertically upwards and outwards can be absorbed much better than with circumferential and constant cross-sections of the narrow sides 8.9 of the aluminum housing, so that optimal Consistency of the heat extraction and thus maintaining the efficiency is given much longer.
  • the configuration of the narrow sides 8 and 9, as shown in FIG. 2, is not the only possible configuration.
  • the necessary increase in cross-sectional area 1 to form a sufficiently firm abutment for absorbing the spring forces can also be achieved by other cross-sectional shapes, such as diamond shapes, circular shapes, etc. Further tests with the heating element 1 have shown that an optimal, highly constant, uniform and uniform pressing of the narrow sides is ensured when the transitions 19, 20 from the long sides 10, 11 to the narrow sides 8, 9 in the respective corners 19, 20 constrictions.
  • FIG. 3 shows the heating element according to the invention in the fully pressed state. It can be seen that when pressing, in particular, the height of the outer dimensions in the region of the narrow sides 8, 9 is reduced and, in the process, the crown speed or barrel shape of the narrow sides 8.9 can be enlarged. The crowned narrow sides 8, 9 become plastically against the spring action of the contact surface 12, 13 during the pressing and, after the pressing, absorb their forces as an abutment. This is shown in the illustration in FIG. 4. If one cuts the jacket of the heating element according to the invention in an edge region at 26, the corresponding wall 11 springs in the manner shown under the action of the contact surface 12 which is under tension in FIG. 13 on.
  • the arrangement according to the invention therefore does not maintain its cross-sectional shape when it is cut open in the edge region 26.
  • FIG. 3 shows that the pressing can take place in such a way that the two long sides 11, 10 are practically flat, so that the further dissipation of the heat can also be carried out via them.

Landscapes

  • Resistance Heating (AREA)

Abstract

Es wird ein elektrisches Heizelement vorgeschlagen, das eine aus mindestens einem PTC-Element und auf diesem beidseitig aufliegenden Kontaktplatten gebildete Kontakteinheit und ein Gehäuse aufweist, wobei zur Gewährleistung eines guten Kontaktdrucks beim Enderzeugnis in unverpreßtem Zustand des Heizelements die Kontaktplatten (12,13) gekrümmt sind und mit ihrer konvexen Seite auf den PTC-Elementen (14) aufliegen, das Gehäuse (2) aus formstabilem Leichtmetall besteht und in unverpreßtem Zustand eine der Kontaktanordnung (12,13,14) konvex zugewandte Innenwandung (17,18) mit einem endlichen Krümmungsradius (r1) aufweist, der größer ist als der Krümmungsradius (r2) der Kontaktplatten (12,13).

Description

  • Die Erfindung betrifft ein elektrisches Heizelement mit einer aus mindestens einem PTC-Element und auf diesem beidseitig aufliegenden Kontaktplatten gebildeten Kontakt­einheit und mit einem Gehäuse.
  • Ein derartiges Heizelement ist in der DE-GM 78 38 558 beschrieben. Bei diesem Heizkörper werden flache PTC-Ele­mente zwischen zwei Kontaktbleche gelegt, mit einer dünnen Folie, vorzugsweise aus Glimmer, abgedeckt, in ein Mantel­rohr geschoben und dieses zunächst anschließend beidseitig entstehende freien Flanken weiterhin gepreßt, so daß im Schnitt eine "glockenförmige" Kontur entsteht. Die Brinell­härte für in diesen und üblichen Fällen üblicherweise verwendeten Rohrmaterialien liegt typischerweise im Bereich von 22 bis 38.
  • Nachteilig bei diesem Heizelement ist, daß mit zunehmender Betriebsdauer die Wärmeauskopplung des PTC-Bausteines geringer wird und somit das Heizelement in einen niedrige­ren Arbeitsbereich (Temperaturbereich) abfällt und die Leistung dann nicht mehr ausreicht und der gewünschte Aufheizvorgang nicht mehr vollzogen werden kann. Die Ur­sache hierfür ist die negative Veränderung der Preßkraft auf den PTC-Baustein, hervorgerufen durch die Eigenart des Werkstoffes aus Aluminium, welcher bei Temperaturbehandlung weich wird und keine Federeigenschaften mehr besitzt.
  • In der DE-PS 29 48 592 wird ein elektrisches Widerstands­heizelement mit mindestens einem zwischen zwei Kontaktplat­ten angeordneten PTC-Element beschrieben, wobei diese Kontakteinheit in eine Hülse aus elektrisch isolierendem, wärmeleitfähigem elastomerem Material, derart eingeschoben wird, daß durch die Hülse in der Ebene zu den Kontaktble­chen eine senkrechte Pressung vorhanden ist, die durch die Eigenelastizität der Hülse gegeben ist.
  • Durch diese Anordnung wird zwar für den zum damaligen Zeitpunkt vorhandenen Stand der Technik ein sehr hoher Wärmeauskopplungsgrad erreicht und eine wirtschaftlich sinnvolle Anwendung in verschiedenen elektrischen Gebrauchs­geräten damit gewährleistet. Die weiteren Entwicklungen von PTC-Elementen mit größeren elektrischen, insbesondere spezifischen Leistungen erfordern Weiterentwicklungen zur verbesserten Auskopplung der durch die PTC-Elemente zur Verfügung gestellten, höheren Wärmeleistung und deren wirksame Zuführung. Nur durch eine optimale Auskopplung der zugeführten Leistung kann der PTC-Baustein in der für ihn charakteristischen Arbeits- und Leistungs-Kurve betrie­ben werden. Aus diesen vorgenannten Gründen sind auch die Ausführungsbeispiele für ein selbstregelndes Heizelement, wie in der DE-AS 2 641 894 beschrieben, für die nach heu­tigem Stand der Technik hergestellten PTC-Bausteine nicht mehr relevant. Bei dem dortigen Heizelement bestehen die Widerstandskörper aus keramischem PTC-Material, zentrisch innerhalb eines Gehäuses aus einem elektrisch isolierenden, vulkanisierten Kunststoff, dem eine elektrische isolierende und wärmeleitende Metallverbindung beigemengt wurde. Der Innenraum zwischen den PTC-Elementen und der Hülse wird mit einem vulkanisierendem Kunststoff ausgefüllt, dem ebenfalls eine elektrisch isolierende und wärmeleitende Metallverbindung, vorzugsweise Magnesiumoxyd, beigemengt wird.
  • Durch die mangelnde Möglichkeit der Wärmeabfuhr aus dem PTC-Element ergibt sich bei dem beanspruchten und beschrie­benen Erfindungsgegenstand eine relative Auskopplung der Wärmeenergie aus dem PTC-Element. Die hier zugeführte elektrische Energie wird, bedingt durch den schlechten Auskopplungs-Wirkungsgrad, nur unzureichend dem zu behei­zenden Medium zugeführt.
  • Weitere wärmeaustauschende Kontaktierungen innerhalb von Hülsen, werden in der DE-OS 26 14 433 beschrieben, wobei hier metallene Federn an der Innenwand des vorgeformten, mehrschichtigen Gehäuses anliegen und somit zur Ebene der Kontaktflächen an den PTC-Bausteinen eine senkrechte Pres­sung erfolgt.
  • All diese bekannten Ausführungsformen haben den Nachteil der ungünstigen Auskopplung der zugeführten elektrischen Energie an das zu beheizende Medium. Für die, nach dem derzeitigen Entwicklungsstand hergestellten PTC-Bausteine durch die bisherigen bekannten Konstruktionen für die Auskopplung der zugeführten Energie sind spezifische Lei­stungsgrößen von ca. 8 W/ qcm möglich.
  • Der Erfindung liegt die Aufgabe zugrunde, ein elektrisches Heizelement mit positivem elektrischem Widerstand zu schaf­fen, welches ein Mehrfaches (3 bis 4-fache) der bisher möglichen Leistungsgröße abgibt und somit einen größeren Anwendungsbereich erschließt.
  • Erfindungsgemäß wird die genannte Aufgabe bei einem elektri­schen Heizelement mit PTC-Element der eingangs genannten Art dadurch gelöst, daß die Kontaktplatten und das Gehäuse eine Brinellhärte von 80 bis 100 aufweisen, daß in unver­preßtem Zustand des Heizelements die Kontaktplatten ge­krümmt sind und mit ihrer konvexen Seite auf den PTC-Ele­menten aufliegen, daß das Gehäuse aus formstabilem Leicht­metall besteht und in unverpreßtem Zustand eine der Kontakt anordnung konvex zugewandte Innenwandung mit einem endli­chen Krümmungsradius aufweist, der größer ist als der Krümmungsradius der Kontaktplatten.
  • Gemäß einer bevorzugten Ausführungsform werden die PTC-Bau­steine zwischen zwei kreissegmentartig nach außen gebogenen Anschlußblechen, die größer sind als die Kontaktflächen der PTC-Bausteine und in einer Maske aus elektrisch isolieren­dem Material, wie einer Glimmer-Platte mit Ausnehmungen oder einer formstabilen Platte aus mit Bindemittel gebun­denen, zerkleinerten Glimmern (Warenzeichen Multimica), festgelegt sind, gelegt. An den Anschlußblechen sind Aus­nehmungen zum Anschluß der Anschlußdrähte vorgesehen. Diese Kontaktanordnung mit in der Maske fixierten PTC-Bausteine und im Schnitt kreisbogenförmig gekrümmten Kontaktplatten, wird in einer im Schnitt elliptische Hülse aus Polyimid-­Folie (Kapton) eingesteckt und als solches Paket wiederum in das Leichtmetallgehäuse aus einem rechteckförmigen Strangpreßprofil reibungsfrei eingeschoben - d.h. ohne Klemmung - und mechanisch verpreßt.
  • Die Längsseiten des Gehäuses aus rechteckförmigem Strang­preßprofil, sind nach innen konvex gewölbt, wobei diese Wölbung einen größeren Radius r1 als der Radius r2 der Kontaktbleche aufweist. Bei der anschließenden mechanischen Verpressung wird eine Federspannung aufgebaut, welche als Preßkraft an den Kontaktflächen der PTC-Elemente ansteht, die auch bei Erwärmung des Heizelementes und längerem Gebrauch nicht nachläßt. Bei Dauerversuchen über 1.500 Betriebsstunden wurde gegenüber bekannten Heizelementen kein Nachlassen der Preßkraft festgestellt. Die Schmalsei­ten der Hülsen aus rechteckförmigem, stranggepreßtem Alu­minium-Metall weisen im Querschnitt in ihrem Mittenbereich eine größere Stärke auf als in ihrem Berührungsbereich mit oberer und unterer Deckwand, und sind insbesondere sowohl nach außen als auch nach innen konvex ausgebildet. Hier­durch wird - nach mechanischer Verformung (Verpressung) der einander gegenüberliegenden Aluminium-Deckwänden mit unterschiedlichen Radien - nach außen auftretenden Feder­kräften ein Widerlager entgegengesetzt, welches groß genug ist, eine permanent herrschende Druckspannung auf den PTC-­Baustein zu gewährleisten. Die Brinellhärte des verwendeten Materials liegt zwischen 80 und 100. Als Material für die Kontaktbleche und das Aluminium-Strangpreßprofil wird vorzugsweise Al Mg Si1-Legierung (Zusammensetzung MG 0,6-­1,2; Si 0,75-1,3; Mn 0,4-1,0; Cr 0-0,3; Rest Al) verwendet. Äußerst bevorzugt wird Al Mg Si1 F31 mit der Werkstoff-Nr. 32315.71-32318.72 verwendet.
  • Das genannte Aluminium-Material gewährleistet bei der Ausge­staltung, der sich mit der Außenseite des Kontaktbleches und der Innenseite der Hülse gegenüberliegenden Anordnung und der Ausbildung der tonnenförmigen Schmalseiten der rechteckförmigen Hülse, einen progressiven und permanenten Federdruck auf die zwischen den Kontaktblechen liegenden PTC-Bauelemente, so daß eine 3 bis 4-fache höhere Leistung - also 35 bis 40 W/qcm - gegenüber den bekannten und vorher beschriebenen Einbauarten (ca. 8 W/qcm) konstant und über längere Zeiträume erzielt wird.
  • Hierbei ist folgendes zu beachten: Die Leistungsfähigkeit von PTC-Elementen hängt im Gegensatz zu üblichen Heizele­menten von der Qualität der Wärmeabfuhr ab. Und zwar be­stimmt sich der Widerstand und damit die Leistung eines PTC-Elements durch die innere Temperatur des PTC-Elements, die als solche nicht oder nur schwierig gemessen werden kann. Nach der DIN-Norm wird die Oberflächentemperatur auf der Oberfläche der Kontaktanordnung, also der Rückseite der Kontaktelemente gemessen. Bei einer schlechten Wärme­auskopplung werden hier bei stationärer Leistungsabfuhr wesentlich geringere Temperaturen gemessen, als bei einer guten oder optimalen Wärmeauskopplung (wobei in beiden Fällen die Temperatur im Inneren des PTC-Elements notwen­digerweise die gleiche ist). Bei einer guten Wärmeauskopp­lung werden höhere Temperaturen nach DIN-Norm erreicht und eine überproportional höhere Leistung. Nachdem nun gegenüber früheren PTC-Elementen solche mit einer 3- bis 4-fachen höheren Leistung zur Verfügung gestellt werden, muß diese auch ausgekoppelt werden, was bei den bisherigen beschriebenen Heizelementen nicht der Fall war. Diese können diese höhere Leistung nicht ausnutzen. Insbesondere liegt dies einerseits an einem Nachlassen des Anpreßdrucks aus schon genannten Gründen, aber auch an der Alterung der elastischen Kunststoffhüllen sowie deren Nichtbeständigkeit, insbesondere bei den angestrebten noch höheren Temperaturen an der Kontaktanordnung.
  • Ein derart hergestelltes Heizelement, welches vornehmlich zur Beheizung von Flüssigkeiten, wie Wasser, dient, kann ebenso aus einem beidseitig offenen Strangpreßteil, wobei dann die beiden offenen Kanten wasserdicht mit Harz ver­gossen werden, oder aber aus einer Hülse mit einem einsei­tig angeordneten Boden, hergestellt werden.
  • Weitere Vorteile und Merkmale der Erfindung ergeben sich aus den Ansprüchen und aus der nachfolgenden Beschreibung, der ein Ausführungsbeispiel unter Bezugnahme auf die Zeich­nung im Einzelnen erläutert ist. Dabei zeigt:
    • Figur 1 Das erfindungsgemäße Heizelement in einer perspektifischen Darstellung;
    • Figur 2 einen Querschnitt 2-2 durch eine Einheit zur Weiterverarbeitung zu einem Heizele­ment vor Verpressung;
    • Figur 3 einen Querschnitt entsprechend Fig.2 nach Verpressung als fertiges Heizelement; und
    • Figur 4 einen Schnitt entsprechend Fig.3 nach Auf­schneiden eines verpreßten Elements im Kantenbereich.
  • Das in Fig.1 perspektifisch dargestellte Heizelement 1 weist eine Hülse 2 aus strangepreßter Aluminiumlegierung auf mit der Werkstoff-Nr. 32315.71-32318.72, bei dem die zunächst offenen Seiten 3 und 4 abgedichtet bzw. verschlos­sen sind, und aus dem einseitig die Anschlüsse 5 und 6 austreten. Die im äußeren Längsrand der Kontaktbleche 12, 13 dargestellte Nuten 21,22 dienen zur Aufnahme der elek­trischen Anschlüsse 5 und 6 (Figur 2).
  • Ein erfindungsgemäßes elektrisches Heizelement wird insbe­sondere dadurch hergestellt, daß die Kontaktanordnung mit konvex den PTC-Elementen zugewandten Kontaktplatten (12, 13) in eine die Querschnittsabmessung der Kontaktanordnung übertreffende Öffnung eines Gehäuses aus Leichtmetall mit konvex nach innen gewölbten Innenwandungen eingeschoben und anschließend Gehäuse (2) und Kontaktplatten (12,13) verpreßt werden.
  • Die Figur 2 zeigt einen Querschnitt durch eine Einheit 1a zur Weiterverarbeitung zu einem Heizelement 1. Es weist eine Kontakteinheit A am PTC Widerstandselement 14, die diese einrahmende Maske 15 und Kontaktplatten 12,13 auf. Die Kontakteinheit A ist unter Zwischenlage einer isolie­renden Umhüllung 16 in das Gehäuse 2 eingesetzt. Das im wesentlichen rechteckige Gehäuse 2 ist an den Schmalseiten 8,9 im Schnitt tonnenförmig ausgebildet. Die beiden Längs seiten 10,11 sind mit dem Radius r1 nach innen gewölbt, also mit ihren konvexen Seiten der Kontakteinheit A zuge­wandt. Das zwischen beiden Kontaktplatten 12,13 eingelegte PTC-Element ist zur Festlegung gegen Verschieben in eine Maske 15 aus elektrisch isolierendem Material wie Glimmer oder harzgebundenen Glimmerfasern (Multimica) gelegt. Die Kontaktplatten 12,13 bestehen aus dem gleichen Material wie das Gehäuse. Die Stärke der Maske 15 ist kleiner als die des PTC-Elements 14. Die Kontakteinheit mit den Kontakt­platten 12,13, dem PTC-Element 14 und der Maske 15 ist mit einer Umhüllung 16 aus elektrisch isolierendem Material, thermostabiler Polyimidfolie, unter dem Namen "Kapton" im Handel erhältlich, umgeben. Die durch die Umhüllung 16 aus elektrisch isolierendem Material zusammengehaltene Kontakt­einheit aus den Kontaktplatten 12,13 mit den dazwischen in der Maske 15 einliegenden PTC-Widerstandskörpern 14, läßt sich bei der Herstellung relativ einfach in die Alu­minium-Hülse 2 einschieben.
  • Die Kontaktplatten 12,13 sind unter einem Radius r2 nach außen gegen die Innenseiten 17,18 der rechteckförmigen Aluminium-Gehäuse 2 des Heizelementes 1, gebogen - also mit ihrer konkaven Seite zu der benachbaren Gehäusewandung gerichtet -. Der Radius r2 ist kleiner als der Radius r1 der beiden nach innen gebogenen Längsseiten 10 und 11 des Gehäuses. Nach dem Einbau der mit der elektrisch isolie­renden Umhüllung 16 versehenen Kontakteinheit A, wird durch Verpressen des Aluminium-Gehäuses 2 und Verformung der Längsseiten 10,11 des Aluminium-Gehäuses 2 und der Kontakt­ bleche 12,13 gegenüber der unbelasteten, entspannten, durch die genannten Radien r1 der Gehäusewandungen 10,11 und r2 der Kontaktplatten 12,13 eine dauerhafte Federkraft aufge­baut, welche aufgrund der Verwendung der relativ harten Aluminiumlegierungen für die rechteckförmige Hülse 2 und die Kontaktbleche 12,13 konstant bleibt und somit eine optimale Auskopplung der über die elektrischen Anschlüsse 5 und 6 zugeführten Energie gewährleistet.
  • Die beiden, vorzugsweise tonnenförmig ausgebildeten Schmal­seiten 8 und 9 bilden nach Verformung Widerlager der nach außen gerichteten Federkraft der Kontaktplatten 12,13. Bei Langzeitversuchen mit diesem erfindungsgemäßen Heizelement 1 wurde festgestellt, daß durch tonnenförmig ausgebildete Schmalseiten 8,9 die auftretenden, senkrecht nach oben und außen gerichteten Federkräfte wesentlich besser aufgenommen werden können als bei umlaufenden und gleichbleibenden Querschnitten der Schmalseiten 8,9 des Aluminiumgehäuses, so daß optimale Konstanz der Wärmeauskopplung und damit die Beibehaltung des Wirkungsgrades wesentlich länger gegeben ist. Die Ausgestaltung der Schmalseiten 8 und 9, wie in der Fig.2 dargestellt, ist nicht die einzig mögliche Ausgestaltung. Die notwendige Erhöhung der Querschnitts­fläche 1 zur Bildung eines hinreichend festsen Widerlagers zur Aufnahme der Federkräfte, kann auch durch andere Quer­schnittsformen, wie Rautenformen, Kreisformen usw. erreicht werden. Weitere Versuche mit dem Heizelement 1 haben erge­ben, daß eine optimale, höchst konstante, einheitliche und gleichmäßige Verpressung der Schmalseiten dann gewährlei­stet ist, wenn die Übergänge 19,20 von den Längsseiten 10, 11 zu den Schmalseiten 8,9 in den jeweiligen Ecken 19,20 Einschnürungen aufweisen.
  • Die Figur 3 zeigt das erfindungsgemäße Heizelement im fertig verpreßten Zustand. Es ist erkennbar, daß beim Verpressen insbesondere die Höhe der Außenabmessungen im Bereich der Schmalseiten 8,9 reduziert und dabei die Ballig­ keit oder Tonnenform der Schmalseiten 8,9 vergrößert werden. Die balligen Schmalseiten 8,9 werden beim Verpressen pla­stisch entgegen der Federwirkung der Kontaktfläche 12,13 und nehmen nach dem Verpressen deren Kräfte als Widerlager auf. Dies zeigt sich an der Darstellung der Figur 4. Schnei­det man nämlich den Mantel des erfindungsgemäßen Heizele­ments in einem Kantenbereich, bei 26, auf, so federt die entsprechende Wandung 11 in der dargestellten Weise unter Einwirkung der bei der Figur 3 unter Spannung stehenden Kontaktfläche 12,13 auf. Die erfindungsgemäßte Anordnung behält also bei Aufschneiden im Kantenbereich 26 nicht ihre Querschnittsform bei. Dies zeigt, daß in der fertigen verpreßten Form (nach Fig.3) die Kontaktfläche mit erheb­licher Kraft gegen die PTC-Elemente 14 gedrückt werden, wodurch die Leistungsauskopplung wesentlich vergrößert und verbessert wird. Im übrigen zeigt die Figur 3, daß die Ver­pressung derart erfolgen kann, daß die beiden Längsseiten 11,10 praktisch eben ausgebildet sind, so daß die weitere Abgabe der Wärme über diese ebenfalls gut durchgeführt werden kann.

Claims (10)

1. Elektrisches Heizelement mit einer aus mindestens einem PTC-Element und auf diesem beidseitig auf­liegenden Kontaktplatten gebildeten Kontakteinheit und mit einem Gehäuse, dadurch gekennzeichnet, daß die Kontaktplatten (12,13) und das Gehäuse (2) eine Brinellhärte von 80 bis 100 aufweisen, daß in unverpreßtem Zustand des Heizelements die Kontaktplatten (12,13) gekrümmt sind und mit ihrer konvexen Seite auf den PTC-Elementen (14) auflie­gen, daß das Gehäuse (2) aus formstablilem Leicht­metall besteht und in unverpreßtem Zustand eine der Kontaktanordnung (12,13, 14) konvex zugewandte Innenwandung (17,18) mit einem endlichen Krümmungs­radius (r1) aufweist, der größer ist als der Krümmungsradius (r2) der Kontaktplatten (12,13).
2. Heizelement nach Anspruch 1, gekennzeichnet durch Herstellung unter Verpressung von Gehäuse (2) und gekrümmten Kontaktplatten (12,13).
3. Heizelement nach Anspruch 1 oder 2, dadurch gekenn­geichnet, daß die Kontaktplatten (12,13) nach Ver­pressung unter elastischer Spannung stehen.
4. Heizelement nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, daß das Gehäuse ein Strang­preßprofilgehäuse ist.
5. Heizelement nach Anspruch 4, dadurch gekennzeich­net, daß eine das Gehäuse einseitig verschließende Stirnseite einstückig mit dem Restgehäuse ausge­bildet ist.
6. Heizelement nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, daß Kontaktplatten (12,13) und/oder Gehäuse (2) aus AlMgSi1 bestehen.
7. Heizelement nach Anspruch 6, dadurch gekennzeich­net, daß Kontaktplatten (12,13) und/oder Gehäuse (2) aus AlMgSi1 F31 bestehen.
8. Heizelement nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, daß die Schmalseiten (8, 9) des Gehäuses (2) einen konvexen Querschnitt aufweisen.
9. Heizelement nach Anspruch 8, dadurch gekennzeichnet, daß die Schmalseiten (8,9) im Schnitt ballig ausge­bildet sind.
10. Verfahren zur Herstellung eines elektrischen Heizelements, wobei eine Kontaktanordnung aus mindestens einem PTC-Element und auf diesem beid­seitig aufliegenden Kontaktplatten in ein Gehäuse eingeschoben wird, dadurch gekennzeichnet, daß die Kontaktanordnung mit konvex den PTC-Elementen zugewandten Kontaktplatten in eine die Querschnitts­abmessung der Kontaktanordnung übertreffende Öffnung eines Gehäuses aus Leichtmetall mit konvex nach innen gewölbten Innenwandungen eingeschoben und anschließend Gehäuse (2) und Kontaktplatten (12,13) verpreßt werden.
EP89107143A 1988-05-05 1989-04-20 Elektrisches Heizelement mit PTC-Element Expired - Lifetime EP0340550B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3815306 1988-05-05
DE3815306A DE3815306A1 (de) 1988-05-05 1988-05-05 Elektrisches heizelement mit ptc-element

Publications (3)

Publication Number Publication Date
EP0340550A2 true EP0340550A2 (de) 1989-11-08
EP0340550A3 EP0340550A3 (en) 1990-08-01
EP0340550B1 EP0340550B1 (de) 1993-07-14

Family

ID=6353696

Family Applications (1)

Application Number Title Priority Date Filing Date
EP89107143A Expired - Lifetime EP0340550B1 (de) 1988-05-05 1989-04-20 Elektrisches Heizelement mit PTC-Element

Country Status (5)

Country Link
US (1) US4942289A (de)
EP (1) EP0340550B1 (de)
JP (1) JP2695236B2 (de)
CA (1) CA1312107C (de)
DE (2) DE3815306A1 (de)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3942266C1 (de) * 1989-12-21 1991-03-07 Tuerk & Hillinger Gmbh PTC-Heizkoerper
EP0582428A1 (de) * 1992-07-28 1994-02-09 Texas Instruments Incorporated Heizgerät und System für eine Brennkraftmaschine
US7087868B2 (en) 2003-04-12 2006-08-08 Eichenauer Heizelemente Gmbh & Co. Kg Heating device
WO2008111101A1 (en) * 2007-03-13 2008-09-18 Rotfil S.R.L. Cartridge heater
WO2012175488A3 (de) * 2011-06-21 2013-08-01 Behr Gmbh & Co. Kg Wärmeübertrager
WO2020244942A1 (de) * 2019-06-05 2020-12-10 Robert Bosch Gmbh Vorrichtung zur verringerung mechanischer belastungen eines funktionsbauteiles

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5243683A (en) * 1992-07-09 1993-09-07 Yang Chiung Hsiang Laminar streamflow-guided hair dryer with finned PTC heating means
DE4436791A1 (de) 1994-10-14 1996-04-18 Behr Gmbh & Co Heizkörper für eine Heizungsanlage eines Kraftfahrzeugs
DE19706199B4 (de) * 1997-02-18 2005-11-10 Behr Gmbh & Co. Kg Elektrische Heizeinrichtung, insbesondere für ein Kraftfahrzeug
DE29719639U1 (de) * 1997-11-05 1998-12-03 Fritz Eichenauer Gmbh & Co Kg, 76870 Kandel Vorrichtung zum Beheizen von Innenräumen, insbesondere von Kraftfahrzeugen
DE19931102A1 (de) * 1999-07-06 2001-01-11 Bayerische Motoren Werke Ag Herstellverfahren für ein Leichtmetall-Gehäuse mit einer darin eingegossenen Elektromagnet-Spule
DE29915886U1 (de) * 1999-09-09 2001-01-25 Weidmueller Interface Verteiler zum Verbinden von Aktoren und/oder Sensoren
DE20121116U1 (de) * 2001-12-21 2003-04-24 Eichenauer Gmbh & Co Kg F Elektrische Heizeinrichtung zum Beheizen einer Flüssigkeit in einem Kfz
DE10360159A1 (de) 2003-12-20 2005-07-21 Eichenauer Heizelemente Gmbh & Co. Kg Profilrohr und Verfahren zum Verspannen von Funktionselementen in einem solchen
DE102004021979A1 (de) * 2004-05-04 2005-11-24 Eichenauer Heizelemente Gmbh & Co. Kg Verfahren zum elektrischen Isolieren eines elektrischen Funktionselements und derart isolierte Funktionselemente aufweisende Einrichtung
EP1666286A1 (de) * 2004-12-02 2006-06-07 Delphi Technologies Inc. Heizeinrichtung
US7288748B1 (en) * 2006-12-21 2007-10-30 S.C. Johnson & Son, Inc. PTC electrical heating devices
DE102008056083B4 (de) * 2008-07-21 2021-08-12 Borgwarner Ludwigsburg Gmbh Verfahren zum Herstellen einer Heizvorrichtung und Heizvorrichtung
DE102010062625A1 (de) 2010-12-08 2012-06-14 Eichenauer Heizelemente Gmbh & Co. Kg Heizelement und Verfahren zum Herstellen eines Heizelements
DE102011054750B4 (de) * 2011-10-24 2014-08-21 Stego-Holding Gmbh Kühl- und Haltekörper für Heizelemente, Heizgerät und Verfahren zur Herstellung eines Kühl- und Haltekörpers
DE102011054752B4 (de) * 2011-10-24 2014-09-04 Stego-Holding Gmbh Kühl- und Haltekörper für Heizelemente, Heizgerät und Verfahren zur Herstellung eines Kühl- und Haltekörpers
DE102017117539A1 (de) 2017-08-02 2019-02-07 Man Truck & Bus Ag Vorrichtung zum Heizen von Kraftstoff
DE102017011686A1 (de) 2017-12-18 2019-06-19 I.G. Bauerhin Gmbh Heizeinrichtung zum Beheizen von Flüssigkeiten in einem Reservoir, wie einem Tank oder einem Behälter, eines Fahrzeugs
DE202017006480U1 (de) 2017-12-18 2019-03-19 I.G. Bauerhin Gmbh Heizeinrichtung zum Beheizen von Flüssigkeiten in einem Reservoir, wie einem Tank oder einem Behälter, eines Fahrzeugs
DE102018202583A1 (de) * 2018-02-21 2019-08-22 Robert Bosch Gmbh Elektrische Heizvorrichtung, insbesondere für ein Abgasnachbehandlungssystem eines Kraftfahrzeugs
DE102019206084A1 (de) * 2019-04-29 2020-10-29 Robert Bosch Gmbh Tankheizung, Verfahren zur Herstellung einer Tankheizung

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4242567A (en) * 1978-06-05 1980-12-30 General Electric Company Electrically heated hair straightener and PTC heater assembly therefor
EP0057172A2 (de) * 1981-01-26 1982-08-04 Walther Dr. Menhardt Selbstregelndes Heizelement

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE7838558U1 (de) * 1979-03-29 Siemens Ag, 1000 Berlin Und 8000 Muenchen Elektrisches Heizelement
NL7504083A (nl) * 1975-04-07 1976-10-11 Philips Nv Zelfregelend verwarmingselement.
NL7511173A (nl) * 1975-09-23 1977-03-25 Philips Nv Zelfregelend verwarmingselement.
DE2939470C2 (de) * 1979-09-28 1982-04-08 Siemens AG, 1000 Berlin und 8000 München Kaltleiter-Heizeinrichtung
DE2948592C2 (de) * 1979-12-03 1990-05-10 Fritz Eichenauer GmbH & Co KG, 6744 Kandel Elektrisches Widerstandsheizelement
US4431983A (en) * 1980-08-29 1984-02-14 Sprague Electric Company PTCR Package
DE3201367A1 (de) * 1982-01-19 1983-07-28 Türk & Hillinger GmbH, 7200 Tuttlingen Elektrischer widerstandsheizkoerper mit kaltleiter-elementen
JPS6048201U (ja) * 1983-09-09 1985-04-04 ティーディーケイ株式会社 正特性サ−ミスタ装置
DE8503272U1 (de) * 1985-02-06 1985-05-23 Fritz Eichenauer GmbH & Co KG, 6744 Kandel Elektrischer heizkoerper
DD242924A1 (de) * 1985-11-18 1987-02-11 Elektrogeraete Ingbuero Veb Elektrische heizanordnung mit ptc-widerstandselementen
DD248016A1 (de) * 1986-04-09 1987-07-22 Elektrogeraete Ingbuero Veb Elektrisches widerstandsheizelement
DD257534A1 (de) * 1987-02-06 1988-06-15 Elektrogeraete Ingbuero Veb Elektrisches widerstandsheizelement

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4242567A (en) * 1978-06-05 1980-12-30 General Electric Company Electrically heated hair straightener and PTC heater assembly therefor
EP0057172A2 (de) * 1981-01-26 1982-08-04 Walther Dr. Menhardt Selbstregelndes Heizelement

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3942266C1 (de) * 1989-12-21 1991-03-07 Tuerk & Hillinger Gmbh PTC-Heizkoerper
EP0582428A1 (de) * 1992-07-28 1994-02-09 Texas Instruments Incorporated Heizgerät und System für eine Brennkraftmaschine
US7087868B2 (en) 2003-04-12 2006-08-08 Eichenauer Heizelemente Gmbh & Co. Kg Heating device
WO2008111101A1 (en) * 2007-03-13 2008-09-18 Rotfil S.R.L. Cartridge heater
WO2012175488A3 (de) * 2011-06-21 2013-08-01 Behr Gmbh & Co. Kg Wärmeübertrager
US9863663B2 (en) 2011-06-21 2018-01-09 Mahle International Gmbh Heat exchanger
WO2020244942A1 (de) * 2019-06-05 2020-12-10 Robert Bosch Gmbh Vorrichtung zur verringerung mechanischer belastungen eines funktionsbauteiles

Also Published As

Publication number Publication date
DE3815306A1 (de) 1989-11-16
CA1312107C (en) 1992-12-29
US4942289A (en) 1990-07-17
EP0340550A3 (en) 1990-08-01
EP0340550B1 (de) 1993-07-14
JPH01313875A (ja) 1989-12-19
DE58904898D1 (de) 1993-08-19
JP2695236B2 (ja) 1997-12-24

Similar Documents

Publication Publication Date Title
EP0340550B1 (de) Elektrisches Heizelement mit PTC-Element
DE102008034695B4 (de) Batterie, insbesondere Fahrzeugbatterie
WO2013171205A1 (de) Kühlvorrichtung für eine fahrzeugbatterie, fahrzeugbatteriebaugruppe und verfahren zur herstellung einer kühlvorrichtung
DE19911547C5 (de) Elektrische Heizeinrichtung für ein Kraftfahrzeug
WO2010000393A1 (de) Rundzellenakkumulator
DE2816076A1 (de) Heizer mit ferroelektrischem keramik-heizelement
DE2804749C3 (de) Durchlauferhitzer
DE3119302A1 (de) Luftheizvorrichtung
DE102009040809A1 (de) Elektrische Heizvorrichtung und Verfahren zur Herstellung einer elektrischen Heizvorrichtung
DE102014219609A1 (de) Ausgleichsvorrichtung und Akkumulatormodul mit derselben
EP1414275A1 (de) Elektrische Heizeinrichtung
DE102006018151B4 (de) Heizgerät
DE3440166C2 (de) Selbstregelndes elektrisches Heizgerät
DE102016113177A1 (de) Batterieanordnung
EP3863373B1 (de) Elektrische heizvorrichtung und verfahren zu deren herstellung
EP1681906B1 (de) Abgedichteter Heizkörper
DE2950302A1 (de) Elektrischer strahlheizkoerper sowie verfahren und vorrichtung zu seiner herstellung
DE10031541A1 (de) Vorrichtung zum Vorheizen von Dieselkraftstoff
DE112006000165T5 (de) PTC-Stangenanordnung und Vorwärmer welcher eine solche umfasst
DE4028233C2 (de) Wärmetauscher
DE4302759A1 (de) Kollektor und Armierungsring hierzu
DE102020113402A1 (de) Elektrische Heizvorrichtung
EP0098391A1 (de) Elektrokochplatte
DE7811098U1 (de) Heizer mit f erroelektrischem Keramik-Heizelement
DE102006026932A1 (de) Piezoaktuator

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): DE ES FR GB IT

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): DE ES FR GB IT

17P Request for examination filed

Effective date: 19901222

17Q First examination report despatched

Effective date: 19921216

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES FR GB IT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRE;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.SCRIBED TIME-LIMIT

Effective date: 19930714

Ref country code: FR

Effective date: 19930714

Ref country code: GB

Effective date: 19930714

Ref country code: ES

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19930714

REF Corresponds to:

Ref document number: 58904898

Country of ref document: DE

Date of ref document: 19930819

EN Fr: translation not filed
GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]

Effective date: 19930714

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20070424

Year of fee payment: 19

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081101