EP0283773B1 - Multiplicateur d'électrons secondaires miniaturisé et son procédé de fabrication - Google Patents

Multiplicateur d'électrons secondaires miniaturisé et son procédé de fabrication Download PDF

Info

Publication number
EP0283773B1
EP0283773B1 EP88103116A EP88103116A EP0283773B1 EP 0283773 B1 EP0283773 B1 EP 0283773B1 EP 88103116 A EP88103116 A EP 88103116A EP 88103116 A EP88103116 A EP 88103116A EP 0283773 B1 EP0283773 B1 EP 0283773B1
Authority
EP
European Patent Office
Prior art keywords
dynodes
secondary electron
electron multiplier
array
multiple arrangement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP88103116A
Other languages
German (de)
English (en)
Other versions
EP0283773A2 (fr
EP0283773A3 (en
Inventor
Wolfgang Dr. Ehrfeld
Herbert Dr. Moser
Dietrich Dr. Münchmeyer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Forschungszentrum Karlsruhe GmbH
Original Assignee
Kernforschungszentrum Karlsruhe GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kernforschungszentrum Karlsruhe GmbH filed Critical Kernforschungszentrum Karlsruhe GmbH
Priority to AT88103116T priority Critical patent/ATE76537T1/de
Publication of EP0283773A2 publication Critical patent/EP0283773A2/fr
Publication of EP0283773A3 publication Critical patent/EP0283773A3/de
Application granted granted Critical
Publication of EP0283773B1 publication Critical patent/EP0283773B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J43/00Secondary-emission tubes; Electron-multiplier tubes
    • H01J43/04Electron multipliers
    • H01J43/06Electrode arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J9/00Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
    • H01J9/02Manufacture of electrodes or electrode systems
    • H01J9/12Manufacture of electrodes or electrode systems of photo-emissive cathodes; of secondary-emission electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2201/00Electrodes common to discharge tubes
    • H01J2201/32Secondary emission electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2201/00Electrodes common to discharge tubes
    • H01J2201/34Photoemissive electrodes
    • H01J2201/342Cathodes
    • H01J2201/3421Composition of the emitting surface
    • H01J2201/3425Metals, metal alloys

Definitions

  • the invention relates to a secondary electron multiplier according to the preamble of claim 1 and a method for producing such a secondary electron multiplier.
  • Such a secondary electron multiplier is known from the company publication SC-5 by Hamamatsu (catalog 1983) under the type designation R 1635. With eight steps, it has a diameter of 10 mm and a length of approx. 55 mm. These dimensions do not allow use in miniaturized measuring systems.
  • Micro-channel plates (Nuclear Instruments and Methods 162, 587-601 (1979)) are also known. Although they meet the requirement of small space requirements, they have a considerable dead time after a signal pulse, which limits their applicability to very weak radiation and particle signals.
  • Layered channel plates are also known (Advances in Electronics and Electron Physics 33A, 117-123 (1972)). Although they avoid the disadvantage of a long dead time, they have considerable electron losses from stage to stage, which in turn makes them unsuitable for applications with extremely small radiation or particle signals. Layered duct plates are also known (DE 24 14 658), in which such losses occur by forming the duct walls by means of etching should be reduced in size, but this type of design has narrow limits. Finally, arrays of secondary electron multipliers are known from high energy physics (F. Binon et al, Nuclear Instruments and Methods, A248 (1986), 86-102). Due to their large space requirement, they are completely unsuitable for the construction of miniaturized measuring systems.
  • the object of the invention is to create a micro-secondary electron multiplier and arrays thereof compared to the prior art shown, which have an extremely small space requirement, a high time resolution, a high sensitivity and a high flexibility in the shaping.
  • micro-secondary electron multiplier and multiple arrangements (arrays) thereof as sensors in miniaturized measuring systems for radiation or particles are advantageously characterized by a small space requirement and high spatial and time resolution.
  • the use of deep X-ray lithography and micro-electroplating enables the construction of an extremely small system of discrete dynodes, the shape of which is selected in such a way that the electrons are focused from one dynode to the next, thus minimizing electron losses.
  • the sensitivity is advantageously influenced.
  • the voltage supply of the dynodes via discrete conductor tracks allows the external supply to be adapted to the signal amplitude, so that the dynamic range of the micro-secondary electron multiplier becomes very large.
  • the greatly reduced length of the secondary electron multiplier shortens the electron transit time from cathode to anode, which has a favorable effect on the rise time of pulses and thus on the achievable time resolution.
  • the negative mold is then galvanically filled with a metal using the base plate as an electrode, and the rest Resist material is removed with a solvent.
  • a positive of the bar structure to be produced using the LIGA technique is molded as a reusable tool with a plastic, whereupon the resulting negative shape is filled up by galvanic deposition of metal and the remaining plastic is removed.
  • extremely precise and fine structures can be produced with lateral dimensions in the ⁇ m range with a freely selectable height of up to approx. 2mm. At slightly lower heights, minimal lateral dimensions in the submicron range can also be achieved.
  • X-ray radiation from an electron synchrotron or storage ring is particularly suitable as a radiation source for this purpose.
  • the method described in claim 13 also makes it possible to build a large number of micro-secondary electron multipliers next to one another on the same base plate as a micro-secondary electron multiplier array. As a result, an extremely high packing density is achieved, which has a favorable effect on the spatial resolution that can be achieved, an aspect that is particularly important for tomography and for detectors in high-energy physics.
  • the position of the signal inputs can be adapted to predetermined contours, for example to the Rowland circle, to an arched image area or to a cylinder jacket as in the scattered light radiometer described below as an exemplary embodiment.
  • one of the substrate plates is provided with a translucent wall, which also carries photocathodes, so that the micro-secondary electron multiplier (array) can be made into a micro-photomultiplier (array).
  • the structure of a micro-secondary electron multiplier is shown schematically in Figure 1.
  • the dynodes 1, the conductor tracks 2 attached to their voltage supply and the anode 3 can be seen. These structures are applied to the base plate 4.
  • a second plate shown in dashed lines, carries a glass wall 6 on which the photocathode 7 is applied at a suitable point. Additional electrodes 8, 9 serve to focus the photoelectrons triggered on the photocathode onto the first dynode 1.
  • the plates are connected to one another by glass soldering and, if necessary, form a vacuum-tight housing for the secondary electron multiplier.
  • the multiplication requires electron energies of the order of magnitude 100 eV.
  • FIG. 2a schematically shows a multiple arrangement of micro-secondary electron multipliers.
  • numerous micro-secondary electron multipliers are arranged side by side and the routing of the conductor tracks 2 has been adapted accordingly.
  • 2b schematically shows a multiple arrangement with common dynodes 1.
  • 3a to 3h show an example of the production of a micro-secondary electron multiplier or a multiple arrangement (arrays), X-ray depth lithography with synchrotron radiation and electroforming being used as the most important process steps.
  • a detailed description of these processes can be found in EW Becker, W. Ehrfeld, P. Hagmann, A. Maner and D Münchmeyer "Fabrication of Microstructures with high aspect ratio and great structural heights by synchrotron radiation lithography, galvanoforming, and plastic molding (LIGA-process ) ", Microelectronic Engineering 4 (1986) 35-36.
  • 3a shows a base plate 1 made of aluminum oxide ceramic. The thickness of the base plate 1 is about 1 mm, the area is about 10 cm x 10 cm.
  • the base plate 1 is spun on with a thin layer 2 of photoresist (e.g. AZ 1350 Kalle, Wiesbaden) coated and pretreated according to the manufacturer's instructions (Fig. 3b).
  • photoresist e.g. AZ 1350 Kalle, Wiesbaden
  • the photoresist is irradiated and developed lithographically through a mask, so that a photoresist structure 3 is formed on the base plate 1 (FIG. 3c).
  • a 30 nm thick layer 4 made of titanium and then another 200 nm thick layer made of nickel is deposited over the entire surface by means of a sputtering process.
  • the photoresist 3 is then removed with acetone in the immersion bath, the regions of the metal layers 4 and 5 which are located on the photoresist structure 3 also being removed.
  • a metal layer structure 4, 5 remains on the base plate 1 (FIG. 3d).
  • a layer 6 of a polymethyl methacrylate casting compound (PMMA) is now poured on in a thickness of 1 mm, polymerized and then structured by means of deep X-ray lithography with synchrotron radiation and subsequent development (FIG. 3f).
  • Nickel which represents the dynodes 8 of the micro-secondary electron multiplier, is electrodeposited into the PMMA shaped structure 7 thus produced.
  • the remaining PMMA regions 7 are then removed in a solvent (FIG.
  • the metal structure 10 is soldered to the dynodes 8 by diffusion soldering with silver, whereby the micro-secondary electron multiplier, consisting of a base plate 1, a cover plate 9, discrete dynodes 8, conductor tracks 11 for contacting the dynodes and conductor tracks 12 for the vertical focusing of the electrons, is completed (FIG. 3h).
  • Another method for producing the microstructures is in the impression technique.
  • X-ray lithography with synchrotron radiation is used to mold a positive of the dynode structure to be produced as a reusable tool with a plastic, whereupon the resulting negative shape is filled up by electrodeposition of metal and the remaining plastic is removed.
  • the base plate required for fixing and contacting the dynodes is inserted into the mold during the molding process, so that the plastic forms a firm connection with the base plate.
  • a multi-channel scattered light radiometer (FIG. 4) is used as an application example.
  • the scattering of light on small particles is an important aid in the investigation of size and shape parameters in particle systems (M. Kerker, The Scattering of Light, Academic Press, New York, 1969).
  • One of the methods that provide the most information is measuring the angular distribution of the scattered light. Particularly cheap for the signal-to-noise ratio, the measurement time required and the time resolution is the simultaneous measurement of the scattered light at many different angles.
  • the micro-secondary electron multiplier arrays according to the invention allow the construction of much smaller, more sensitive and robust electronic multichannel detectors than the state of the art (German Patent 23 38 481, US Patent 39 32762, German Utility Model G 8415886.7).
  • the supply of the dynodes via conductor tracks allows the formation of groups of multi-channel micro-secondary electron multipliers, which can be connected to various voltage supplies.
  • the sensitivity as a function of the scattering angle can be adapted to the scattered light angle distribution. This means, for example, that in the case of highly forward scattering particles, where the intensity difference between forward and backward can be several orders of magnitude, the rear detector area, about 90 ° -180 °, with the maximum gain, the middle area, about 20 ° -90 °, with a medium gain and the front area, 0 ° -20 °, can be driven just below the use of saturation effects.
  • Two sector-shaped regions are provided with multiple arrangements (arrays) of microsecond electron multipliers 2 on an annular base plate 1.
  • the inputs of the microsecond multiplier 2 are each arranged on an arc and point to the center of the base plate 1.
  • the sector areas are each surrounded by a glass wall 3, which carries photocathodes on its inner arc. which are each assigned to a microsecond electron multiplier.
  • the glass walls 3 are closed at the top with a cover plate 4, so that a vacuum-tight envelope of the multiple arrangements (arrays) is created.
  • the signal outputs of the microsecond multiplier 2 are conducted with conductor tracks 5 to the outer edge of the base plate 1, where there are contacts 6 for external connection.
  • the conductor tracks for supplying the multiple arrangements (arrays) are guided through metal-filled holes 7 to the underside of the base plate 1 and from there through conductor tracks 8 also to external connections 9 on the outer edge of the base plate 1.
  • a semiconductor laser 10, optical elements 11, diaphragms 12 and a wedge-shaped light sump 13 are arranged in the free sectors of the base plate 1 in such a way that a beam path which is suitable for the scattering of light due to density fluctuations of matter which is in the scattering volume 14 is produced.
  • Fig. 4 makes it possible to check the symmetry of the scattered radiation with respect to the direction of the incident primary beam. This can be of considerable importance, for example for systems of non-symmetrical particles, to which an orientation has been imparted by fluid dynamic or electromagnetic action.
  • the flat structure of such integrated measuring systems facilitates their use in several planes along a particle beam and thus the tracking of a temporal evolution of the particle parameters. It is also well suited for the application of a magnetic field for influencing the electron orbits.
  • the application example used relates to light scattering, the scope also extends to scattering processes in which charged particles, such as electrons and ions, or excited neutrals are present, and also to radiation or particle sources which emit themselves.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Measurement Of Radiation (AREA)
  • Electron Tubes For Measurement (AREA)

Claims (16)

  1. Multiplicateur d'électrons secondaires à dynodes discrètes, caractérisé en ce que les dynodes sont de structure miniaturisée et qu'on les dépose sur une plaque de substrat isolante qu'on équipe de pistes conductrices électriques pour connecter les dynodes.
  2. Multiplicateur d'électrons secondaires selon la revendication 1, caractérisé en ce qu'on réalise les dynodes sur la plaque de substrat par gravure lithographique aux rayons X, par gravure lithographique aux rayons X et galvanoplastie ou par des techniques de moulage qui en découlent ou des techniques de moulage et galvanoplastie.
  3. Dispositif multiple (système) selon la revendication 1 ou 2, caractérisé en ce qu'on implante plusieurs dynodes sur la plaque de substrat et qu on les équipe d'entrées et de sorties séparées.
  4. Multiplicateur d'électrons secondaires et dispositif multiple (système) selon les revendications 1 à 3, caractérisé en ce que la plaque support portant les dynodes est recouverte d'une deuxième plaque isolante.
  5. Multiplicateur d'électrons secondaires et dispositif multiple (système), selon la revendication 4, caractérisé en ce que l'une des deux plaques, ou les deux plaques, portent des pistes conductrices, qui servent à la focalisation verticale des électrons.
  6. Multiplicateur d'électrons secondaires et dispositif multiple (système) selon la revendication 4, caractérisé en ce qu'on dépose une partie des dynodes sur une plaque de substrat et l'autre partie sur l'autre plaque.
  7. Dispositif multiple selon les revendications 3 à 6, caractérisé en ce que la ligne de jonction des entrées de signaux est une courbe incurvée choisie à volonté dans de larges limites.
  8. Multiplicateur d'électrons secondaires et dispositif multiple (système) selon la revendication 4 à la revendication 7, caractérisé en ce qu on place entre les plaques une paroi qui est transparente à la lumière en des endroits appropriés et qui comporte des photocathodes de sorte qu'il y a une enveloppe étanche au vide du dispositif de dynodes.
  9. Multiplicateur d'électrons secondaires et dispositif multiple (système) selon la revendication 4 à la revendication 8, caractérisé en ce que les zones transparentes à la lumière de la paroi ont la forme de lentilles et qu'on dépose les photocathodes sur un support séparé transparent à la lumière, de sorte qu'entre la source de lumière et la photocathode il y a une corrélation d'image optique.
  10. Dispositif multiple (système) selon la revendication 3 à la revendication 9, caractérisé en ce que les canaux voisins possèdent des dynodes communes.
  11. Multiplicateur d'électrons secondaires et dispositif multiple (système) selon la revendication 1 à la revendication 10, caractérisé en ce qu'on exerce de l'extérieur un champ magnétique pour guider les électrons.
  12. Dispositif multiple selon la revendication 3 à la revendication 11, caractérisé en ce qu on branche des groupes de dynodes à différentes sources de tension.
  13. Procédé de fabrication de multiplicateur à électrons secondaires et de dispositifs multiples (systèmes) à dynodes discrètes selon la revendication 1 à la revendication 12, caractérisé par les étapes de fabrication suivantes :
    a) dépôt de pistes conductrices sur un substrat isolant,
    b) réalisations de dynodes sur les pistes conductrices par des techniques de gravure lithographique aux rayons X, par gravure lithographique aux rayons X et galvanoplastie ou par des techniques en dérivant de moulage ou des techniques de moulage-galvanoplastie,
    c) si nécessaire, fixation d'une plaque de couverture avec les dynodes, ou mise en place d'une paroi transparente à la lumière avec des photocathodes et fermeture avec une plaque de couverture.
  14. Procédé selon la revendication 13, caractérisé en ce qu'après l'étape b) on dépose sur les dynodes une couche supplémentaire en matériau à coefficient d'électrons secondaires élevé.
  15. Procédé selon la revendication 14, caractérisé en ce que sur les dynodes on dépose de l'étain électrolytique et qu'ensuite on l'oxyde par voie chimique humide.
  16. Procédé selon la revendication 13, caractérisé en ce qu'on rend légèrement conducteurs les domaines isolants compris entre les pistes conductrices, par dépôt d'une couche superficielle appropriée.
EP88103116A 1987-03-20 1988-03-02 Multiplicateur d'électrons secondaires miniaturisé et son procédé de fabrication Expired - Lifetime EP0283773B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT88103116T ATE76537T1 (de) 1987-03-20 1988-03-02 Mikro-sekundaerelektronenvervielfacher und verfahren zu seiner herstellung.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3709298 1987-03-20
DE19873709298 DE3709298A1 (de) 1987-03-20 1987-03-20 Micro-sekundaerelektronenvervielfacher und verfahren zu seiner herstellung

Publications (3)

Publication Number Publication Date
EP0283773A2 EP0283773A2 (fr) 1988-09-28
EP0283773A3 EP0283773A3 (en) 1990-02-07
EP0283773B1 true EP0283773B1 (fr) 1992-05-20

Family

ID=6323660

Family Applications (1)

Application Number Title Priority Date Filing Date
EP88103116A Expired - Lifetime EP0283773B1 (fr) 1987-03-20 1988-03-02 Multiplicateur d'électrons secondaires miniaturisé et son procédé de fabrication

Country Status (5)

Country Link
US (1) US4990827A (fr)
EP (1) EP0283773B1 (fr)
JP (1) JPS63279553A (fr)
AT (1) ATE76537T1 (fr)
DE (1) DE3709298A1 (fr)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5077504A (en) * 1990-11-19 1991-12-31 Burle Technologies, Inc. Multiple section photomultiplier tube
FR2676862B1 (fr) * 1991-05-21 1997-01-03 Commissariat Energie Atomique Structure multiplicatrice d'electrons en ceramique notamment pour photomultiplicateur et son procede de fabrication.
US5545367A (en) * 1992-04-15 1996-08-13 Soane Technologies, Inc. Rapid prototype three dimensional stereolithography
US5264693A (en) * 1992-07-01 1993-11-23 The United States Of America As Represented By The Secretary Of The Navy Microelectronic photomultiplier device with integrated circuitry
US5412265A (en) * 1993-04-05 1995-05-02 Ford Motor Company Planar micro-motor and method of fabrication
US5656807A (en) * 1995-09-22 1997-08-12 Packard; Lyle E. 360 degrees surround photon detector/electron multiplier with cylindrical photocathode defining an internal detection chamber
WO1998019341A1 (fr) 1996-10-30 1998-05-07 Nanosystems, Inc. Multiplicateur d'electrons a microdynode
US6115634A (en) * 1997-04-30 2000-09-05 Medtronic, Inc. Implantable medical device and method of manufacture
US5943223A (en) * 1997-10-15 1999-08-24 Reliance Electric Industrial Company Electric switches for reducing on-state power loss
EP1445670A1 (fr) * 2003-02-06 2004-08-11 ETA SA Manufacture Horlogère Suisse Spiral de résonateur balancier-spiral et son procédé de fabrication
GB2409927B (en) * 2004-01-09 2006-09-27 Microsaic Systems Ltd Micro-engineered electron multipliers
US7317283B2 (en) * 2005-03-31 2008-01-08 Hamamatsu Photonics K.K. Photomultiplier
US7427835B2 (en) * 2005-03-31 2008-09-23 Hamamatsu Photonics K.K. Photomultiplier including a photocathode, a dynode unit, a focusing electrode, and an accelerating electrode
US7397184B2 (en) * 2005-03-31 2008-07-08 Hamamatsu Photonics K.K. Photomultiplier
EP1818736A1 (fr) * 2006-02-09 2007-08-15 The Swatch Group Research and Development Ltd. Virole anti-choc
DE102015200739B3 (de) 2015-01-19 2016-03-24 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Kreisbeschleuniger zur beschleunigung von ladungsträgern und verfahren zur herstellung eines kreisbeschleunigers

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2674661A (en) * 1948-08-12 1954-04-06 Rca Corp Electron multiplier device
US2836760A (en) * 1955-03-08 1958-05-27 Egyesuelt Izzolampa Electron multiplier
US2868994A (en) * 1955-10-24 1959-01-13 Rca Corp Electron multiplier
US4041343A (en) * 1963-07-12 1977-08-09 International Telephone And Telegraph Corporation Electron multiplier mosaic
US3551841A (en) * 1967-01-30 1970-12-29 Philips Corp Thin film laser device employing an optical cavity
FR2000354A1 (fr) * 1968-01-18 1969-09-05 Matsushita Electric Ind Co Ltd
GB1434053A (en) * 1973-04-06 1976-04-28 Mullard Ltd Electron multipliers
DE2338481C2 (de) * 1973-07-28 1985-07-04 Kernforschungszentrum Karlsruhe Gmbh, 7500 Karlsruhe Vorrichtung zur schnellen Messung der zeitlichen Änderung der Strahlungsintensität
US4034255A (en) * 1975-11-28 1977-07-05 Rca Corporation Vane structure for a flat image display device
FR2445018A1 (fr) * 1978-12-22 1980-07-18 Anvar Tube multiplicateur d'electrons a champ magnetique axial
JPS6042573B2 (ja) * 1979-01-24 1985-09-24 浜松ホトニクス株式会社 二次電子増倍電極
JPS5856781B2 (ja) * 1980-07-07 1983-12-16 日景 ミキ子 仲介材を使用したねじ止め工法
FR2549288B1 (fr) * 1983-07-11 1985-10-25 Hyperelec Element multiplicateur d'electrons, dispositif multiplicateur d'electrons comportant cet element multiplicateur et application a un tube photomultiplicateur
DE8415886U1 (de) * 1984-05-24 1984-08-23 Kernforschungszentrum Karlsruhe Gmbh, 7500 Karlsruhe Vorrichtung zur schnellen messung der strahlungsintensitaet

Also Published As

Publication number Publication date
EP0283773A2 (fr) 1988-09-28
ATE76537T1 (de) 1992-06-15
JPS63279553A (ja) 1988-11-16
DE3709298A1 (de) 1988-09-29
US4990827A (en) 1991-02-05
DE3709298C2 (fr) 1990-02-08
EP0283773A3 (en) 1990-02-07

Similar Documents

Publication Publication Date Title
EP0283773B1 (fr) Multiplicateur d'électrons secondaires miniaturisé et son procédé de fabrication
DE102005040267B4 (de) Verfahren zum Herstellen einer mehrschichtigen elektrostatischen Linsenanordnung, insbesondere einer Phasenplatte und derartige Phasenplatte
DE4024275C2 (fr)
DE2719930C2 (de) Röntgenstrahlendetektor
EP0212054B1 (fr) Procédé pour la fabrication de masques pour rayons X
DE1089895B (de) Elektronischer Bildverstaerker
DE2453772A1 (de) Schnellansprechende kamera fuer bildwandlerroehren
EP0154796B1 (fr) Procédé de fabrication d'un empilement de plaques multicanaux métalliques pour intensificateur d'images et utilisation de plaques ainsi fabriquées
DE2759043C2 (de) Vorrichtung zur Umwandlung von Lichtenergie in elektrische Engergie durch Photoemission
EP0618502B1 (fr) Procédé pour la fabrication de garnitures de moulage étagées; garnitures de moulage étagées ainsi que des microstructures à haute précision réalisées à partir de ces moules
EP0154797A2 (fr) Procédé de fabrication de plaques multicanaux et leur utilisation
EP0085979A1 (fr) Procédé de fabrication de grilles métalliques autoportantes
DE2416186B2 (de) Maske zur strukturierung duenner schichten
DE2420001A1 (de) Speichertarget fuer eine kathodenstrahlroehre und verfahren zu dessen herstellung
DE2448793C3 (de) Elektronische Bildverstärker- oder Bildwandlerröhre und Verfahren zu ihrer Herstellung
DE2633619C2 (de) Speicherplatte für eine Kathodenstrahlröhre und Verfahren zu deren Herstellung
DE102004006998B4 (de) Ionendetektor
DE2448793B2 (de) Elektronische Bildverstärker- oder Bildwandlerröhre und Verfahren zu ihrer Herstellung
DE1037610B (de) Elektronenvervielfacher mit einer zwischen Kathode und Leuchtschirm angeordneten Vielzahl von Dynoden, bei denen die Traeger der Sekundaer-elektronen-Emissionsschichten gitterartige Gebilde sind
DE2819114C3 (de) Ionenimplantationsanordnung mit Steuerung des Auffangscheiben-Oberflächenpotentials
EP3021351A1 (fr) Multiplicateur d'electrons secondaire et son procede de fabrication
DE2423928A1 (de) Verfahren zum aufzeichnen von elektrostatischen ladungsbildern
DE2401662A1 (de) Elektronenvervielfacher
EP1565764B1 (fr) Dispositif de mesure sensible a l'emplacement spatial
DE69734880T2 (de) Elektronenvervielfacher

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT CH FR GB IT LI NL SE

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT CH FR GB IT LI NL SE

17P Request for examination filed

Effective date: 19900131

17Q First examination report despatched

Effective date: 19911002

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT CH FR GB IT LI NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 19920520

Ref country code: SE

Effective date: 19920520

REF Corresponds to:

Ref document number: 76537

Country of ref document: AT

Date of ref document: 19920615

Kind code of ref document: T

ET Fr: translation filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Effective date: 19930302

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19940125

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19940127

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19940330

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19940331

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19950302

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Effective date: 19950331

Ref country code: LI

Effective date: 19950331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19951001

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19950302

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19951130

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 19951001

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST