EP0295601B2 - Procédé de fabrication d'un fil, et fil comprenant une structure d'âme - Google Patents

Procédé de fabrication d'un fil, et fil comprenant une structure d'âme Download PDF

Info

Publication number
EP0295601B2
EP0295601B2 EP88109358A EP88109358A EP0295601B2 EP 0295601 B2 EP0295601 B2 EP 0295601B2 EP 88109358 A EP88109358 A EP 88109358A EP 88109358 A EP88109358 A EP 88109358A EP 0295601 B2 EP0295601 B2 EP 0295601B2
Authority
EP
European Patent Office
Prior art keywords
yarn
yarns
core
dtex
multifilament
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP88109358A
Other languages
German (de)
English (en)
Other versions
EP0295601A3 (fr
EP0295601A2 (fr
EP0295601B1 (fr
Inventor
Karl Dipl.- Ing. Greifeneder
Kurt Dipl.- Ing. Truckenmueller
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Amann and Soehne GmbH and Co KG
Original Assignee
Amann and Soehne GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=6329871&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0295601(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Amann and Soehne GmbH and Co KG filed Critical Amann and Soehne GmbH and Co KG
Publication of EP0295601A2 publication Critical patent/EP0295601A2/fr
Publication of EP0295601A3 publication Critical patent/EP0295601A3/fr
Application granted granted Critical
Publication of EP0295601B1 publication Critical patent/EP0295601B1/fr
Publication of EP0295601B2 publication Critical patent/EP0295601B2/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02JFINISHING OR DRESSING OF FILAMENTS, YARNS, THREADS, CORDS, ROPES OR THE LIKE
    • D02J1/00Modifying the structure or properties resulting from a particular structure; Modifying, retaining, or restoring the physical form or cross-sectional shape, e.g. by use of dies or squeeze rollers
    • D02J1/22Stretching or tensioning, shrinking or relaxing, e.g. by use of overfeed and underfeed apparatus, or preventing stretch
    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02GCRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
    • D02G1/00Producing crimped or curled fibres, filaments, yarns, or threads, giving them latent characteristics
    • D02G1/16Producing crimped or curled fibres, filaments, yarns, or threads, giving them latent characteristics using jets or streams of turbulent gases, e.g. air, steam
    • D02G1/168Producing crimped or curled fibres, filaments, yarns, or threads, giving them latent characteristics using jets or streams of turbulent gases, e.g. air, steam including drawing or stretching on the same machine

Definitions

  • the present invention relates to a method for producing a yarn with the features of the preamble of claim 1 and a corresponding yarn.
  • Synthetic fibers which are also called chemical fibers, are not ready for processing immediately after primary spinning.
  • the chemical fibers In order to produce the essential textile properties such as elasticity, elongation, low shrinkage behavior or the like, the chemical fibers have to be drawn after primary spinning.
  • the macromolecules arranged in a tangled position after the primary spinning are aligned in the longitudinal direction of the fiber, so that they assume a macrostructure which corresponds to the structure of the natural fibers.
  • the fibers stretched in this way then go on sale as textile fibers.
  • fibers which have only been partially stretched by the chemical fiber manufacturer and which are pre-stretched or pre-oriented or POY yarns, these yarns or fibers being named uniformly as pre-oriented fibers in the following description.
  • These pre-oriented fibers supplied by the chemical fiber supplier are then stretched again by the customer before further processing in order to produce the textile properties mentioned above.
  • Pre-oriented fibers are also available, which must also be stretched before further processing.
  • These pre-oriented multifilament yarns intended for the production of high-strength yarns are distinguished from the pre-oriented fibers described above by a higher degree of polymerization and thus by an approximately 10-20% higher solution viscosity, measured according to SNV standards 195590 and 195591.
  • the previously oriented pre-oriented fibers are fed to a pin via a first delivery mechanism which is driven at a first speed.
  • the fibers are deflected around the pin by a certain angle, for example between 270 and 360 °, preferably 360 °, and drawn off with a second delivery mechanism which transports the fibers at a second speed.
  • a pin heated to a temperature of 140 ° C to 200 ° C is used, which has a diameter between about 40 mm and about 80 mm.
  • the fibers are usually drawn with a degree of stretching of approximately 1: 1.5 to 1: 1.7, the degree of stretching being defined as the ratio of the first speed (ie the speed of the first delivery unit) to the second speed (ie the speed of the second delivery unit) ).
  • a method with the features of the preamble of claim 1 is known from US-A-36 94 872.
  • an undrawn polyethylene, polypropylene, polyurethane or nylon multifilament yarn is used as the starting material, which is stretched with the aid of a corresponding stretching pin, the dimensions of which are open in US Pat. No. 3,694,872.
  • the yarn is heated to a temperature between 250 ° C and 325 ° C. Due to the known drawing, however, it is not possible to significantly increase the strength of the yarn.
  • the previously reported and post-published WO-A-8 809 403 describes another stretching method which dispenses entirely with a corresponding stretching pin.
  • the multifilament yarn which contains at least one multifilament adhesive yarn component, is stretched between two godets.
  • US-A 4 615 167 describes a stretching method which, like the prior art mentioned at the outset, uses a heated pin, dimensions of the heated pin not being mentioned in this American patent.
  • the degree of stretching used in the known method corresponds to the degree of stretching which is customary for the yarn to be drawn in each case or is below the usual degree of stretching.
  • the yarn thus hidden is then swirled with an effect yarn in accordance with US Pat. No. 4,615,167.
  • the resulting yarn optionally has yarn loops or yarn loops, the diameter of which is not reduced in comparison to the diameter of the yarn loops or yarn loops that arise immediately after the intermingling.
  • US Pat. No. 4,615,167 describes yet another yarn variant in which the core material is constricted by contraction of the yarn loops or yarn loops.
  • a POY yarn is used as the starting material in the known process, but US-A 4 615 167 leaves open what material it is.
  • the present invention has for its object to provide a method of the type specified by which yarns with a particularly high strength can be produced.
  • the method according to the invention is based on the basic idea of using an unheated pin instead of the previously heated pin of the prior art.
  • the pre-oriented fibers described above normal POY yarns, POY yarns with a higher degree of polymerization
  • the unheated pin has a diameter which is less than 10 mm.
  • the polyester multifilament yarns are heated to a temperature between about 100 ° C and about 250 ° C for 0.01 s to 10 s.
  • a maximum degree of stretching of 1: 2.7 is set as the degree of stretching.
  • the inventive method described above has a number of advantages. It was thus found that, with the same degree of stretching, the polyester yarns treated by the process according to the invention have up to 25% higher specific strength than yarns processed by the known process described above.
  • the specific strength is defined as the force per titer (cN / tex).
  • the polyester yarns produced according to the invention also have up to 40% less free thermal shrinkage than the yarns processed by the conventional method.
  • polyester yarns according to the invention for example sewing threads, warp threads, weft threads or woven and knitted fabrics, in further processing, for example in dyeing, printing, steaming or in confectioning, or in end use, for example when washing or ironing, have excellent dimensional stability in thermal or hydrothermal treatments.
  • the method according to the invention has another significant advantage.
  • these capillary breaks already occur with a degree of stretching of approximately 1: 1.8 to a maximum of 1: 2.0.
  • the same starting materials can be stretched in the process according to the invention up to a degree of stretching of 1: 2.3 and a maximum of 1: 2.7 before the first capillary breaks occur.
  • the temperature, the residence time and the degree of stretching depend on the starting material used in each case.
  • a pre-oriented polyester fiber normal POY multifilament yarns, POY multifilament yarns with a higher degree of polymerization
  • Particularly good results in terms of specific strength and low thermal shrinkage can be achieved in the process according to the invention if dwell times between about 0.05 s and about 1 s at temperatures between about 180 ° C and about 240 ° C, the aforementioned residence times and temperatures depending on the type of heating.
  • the starting material used is preferably heated after being deflected around the pin by direct contact with a heated heating device.
  • the known contact heaters such as, for example, a heating drum or in particular a heating plate, which is referred to in technical jargon as a hotplate, can be used as the heating device. It is also possible to heat the polyester multifilament yarn to the above-mentioned temperatures by indirect heating, for example via appropriately designed heating pipes.
  • the polyester multifilament yarn can also be heated by irradiation, using IR emitters or preferably lasers, in particular gas lasers, such as CO2 or CO lasers, for this purpose.
  • the temperature of the heating device is preferably set to a value between approximately 180 ° C. and approximately 240 ° C.
  • the processed material is approximately at a temperature between 140 ° C. (with short contact times) and approximately 220 ° C. (with the previously mentioned longer contact times) ) heated.
  • a further embodiment of the method according to the invention provides for the pen to be cooled using a suitable fluid. This ensures in a particularly suitable manner that even with prolonged use of the method according to the invention there is no uncontrolled, constantly increasing heating of the material, which may lead to undesirable fluctuations in the fiber structure and thus in the properties.
  • the cooling described above is achieved by continuously blowing the pen and the material around it with an air stream. It is also possible to provide a cooling device for the pen, through which a suitable cooling fluid, for example water or freon, flows continuously.
  • a suitable cooling fluid for example water or freon
  • this is preferably cooled to a predetermined length after heating.
  • the length is formed depending on the respective material in such a way that the material can shrink freely when it cools down to a temperature of about 40.degree.
  • the polyester multifilament yarn produced by the method according to the invention can be wound up under tension, without tension or with lead. If the polyester yarn is dyed after production, it is recommended to use it without tension on corresponding cores used for dyeing, so that the yarns can still shrink during dyeing.
  • the polyester multifilament yarns dyed in this way then have a further reduced cooking or thermal shrinkage at 180 ° C.
  • the degree of stretching (1st speed: 2nd speed) can be as high in the method according to the invention as in the known method, i.e. depending on the polyester multifilament yarn used, between about 1: 1.3 to about 1: 1.9.
  • Particularly high strengths are achieved if a degree of stretching of greater than 1: 2.0, in particular a degree of stretching between 1: 2.1 to 1: 2.7, is selected in the process according to the invention, since at these relatively high degrees of stretching there is a further increase in the specific strength (in force per titer; cN / tex) can be determined.
  • polyester multifilament yarns made from pre-oriented fibers which have a number of filament yarns between about 20 and about 500, preferably between about 30 and about 150, which is common for textile purposes. Furthermore, they have a customary titer between approximately 100 dtex and approximately 1000 dtex, preferably between approximately 100 dtex and approximately 600 dtex.
  • the degree of stretching is usually between about 5% and about 50%, preferably between about 20% and about 40%, above the degree of stretching which the manufacturer of the respective material recommends.
  • the upper limit of the degree of stretching is a value which is between approximately 5% and approximately 25% below the degree of stretching at which the polyester multifilament yarn breaks.
  • polyester multifilament yarns can be produced by the process according to the invention, which have a significantly increased specific strength and a significantly reduced free thermal shrinkage or boiling shrinkage compared to yarns produced conventionally. By varying the degree of stretching, the specific strength, the thermal shrinkage and the cooking shrinkage can be adapted to the respective requirements.
  • a pre-oriented polyester multifilament yarn is preferably used as the starting material, which is treated in accordance with the above statements.
  • Another embodiment of the process according to the invention provides that a pre-oriented polyester multifilament yarn with a high degree of polymerization is used as the starting material, the statements made above regarding the process parameters apply here.
  • the specific strength is again significantly improved compared to a material that has been treated conventionally and the thermal shrinkage at 180 ° C. or the cooking shrinkage are further reduced.
  • the polyester multifilament yarn treated as described above is provided before winding with one rotation, this rotation being between about 5 turns / m and about 400 turns / m, preferably between about 8 turns / m and about 30 turns / m.
  • the twisted polyester multifilament yarn is then wound up and can be further processed in any way, which can be done, for example, by texturing, twisting, dyeing, finishing and / or weaving.
  • a particularly preferred embodiment of the method according to the invention provides that the polyester multifilament yarn is subsequently intermingled in a fluid stream with a second yarn (fancy yarn) to form a core-sheath yarn provided with loops and loops, the intermingling being carried out in such a way that the Multifilament yarn forms the inner core and the second yarn (fancy yarn) forms the sheath enveloping the core.
  • Such swirling is carried out in the nozzle devices known per se.
  • the core-jacket yarn produced in accordance with the invention has a higher strength, a lower thermal and cooking shrinkage, in particular due to a uniform tone -in-tone coloring.
  • the core yarn core yarn
  • the core yarn does not become darker, lighter or in a different tone in comparison to the enveloping sheath yarn (fancy yarn), which both consist of the same material.
  • both yarn components core and effect components
  • the fancy yarn is significantly larger or smaller, for example by a factor between 1.5 and 4.
  • the above-described improvement in the dyeing behavior of the polyester yarn produced by the process according to the invention is attributed to the fact that, by using an unheated stick with the aforementioned diameter, the thermal treatment which immediately followed me, the temperature and residence time of the aforementioned Values can be varied, and due to the previously described cooling conditions in which the voltage can be changed, the coloring behavior of the core material can be adapted to the coloring behavior of the effect material.
  • the polyester multifilament yarn forming the core and the effect yarn forming the sheath are usually swirled with a lead.
  • leads are preferably selected for the multifilament yarn which lie between approximately 1% and approximately 7%.
  • the lead values for the fancy yarn are about 15% and about 45%.
  • a further embodiment of the method according to the invention provides that the core material is wetted with water or an aqueous dispersion before the turbulence.
  • the water or the aqueous dispersion has the effect that the friction between the individual filaments is reduced.
  • the addition of water intensifies the turbulence, which is particularly noticeable when using an aqueous dispersion.
  • aqueous dispersions can be used that have granular particles whose specific weight is greater than 1 g / cm3.
  • the concentration of the granular particles in such a dispersion is between about 5 g / l and about 150 g / l, preferably between about 30 g / l and about 60 g / l.
  • the diameters of the granular particles vary between approximately 4 »m and approximately 400» m, in particular between approximately 20 »m and approximately 100» m.
  • the Mohs hardness of the grain particles is between 1 and 6 1/2, preferably between 3 and 5.
  • talc, diatomaceous earth, aluminum oxide, titanium dioxide and / or barium sulfate can be used as grain-like particles, it also being possible to use a instead of the dispersion Use suspension in the concentration and composition mentioned above.
  • a multifilament yarn is used as the fancy yarn in the method according to the invention, which has about half of the elementary threads of the core yarn.
  • a typical core material has between about 40 and about 500 filaments, preferably between about 50 and about 150.
  • the titer of the fancy yarn is usually about 15% to about 40% of the titer of the core yarn.
  • a dyeing behavior which is particularly uniform with regard to the color tone and the depth of color can be achieved in a further embodiment of the method according to the invention by also spinning the fancy yarn around an unheated pin with a diameter of less than 10 mm at an angle between 270 ° and 360 ° before the swirling , preferably 360 °, and then the fancy yarn immediately after the deflection to a temperature between 100 ° C and 250 ° C, in particular to a temperature between 180 ° C and 240 ° C, for 0.01 s to 10 s, especially for 0.05 s to 1 s, heated.
  • the fancy yarn is adapted in its treatment to the treatment of the core yarn before the intermingling.
  • another embodiment of the method according to the invention provides that after interlacing, the yarns are rotated between about 100 turns / m and about 400 turns / m, preferably between about 150 Turns / m and about 300 turns / m.
  • the yarn produced by the method according to the invention can also be provided with significantly fewer twists, for example a protective twist between approximately 2 twists / m and approximately 20 twists / m.
  • the yarn produced according to the invention is preferably wound up without tension or with lead, it can shrink during a subsequent hydrothermal treatment, for example during dyeing.
  • a subsequent hydrothermal treatment for example during dyeing.
  • the degree of reduction essentially depends on whether, during the previous heating of the effect material and the subsequent cooling, tensions were frozen which cause the fiber material to shrink during the hydrothermal treatment.
  • a relatively low-volume yarn is to be produced in the process according to the invention, which is desirable, for example, when using such a yarn as a sewing thread, then the fancy yarn must be heated and then cooled under tension.
  • such a sewing thread still has a certain volume, so that air is enclosed within the thread, which is pressed out during the sewing process, in particular when the thread is deflected on the thread guide members or the needle. This in turn causes cooling of the deflecting members or the needle, so that the frequency of thread breakage is significantly reduced compared to a yarn in which the loops are drawn together like knots.
  • Another embodiment of the method according to the invention provides that the intermingled yarns are subjected to a tension treatment before they are wound up.
  • the self-crossing loops or loops formed during swirling are reduced, the diameter of the loops or loops being reduced by approximately 20% to approximately 95% depending on the tension applied.
  • This reduction in the diameter of the loops and loops has an influence on the cohesion of the yarn composite and on the volume and properties of a yarn produced in this way.
  • the volume of the yarn decreases as the diameter of the loops increases.
  • the yarn composite is improved, so that such a yarn can be processed without difficulty even without additional twisting or twisting, for example as a warp in the weaving mill, during knitting or in particular as a sewing thread.
  • a yarn whose loops and loops have been reduced by applying a tension has excellent properties when used as a sewing yarn. It was thus found that a sewing thread whose loop or loop diameter is reduced to about 80% -95% by the tension treatment described above compared to a sewing thread made from the same starting materials, the loops of which were drawn together to form knots, showed significantly fewer thread breaks during sewing tests. This is attributed, on the one hand, to the fact that a yarn whose loops or loops were not knotted together includes a substantially larger volume of air than a yarn whose loops and loops were knotted together.
  • the yarn produced according to the invention has a considerably higher strength compared to a conventionally treated yarn, so that the reduced frequency of thread breakage during sewing tests can be explained in the yarn produced according to the invention. It was also possible to determine by comparative dyeing tests that, using the same starting materials in a conventionally produced sewing thread, the core material colored differently from the effect material both in terms of color depth and color tone, while this is not the case with the sewing thread produced according to the invention.
  • the polyester yarn is fed to the tension treatment at a rate which is between 0.1% and 5%, in particular between 0.1% and 2.5%, less than the rate at which the Yarn is withdrawn from the tension treatment.
  • the speed differences mentioned above depend on the one hand on the desired reduction in diameter and on the other hand on the respective starting material and the conditions of the stretching (degree of stretching, temperature, residence time and tension during cooling).
  • Another embodiment of the method according to the invention provides that, in addition to the tension treatment or instead of the tension treatment, a thermal treatment is carried out before the entangled polyester yarns are wound up, the temperature of the thermal treatment being between about 100 ° C. and about 250 ° C., in particular between about 180 ° C and about 230 ° C, varies.
  • the thermal treatment like the tension treatment, results in a reduction in the diameter of the intersecting loops and loops, which includes the advantages already set out above.
  • frozen tensions are released in the yarn, so that a yarn treated in this way has thermal shrinkage values or cooking shrinkage values which are between about 2% and about 4%, based on the initial length.
  • the thermal treatment which is carried out with dwell times between about 0.01 s to about 10 s, in particular between 0.05 s and 1 s, further adjusts the coloring behavior of the core material to the coloring behavior of the effect material. This has the effect that, in the case of a yarn of this type, even when dyed with large molecular dyes which mark the structural differences, there is no different dyeing behavior of core and fancy yarn.
  • the intermingled polyester yarns are preferably fed to the thermal treatment at a rate which is equal to or higher than the rate at which the yarns are withdrawn from the thermal treatment.
  • feed speeds are used which are 0.1% to 10%, preferably 2% to 4%, higher than the take-off speeds. This ensures that the intermingled polyester yarns can shrink freely during the thermal treatment, so that they are not frozen Stresses that can later trigger an undesirable shrinkage.
  • a sewing thread is to be produced using the method described above, it is advisable to use a pre-oriented polyester multifilament thread (POY thread) as the starting material for the core component.
  • POY thread pre-oriented polyester multifilament thread
  • the core yarn is deflected around an unheated pin by an angle between approximately 270 ° and 360 °, preferably approximately 360 °.
  • the pin has a diameter smaller than 10 mm.
  • the core yarn is then preferably heated to a temperature between about 180 ° and about 250 ° by contact heating using a hot plate.
  • the drawing of the core yarn is effected between a first delivery unit, which unwinds the core yarn from a bobbin, and a second delivery unit, which is arranged behind the heating plate.
  • the degree of stretching is preferably between 1: 1.7 and 1: 2.7, in particular between 1: 2.0 and 1: 2.4, i.e. as the lower limit between about 5% and about 50% above the draw ratio recommended by the manufacturer and as the upper limit between about 5% and about 25% below a value at which the yarn breaks.
  • the core yarn is shrunk to a temperature of about 50 ° C. and then swirled with a lead of between 1% and 7% with a second yarn which forms the fancy yarn.
  • the fancy yarn is conventionally pre-drawn over a heated pin or preferably treated as described above for the core yarn, only the fancy yarn having an advance between 15% and 45% of the interlacing.
  • the core-sheath yarn which has the self-crossing loops or loops, is subjected to a tension treatment.
  • the intermingled yarn is fed at a tensioning rate which is between about 2% and about 5% less than the rate at which the yarn is withdrawn from the tensioning treatment.
  • a thermal treatment at a temperature between about 180 ° C. and 240 ° C. for about 0.05 s and about 2 s.
  • the rate of feed to the thermal treatment is about 2% to about 5% higher than the rate of withdrawal from the thermal treatment.
  • the yarn is then cooled to a temperature between about 60 ° C and about 40 ° C with constant length.
  • the polyester yarn is then wound up with low tension and, if necessary, provided with a turn between 100 turns / m and 600 turns / m before and / or after the take-up.
  • the sewing thread thus produced is dyed according to the usual methods and then finished.
  • the hydrothermal treatment during dyeing may result in a further reduction in the diameter of the loops.
  • the diameter of the crossing loops and loops is due to the tension treatment, the thermal Treatment, the cooling after the thermal treatment and possibly by the hydrothermal treatment to a value between about 20% and about 95% of their original diameter.
  • the proportion of loops or loops in the finished yarn that have been knotted together ie below 15%, preferably below 5%, based on the total number the loops and loops should be.
  • a core yarn 1 which is a pre-oriented polyester multifilament yarn (POY yarn) with a single filament titer of 10.23 dtex
  • a second yarn (fancy yarn) 2 which is also a pre-oriented polyester multifilament yarn (POY yarn) with a single filament titer of 3.46 dtex, get from a supply in a slip gate to a nozzle 3 in separate ways.
  • the core yarn first passes through a drawing zone with a feed mechanism 4, an unheated drawing pin 5, which is wrapped by the core yarn 1 at an angle of 360 °, a heating plate 6 and a godet 7 and then passes through a device 8 for wetting with water Nozzle 3, where it is swirled with the fancy yarn 2.
  • the fancy yarn 2 has previously passed through a delivery unit 9, a drawing device 10 and a further delivery unit 11.
  • the stretching device 10 in the embodiment shown consists of a conventionally designed heated pin (hot pin) with a diameter of 60 mm, while the stretch pin 5 has a diameter of 8 mm. As described above, the fancy yarn 2 also wraps around the drawing pin 10.
  • the yarn 12 formed in the nozzle which has projecting, self-intersecting loops and loops, passes through a tension treatment provided between the delivery mechanisms 17 and 18 and a heat treatment zone.
  • the heat treatment zone has a delivery unit 13, a heating device 14 and a delivery unit 15.
  • the heating device 14 is designed as a heating tube and has the usual regulating and control devices, so that a desired temperature can be set in the range between approximately 100 ° C. and approximately 250 ° C.
  • the tension treatment and in the heating device 14 reduce the diameters of the loops and loops by approximately 20 to approximately 95%, the reduction in diameter depending on the one hand on the material being processed and on the other hand on the speed of the delivery mechanisms 13 and 15 relative to one another, as is the case here was previously described starting out.
  • the finished yarn is then fed to a winder 16 in the usual manner.
  • the fancy yarn was drawn according to the manufacturer at a draw ratio of 1: 1.73 and a temperature of the draw pin of 140 ° C.
  • the core yarn was placed with a lead of 4% and the fancy yarn with a lead of 20% of the nozzle.
  • the temperature of the heater 14 was set to a value of 230 ° C.
  • the individual speeds of the delivery plants were selected so that the speed at the rewinder was 16,500 m / min.
  • the specific strength of the core yarn 1 in front of the nozzle was measured. It was 60 cN / tex.
  • the device described above was converted in such a way that the stretch pin 5 was replaced by a conventional, heated stretch pin which was heated to a temperature of 140.degree. At the same time, the heating plate 6 was removed. The process described at the outset was carried out on such a converted system with the same base yarn and the same fancy yarn.
  • the core yarn was drawn according to the manufacturer's instructions at a draw ratio of 1: 1.86.
  • Core yarn was removed in front of the nozzle 3 and the strength of this core yarn was measured.
  • the core yarn drawn at 1: 1.86 had a specific strength of 40 cN / tex.
  • Sewing thread No. 1 was used to denote the thread whose core thread has a specific strength of 60 cN / tex.
  • Sewing thread No. 2 was the thread whose core thread had a specific strength of 40 cN / tex and sewing thread No. 3 was the thread whose core thread had a specific strength of 41 cN / tex.
  • a sewing thread No. 4 the core thread of which had a specific strength of 40 cN / tex and which was produced from the same starting materials and which had the same titer as the sewing threads 1 to 3, was used as a reference thread in the subsequent industrial sewing tests.
  • the sewing thread 4 did not have loops or loops reduced in size, but rather loops and loops drawn together in knots.
  • sewing thread 1 had the lowest frequency of thread breakage when sewing forwards, backwards and multidirectionally with numbers of stitches between 4000 and 6000 stitches per minute.
  • sewing thread No. 2 had a thread breakage frequency that was within the tolerance for error with sewing thread No. 3.
  • Sewing threads 1 to 4 were then wound up on the dyeing bobbin and dyed in a bath with several dye combinations. Since all four sewing threads were made of polyester, the dyeings were carried out at 130 ° C. The following temperature profile was chosen for the coloring: Starting temperature: 70 ° C Heating rate to 130 ° C with 2 ° C / minute Residence time at 130 ° C: 45 minutes Cool to 80 ° C at 2 ° C / minute After dyeing, the material was rinsed twice cold and hot and then dried conventionally. The dye liquors were adjusted to pH 4.5 by adding acetic acid and sodium acetate. Furthermore, all liquors had 0.5 g / l of a dispersing / leveling agent (Lewegal HTN, Bayer). The following dye combinations were used:
  • the material that was treated with the unheated stretching pin in connection with the subsequent heating plate has significantly higher specific strengths with significantly reduced thermal shrinkage.
  • the specific strengths that occur when the degree of stretching is greater than 1: 2 cannot be achieved with the material that has only been processed using the heated stretching pin, since the degree of stretching is already 1: 1.9 to 1: 1, 95 capillary cracks occurred. Therefore, the strength value of 48 cN / tex, with a degree of stretching of 1: 2, is the first material was obtained, not suitable for production. A maximum specific strength of 43.05 cN / tex can thus be achieved for the starting material 2 in the process in which stretching was carried out using a heated pen.
  • the values in the second table are different.
  • the material stretched over the unheated pin in connection with the heating plate has a maximum specific strength of 67 cN / tex, since the first capillary breaks were noticeable at a stretching ratio of 1: 2.325.
  • a larger batch of several tons of yarn with a draw ratio of 1: 2.3 was experimentally produced under production conditions. No capillary breaks were found here.
  • the degree of stretching specified by the manufacturer for the starting material 2 is 1: 1.8 to 1: 1.85.
  • the starting material 2 was a commercially available POY polyester yarn.
  • Another starting material 3 was stretched differently, as described above for starting material 2.
  • the starting material 3 which was also a polyester multifilament yarn, had an initial titer of 410 dtex and an elementary thread count of 40.
  • the starting material 3 was only drawn with a degree of stretching of 1: 1.85 over the pin heated to 140 ° C., which had a diameter of 60 mm.
  • the degree of stretching of 1: 1.85 corresponded to the manufacturer's recommendation for this material.
  • the yarn thus treated had the following specific strength and thermal shrinkage. Table 3 Degree of stretching spec. Strength (cN / tex) Thermal shrink (180 ° C) 1: 1.850 34.8 10th
  • the starting material 3 was stretched over an unheated pin with a diameter of 8 mm and subsequent heating by means of a heating plate of 240 °, varying the degree of stretching.
  • the following specific strengths and thermal shrinkage values could be achieved: Table 4 Degree of stretching spec.
  • the first capillary breaks only occurred when the degree of stretching was greater than 1: 2.475.
  • a larger batch of the starting material 3 was already produced under production conditions with a degree of stretching of 1: 2,300, without any capillary breaks occurring.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Mechanical Engineering (AREA)
  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)
  • Treatment Of Fiber Materials (AREA)
  • Artificial Filaments (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)

Claims (39)

  1. Procédé de fabrication d'un fil, dans lequel on conduit un fil synthétique à plusieurs filaments à une première vitesse vers une tige, dans lequel le fil à plusieurs filaments s'enroule autour de la tige sur un angle situé entre environ 270° et 360°, et de préférence sur 360°, dans lequel le fil à plusieurs filaments se réchauffe immédiatement après l'enroulement et s'étire à une seconde vitesse qui est supérieure à la première vitesse, et dans lequel le fil à plusieurs filaments étiré est bobiné, caractérise en ce qu'on utilise comme fil à plusieurs filaments un fil en polyester à plusieurs filaments (fil POY en polyester), en ce que l'on étire le fil préorienté en polyester à plusieurs filaments (fil POY en polyester) jusqu'à un degré d'étirage de 1:2,7, en ce qu'on utilise comme tige une tige non chauffée d'un diamètre inférieur à 10 mm, et en ce qu'après enroulement on réchauffe le fil à plusieurs filaments à une température située entre 100°C et 250°C pendant 0,01 s à 10 s.
  2. Procédé selon la revendication 1, caractérisé en ce qu'on réchauffe le fil à plusieurs filaments pendant 0,05 s à 1 s à une température située entre 180°C et 240°C.
  3. Procédé selon la revendication 1 ou 2, caractérisé en ce qu'on réchauffe le fil à plusieurs filaments par mise en contact avec un dispositif de chauffage, et en particulier avec une plaque chauffante ou un tambour chauffant.
  4. Procédé selon la revendication 3, caractérisé en ce qu'on chauffe le dispositif de chauffage à une température située entre 180°C et 240°C.
  5. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce qu'après son réchauffage on refroidit le fil à plusieurs filaments sur une longueur prédéterminée, qui est suffisamment grande pour que le matériau puisse se rétracter librement.
  6. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que le fil à plusieurs filaments s'étire à une seconde vitesse qui est supérieure à la première vitesse, d'un facteur de 1,3 à 2,7, et en particulier d'un facteur de 1,7 à 2,4.
  7. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que l'on utilise un fil en polyester pré-étiré à plusieurs filaments (fil POY en polyester), dont la viscosité en solution est de 10 - 20% supérieure à celle d'un fil POY en polyester normal.
  8. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce qu'avant le bobinage, le fil à plusieurs filaments est tordu à une torsion située entre 5 et 400 torsions/m, et de préférence entre 8 et 30 torsions/m.
  9. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que l'on utilise un fil à plusieurs filaments d'un nombre de fils élémentaires situé entre environ 20 et environ 500, et de préférence entre environ 30 et environ 150.
  10. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que l'on utilise un fil à plusieurs filaments d'un titre situé entre environ 100 dtex et environ 1000 dtex, et de préférence entre environ 100 dtex et 600 dtex.
  11. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que, sans l'avoir préalablement bobiné, on torsade le fil à plusieurs filaments avec un second fil (fil d'effet) dans un courant de fluide, avec formation d'un fil à âme et enveloppe pourvu de boucles et de passants, tandis qu'on effectue le torsadage de telle manière que le fil à plusieurs filaments forme l'âme située à l'intérieur et que le second fil forme l'enveloppe entourant l'âme, et que l'on bobine ensuite le fil à âme et enveloppe.
  12. Procédé selon la revendication 11, caractérisé en ce que l'on conduit vers le torsadage le fil à plusieurs filaments avec une avance située entre 1% et 7% et le second fil avec une avance située entre 15% et 45%.
  13. Procédé selon la revendication 11 ou 12, caractérisé en ce qu'avant le torsadage on asperge le fil à plusieurs filaments d'eau ou d'une dispersion aqueuse.
  14. Procédé selon l'une quelconque des revendications 11 à 13, caractérisé en ce que l'on utilise comme second fil, un fil en polyester pré-étiré à plusieurs filaments (fil POY en polyester).
  15. Procédé selon la revendication 14, caractérisé en ce que l'on utilise comme second fil, un fil à plusieurs filaments dont le titre vaut environ 15% à environ 40%, et le nombre de fils élémentaires environ 50% des valeurs respectives du titre et du nombre de fils élémentaires du fil d'âme.
  16. Procédé selon l'une quelconque des revendications 11 à 15, caractérisé en ce qu'avant le bobinage, on fait s'enrouler le second fil autour d'une tige non chauffée d'un diamètre inférieur à 10 mm, sur un angle situé entre environ 270° et 360°, et de préférence de 360°, et qu'immédiatement après cet enroulement, on réchauffe le second fil à une température située entre 100°C et 250°C, et en particulier à une température située entre 180°C et 240°C, pendant 0,01 s à 10 s, et en particulier pendant 0,05 s à 1 s.
  17. Procédé selon la revendication 16, caractérisé en ce qu'on étire le second fil à partir de la tige, à une vitesse supérieure d'un facteur de 1,3 à 2,7, et en particulier d'un facteur de 1,7 à 2,4 à la vitesse à laquelle on amène le second fil à la tige.
  18. Procédé selon l'une quelconque des revendications 11 à 17, caractérisé en ce que l'on torsade entre un et quatre premiers fils à plusieurs filaments avec un à quatre seconds fils.
  19. Procédé selon l'une quelconque des revendications 11 à 18, caractérisé en ce qu'après torsadage on pourvoit les fils d'une torsion située entre 100 torsions/m et 500 torsions/m.
  20. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce qu'avant bobinage on teint et/ou on avive le ou les fils.
  21. Procédé selon l'une quelconque des revendications 11 à 20, caractérisé en ce que les fils torsadés ensemble sont soumis avant bobinage à un traitement de tension tel que les boucles et passants croisés formés au cours du torsadage sont raccourcis dans une mesure telle que leur diamètre est réduit d'environ 20% à environ 95% de leur diamètre initial.
  22. Procédé selon la revendication 21, caractérisé en ce que l'on conduit les fils torsadés ensemble vers le traitement de tension à une vitesse qui est d'entre 0,1% et 5%, et en particulier d'entre 0,1% et 2,5% inférieure à la vitesse à laquelle les fils sont extraits du traitement de tension.
  23. Procédé selon l'une quelconque des revendications 11 à 22, caractérisé en ce qu'avant le bobinage, on soumet les fils torsadés ensemble à un traitement thermique à une température située entre environ 100°C et environ 250°C, et en particulier entre environ 180°C et environ 240°C.
  24. Procédé selon la revendication 23, caractérisé en ce que l'on effectue le traitement thermique dans un flux d'air chaud.
  25. Procédé selon l'une quelconque des revendications 23 ou 24, caractérisé en ce que l'on effectue le traitement thermique entre 0,01 s et 10 s, et en particulier entre 0,05 s et 1 s.
  26. Procédé selon l'une quelconque des revendications 23 à 25, caractérisé en ce que l'on conduit les fils torsadés vers le traitement thermique à une vitesse égale ou supérieure à la vitesse à laquelle on extrait les fils du traitement thermique.
  27. Procédé selon la revendication 26, caractérisé en ce que l'on recourt à une vitesse d'amenée qui est de 0,1% à 10%, et de préférence de 2% à 4% supérieure à la vitesse d'extraction.
  28. Procédé selon l'une quelconque des revendications 23 à 27, caractérisé en ce que l'on munit les fils torsadés d'une torsion qui se situe entre environ 10 torsions et environ 800 torsions/m, et de préférence entre environ 100 torsions et environ 600 torsions.
  29. Procédé selon l'une quelconque des revendications 11 à 28, caractérisé en ce que l'on bobine les fils torsadés ensemble, avec une avance situé entre 0% et 10%, et qu'on les teint et/ou avive ensuite.
  30. Fil, et en particulier fil à coudre, fabriqué selon l'une quelconque des revendications 21 à 29, qui est constitué de plusieurs filaments en polyester et qui présente une structure à âme et enveloppe comportant au moins un matériau d'âme multibrins situé à l'intérieur et au moins un fil d'effet tourbillonné avec celui-ci, tandis que les boucles et passants qui se croisent sur eux-mêmes et sont formés lors du tourbillonnage présentent un diamètre réduit par rapport à leur diamètre initial, caractérisé en ce que moins de 15%, de préférence moins de 5% des boucles et passants se croisant sur eux-mêmes et formés lors du tourbillonnage sont resserrés en forme de noeuds, et en ce qu'au moins 85%, de préférence 95% des boucles et passants de croisant sur eux-mêmes formés lors du tourbillonnage présentent un diamètre qui vaut sensiblement 20% à sensiblement 95% du diamètre initial.
  31. Fil selon la revendication 30, caractérisé en ce que le fil est constitué de jusqu'à quatre matériaux multibrins d'âme en polyester et jusqu'à quatre fils d'effet multibrins en polyester.
  32. Fil selon la revendication 30 ou 31, caractérisé en ce qu'il est retordu et qu'il présente entre 100 torsions/m et 600 torsions/m.
  33. Fil selon l'une quelconque des revendications 30 à 32, caractérisé en ce que le matériau de l'âme présente un nombre de fils élémentaires situé entre 20 et 500, et de préférence entre 30 et 150.
  34. Fil selon l'une quelconque des revendications 30 à 33, caractérisé en ce que le fil d'effet présente un nombre de fils élémentaires qui correspond à environ la moitié du nombre de fils élémentaires du matériau de l'âme.
  35. Fil selon l'une quelconque des revendications 30 à 34, caractérisé en ce que le matériau de l'âme présente un titre situé entre 100 dtex et 1000 dtex, et de préférence entre 100 dtex et 600 dtex.
  36. Fil selon l'une quelconque des revendications 30 à 35, caractérisé en ce que le titre du fil d'effet correspond à entre environ 15% et environ 40% du titre du fil d'âme.
  37. Fil selon l'une quelconque des revendications 30 à 36, caractérisé en ce que le fil présente un rétrécissement thermique à 180°C et un rétrécissement à la cuisson dans l'eau situés entre 2% et 4%.
  38. Fil selon l'une quelconque des revendications 30 à 37, caractérisé en ce qu'avant extension, le matériau de l'âme présente un titre initial de 285 dtex et un nombre de fils élémentaires de 32, qu'il présente après extension un titre situé entre 162,8 dtex et 123,9 dtex et que la résistance spécifique du matériau de l'âme varie entre 41,06 cN/tex et 67,12 cN/tex.
  39. Fil selon l'une quelconque des revendications précédentes 30 à 38, caractérisé en ce que le matériau de l'âme présente comme matériau de départ un titre de 410 dtex et un nombre de fils élémentaires de 40, et en ce qu'après extension le matériau de l'âme possède un titre situé entre 221,6 dtex et 165,6 dtex et une résistance spécifique située entre 38,23 cN/tex et 68,81 cN/tex.
EP88109358A 1987-06-15 1988-06-13 Procédé de fabrication d'un fil, et fil comprenant une structure d'âme Expired - Lifetime EP0295601B2 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3720237 1987-06-15
DE19873720237 DE3720237A1 (de) 1987-06-15 1987-06-15 Verfahren zum herstellen von luftblastexturiertem naehgarn

Publications (4)

Publication Number Publication Date
EP0295601A2 EP0295601A2 (fr) 1988-12-21
EP0295601A3 EP0295601A3 (fr) 1991-04-17
EP0295601B1 EP0295601B1 (fr) 1992-01-15
EP0295601B2 true EP0295601B2 (fr) 1995-07-26

Family

ID=6329871

Family Applications (1)

Application Number Title Priority Date Filing Date
EP88109358A Expired - Lifetime EP0295601B2 (fr) 1987-06-15 1988-06-13 Procédé de fabrication d'un fil, et fil comprenant une structure d'âme

Country Status (10)

Country Link
US (1) US5083419A (fr)
EP (1) EP0295601B2 (fr)
AT (1) ATE71675T1 (fr)
BR (1) BR8802925A (fr)
DE (2) DE3720237A1 (fr)
ES (1) ES2029699T5 (fr)
HK (1) HK54792A (fr)
MX (1) MX172928B (fr)
SG (1) SG41992G (fr)
ZA (1) ZA884233B (fr)

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3816318C1 (fr) * 1988-05-13 1989-11-30 Amann & Soehne Gmbh & Co, 7124 Boennigheim, De
DE3844615A1 (de) * 1988-09-17 1990-03-22 Amann & Soehne Garn, insbesondere naehgarn
DE3831700A1 (de) * 1988-09-17 1990-03-22 Amann & Soehne Verfahren zur herstellung eines garnes, insbesondere eines naehgarnes, sowie ein garn
DE3834139A1 (de) * 1988-10-07 1990-04-19 Hoechst Ag Zweikomponenten-schlingennaehgarn und verfahren zu seiner herstellung
US5054174A (en) * 1988-12-13 1991-10-08 Barmag Ag Method of producing an air textured yarn
DE4004721C2 (de) * 1988-12-13 2002-09-26 Staehle Gmbh H Verfahren zur Herstellung eines lufttexturierten Fadens
EP0415032A3 (en) * 1989-07-10 1991-12-11 Amann & Soehne Gmbh & Co. Sewing thread and process for its manufacture
DE4121638C2 (de) * 1990-08-17 1993-11-04 Amann & Soehne Garn, insbesondere naehgarn, sowie verfahren zur herstellung eines derartigen garnes
DE4215176C3 (de) * 1992-05-08 1996-06-20 Gerd Ebert Nähfaden, hiermit vernähtes Flächengebilde sowie Verfahren zur Herstellung einer spritzwasserdichten Naht
DE4215015A1 (de) * 1992-05-12 1993-11-18 Amann & Soehne Verfahren zum Verstrecken
DE4215212A1 (de) * 1992-05-12 1993-11-18 Amann & Soehne Coregarn sowie Verfahren zur Herstellung eines Coregarnes
DE4215016A1 (de) * 1992-05-12 1993-11-18 Amann & Soehne Hochfestes Nähgarn sowie Verfahren zur Herstellung eines derartigen Nähgarnes
DE59309821D1 (de) * 1992-08-26 1999-11-11 Hoechst Ag Feintitrige Zweikomponenten-Schlingengarne hoher Festigkeit, Verfahren zu deren Herstellung und deren Verwendung als Nähgarne und Stickgarne
DE4424547C2 (de) * 1993-07-15 2001-05-17 Staehle Gmbh H Verfahren zur Herstellung eines Nähfadens und Nähfaden
DE59505342D1 (de) * 1994-01-20 1999-04-22 Hoechst Ag Zweikomponenten-Schlingengarne, Verfahren zu deren Herstellung und deren Verwendung als Nähgarne und Stickgarne
DE4443456A1 (de) * 1994-12-07 1996-07-04 Hoechst Trevira Gmbh & Co Kg Zweikomponenten-Schlingengarne aus Aramidfilamenten, Verfahren zu deren Herstellung und deren Verwendung
US5817417A (en) * 1995-01-25 1998-10-06 Rhone-Poulenc Viscosuisse Sa Method for continuous production of polyester weft yarn for tire cord fabric and weft yarn made by same
US6074751A (en) * 1995-09-13 2000-06-13 Toray Industries, Inc. Composite textured yarn, a process for its production, woven or knitted fabrics made thereof, and an apparatus for producing it
DE19627010C1 (de) * 1996-07-04 1997-12-11 Madeira Garnfabrik Rudolf Schm Verfahren zum Herstellen eines schrumpfarmen Garns
DE19730977A1 (de) * 1997-07-18 1999-01-21 Guetermann Ag Verfahren zur Herstellung lufttexturierter Nähfäden
US20020011018A1 (en) * 2000-07-17 2002-01-31 Healy Francis J. Air-texturized dubbing yarn and method of tying a fishing fly using same
WO2004059051A1 (fr) * 2002-12-17 2004-07-15 E.I. Du Pont De Nemours And Company Procede de commande d'un equipement de traitement du fil
DE10301925A1 (de) * 2003-01-17 2004-07-29 Deutsche Institute für Textil- und Faserforschung Verfahren und Vorrichtung zur Herstellung von Multifilamentgarnen
CN1303266C (zh) * 2003-05-08 2007-03-07 中国石化仪征化纤股份有限公司 缝纫线用高强低伸涤纶长丝的制备方法
DE102005013186A1 (de) * 2005-03-22 2006-09-28 Invista Technologies S.A.R.L. Nähgarn aus Polybutylenterephthalat
WO2012046007A1 (fr) 2010-10-07 2012-04-12 Coats Plc Fil à coudre et sa fabrication
EP2867403A2 (fr) * 2012-07-02 2015-05-06 Casar Drahtseilwerk Saar GmbH Dispositif et procédé de production d'un toron ou d'un câble
WO2016096405A1 (fr) * 2014-12-18 2016-06-23 Oerlikon Textile Gmbh & Co. Kg Système pour texturer un fil synthétique
US11591748B2 (en) 2020-01-14 2023-02-28 Shadow Works, Llc Heat treated multilayer knitted textile of liquid crystal polymer fibers and modified polyacrylonitrile fibers, and process for making same

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2855749A (en) * 1955-01-07 1958-10-14 American Enka Corp Yarn tensioning
US2942325A (en) * 1957-05-14 1960-06-28 Du Pont Process of treating undrawn polyester yarns and filaments
NL254145A (fr) * 1959-07-24
NL271908A (fr) * 1960-11-28
BE625320A (fr) * 1961-11-24
US3694872A (en) * 1965-05-13 1972-10-03 Monsanto Co Apparatus for drawing thermo-plastic filaments in a high temperature gas vortex
US3558767A (en) * 1968-11-19 1971-01-26 Du Pont Controlled polyamide filament stretching process
US3665696A (en) * 1970-03-23 1972-05-30 Celanese Corp Yarn packaging
US3724199A (en) * 1970-04-20 1973-04-03 Monsanto Co Process for making continuous filament heather yarn
FR2116668A5 (fr) * 1970-12-01 1972-07-21 Rhodiaceta
US3762147A (en) * 1971-07-15 1973-10-02 Rieter Ag Maschf Apparatus of relaxing drawn high-polymeric filament threads
US4044089A (en) * 1976-05-13 1977-08-23 E. I. Du Pont De Nemours And Company Process and apparatus for producing thick and thin filaments
GB2016363B (en) * 1978-03-13 1982-05-26 Toray Industries Bundle of fibrous elements method and apparatus for producing thereof
ZA82486B (en) * 1981-02-04 1982-12-29 Coats Ltd J & P Synthetic yarn and yarn-like structures and a method and apparatus for their production
US4523426A (en) * 1981-11-20 1985-06-18 Collins & Aikman Corp. High temperature resistant sewing thread and method of making
US4615167A (en) * 1985-01-04 1986-10-07 Greenberg Neville G Highly entangled thread development
DE3717921A1 (de) * 1987-05-27 1988-12-15 Ackermann Goeggingen Ag Garn, insbesondere naehgarn, sowie verfahren und vorrichtung zu dessen herstellung
DE3831700A1 (de) * 1988-09-17 1990-03-22 Amann & Soehne Verfahren zur herstellung eines garnes, insbesondere eines naehgarnes, sowie ein garn

Also Published As

Publication number Publication date
DE3720237C2 (fr) 1989-06-29
ATE71675T1 (de) 1992-02-15
BR8802925A (pt) 1989-01-03
EP0295601A3 (fr) 1991-04-17
US5083419A (en) 1992-01-28
DE3867719D1 (de) 1992-02-27
ES2029699T3 (es) 1992-09-01
ZA884233B (en) 1989-02-22
EP0295601A2 (fr) 1988-12-21
DE3720237A1 (de) 1989-01-05
HK54792A (en) 1992-07-30
SG41992G (en) 1992-10-02
ES2029699T5 (es) 1995-12-01
MX172928B (es) 1994-01-24
EP0295601B1 (fr) 1992-01-15

Similar Documents

Publication Publication Date Title
EP0295601B2 (fr) Procédé de fabrication d'un fil, et fil comprenant une structure d'âme
DE2307816A1 (de) Texturiertes, luftstrahlverflochtenes garn sowie verfahren und vorrichtung zu seiner herstellung
DE2534234A1 (de) Herstellen texturierten polyestergarns
DE2166906A1 (de) Falschdrallgekraeuseltes polyestergarn
EP0367938B1 (fr) Procédé de fabrication d'un fil, en particulier un fil à condre, et fil ainsi obtenu
DE19627010C1 (de) Verfahren zum Herstellen eines schrumpfarmen Garns
EP1103641A1 (fr) Procédé pour la fausse torsion d'un fil synthétique pour produire un fil frisé
EP0086451A2 (fr) Fil texturé par fausse-torsion et procédé pour sa fabrication
EP0846197B1 (fr) Procede de fabrication d'un fil continu en polyamide 66 a haute resistance et a retrait eleve
EP0569891B1 (fr) Fil et procédé pour la production d'un fil
DE2539272A1 (de) Texturierter hochbausch-hybridfaden und verfahren zu seiner herstellung
EP1101848A1 (fr) Procédé de texturation par fausse torsion pour la production d'un fil frisé
EP0569890B1 (fr) Fil à coudre à haute tenacité et procédé pour la production d'un tel fil à coudre
EP0569889B1 (fr) Procédé de l'étirage
EP0099047B1 (fr) Procédé pour l'étirage et la texturation de fils en continu
DE2163226A1 (de) Verfahren zur Herstellung eines bauschigen Garns
DE2318887B2 (de) Verfahren zur herstellung von polyesterfaeden durch schrumpfbehandlung heissverstreckter faeden in zwei stufen
EP1258547A1 (fr) Fils texturés par jet d'air et méthode de fabrication
DE3813898A1 (de) Verfahren zum herstellen von luftblastexturiertem naehgarn
DE4004721C2 (de) Verfahren zur Herstellung eines lufttexturierten Fadens
EP0329014A2 (fr) Procédé de fabrication d'un fil volumineux, et dispositif pour l'exécution du procédé
DE3438743A1 (de) Verfahren zum herstellen eines volumenarmen effektgarns
EP0345898B1 (fr) Procédé de fabrication d'un fil de nylon à haute tenacité, fil produit par ce procédé, et son utilisation
EP0407918A1 (fr) Procédé de production d'un fil à coudre
AT274624B (de) Verfahren und Vorrichtung zur Herstellung eines drehungslosen Garnes

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH DE ES FR GB GR IT LI LU NL SE

17P Request for examination filed

Effective date: 19901211

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH DE ES FR GB GR IT LI LU NL SE

17Q First examination report despatched

Effective date: 19910703

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE ES FR GB GR IT LI LU NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19920115

Ref country code: SE

Effective date: 19920115

REF Corresponds to:

Ref document number: 71675

Country of ref document: AT

Date of ref document: 19920215

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3867719

Country of ref document: DE

Date of ref document: 19920227

ITF It: translation for a ep patent filed

Owner name: BUGNION S.P.A.

ET Fr: translation filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

26 Opposition filed

Opponent name: RHONE-POULENC VISCOSUISSE SA PATENTABTEILUNG

Effective date: 19920928

NLR1 Nl: opposition has been filed with the epo

Opponent name: RHONE-POULENC VISCOUSUISSE SA

EPTA Lu: last paid annual fee
PUAH Patent maintained in amended form

Free format text: ORIGINAL CODE: 0009272

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT MAINTAINED AS AMENDED

27A Patent maintained in amended form

Effective date: 19950726

AK Designated contracting states

Kind code of ref document: B2

Designated state(s): AT BE CH DE ES FR GB GR IT LI LU NL SE

REG Reference to a national code

Ref country code: CH

Ref legal event code: AEN

GBTA Gb: translation of amended ep patent filed (gb section 77(6)(b)/1977)

Effective date: 19950726

ITF It: translation for a ep patent filed

Owner name: BUGNION S.P.A.

NLR2 Nl: decision of opposition
NLR3 Nl: receipt of modified translations in the netherlands language after an opposition procedure
ET3 Fr: translation filed ** decision concerning opposition
REG Reference to a national code

Ref country code: ES

Ref legal event code: DC2A

Kind code of ref document: T5

Effective date: 19951201

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20070603

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20070614

Year of fee payment: 20

Ref country code: CH

Payment date: 20070614

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 20070618

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20070630

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20070717

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20070613

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20070625

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20070822

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20070608

Year of fee payment: 20

BE20 Be: patent expired

Owner name: *AMANN & SOHNE G.M.B.H. & CO.

Effective date: 20080613

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20080612

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

NLV7 Nl: ceased due to reaching the maximum lifetime of a patent

Effective date: 20080613

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20080614

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20080613

Ref country code: ES

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20080614

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20080612