DE3408848C2 - Verfahren zur Herstellung von Vielkanalplatten - Google Patents
Verfahren zur Herstellung von VielkanalplattenInfo
- Publication number
- DE3408848C2 DE3408848C2 DE3408848A DE3408848A DE3408848C2 DE 3408848 C2 DE3408848 C2 DE 3408848C2 DE 3408848 A DE3408848 A DE 3408848A DE 3408848 A DE3408848 A DE 3408848A DE 3408848 C2 DE3408848 C2 DE 3408848C2
- Authority
- DE
- Germany
- Prior art keywords
- channel
- produced
- mold
- channels
- plate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 19
- 238000000034 method Methods 0.000 title claims abstract description 18
- 239000002184 metal Substances 0.000 claims abstract description 19
- 229910052751 metal Inorganic materials 0.000 claims abstract description 19
- 239000000463 material Substances 0.000 claims abstract description 8
- 230000005855 radiation Effects 0.000 claims abstract description 7
- 230000003287 optical effect Effects 0.000 claims abstract description 5
- 230000001678 irradiating effect Effects 0.000 claims abstract 2
- 238000000465 moulding Methods 0.000 claims description 7
- 230000003321 amplification Effects 0.000 claims description 3
- 238000010276 construction Methods 0.000 claims description 3
- 238000009826 distribution Methods 0.000 claims description 3
- 238000003199 nucleic acid amplification method Methods 0.000 claims description 3
- 150000001875 compounds Chemical class 0.000 claims description 2
- 238000000151 deposition Methods 0.000 abstract 1
- 239000011521 glass Substances 0.000 description 13
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 6
- 239000004926 polymethyl methacrylate Substances 0.000 description 6
- 238000005530 etching Methods 0.000 description 5
- 238000009713 electroplating Methods 0.000 description 4
- 239000011347 resin Substances 0.000 description 4
- 229920005989 resin Polymers 0.000 description 4
- 229910001030 Iron–nickel alloy Inorganic materials 0.000 description 3
- 229910045601 alloy Inorganic materials 0.000 description 3
- 239000000956 alloy Substances 0.000 description 3
- 239000003795 chemical substances by application Substances 0.000 description 3
- 229910000464 lead oxide Inorganic materials 0.000 description 3
- YEXPOXQUZXUXJW-UHFFFAOYSA-N oxolead Chemical compound [Pb]=O YEXPOXQUZXUXJW-UHFFFAOYSA-N 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 230000005469 synchrotron radiation Effects 0.000 description 3
- 239000006096 absorbing agent Substances 0.000 description 2
- 230000001133 acceleration Effects 0.000 description 2
- 238000005229 chemical vapour deposition Methods 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 239000005355 lead glass Substances 0.000 description 2
- 230000003071 parasitic effect Effects 0.000 description 2
- 238000001259 photo etching Methods 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 description 2
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical group C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical group OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000007772 electrode material Substances 0.000 description 1
- 239000010408 film Substances 0.000 description 1
- 238000007499 fusion processing Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000009499 grossing Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 238000010309 melting process Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000012778 molding material Substances 0.000 description 1
- 238000002161 passivation Methods 0.000 description 1
- 229920002120 photoresistant polymer Polymers 0.000 description 1
- 150000003141 primary amines Chemical class 0.000 description 1
- 239000011164 primary particle Substances 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J43/00—Secondary-emission tubes; Electron-multiplier tubes
- H01J43/04—Electron multipliers
- H01J43/06—Electrode arrangements
- H01J43/18—Electrode arrangements using essentially more than one dynode
- H01J43/24—Dynodes having potential gradient along their surfaces
- H01J43/246—Microchannel plates [MCP]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J9/00—Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
- H01J9/02—Manufacture of electrodes or electrode systems
- H01J9/12—Manufacture of electrodes or electrode systems of photo-emissive cathodes; of secondary-emission electrodes
- H01J9/125—Manufacture of electrodes or electrode systems of photo-emissive cathodes; of secondary-emission electrodes of secondary emission electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J2201/00—Electrodes common to discharge tubes
- H01J2201/32—Secondary emission electrodes
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Electron Tubes For Measurement (AREA)
- Paper (AREA)
- Blow-Moulding Or Thermoforming Of Plastics Or The Like (AREA)
Abstract
Die Erfindung betrifft ein Verfahren zur Herstellung von Vielkanalplatten für die Verstärkung von optischen Bildern oder anderen flächenhaften Signalverteilungen mittels Sekundärelektronenvervielfachung sowie einen nach diesem Verfahren hergestellten Stapel von Vielkanalplatten. Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren zur Herstellung von Vielkanalplatten der gattungsgemäßen Art vorzuschlagen, bei dem die Querschnitte und Positionen der einzelnen Kanäle genau vorgegeben werden können. Die Lösung ist dadurch gekennzeichnet, daß in einer Platte aus durch energiereiche Strahlung in seinen Eigenschaften veränderbarem Material durch partielles Bestrahlen und partielles Entfernen dieses Materials unter Ausnutzung der durch die Bestrahlung erzeugten unterschiedlichen Materialeigenschaften senkrecht oder schräg zur Plattenoberfläche Kanäle mit vorgegebenen Querschnitten und Positionen eingearbeitet werden, daß von der so entstandenen Vielkanal-Positiv-Form unter Verwendung einer mit ihr verbundenen Metallelektrode durch galvanische Abformung und anschließende Entfernung der Vielkanal-Positiv-Form eine metallische Negativ-Form hergestellt wird, daß die metallische Negativ-Form mit einem für den Aufbau von Vielkanalplatten geeigneten Material aufgefüllt und anschließend die metallische Negativ-Form entfernt wird.
Description
- Die Erfindung betrifft ein Verfahren zur Herstellung von Vielkanalplatten für die Verstärkung von optischen Bildern oder anderen flächenhaften Signalverteilungen mittels Sekundärelektronenvervielfachung sowie die Verwendung eines nach diesem Verfahren hergestellten Stapels von Vielkanalplatten.
- Es ist bekannt, optische Bilder oder andere flächenhafte Signalverteilungen mit einer sogenannten Vielkanal-Bildverstärkerplatte (andere Bezeichnung: Kanal-Vervielfacherplatte, Multi- bzw. Micro-Channel-Plate) zu verstärken. Sie besteht aus einer etwa 1 mm dicken in einem evakuierten Gefäß eingeschlossenen Glasplatte, die senkrecht oder schräg zur Oberfläche von vielen eng benachbarten Kanälen von etwa 30 Mikrometer Durchmesser durchsetzt ist. Durch Verwendung Bleioxyd-haltiger Gläser und eine Nachbehandlung mit reduzierenden Gasen bei erhöhter Temperatur sind die inneren Oberflächen der Kanäle schwach elektrisch leitend gemacht. Durch Anlegen einer Spannung von etwa 1000 Volt zwischen den mit Metallüberzügen versehenen Oberflächen der Platte wird in den Kanälen ein Potentialgefälle erzeugt, wodurch jeder Kanal die Eigenschaften eines Sekundärelektronenvervielfachers erhält. Eine Schrägstellung der Kanäle begünstigt die Kollision der Primärteilchen mit den Kanalwänden und damit die gewünschte Elektronenauslösung. Daneben ermöglicht sie den Aufbau eines Plattenstapels mit zick-zack-förmiger Kanalstruktur, die die unerwünschte Beschleunigung parasitärer Ionen unterdrückt. Eine ähnliche Wirkung kann durch eine schwache Krümmung der Kanäle erreicht werden.
- Für die Vielkanalplatten sind mehrere Herstellungsverfahren bekannt: vgl. z. B. Michael Lampton, Spektrum der Wissenschaften, Januar 1982, S. 44-55, aus Scientific American, November 1981. Auch die Verwendung von solchen Vielkanalplatten ist aus dieser Literaturstelle bekannt.
- Beim sog. Metallkernverfahren wird ein feiner, gleichmäßiger Draht mit erhitztem Glas beschichtet und um eine polygonale Trommel gewickelt. Aus der Wicklung schneidet man einzelne Blöcke heraus und verschmilzt die Glasüberzüge der Drähte miteinander. Anschließend wird der Block in dünne Scheiben zerschnitten, aus denen man die Drahtkerne durch Ätzen entfernt. Ein wesentlicher Nachteil des beschriebenen Metallkernverfahrens wird in der Tatsache gesehen, daß die Metallkerne und damit die Kanäle zwar einheitliche Durchmesser haben, ihre Abstände aber stark voneinander abweichen.
- Bei einem anderen Herstellungsverfahren ätzt man auf photolithographischem Weg feine parallele Rillen in die Oberflächen dünner Glasplatten. Die Platten werden so gestapelt, daß die Rillen aufeinanderliegender Platten gemeinsam die gewünschten Kanäle bilden. Danach werden die Platten zu Blöcken zusammengeschmolzen aus denen dann die Vielkanalplatten geschnitten werden. Für diese Methode spricht, daß sich der Abstand der Rillen bei der photolithographischen Ätzung genau regulieren läßt. Auch kann man nach dieser Methode die Kanäle relativ leicht gekrümmt oder zickzackförmig herstellen. Allerdings zeigte sich, daß Breite und Tiefe der Rillen während der Ätzung und des Schmelzprozesses kaum zu kontrollieren sind. Die Folge ist, daß die Vielkanalplatten das Bild bei der Verstärkung so stark verzerren, daß man das Verfahren schließlich aufgeben mußte.
- Heute werden Vielkanalplatten gewöhnlich nach dem sogenannten Doppelziehverfahren hergestellt: Dabei werden hohle oder mit einem leichter löslichen Glas gefüllte Glaszylinder zu Glasfäden ausgezogen, die gebündelt, verschmolzen und weiter ausgezogen werden, wonach die Vorgänge des Bündelns und Verschmelzens wiederholt werden. Das endgültige Bündel wird in etwa 1 mm dicke Platten zerschnitten, aus denen die auf einen Durchmesser von etwa 30 µm heruntergezogenen Kerne aus leichter löslichem Glas herausgelöst werden. Auch beim Doppelziehverfahren müssen aufgrund des Herstellungsprinzips gewisse Streuungen in den Querschnitten und Positionen der Kanäle in Kauf genommen werden.
- Die Streuung in den Querschnitten und Positionen der Kanäle bei den vorbekannten Vielkanalplatten verhindert oder erschwert die genaue Zuordnung von anderen mit Methoden der Mikrofertigung hergestellten optischen und/oder elektrischen Bauteilen zu einzelnen Kanälen oder Kanalgruppen des Bildverstärkers. Eine solche Zuordnung ist aber beispielsweise für die getrennte elektrische Weiterverarbeitung der von den einzelnen Kanälen oder Kanalgruppen gelieferten elektrischen Ströme von Bedeutung. Die Streuung in den Querschnitten und Positionen der Kanäle bei den vorbekannten Vielkanalplatten ist auch dafür verantwortlich, daß sich bei dem eingangs erwähnten Aufbau eines Plattenstapels mit zick-zack-förmiger Kanalstruktur erhebliche Verluste im Auflösungsvermögen ergeben.
- Aus der DE-OS 31 50 257 und der DE-PS 24 14 658 sind geschichtete Vielkanalplatten für Bildverstärker mit Dynoden in Form von perforierten Dynodenplatten bekannt, bei denen als bevorzugtes Verfahren für die Herstellung des Kanalsystems die Photoätztechnik vorgeschlagen wird. Dabei wird durch belichtete und entwickelte Photolackmasken hindurch das Dynodenmaterial, z. B. eine BeCu-Legierung, geätzt. Mit dieser Technik werden in der Praxis gute Ergebnisse erzielt, wenn die Durchmesser der Kanäle und die Dicke der Dynode ungefähr gleich sind (siehe Spalte 3, Zeilen 5 bis 10 der DE-PS 24 14 658). Bei Vielkanalplatten, deren Dicke erheblich größer ist als der Durchmesser der einzuarbeitenden Kanäle, läßt sich die Photoätztechnik nicht mehr mit dem gewünschten Erfolgt anwenden (s. a. Spektrum der Wissenschaft, Jan. 1982, S. 49, linke Spalte, Zeilen 26 ff).
- Ausgehend von dem zuletzt erörterten Stande der Technik liegt der Erfindung die Aufgabe zugrunde, ein Verfahren zur Herstellung von Vielkanalplatten der gattungsgemäßen Art sowie deren Verwendung aufzuzeigen, bei dem bei genau vorgegebenen Querschnitten und Positionen der einzelnen Kanäle die Dicke der Platten ein vielfaches der Kanaldurchmesser betragen kann.
- Diese Aufgabe wird durch die im Kennzeichen des Anspruchs 1 angegebenen Merkmale gelöst.
- Mit dem erfindungsgemäßen Herstellungsverfahren lassen sich auch bei relativ dicken Vielkanalplatten die Querschnittsformen und die Positionen der einzelnen Kanäle mit einer Toleranz in der Größenordnung von einem Mikrometer vorgeben. Das Verfahren hat darüber hinaus den Vorteil, daß mit ihm ein besonders großes Verhältnis von Summe der Kanalquerschnittsflächen zur Gesamtfläche der Platte d. h. eine besonders hohe Transparenz der Vielkanalplatte erreicht werden kann.
- Als energiereiche Strahlung kommen sowohl Korpuskularstrahlen als auch elektromagnetische Wellen, insbesondere die von einem Elektronensynchrotron erzeugte Röntgenstrahlung (Synchrotronstrahlung), in Frage. Während man bei der Verwendung elektromagnetischer Wellen zur Erzeugung der gewünschten Strukturen in bekannter Weise mit Masken arbeitet, kann man bei Verwendung von Korpuskularstrahlen die Struktur auch durch elektromagnetische Steuerung erzeugen.
- Das Material für die Herstellung der Vielkanal-Positivformen gemäß Anspruch 1 bzw. der primären Vielkanalpositivformen gemäß Anspruch 2 richtet sich nach der Art der energiereichen Strahlung, wobei entsprechende Vorschriften beispielsweise der DE-PS 29 22 642 und der DE-OS 32 21 981 entnommen werden können.
- Die Herstellung der metallischen Vielkanal-Negativ-Form erfolgt durch galvanische Abformung der mit einer Metallelektrode verbundenen Vielkanal-Positiv-Form. Dabei kann die Metallelektrode als Grundplatte der metallischen Vielkanal-Negativ-Form verwendet werden. Es ist aber auch möglich, die galvanische Abscheidung von Metall solange fortzusetzen, bis die Vielkanal-Positiv-Form von einer durchgehenden Metallschicht bedeckt ist, die, gegebenenfalls nach einer Glättung ihrer Oberfläche, als Grundplatte der metallischen Vielkanal-Negativ-Form verwendet wird. Durch geeignete Wahl des Elektrodenmaterials, gegebenenfalls in Verbindung mit einer Passivierung seiner Oberfläche, kann in diesem Fall ein Haften der Galvanik an der Elektrode in bekannter Weise verhindert werden. Es ist dann möglich, die Vielkanal- Positiv-Form samt der mit ihr verbundenen Elektrode ohne Beschädigung von der erzeugten Vielkanal-Negativ-Form zu trennen, was eine wiederholte Benutzung der Vielkanal- Positiv-Form möglich macht.
- Zur Fixierung der Positionen der metallischen Negativ- Formen der Kanäle kann es vorteilhaft sein, die freien Enden der säulenförmigen Negativ-Formen durch Metallbrücken miteinander zu verbinden.
- Zum Auffüllen der metallischen Vielkanal-Negativ-Form kann das zu Herstellung der vorbekannten Vielkanalplatten verwendete Bleioxyd enthaltende Glas benutzt werden. Das Glas kann eingeschmolzen oder, unter Verwendung von Glaspulver, eingesintert werden. Für das Auffüllen kommen aber auch andere elektrisch nicht oder nur schwach leitende Materialien beispielsweise Al2O3-Pulver, in Frage, das sich bei höherer Temperatur ebenfalls zu einem formbeständigen Körper zusammensintern läßt. Zur Erzielung einer ausreichenden elektrischen Leitfähigkeit muß dabei gegebenenfalls die bei den bleioxydhaltigen Gläsern übliche Nachbehandlung mit H2 durch eine andere Nachbehandlung z. B. nach der bekannten CVD-Methode ("Chemical vapor deposition") ersetzt werden.
- Zur Verbilligung der Massenfertigung von Vielkanalplatten der im Oberbegriff von Anspruch 1 beschriebenen Art kann das Verfahren der Erfindung entsprechend Anspruch 2 abgewandelt werden, wobei Einzelheiten in bezug auf die Abformung beispielsweise der DE-PS 32 06 820 zu entnehmen sind. Als Abformmasse sind besonders nichthaftende Reaktionsharze geeignet.
- Zur Unterdrückung der unerwünschten Beschleunigung parasitärer Ionen können erfindungsgemäß hergestellte Vielkanalplatten mit zur Plattenoberfläche schrägen Kanälen auch stapelartig so zusammengesetzt werden, daß sich zick-zack-förmige Kanalstrukturen ergeben. Während beim Stapeln vorbekannter Vielkanalplatten aufgrund der unvermeidlichen Streuung in den Querschnitten und Positionen der Kanäle Einbußen im räumlichen Auflösungsvermögen in Kauf genommen werden müssen, kann das Stapeln bei den erfindungsgemäß hergestellten Vielkanalplatten durch gegenseitiges Ausrichten der Kanalöffnungen unter weitgehender Vermeidung dieses Nachteils erfolgen.
- Das erfindungsgemäße Verfahren wird im folgenden anhand der Zeichnung beispielhaft erläutert:
- Die Fig. 1 bis 7 zeigen schematisch die einzelnen Schritte der Herstellung einer Vielkanalplatte;
- Fig. 8 zeigt in perspektivischer Darstellung schematisch den Aufbau eines Stapels von Vielkanalplatten.
- Als Ausgangsmaterial für die Herstellung der Vielkanalpositiv-Form dient gemäß Fig. 1 eine 0,5 mm starke Platte 1 aus Polymethylmethacrylat (PMMA), die festhaftend auf einer als Elektrode dienenden metallischen Grundplatte 2 aus einer Eisen-Nickel-Legierung aufgebracht ist. Die PMMA-Platte 1 wird gemäß Fig. 2 über eine Röntgenmaske mit Synchrotronstrahlung 3 bestrahlt, die schräg zu den Oberflächen der PMMA-Platte und der Röntgenmaske gerichtet ist. Die Röntgenmaske besteht aus einem die Röntgenstrahlung nur schwach absorbierenden Träger 4 und einem die Röntgenstrahlung stark absorbierenden, gitterartigen Absorber 5, durch den die Querschnittsformen und die Positionen der Kanäle vorgegeben werden. Durch die hochintensive parallele Synchrotonstrahlung wird das PMMA in den nicht vom Absorber abgedeckten Bereichen 6 strahlenchemisch verändert. Die bestrahlten Bereiche 6 werden durch Einbringen des PMMA in eine Entwicklerlösung entfernt, so daß eine Vielkanalpositiv-Form 7 mit kanalförmigen Durchbrüchen 8 gemäß Fig. 3 entsteht. Als Entwicklerlösung wird ein Gemisch aus einem Stoff der Glykoläther-Gruppe, einem Stoff der Primär-Amine sowie Wasser und einem Stoff der Azingruppe gemäß DE-OS 30 39 110 verwendet. Die kanalförmigen Durchbrüche 8 haben eine sechseckige Querschnittsform mit einer Weite von ca. 30 µm, die Stärke der Wände 8 a beträgt ca. 3 µm.
- Im nächsten Fertigungsschritt wird gemäß Fig. 4 eine Eisen-Nickel-Legierung galvanisch in die kanalförmigen Durchbrüche 8 abgeschieden, wobei säulenartige Strukturen 9 aus dieser Legierung auf der elektrisch leitenden Grundplatte 2 in der gitterförmigen Vielkanalpositiv-Form 7 ausgebildet werden. Die Vielkanalpositiv- Form wird dann durch Auflösen in einem Lösungsmittel entfernt, so daß eine metallische Negativ-Form der Vielkanalplatte gemäß Fig. 5 freigelegt wird.
- In den weiteren Fertigungsschritten werden die Zwischenräume 10 zwischen den säulenartigen Strukturen 9 der metallischen Negativ-Form mit einer Bleiglasschmelze 11 unter Vakuum aufgefüllt (Fig. 6). Durch die Verwendung der oben erwähnten Eisen-Nickel-Legierung kann dabei sichergestellt werden, daß das Bleiglas und die Legierung annähernd gleiche thermische Ausdehnungskoeffizienten besitzen, so daß die beim Abkühlen auftretenden Spannungen nicht zu einer Rißbildung im Glas führen. Die als Glas 11 und Metall 9 bestehende Struktur wird schließlich überschliffen, und das Metall 9 wird durch Auflösen in einer selektiven Ätze entfernt.
- Die mit den Durchbrüchen 12 versehene Vielkanalplatte wird schließlich in bekannter Weise durch Aufsputtern von Metall beidseitig mit dünnen Leitschichten 13 überzogen, während die inneren Oberflächen der Kanäle durch Erhitzen in Wasserstoff elektrisch schwach leitend gemacht werden (Fig. 7).
- Bei der Durchführung des Verfahrens gemäß Anspruch 2 wird die primäre metallische Negativ-Form, die der in Fig. 5 gezeigten Form entspricht, mit einem nicht auf dem Metall haftenden Reaktionsharz als Abformmasse aufgefüllt über die säulenförmigen Strukturen der metallischen Negativ-Formen hinaus. Nach dem Aushärten des Reaktionsharzes werden die daraus gebildete sekundäre Vielkanalpositiv-Form und die primäre metallische Negativ-Form voneinander getrennt, worauf die sekundäre Vielkanalpositiv-Form mit der die Öffnungen aufweisenden Seite auf eine als Elektrode dienende metallische Grundplatte fest aufgebracht wird. Die auf der Oberseite geschlossene sekundäre Vielkanalpositiv-Form wird dann soweit abgetragen, daß die Kanalöffnungen freiliegen. Durch anschließende galvanische Abformung werden sekundäre metallische Negativ-Formen erzeugt, die wiederum der in Fig. 5 gezeigten Form entsprechen. Der weitere Fortgang der Herstellung der Vielkanalplatte erfolgt gemäß den bereits anhand der Fig. 6 und 7 erläuterten Fertigungsschritte.
- Die aus dem Reaktionsharz hergestellten sekundären Vielkanalpositiv-Formen können ebenfalls mehrfach galvanisch abgeformt werden. Zur besseren Trennung der mehrfach verwendbaren sekundären Vielkanalpositiv-Form von den sekundären Vielkanalnegativ-Formen erweist es sich als vorteilhaft, vor der galvanischen Abformung einen dünnen Trennmittelfilm auf die Kanalwände der sekundären Vielkanalpositiv-Form aufzubringen. Die Aufbringung des Trennmittelfilms erfolgt in bekannter Weise durch Eintauchen in eine Trennmittellösung.
Claims (3)
1. Verfahren zur Herstellung von Vielkanalplatten für die Verstärkung von optischen Bildern oder anderen flächenhaften Signalverteilungen mittels Sekundärelektronenvervielfachung, dadurch gekennzeichnet, daß
a) zunächst eine Vielkanal-Positiv-Form (7) hergestellt wird, indem in eine Platte (1) aus durch energiereiche Strahlung in seinen Eigenschaften veränderbarem Material durch partielles Bestrahlen und partielles Entfernen dieses Materials unter Ausnutzung der durch die Bestrahlung erzeugten unterschiedlichen Materialeigenschaften senkrecht oder schräg zur Plattenoberfläche Kanäle (8) mit vorgegebenen Querschnitten und Positionen eingearbeitet werden,
b) von der so entstandenen Vielkanal-Positiv-Form (7) unter Verwendung einer mit ihr verbundenen Metallelektrode (2) durch galvanische Abformung und anschließende Entfernung der Vielkanal-Positiv-Form eine metallische Negativ-Form (9) hergestellt wird, und
c) die metallische Negativ-Form (9) mit einem für den Aufbau von Vielkanalplatten geeigneten Material (11) aufgefüllt und anschließend die metallische Negativ- Form entfernt wird.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß nach Schritt b) durch wiederholtes Abformen der primären metallischen Negativ-Form mit einer Abformmasse mehrere sekundäre Vielkanal-Positiv-Formen hergestellt werden, und daß von den so entstandenen sekundären Vielkanal- Positiv-Formen unter Verwendung von mit ihnen verbundenen Metallelektroden durch galvanische Abformung und anschließende Entfernung der sekundären Vielkanal-Positiv- Formen sekundäre metallische Negativ-Formen hergestellt werden, die gemäß Schritt c) mit einem für den Aufbau von Vielkanalplatten geeigneten Material aufgefüllt und anschließend entfernt werden.
3. Verwendung von nach einem der Ansprüche 1 oder 2 hergestellten Vielkanalplatten zur Bildung eines Stapels aus mindestens zwei Vielkanalplatten mit zur Plattenoberfläche schrägen Kanälen (2), bei denen die miteinander ausgerichteten Kanäle von aufeinanderfolgenden Vielkanalplatten zickzackförmige Strukturen bilden (Fig. 8).
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE3408848A DE3408848C2 (de) | 1984-03-10 | 1984-03-10 | Verfahren zur Herstellung von Vielkanalplatten |
EP85101038A EP0154797B1 (de) | 1984-03-10 | 1985-02-01 | Verfahren zur Herstellung von Vielkanalplatten und deren Verwendung |
AT85101038T ATE37757T1 (de) | 1984-03-10 | 1985-02-01 | Verfahren zur herstellung von vielkanalplatten und deren verwendung. |
US06/708,841 US4563250A (en) | 1984-03-10 | 1985-03-06 | Method for producing multichannel plates |
BR8501058A BR8501058A (pt) | 1984-03-10 | 1985-03-08 | Processo para produzir uma placa de canais multiplos e estrutura |
JP60046718A JPS60208041A (ja) | 1984-03-10 | 1985-03-11 | マルチチヤンネル板の製造方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE3408848A DE3408848C2 (de) | 1984-03-10 | 1984-03-10 | Verfahren zur Herstellung von Vielkanalplatten |
Publications (2)
Publication Number | Publication Date |
---|---|
DE3408848A1 DE3408848A1 (de) | 1985-09-19 |
DE3408848C2 true DE3408848C2 (de) | 1987-04-16 |
Family
ID=6230128
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
DE3408848A Expired DE3408848C2 (de) | 1984-03-10 | 1984-03-10 | Verfahren zur Herstellung von Vielkanalplatten |
Country Status (6)
Country | Link |
---|---|
US (1) | US4563250A (de) |
EP (1) | EP0154797B1 (de) |
JP (1) | JPS60208041A (de) |
AT (1) | ATE37757T1 (de) |
BR (1) | BR8501058A (de) |
DE (1) | DE3408848C2 (de) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3841621A1 (de) * | 1988-12-10 | 1990-07-12 | Draegerwerk Ag | Elektrochemische messzelle mit mikrostrukturierten kapillaroeffnungen in der messelektrode |
DE10305427A1 (de) * | 2003-02-03 | 2004-08-12 | Siemens Ag | Herstellungsverfahren für eine Lochscheibe sowie einteilige Lochscheibe zum Ausstoßen eines Fluids |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0413482B1 (de) * | 1989-08-18 | 1997-03-12 | Galileo Electro-Optics Corp. | Kontinuierliche Dünnschicht-Dynoden |
US5189777A (en) * | 1990-12-07 | 1993-03-02 | Wisconsin Alumni Research Foundation | Method of producing micromachined differential pressure transducers |
US5206983A (en) * | 1991-06-24 | 1993-05-04 | Wisconsin Alumni Research Foundation | Method of manufacturing micromechanical devices |
US5190637A (en) * | 1992-04-24 | 1993-03-02 | Wisconsin Alumni Research Foundation | Formation of microstructures by multiple level deep X-ray lithography with sacrificial metal layers |
US5378583A (en) * | 1992-12-22 | 1995-01-03 | Wisconsin Alumni Research Foundation | Formation of microstructures using a preformed photoresist sheet |
EP0872331A1 (de) * | 1997-04-16 | 1998-10-21 | Matsushita Electric Industrial Co., Ltd. | Prägeplatten-Schutzschicht für eine Vorrichtung zum Spritzgiessen eines optischen Informationsträgers, Vorrichtung zum Spritzgiessen eines optischen Informationsträgers, Verfahren zum Spritzgiesen eines optischen Informationsträgers mit dem Prägeplatten-Schutzschicht |
US6521149B1 (en) * | 2000-06-06 | 2003-02-18 | Gerald T. Mearini | Solid chemical vapor deposition diamond microchannel plate |
US7154086B2 (en) * | 2003-03-19 | 2006-12-26 | Burle Technologies, Inc. | Conductive tube for use as a reflectron lens |
US20080073516A1 (en) * | 2006-03-10 | 2008-03-27 | Laprade Bruce N | Resistive glass structures used to shape electric fields in analytical instruments |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4031423A (en) * | 1969-04-30 | 1977-06-21 | American Optical Corporation | Channel structure for multi-channel electron multipliers and method of making same |
GB1434053A (en) * | 1973-04-06 | 1976-04-28 | Mullard Ltd | Electron multipliers |
FR2434480A1 (fr) * | 1978-08-21 | 1980-03-21 | Labo Electronique Physique | Dispositif multiplicateur d'electrons a galettes de microcanaux antiretour optique pour tube intensificateur d'images |
DE2922642C2 (de) * | 1979-06-02 | 1981-10-01 | Kernforschungszentrum Karlsruhe Gmbh, 7500 Karlsruhe | Verfahren zum Herstellen von Platten für den Aufbau von Trenndüsenelementen |
DE3039110A1 (de) * | 1980-10-16 | 1982-05-13 | Siemens AG, 1000 Berlin und 8000 München | Verfahren fuer die spannungsfreie entwicklung von bestrahlten polymethylmetacrylatschichten |
DE3150257A1 (de) * | 1981-12-18 | 1983-06-30 | Siemens AG, 1000 Berlin und 8000 München | Bildverstaerker |
DE3206820C2 (de) * | 1982-02-26 | 1984-02-09 | Kernforschungszentrum Karlsruhe Gmbh, 7500 Karlsruhe | Verfahren zum Herstellen von Trenndüsenelementen |
DE3221981C2 (de) * | 1982-06-11 | 1985-08-29 | Kernforschungszentrum Karlsruhe Gmbh, 7500 Karlsruhe | Verfahren zum Herstellen von aus Trennkörpern mit Abschlußplatten bestehenden Trenndüsenelementen zur Trennung gas- oder dampfförmiger Gemische |
-
1984
- 1984-03-10 DE DE3408848A patent/DE3408848C2/de not_active Expired
-
1985
- 1985-02-01 AT AT85101038T patent/ATE37757T1/de not_active IP Right Cessation
- 1985-02-01 EP EP85101038A patent/EP0154797B1/de not_active Expired
- 1985-03-06 US US06/708,841 patent/US4563250A/en not_active Expired - Fee Related
- 1985-03-08 BR BR8501058A patent/BR8501058A/pt not_active IP Right Cessation
- 1985-03-11 JP JP60046718A patent/JPS60208041A/ja active Granted
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3841621A1 (de) * | 1988-12-10 | 1990-07-12 | Draegerwerk Ag | Elektrochemische messzelle mit mikrostrukturierten kapillaroeffnungen in der messelektrode |
DE10305427A1 (de) * | 2003-02-03 | 2004-08-12 | Siemens Ag | Herstellungsverfahren für eine Lochscheibe sowie einteilige Lochscheibe zum Ausstoßen eines Fluids |
DE10305427B4 (de) * | 2003-02-03 | 2006-05-24 | Siemens Ag | Herstellungsverfahren für eine Lochscheibe zum Ausstoßen eines Fluids |
Also Published As
Publication number | Publication date |
---|---|
JPS60208041A (ja) | 1985-10-19 |
DE3408848A1 (de) | 1985-09-19 |
US4563250A (en) | 1986-01-07 |
ATE37757T1 (de) | 1988-10-15 |
BR8501058A (pt) | 1985-10-29 |
EP0154797A3 (en) | 1986-12-30 |
EP0154797A2 (de) | 1985-09-18 |
EP0154797B1 (de) | 1988-10-05 |
JPH0552618B2 (de) | 1993-08-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0547371B1 (de) | Verfahren zum Herstellen gestufter Formeinsätze | |
DE3408848C2 (de) | Verfahren zur Herstellung von Vielkanalplatten | |
DE3106368C2 (de) | Gleichstrom-Gasentladungsanzeigevorrichtung | |
DE19542658A1 (de) | Integrierte Formeinrichtung und Verfahren zu deren Herstellung | |
DE4024275A1 (de) | Verfahren zur herstellung von mikrostrukturen mit bereichsweise unterschiedlicher strukturhoehe | |
DE102006007431B4 (de) | Durch Halbleitersilizium-Verfahrenstechnik gebildeter Probenträger sowie Verfahren zur Herstellung | |
EP0024515B1 (de) | Verfahren zum Herstellen von Trenndüsenelementen zur Trennung gas-oder dampfförmiger Gemische, insbesondere Isotopengemische, und nach diesem Verfahren hergestellte Trenndüsenelemente | |
EP0283773B1 (de) | Mikro-Sekundärelektronenvervielfacher und Verfahren zu seiner Herstellung | |
DE2700625A1 (de) | Elektrische entladungsvorrichtung | |
DE1002089B (de) | Elektromagnetisches Ablenksystem fuer die Strahlsteuerung einer Kathodenstrahlroehre und Verfahren zur Herstellung eines solchen Ablenksystems | |
DE3909449C2 (de) | ||
DE3408849C2 (de) | Verfahren zur Herstellung geschichteter Vielkanalplatten aus Metall für Bildverstärker und Verwendung der so hergestellten Vielkanalplatten | |
DE3221981C2 (de) | Verfahren zum Herstellen von aus Trennkörpern mit Abschlußplatten bestehenden Trenndüsenelementen zur Trennung gas- oder dampfförmiger Gemische | |
EP0020986B1 (de) | Verfahren zum Herstellen von Trenndüsenelementen zur Trennung gas- oder dampfförmiger Gemische, insbesondere Isotopengemische | |
DE3517729C2 (de) | ||
DE2063578A1 (de) | Verfahren zum Herstellen einer Maskenelektrode für eine Farbfernsehbildrohre mit verengten, vorlaufigen Offnungen | |
DE1275699B (de) | Verfahren zur Herstellung einer magnetischen Duennschichtanordnung | |
EP0010222B1 (de) | Steuerplatte für einen flachen Plasmabildschirm | |
DE102017115940A1 (de) | 3D-Druck-Verfahren und 3D-Druck-Vorrichtung | |
DE1218072B (de) | Sekundaerelektronenvervielfacher und Verfahren zur Herstellung des Vervielfachers | |
DE69710493T2 (de) | Strahlvorrichtung mit puder mit nichtmetallischer strahlmaske | |
DE68908908T2 (de) | Vorrichtung zum Trennen von Uranisotopen. | |
DE2421442A1 (de) | Multiplex-bildschirmaufbau einer farbbildkathodenstrahlroehre und herstellungsverfahren | |
EP0034794A1 (de) | Verfahren zum Herstellen von Trenndüsen für die Isotopentrennung in einer Isotopenanreicherungsanlage | |
AT237059B (de) | Verfahren zur Herstellung eines Magnetkopfes |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
OP8 | Request for examination as to paragraph 44 patent law | ||
8181 | Inventor (new situation) |
Free format text: BECKER, ERWIN, PROF. DR. EHRFELD, WOLFGANG, DR., 7500 KARLSRUHE, DE |
|
D2 | Grant after examination | ||
8364 | No opposition during term of opposition | ||
8339 | Ceased/non-payment of the annual fee |