EP0283773B1 - Mikro-Sekundärelektronenvervielfacher und Verfahren zu seiner Herstellung - Google Patents

Mikro-Sekundärelektronenvervielfacher und Verfahren zu seiner Herstellung Download PDF

Info

Publication number
EP0283773B1
EP0283773B1 EP88103116A EP88103116A EP0283773B1 EP 0283773 B1 EP0283773 B1 EP 0283773B1 EP 88103116 A EP88103116 A EP 88103116A EP 88103116 A EP88103116 A EP 88103116A EP 0283773 B1 EP0283773 B1 EP 0283773B1
Authority
EP
European Patent Office
Prior art keywords
dynodes
secondary electron
electron multiplier
array
multiple arrangement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP88103116A
Other languages
English (en)
French (fr)
Other versions
EP0283773A3 (en
EP0283773A2 (de
Inventor
Wolfgang Dr. Ehrfeld
Herbert Dr. Moser
Dietrich Dr. Münchmeyer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Forschungszentrum Karlsruhe GmbH
Original Assignee
Kernforschungszentrum Karlsruhe GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kernforschungszentrum Karlsruhe GmbH filed Critical Kernforschungszentrum Karlsruhe GmbH
Priority to AT88103116T priority Critical patent/ATE76537T1/de
Publication of EP0283773A2 publication Critical patent/EP0283773A2/de
Publication of EP0283773A3 publication Critical patent/EP0283773A3/de
Application granted granted Critical
Publication of EP0283773B1 publication Critical patent/EP0283773B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J43/00Secondary-emission tubes; Electron-multiplier tubes
    • H01J43/04Electron multipliers
    • H01J43/06Electrode arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J9/00Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
    • H01J9/02Manufacture of electrodes or electrode systems
    • H01J9/12Manufacture of electrodes or electrode systems of photo-emissive cathodes; of secondary-emission electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2201/00Electrodes common to discharge tubes
    • H01J2201/32Secondary emission electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2201/00Electrodes common to discharge tubes
    • H01J2201/34Photoemissive electrodes
    • H01J2201/342Cathodes
    • H01J2201/3421Composition of the emitting surface
    • H01J2201/3425Metals, metal alloys

Definitions

  • the invention relates to a secondary electron multiplier according to the preamble of claim 1 and a method for producing such a secondary electron multiplier.
  • Such a secondary electron multiplier is known from the company publication SC-5 by Hamamatsu (catalog 1983) under the type designation R 1635. With eight steps, it has a diameter of 10 mm and a length of approx. 55 mm. These dimensions do not allow use in miniaturized measuring systems.
  • Micro-channel plates (Nuclear Instruments and Methods 162, 587-601 (1979)) are also known. Although they meet the requirement of small space requirements, they have a considerable dead time after a signal pulse, which limits their applicability to very weak radiation and particle signals.
  • Layered channel plates are also known (Advances in Electronics and Electron Physics 33A, 117-123 (1972)). Although they avoid the disadvantage of a long dead time, they have considerable electron losses from stage to stage, which in turn makes them unsuitable for applications with extremely small radiation or particle signals. Layered duct plates are also known (DE 24 14 658), in which such losses occur by forming the duct walls by means of etching should be reduced in size, but this type of design has narrow limits. Finally, arrays of secondary electron multipliers are known from high energy physics (F. Binon et al, Nuclear Instruments and Methods, A248 (1986), 86-102). Due to their large space requirement, they are completely unsuitable for the construction of miniaturized measuring systems.
  • the object of the invention is to create a micro-secondary electron multiplier and arrays thereof compared to the prior art shown, which have an extremely small space requirement, a high time resolution, a high sensitivity and a high flexibility in the shaping.
  • micro-secondary electron multiplier and multiple arrangements (arrays) thereof as sensors in miniaturized measuring systems for radiation or particles are advantageously characterized by a small space requirement and high spatial and time resolution.
  • the use of deep X-ray lithography and micro-electroplating enables the construction of an extremely small system of discrete dynodes, the shape of which is selected in such a way that the electrons are focused from one dynode to the next, thus minimizing electron losses.
  • the sensitivity is advantageously influenced.
  • the voltage supply of the dynodes via discrete conductor tracks allows the external supply to be adapted to the signal amplitude, so that the dynamic range of the micro-secondary electron multiplier becomes very large.
  • the greatly reduced length of the secondary electron multiplier shortens the electron transit time from cathode to anode, which has a favorable effect on the rise time of pulses and thus on the achievable time resolution.
  • the negative mold is then galvanically filled with a metal using the base plate as an electrode, and the rest Resist material is removed with a solvent.
  • a positive of the bar structure to be produced using the LIGA technique is molded as a reusable tool with a plastic, whereupon the resulting negative shape is filled up by galvanic deposition of metal and the remaining plastic is removed.
  • extremely precise and fine structures can be produced with lateral dimensions in the ⁇ m range with a freely selectable height of up to approx. 2mm. At slightly lower heights, minimal lateral dimensions in the submicron range can also be achieved.
  • X-ray radiation from an electron synchrotron or storage ring is particularly suitable as a radiation source for this purpose.
  • the method described in claim 13 also makes it possible to build a large number of micro-secondary electron multipliers next to one another on the same base plate as a micro-secondary electron multiplier array. As a result, an extremely high packing density is achieved, which has a favorable effect on the spatial resolution that can be achieved, an aspect that is particularly important for tomography and for detectors in high-energy physics.
  • the position of the signal inputs can be adapted to predetermined contours, for example to the Rowland circle, to an arched image area or to a cylinder jacket as in the scattered light radiometer described below as an exemplary embodiment.
  • one of the substrate plates is provided with a translucent wall, which also carries photocathodes, so that the micro-secondary electron multiplier (array) can be made into a micro-photomultiplier (array).
  • the structure of a micro-secondary electron multiplier is shown schematically in Figure 1.
  • the dynodes 1, the conductor tracks 2 attached to their voltage supply and the anode 3 can be seen. These structures are applied to the base plate 4.
  • a second plate shown in dashed lines, carries a glass wall 6 on which the photocathode 7 is applied at a suitable point. Additional electrodes 8, 9 serve to focus the photoelectrons triggered on the photocathode onto the first dynode 1.
  • the plates are connected to one another by glass soldering and, if necessary, form a vacuum-tight housing for the secondary electron multiplier.
  • the multiplication requires electron energies of the order of magnitude 100 eV.
  • FIG. 2a schematically shows a multiple arrangement of micro-secondary electron multipliers.
  • numerous micro-secondary electron multipliers are arranged side by side and the routing of the conductor tracks 2 has been adapted accordingly.
  • 2b schematically shows a multiple arrangement with common dynodes 1.
  • 3a to 3h show an example of the production of a micro-secondary electron multiplier or a multiple arrangement (arrays), X-ray depth lithography with synchrotron radiation and electroforming being used as the most important process steps.
  • a detailed description of these processes can be found in EW Becker, W. Ehrfeld, P. Hagmann, A. Maner and D Münchmeyer "Fabrication of Microstructures with high aspect ratio and great structural heights by synchrotron radiation lithography, galvanoforming, and plastic molding (LIGA-process ) ", Microelectronic Engineering 4 (1986) 35-36.
  • 3a shows a base plate 1 made of aluminum oxide ceramic. The thickness of the base plate 1 is about 1 mm, the area is about 10 cm x 10 cm.
  • the base plate 1 is spun on with a thin layer 2 of photoresist (e.g. AZ 1350 Kalle, Wiesbaden) coated and pretreated according to the manufacturer's instructions (Fig. 3b).
  • photoresist e.g. AZ 1350 Kalle, Wiesbaden
  • the photoresist is irradiated and developed lithographically through a mask, so that a photoresist structure 3 is formed on the base plate 1 (FIG. 3c).
  • a 30 nm thick layer 4 made of titanium and then another 200 nm thick layer made of nickel is deposited over the entire surface by means of a sputtering process.
  • the photoresist 3 is then removed with acetone in the immersion bath, the regions of the metal layers 4 and 5 which are located on the photoresist structure 3 also being removed.
  • a metal layer structure 4, 5 remains on the base plate 1 (FIG. 3d).
  • a layer 6 of a polymethyl methacrylate casting compound (PMMA) is now poured on in a thickness of 1 mm, polymerized and then structured by means of deep X-ray lithography with synchrotron radiation and subsequent development (FIG. 3f).
  • Nickel which represents the dynodes 8 of the micro-secondary electron multiplier, is electrodeposited into the PMMA shaped structure 7 thus produced.
  • the remaining PMMA regions 7 are then removed in a solvent (FIG.
  • the metal structure 10 is soldered to the dynodes 8 by diffusion soldering with silver, whereby the micro-secondary electron multiplier, consisting of a base plate 1, a cover plate 9, discrete dynodes 8, conductor tracks 11 for contacting the dynodes and conductor tracks 12 for the vertical focusing of the electrons, is completed (FIG. 3h).
  • Another method for producing the microstructures is in the impression technique.
  • X-ray lithography with synchrotron radiation is used to mold a positive of the dynode structure to be produced as a reusable tool with a plastic, whereupon the resulting negative shape is filled up by electrodeposition of metal and the remaining plastic is removed.
  • the base plate required for fixing and contacting the dynodes is inserted into the mold during the molding process, so that the plastic forms a firm connection with the base plate.
  • a multi-channel scattered light radiometer (FIG. 4) is used as an application example.
  • the scattering of light on small particles is an important aid in the investigation of size and shape parameters in particle systems (M. Kerker, The Scattering of Light, Academic Press, New York, 1969).
  • One of the methods that provide the most information is measuring the angular distribution of the scattered light. Particularly cheap for the signal-to-noise ratio, the measurement time required and the time resolution is the simultaneous measurement of the scattered light at many different angles.
  • the micro-secondary electron multiplier arrays according to the invention allow the construction of much smaller, more sensitive and robust electronic multichannel detectors than the state of the art (German Patent 23 38 481, US Patent 39 32762, German Utility Model G 8415886.7).
  • the supply of the dynodes via conductor tracks allows the formation of groups of multi-channel micro-secondary electron multipliers, which can be connected to various voltage supplies.
  • the sensitivity as a function of the scattering angle can be adapted to the scattered light angle distribution. This means, for example, that in the case of highly forward scattering particles, where the intensity difference between forward and backward can be several orders of magnitude, the rear detector area, about 90 ° -180 °, with the maximum gain, the middle area, about 20 ° -90 °, with a medium gain and the front area, 0 ° -20 °, can be driven just below the use of saturation effects.
  • Two sector-shaped regions are provided with multiple arrangements (arrays) of microsecond electron multipliers 2 on an annular base plate 1.
  • the inputs of the microsecond multiplier 2 are each arranged on an arc and point to the center of the base plate 1.
  • the sector areas are each surrounded by a glass wall 3, which carries photocathodes on its inner arc. which are each assigned to a microsecond electron multiplier.
  • the glass walls 3 are closed at the top with a cover plate 4, so that a vacuum-tight envelope of the multiple arrangements (arrays) is created.
  • the signal outputs of the microsecond multiplier 2 are conducted with conductor tracks 5 to the outer edge of the base plate 1, where there are contacts 6 for external connection.
  • the conductor tracks for supplying the multiple arrangements (arrays) are guided through metal-filled holes 7 to the underside of the base plate 1 and from there through conductor tracks 8 also to external connections 9 on the outer edge of the base plate 1.
  • a semiconductor laser 10, optical elements 11, diaphragms 12 and a wedge-shaped light sump 13 are arranged in the free sectors of the base plate 1 in such a way that a beam path which is suitable for the scattering of light due to density fluctuations of matter which is in the scattering volume 14 is produced.
  • Fig. 4 makes it possible to check the symmetry of the scattered radiation with respect to the direction of the incident primary beam. This can be of considerable importance, for example for systems of non-symmetrical particles, to which an orientation has been imparted by fluid dynamic or electromagnetic action.
  • the flat structure of such integrated measuring systems facilitates their use in several planes along a particle beam and thus the tracking of a temporal evolution of the particle parameters. It is also well suited for the application of a magnetic field for influencing the electron orbits.
  • the application example used relates to light scattering, the scope also extends to scattering processes in which charged particles, such as electrons and ions, or excited neutrals are present, and also to radiation or particle sources which emit themselves.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Measurement Of Radiation (AREA)
  • Electron Tubes For Measurement (AREA)

Description

  • Die Erfindung betrifft einen Sekundärelektronenvervielfacher nach dem Oberbegriff des Anspruches 1 sowie ein Verfahren zur Herstellung eines solchen Sekundärelektronenvervielfachers.
  • Ein derartiger Sekundärelektronenvervielfacher ist aus der Firmendruckschrift SC-5 von Hamamatsu (Katalog 1983) unter der Typenbezeichnung R 1635 bekannt. Er besitzt bei acht Stufen einen Durchmesser von 10 mm und eine Länge von ca. 55mm. Diese Abmessungen erlauben nicht den Einsatz in miniaturisierten Meßsystemen.
  • Bekannt sind auch Mikro-Kanalplatten (Nuclear Instruments und Methods 162, 587-601 (1979)). Sie erfüllen zwar die Anforderung des kleinen Raumbedarfs, weisen jedoch eine erhebliche Totzeit nach einem Signalimpuls auf, wodurch ihre Anwendbarkeit auf sehr schwache Strahlungs- und Teilchensignale beschränkt bleibt.
  • Weiterhin sind auch geschichtete Kanalplatten bekannt (Advances in Electronics and Electron Physics 33A, 117-123 (1972)). Sie vermeiden zwar den Nachteil einer langen Totzeit, weisen jedoch von Stufe zu Stufe erhebliche Elektronenverluste auf, wodurch sie wiederum für Anwendungen mit extrem kleinen Strahlungs- oder Teilchensignalen ungeeignet sind. Weiterhin sind geschichtete Kanalplatten bekannt (DE 24 14 658), bei denen solche Verluste durch Formung der Kanalwände mittels Ätzen verkleinert werden sollen, jedoch sind dieser Art von Formgebung enge Grenzen gesetzt. Schließlich sind aus der Hochenergiephysik Arrays von Sekundärelektronenvervielfachern bekannt (F. Binon et al, Nuclear Instruments and Methods, A248 (1986), 86 - 102). Durch ihren großen Platzbedarf sind sie für den Aufbau miniaturisierter Meßsysteme vollständig ungeeignet.
  • Der Erfindung liegt die Aufgabe zugrunde, gegenüber dem aufgezeigten Stand der Technik einen Mikro-Sekundärelektronenvervielfacher und Arrays davon zu schaffen, die einen äußerst geringen Platzbedarf, eine hohe Zeitauflösung, eine große Empfindlichkeit und eine hohe Flexibilität bei der Formgebung aufweisen.
  • Diese Aufgabe wird erfindungsgemäß mittels der in kennzeichnenden Teil des Anspruches 1 angegebenen Merkmals und dem Verfahren nach Anspruch 13 gelöst.
  • Die übrigen Ansprüche 2 bis 12 sowie die Ansprüche 14 bis 16 geben vorteilhafte Weiterbildungen und Ausführungsformen des erfindungsgemäßen Gegenstandes bzw. des Verfahrens an.
  • Die erfindungsgemäßen Mikro-Sekundärelektronenvervielfacher und Vielfachanordnungen (Arrays) davon als Sensoren in miniaturisierten Meßsystemen für Strahlung oder Teilchen zeichnen sich in vorteilhafter Weise durch geringen Raumbedarf sowie hohe Orts- und Zeitauflösung aus.
  • Durch Einsatz von Röntgentiefenlithographie und Mikrogalvanik wird der Aufbau eines extrem kleinen Systems von diskreten Dynoden ermöglicht, deren Form so gewählt ist, daß die Elektronen von einer Dynode auf die nächste fokussiert und Elektronenverluste so minimiert werden. Die Empfindlichkeit wird dadurch vorteilhaft beeinflußt. Die Spannungsversorgung der Dynoden über diskrete Leiterbahnen gestattet es, die externe Versorgung an die Signalamplitude anzupassen, so daß der dynamische Bereich des Mikro-Sekundärelektronenvervielfachers sehr groß wird. Durch die stark reduzierte Länge des Sekundärelektronenvervielfachers ist die Elektronenlaufzeit von Kathode zu Anode verkürzt, was sich günstig auf die Anstiegszeit von Impulsen und damit auf die erzielbare Zeitauflösung auswirkt.
  • Die Herstellung derart feiner Strukturen auf röntgentiefenlithographisch-galvanoplastischem Wege (LIGA-Technik) bzw. durch die hiervon abgeleitete Abformtechnik gemäß Merkmal b) von Patentanspruch 13 ist u.a. in dem KfK-Bericht 3995 des Kernforschungszentrums Karlsruhe (November 1985) beschrieben und dargestellt. Danach wird z.B. ein röntgenstrahlenempfindlicher Positiv-Resist auf eine metallische Grundplatte aufgebracht und partiell über eine Maske mit Röntgenstrahlen so bestrahlt und entwickelt, daß eine Negativform der herzustellenden Stege entsteht, deren Höhe der Schichtdicke des Positiv-Resist entspricht; sie kann bis zu 2 mm betragen, je nach der Eindringtiefe der Röntgenstrahlung. Anschließend wird die Negativform galvanisch mit einem Metall unter Verwendung der Grundplatte als Elektrode aufgefüllt, worauf das restliche Resist-Material mit einem Lösungsmittel entfernt wird. Bei der Abformtechnik wird ein mit der LIGA-Technik hergestelltes Positiv der herzustellenden Steg-Struktur als wiederholt verwendbares Werkzeug mit einem Kunststoff abgeformt, worauf die so entstandene Negativform durch galvanisches Abscheiden von Metall aufgefüllt und der restliche Kunststoff entfernt wird. In beiden Fällen lassen sich extrem genaue und feine Strukturen herstellen mit lateralen Abmessungen im µm-Bereich bei einer frei wählbaren Höhe bis zu ca. 2mm. Bei etwas geringeren Höhen lassen sich auch minimale laterale Abmessungen im Submikrometerbereich realisieren. Als Strahlenquelle für diesen Zweck ist insbesondere die Röntgenstrahlung eines Elektronen-Synchrotrons oder -Speicherrings (Synchrotronstrahlung) geeignet.
  • Durch das im Anspruch 13 beschriebene Verfahren ist es weiterhin möglich, eine große Anzahl von Mikro-Sekundärelektronenvervielfachern nebeneinander auf derselben Grundplatte als Mikro-Sekundärelektronenvervielfacher-Array aufzubauen. Dadurch wird eine extrem hohe Packungsdichte erreicht, die sich günstig auf das erreichbare räumliche Auflösungsvermögen auswirkt, ein Aspekt, der insbesondere für die Tomographie und für Detektoren in der Hochenergiephysik von Bedeutung ist.
  • Bei einem Array von Mikro-Sekundärelektronenvervielfachern kann die Position der Signal-Eingänge an vorgegebene Konturen angepaßt werden, z.B. an den Rowland-Kreis, an eine gewölbte Bildfläche oder an einen Zylindermantel wie beim nachstehend als Ausführungsbeispiel beschriebenen Streulichtradiometer.
  • Ein weiterer Vorteil liegt darin, daß eine der Substratplatten mit einer lichtdurchlässigen Wand, die zusätzlich noch Photokathoden trägt, versehen wird und damit der Mikro-Sekundärelektronenvervielfacher (-Array) zu einem Mikro-Photomultiplier(-Array) gemacht werden kann.
  • Gibt man der lichtdurchlässigen Wand einen linsenförmigen Querschnitt und bringt die Photokathoden auf einem getrennten Träger aus lichtdurchlässigem Material an, so kann man zwischen Lichtquelle und Photokathode eine optische Abbildung herstellen, die sich vorteilhaft auswirkt auf die Definition des Streuvolumens und auf das Signal-Rausch-Verhältnis.
  • Die Erfindung wird anhand der Figuren näher erläutert.
  • Der Aufbau eines Mikro-Sekundärelektronenvervielfachers ist schematisch in Figur 1 dargestellt. Man erkennt die Dynoden 1, die zu ihrer Spannungsversorgung angebrachten Leiterbahnen 2 sowie die Anode 3. Diese Strukturen sind auf der Grundplatte 4 aufgebracht. Eine zweite Platte trägt, gestrichelt dargestellt, eine Glaswand 6, auf der an geeigneter Stelle die Photokathode 7 aufgebracht ist. Weitere Elektroden 8, 9 dienen der Fokussierung der auf der Photokathode ausgelösten Photoelektronen auf die erste Dynode 1. Die Platten werden durch Glaslöten miteinander verbunden und bilden, falls erforderlich, ein vakuumdichtes Gehäuse für den Sekundärelektronenvervielfacher. Die Vervielfachung erfordert Elektronenenergien von der Größenordnung 100 eV. Mit einem typischen sicheren Betriebswert für die Oberflächenfeldstärke von 1 kV/mm ergibt sich ein minimaler Leiterbahnabstand von 0,1 mm und bei 9 Dynoden mit einer Kantenlänge von je 1 mm eine Gesamtlänge von ca. 10 mm. Oberflächenaufladung und daraus folgende elektrische Überschläge werden durch die, wenn auch schwache, Leitfähigkeit der Oberflächenschicht der Wände vermieden.
  • Figur 2a zeigt schematisch eine Vielfachanordnung von Mikro-Sekundärelektronenvervielfachern. Hier sind zahlreiche Mikro-Sekundärelektronenvervielfacher nebeneinander angeordnet und die Führung der Leiterbahnen 2 entsprechend angepaßt worden. Fig. 2b zeigt schematisch eine Vielfachanordnung mit gemeinsamen Dynoden 1.
  • Fig. 3a bis 3h zeigt beispielhaft die Herstellung eines Mikro-Sekundärelektronenvervielfachers oder einer Vielfachanordnung (Arrays), wobei als wichtigste Verfahrensschritte Röntgentiefenlithographie mit Synchrotronstrahlung und Galvanoformung eingesetzt werden. Eine detaillierte Beschreibung dieser Prozesse ist in E.W. Becker, W. Ehrfeld, P. Hagmann, A. Maner und D Münchmeyer "Fabrication of Microstructures with high aspect ratio and great structural heights by synchrotron radiation lithography, galvanoforming, and plastic moulding (LIGA-process)", Microelectronic Engineering 4 (1986) 35-36 angegeben. Fig. 3a zeigt eine Grundplatte 1 aus Aluminiumoxid-Keramik. Die Dicke der Grundplatte 1 beträgt etwa 1 mm, die Fläche etwa 10 cm x 10 cm. Die Grundplatte 1 wird durch Aufschleudern mit einer dünnen Schicht 2 aus Fotolack (z.B.AZ 1350 der Fa. Kalle, Wiesbaden) beschichtet und nach Herstellerangaben vorbehandelt (Fig. 3b). In bekannter Weise wird der Fotolack über eine Maske lithographisch bestrahlt und entwickelt, so daß eine Fotolackstruktur 3 auf der Grundplatte 1 entsteht (Fig. 3c). Anschließend wird durch einen Sputterprozeß ganzflächig zunächst eine 30 nm dicke Schicht 4 aus Titan und dann eine weitere 200 nm dicke Schicht aus Nickel abgeschieden. Sodann wird der Fotolack 3 mit Aceton im Tauchbad entfernt, wobei auch die Bereiche der Metallschichten 4 und 5 entfernt werden, die sich auf der Fotolackstruktur 3 befinden. Es verbleibt eine Metallschichtstruktur 4, 5 auf der Grundplatte 1 (Fig. 3d). Wie im o.g. Artikel beschrieben, wird nun in einer Dicke von 1 mm eine Schicht 6 aus einer Polymethylmethacrylat-Gießmasse (PMMA) aufgegossen, polymerisiert und dann mittels Röntgentiefenlithographie mit Synchrotronstrahlung und anschließendes Entwickeln strukturiert (Fig. 3f). In die so gefertigte Formstruktur 7 aus PMMA wird galvanisch Nickel abgeschieden, das die Dynoden 8 des Mikro-Sekundärelektronenvervielfachers darstellt. Anschließend werden die verbliebenen PMMA-Bereiche 7 in einem Lösemittel entfernt (Fig. 3g). In gleicher Weise werden in denselben Arbeitsschritten durch Vorgabe entsprechender Strukturen auf den in den Lithographieprozessen verwendeten Masken andere Elemente des Mikro-Sekundärelektronenvervielfachers wie etwa Anoden, Abschirmungen und dergleichen parallel mit den Dynoden 8 gefertigt. Analog zu den Prozess-Schritten in Fig. 3a bis 3d wird nun eine zur Grundplatte in Fig. 3d spiegelsymmetrische Deckplatte 9 mit Metallstrukturen 10 hergestellt. Die Metallstruktur 10 wird durch Diffusionslöten mit Silber mit den Dynoden 8 verlötet, wodurch der Mikro-Sekundärelektronenvervielfacher, bestehend aus einer Grundplatte 1, einer Deckplatte 9, diskreten Dynoden 8, Leiterbahnen 11 zur Kontaktierung der Dynoden und Leiterbahnen 12 für die vertikale Fokussierung der Elektronen, fertiggestellt wird (Fig. 3h).
  • Eine weitere Methode zur Herstellung der Mikrostrukturen besteht in der Abformtechnik. Dabei wird durch Röntgentiefenlithographie mit Synchrotronstrahlung eine Positiv der herzustellenden Dynodenstruktur als wiederholt verwendbares Werkzeug mit einem Kunststoff abgeformt, worauf die entstandene Negativform durch galvanisches Abscheiden von Metall aufgefüllt und der restliche Kunststoff entfernt wird. Die für die Fixierung und Kontaktierung der Dynoden erforderliche Grundplatte wird beim Abformprozess in das Werkzeug eingelegt, so daß der Kunststoff mit der Grundplatte eine feste Verbindung eingeht. Sowohl die direkte Herstellung der Mikrostrukturen durch Röntgentiefenlithographie mit Synchrotronstrahlung als auch die Abformtechnik ermöglichen extreme Strukturgenauigkeiten mit Lateralabmessungen im µm-Bereich bei einer frei wählbaren Höhe bis zu ca 2mm.
  • Als Anwendungsbeispiel wird ein Vielkanal-Streulichtradiometer (Fig. 4) herangezogen. Bekanntlich ist die Streuung von Licht an kleinen Teilchen ein wichtiges Hilfsmittel bei der Untersuchung von Größen- und Formparametern in Teilchensystemen (M. Kerker, The Scattering of Light, Academic Press, New York, 1969). Eine der Methoden, die am meisten Information liefern, ist die Messung der Winkelverteilung des gestreuten Lichts. Besonders günstig für das Signal-Rausch-Verhältnis, die benötigte Meßzeit und die Zeitauflösung ist die simultane Messung des Streulichts unter vielen, verschiedenen Winkeln. Die erfindungsgemäßen Mikro-Sekundärelektronenvervielfacher-Arrays erlauben den Aufbau wesentlich kleinerer, empfindlicherer und robusterer elektronischer Vielkanaldetektoren als es dem Stand der Technik entspricht (Deutsches Patent 23 38 481, US-Patent 39 32762, Deutsches Gebrauchsmuster G 8415886,7). Die Versorgung der Dynoden über Leiterbahnen erlaubt die Bildung von Gruppen von Vielkanal-Mikro-Sekundärelektronenvervielfachern, die an verschiedene Spannungsversorgungen angeschlossen werden können. Dadurch kann die Empfindlichkeit als Funktion des Streuwinkels der Streulicht-Winkelverteilung angepaßt werden. Dies bedeutet beispielsweise, daß im Falle von stark vorwärts streuenden Teilchen, wo der Intensitätsunterschied zwischen vorwärts und rückwärts mehrere Großenordnungen betragen kann, der hintere Detektorbereich, etwa 90°-180°, mit der maximalen Verstärkung, der mittlere Bereich, etwa 20°-90°, mit einer mittleren Verstärkung und der vordere Bereich, 0°-20°, gerade unterhalb des Einsatzes von Sättigungseffekten gefahren werden können.
  • Auf einer ringförmigen Grundplatte 1 werden zwei sektorförmige Gebiete mit Vielfachanordnungen (Arrays) von Mikrosekundärelektronenvervielfachern 2 versehen. Die Eingänge der Mikrosekundärelektronenvervielfacher 2 sind dabei auf je einem Kreisbogen angeordnet und weisen zum Mittelpunkt der Grundplatte 1. Die Sektor-Gebiete werden von je einer Glaswand 3 umschlossen, die auf ihrem inneren Bogen Photokathoden trägt. die jeweils einem Mikrosekundärelektronenvervielfacher zugeordnet sind.
  • Die Glaswände 3 sind mit je einer Deckelplatte 4 nach oben verschlossen, so daß eine vakuumdichte Umhüllung der Vielfachanordnungen (Arrays) entsteht. Die Signalausgänge der Mikrosekundärelektronenvervielfacher 2 werden mit Leiterbahnen 5 zum äußeren Rand der Grundplatte 1 geführt, wo sich Kontakte 6 zum externen Anschluß befinden. Die Leiterbahnen zur Versorgung der Vielfachanordnungen (Arrays) werden durch metallgefüllte Bohrungen 7 zur Unterseite der Grundplatte 1 und von da durch Leiterbahnen 8 ebenfalls zu externen Anschlüssen 9 am Außenrand der Grundplatte 1 geführt.
    In den freien Sektoren der Grundplatte 1 werden ein Halbleiterlaser 10, optische Elemente 11, Blenden 12 und ein keilförmiger Lichtsumpf 13 derart angeordnet, daß ein für die Streuuung von Licht an Dichtefluktuationen von Materie, die sich im Streuvolumen 14 befindet, geeigneter Strahlengang entsteht.
  • Die in Fig. 4 gezeigte Version macht es möglich,
    die Symmetrie der Streustrahlung bezüglich der Richtung des einfallenden Primärstrahles zu prüfen. Dies kann von erheblicher Bedeutung sein, z.B. für Systeme nichtsymmetrischer Teilchen, denen durch fluiddynamische oder elektromagnetische Einwirkung eine Orientierung aufgeprägt wurde.
  • Der flache Aufbau solcher integrierter Meßsysteme erleichtert ihren Einsatz in mehreren Ebenen längs eines Teilchenstrahls und damit die Verfolgung einer zeitlichen Evolution der Teilchenparameter. Er eignet sich darüberhinaus gut für die Anwendung eines Magnetfeldes zur Beeinflussung der Elektronenbahnen. Obwohl das herangezogene Anwendungsbeispiel sich auf die Lichtstreuung bezieht, erstreckt sich der Anwendungsbereich auch auf Streuprozesse, bei denen geladene Teilchen, wie Elektronen und Ionen, oder angeregte Neutrale vorliegen, und darüber hinaus auch auf Strahlungs- oder Teilchenquellen, die selbst emittieren.

Claims (16)

  1. Sekundärelektronenvervielfacher mit diskreten Dynoden, dadurch gekennzeichnet, daß die Dynoden mikrostrukturiert und auf einer isolierenden Substratplatte, die mit elektrischen Leiterbahnen zum Anschluß der Dynoden versehen ist, angebracht sind.
  2. Sekundärelektronenvervielfacher nach Anspruch 1, dadurch gekennzeichnet, daß die Dynoden auf röntgentiefenlithographischem, auf röntgentiefenlithographisch-galvanoplastischem oder auf hiervon abgeleitetem abformtechnischem bzw. abformtechnisch-galvanoplastischem Wege auf der Substratplatte hergestellt sind.
  3. Vielfachanordnung (Array) von Sekundärelektronenvervielfachern nach Anspruch 1 und 2, dadurch gekennzeichnet, daß mehrere Dynodenanordnungen auf der Substratplatte angeordnet und mit getrennten Ein- und Ausgängen versehen sind.
  4. Sekundärelektronenvervielfacher und Vielfachanordnung (Array) nach Anspruch 1 bis 3, dadurch gekennzeichnet, daß die die Dynoden tragende Substratplatte mit einer zweiten isolierenden Platte abgedeckt ist.
  5. Sekundärelektronenvervielfacher und Vielfachanordnung (Array) nach Anspruch 4, dadurch gekennzeichnet, daß eine von beiden oder beide Platten Leiterbahnen tragen, die zur vertikalen Fokussierung der Elektronen dienen.
  6. Sekundärelektronenvervielfacher und Vielfachanordnung (Array) nach Anspruch 4, dadurch gekennzeichnet, daß ein Teil der Dynoden auf der einen Substratplatte und der andere Teil auf der anderen angebracht ist.
  7. Vielfachanordnung nach Anspruch 3 bis Anspruch 6, dadurch gekennzeichnet, daß die gedachte Verbindungslinie der Signaleingänge eine in weiten Grenzen beliebig gekrümmte Kurve ist.
  8. Sekundärelektronenvervielfacher und Vielfachanordnung (Array) nach Anspruch 4 bis Anspruch 7, dadurch gekennzeichnet, daß zwischen den Platten eine Wand, die an geeigneten Stellen lichtdurchlässig und mit Photokathoden versehen ist, angebracht ist, so daß es eine vakuumdichte Umhüllung der Dynodenanordnung gibt.
  9. Sekundärelektronenvervielfacher und Vielfachanordnung (Array) nach Anspruch 4 bis Anspruch 8, dadurch gekennzeichnet, daß die lichtdurchlässigen Stellen der Wand Linsenform haben und daß die Photokathoden auf einem getrennten lichtdurchlässigen Träger angebracht sind, so daß zwischen Lichtquelle und Photokathode eine optische Abbildungsbeziehung besteht.
  10. Vielfachanordnung (Array) nach Anspruch 3 bis Anspruch 9, dadurch gekennzeichnet, daß benachbarte Kanäle gemeinsame Dynoden haben.
  11. Sekundärelektronenvervielfacher und Vielfachanordnung (Array) nach Anspruch 1 bis Anspruch 10, dadurch gekennzeichnet, daß von außen eine Magnetfeld zur Führung der Elektronen aufgebracht ist.
  12. Vielfachanordnung nach Anspruch 3 bis Anspruch 11, dadurch gekennzeichnet, daß Gruppen von Dynoden an verschiedene Spannungsversorgungen angeschlossen sind.
  13. Verfahren zur Herstellung von Mikro-Sekundärelektronenvervielfachern und Vielfachanordnungen (Arrays) mit diskreten Dynoden nach Anspruch 1 bis Anspruch 12, gekennzeichnet durch folgende Fertigungsschritte:
    a) Aufbringen von Leiterbahnen auf ein isolierendes Substrat,
    b) Erzeugen von Dynoden auf den Leiterbahnen auf röntgentiefenlithographischem, auf röntgentiefenlithographisch-galvanoplastischem oder auf hiervon abgeleitetem abformtechnischem bzw. abformtechnisch-galvanoplastischem Wege,
    c) falls erforderlich, Verbinden einer Deckplatte mit den Dynoden, oder Anbringen einer lichtdurchlässigen Wand mit Photokathoden und Abschließen mit einer Deckelplatte.
  14. Verfahren nach Anspruch 13, dadurch gekennzeichnet, daß nach Schritt b) auf die Dynoden eine zusätzliche Schicht aus einem Material mit hohem Sekundärelektronen-Koeffizienten aufgebracht wird.
  15. Verfahren nach Anspruch 14, dadurch gekennzeichnet, daß auf die Dynoden galvanisch Zinn aufgebracht und anschließend naßchemisch oxidiert wird.
  16. Verfahren nach Anspruch 13, dadurch gekennzeichnet, daß die isolierenden Bereiche zwischen den Leiterbahnen durch Aufbringen einer geeigneten Oberflächenschicht schwach leitend gemacht werden.
EP88103116A 1987-03-20 1988-03-02 Mikro-Sekundärelektronenvervielfacher und Verfahren zu seiner Herstellung Expired - Lifetime EP0283773B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT88103116T ATE76537T1 (de) 1987-03-20 1988-03-02 Mikro-sekundaerelektronenvervielfacher und verfahren zu seiner herstellung.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3709298 1987-03-17
DE19873709298 DE3709298A1 (de) 1987-03-20 1987-03-20 Micro-sekundaerelektronenvervielfacher und verfahren zu seiner herstellung

Publications (3)

Publication Number Publication Date
EP0283773A2 EP0283773A2 (de) 1988-09-28
EP0283773A3 EP0283773A3 (en) 1990-02-07
EP0283773B1 true EP0283773B1 (de) 1992-05-20

Family

ID=6323660

Family Applications (1)

Application Number Title Priority Date Filing Date
EP88103116A Expired - Lifetime EP0283773B1 (de) 1987-03-20 1988-03-02 Mikro-Sekundärelektronenvervielfacher und Verfahren zu seiner Herstellung

Country Status (5)

Country Link
US (1) US4990827A (de)
EP (1) EP0283773B1 (de)
JP (1) JPS63279553A (de)
AT (1) ATE76537T1 (de)
DE (1) DE3709298A1 (de)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5077504A (en) * 1990-11-19 1991-12-31 Burle Technologies, Inc. Multiple section photomultiplier tube
FR2676862B1 (fr) * 1991-05-21 1997-01-03 Commissariat Energie Atomique Structure multiplicatrice d'electrons en ceramique notamment pour photomultiplicateur et son procede de fabrication.
US5545367A (en) * 1992-04-15 1996-08-13 Soane Technologies, Inc. Rapid prototype three dimensional stereolithography
US5264693A (en) * 1992-07-01 1993-11-23 The United States Of America As Represented By The Secretary Of The Navy Microelectronic photomultiplier device with integrated circuitry
US5412265A (en) * 1993-04-05 1995-05-02 Ford Motor Company Planar micro-motor and method of fabrication
US5656807A (en) * 1995-09-22 1997-08-12 Packard; Lyle E. 360 degrees surround photon detector/electron multiplier with cylindrical photocathode defining an internal detection chamber
WO1998019341A1 (en) 1996-10-30 1998-05-07 Nanosystems, Inc. Microdynode integrated electron multiplier
US6115634A (en) * 1997-04-30 2000-09-05 Medtronic, Inc. Implantable medical device and method of manufacture
US5943223A (en) * 1997-10-15 1999-08-24 Reliance Electric Industrial Company Electric switches for reducing on-state power loss
EP1445670A1 (de) * 2003-02-06 2004-08-11 ETA SA Manufacture Horlogère Suisse Spiralfeder der Resonatorunruh und Fabrikationsmethode
GB2409927B (en) * 2004-01-09 2006-09-27 Microsaic Systems Ltd Micro-engineered electron multipliers
US7317283B2 (en) * 2005-03-31 2008-01-08 Hamamatsu Photonics K.K. Photomultiplier
US7427835B2 (en) * 2005-03-31 2008-09-23 Hamamatsu Photonics K.K. Photomultiplier including a photocathode, a dynode unit, a focusing electrode, and an accelerating electrode
US7397184B2 (en) * 2005-03-31 2008-07-08 Hamamatsu Photonics K.K. Photomultiplier
EP1818736A1 (de) * 2006-02-09 2007-08-15 The Swatch Group Research and Development Ltd. Stossfeste Spiralrolle
DE102015200739B3 (de) * 2015-01-19 2016-03-24 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Kreisbeschleuniger zur beschleunigung von ladungsträgern und verfahren zur herstellung eines kreisbeschleunigers
CN113767716B (zh) 2019-05-06 2024-07-30 3M创新有限公司 图案化导电制品

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2674661A (en) * 1948-08-12 1954-04-06 Rca Corp Electron multiplier device
US2836760A (en) * 1955-03-08 1958-05-27 Egyesuelt Izzolampa Electron multiplier
US2868994A (en) * 1955-10-24 1959-01-13 Rca Corp Electron multiplier
US4041343A (en) * 1963-07-12 1977-08-09 International Telephone And Telegraph Corporation Electron multiplier mosaic
US3551841A (en) * 1967-01-30 1970-12-29 Philips Corp Thin film laser device employing an optical cavity
FR2000354A1 (de) * 1968-01-18 1969-09-05 Matsushita Electric Ind Co Ltd
GB1434053A (en) * 1973-04-06 1976-04-28 Mullard Ltd Electron multipliers
DE2338481C2 (de) * 1973-07-28 1985-07-04 Kernforschungszentrum Karlsruhe Gmbh, 7500 Karlsruhe Vorrichtung zur schnellen Messung der zeitlichen Änderung der Strahlungsintensität
US4034255A (en) * 1975-11-28 1977-07-05 Rca Corporation Vane structure for a flat image display device
FR2445018A1 (fr) * 1978-12-22 1980-07-18 Anvar Tube multiplicateur d'electrons a champ magnetique axial
JPS6042573B2 (ja) * 1979-01-24 1985-09-24 浜松ホトニクス株式会社 二次電子増倍電極
JPS5856781B2 (ja) * 1980-07-07 1983-12-16 日景 ミキ子 仲介材を使用したねじ止め工法
FR2549288B1 (fr) * 1983-07-11 1985-10-25 Hyperelec Element multiplicateur d'electrons, dispositif multiplicateur d'electrons comportant cet element multiplicateur et application a un tube photomultiplicateur
DE8415886U1 (de) * 1984-05-24 1984-08-23 Kernforschungszentrum Karlsruhe Gmbh, 7500 Karlsruhe Vorrichtung zur schnellen messung der strahlungsintensitaet

Also Published As

Publication number Publication date
DE3709298A1 (de) 1988-09-29
DE3709298C2 (de) 1990-02-08
EP0283773A3 (en) 1990-02-07
JPS63279553A (ja) 1988-11-16
EP0283773A2 (de) 1988-09-28
US4990827A (en) 1991-02-05
ATE76537T1 (de) 1992-06-15

Similar Documents

Publication Publication Date Title
EP0283773B1 (de) Mikro-Sekundärelektronenvervielfacher und Verfahren zu seiner Herstellung
DE69715092T2 (de) Hochauflösende radiografische Bilderzeugungsvorrichtung
EP1920453A2 (de) Verfahren zum herstellen einer mehrschichtigen elektrostatischen linsenanordnung
DE69607543T2 (de) Detektoren für geladene Teilchen sowie diese verwendende Massenspektrometer
EP0777255A1 (de) Röntgenröhre, insbesondere Mikrofokusröntgenröhre
EP0212054B1 (de) Verfahren zur Herstellung von Masken für die Röntgentiefenlithographie
DE1089895B (de) Elektronischer Bildverstaerker
DE2453772A1 (de) Schnellansprechende kamera fuer bildwandlerroehren
DE69209560T2 (de) In Keramik gefertigte Elektronenvervielfacherstruktur vorzugsweise für Elektronenvervielfacher und Herstellungsverfahren derselben
DE69406709T2 (de) Photovervielfacher
DE69512695T2 (de) Photovervielfacher
DE3408849C2 (de) Verfahren zur Herstellung geschichteter Vielkanalplatten aus Metall für Bildverstärker und Verwendung der so hergestellten Vielkanalplatten
DE3408848C2 (de) Verfahren zur Herstellung von Vielkanalplatten
DE2759043C2 (de) Vorrichtung zur Umwandlung von Lichtenergie in elektrische Engergie durch Photoemission
EP0618502B1 (de) Verfahren zum Herstellen gestufter Formeinsätze, gestufte Formeinsätze und damit abgeformte gestufte Mikrostrukturkörper hoher Präzision
DE2416186B2 (de) Maske zur strukturierung duenner schichten
DE69329427T2 (de) Photovervielfacher
DE2633619C2 (de) Speicherplatte für eine Kathodenstrahlröhre und Verfahren zu deren Herstellung
DE102004006998B4 (de) Ionendetektor
DE2448793B2 (de) Elektronische Bildverstärker- oder Bildwandlerröhre und Verfahren zu ihrer Herstellung
DE68924266T2 (de) Verfahren für quantitative autoradiographie-analyse.
DE2448793A1 (de) Elektronische bildverstaerker- oder bildwandlerroehre und verfahren zu ihrer herstellung
DE69604635T2 (de) Elektronenröhre
DE1037610B (de) Elektronenvervielfacher mit einer zwischen Kathode und Leuchtschirm angeordneten Vielzahl von Dynoden, bei denen die Traeger der Sekundaer-elektronen-Emissionsschichten gitterartige Gebilde sind
EP3021351A1 (de) Sekundärelektronenvervielfacher und verfahren zum herstellen eines solchen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT CH FR GB IT LI NL SE

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT CH FR GB IT LI NL SE

17P Request for examination filed

Effective date: 19900131

17Q First examination report despatched

Effective date: 19911002

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT CH FR GB IT LI NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 19920520

Ref country code: SE

Effective date: 19920520

REF Corresponds to:

Ref document number: 76537

Country of ref document: AT

Date of ref document: 19920615

Kind code of ref document: T

ET Fr: translation filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Effective date: 19930302

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19940125

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19940127

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19940330

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19940331

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19950302

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Effective date: 19950331

Ref country code: LI

Effective date: 19950331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19951001

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19950302

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19951130

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 19951001

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST