EP0280362A2 - Dünnschicht-Heizelement - Google Patents
Dünnschicht-Heizelement Download PDFInfo
- Publication number
- EP0280362A2 EP0280362A2 EP88200279A EP88200279A EP0280362A2 EP 0280362 A2 EP0280362 A2 EP 0280362A2 EP 88200279 A EP88200279 A EP 88200279A EP 88200279 A EP88200279 A EP 88200279A EP 0280362 A2 EP0280362 A2 EP 0280362A2
- Authority
- EP
- European Patent Office
- Prior art keywords
- heating element
- metal oxide
- element according
- oxide layer
- doped
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000010438 heat treatment Methods 0.000 title claims abstract description 35
- 239000010409 thin film Substances 0.000 title claims abstract description 6
- 229910044991 metal oxide Inorganic materials 0.000 claims abstract description 24
- 150000004706 metal oxides Chemical class 0.000 claims abstract description 24
- 239000000758 substrate Substances 0.000 claims abstract description 23
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical group O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 claims description 14
- 239000000370 acceptor Substances 0.000 claims description 12
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 11
- 239000002241 glass-ceramic Substances 0.000 claims description 5
- 229910052738 indium Inorganic materials 0.000 claims description 5
- 229910052787 antimony Inorganic materials 0.000 claims description 4
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 claims description 4
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 claims description 3
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 claims description 2
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 claims description 2
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims description 2
- 229910052782 aluminium Inorganic materials 0.000 claims description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 2
- 229910052796 boron Inorganic materials 0.000 claims description 2
- 239000011737 fluorine Substances 0.000 claims description 2
- 229910052731 fluorine Inorganic materials 0.000 claims description 2
- 235000000396 iron Nutrition 0.000 claims description 2
- 230000005855 radiation Effects 0.000 claims description 2
- 238000005406 washing Methods 0.000 claims description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 2
- 229910052725 zinc Inorganic materials 0.000 claims description 2
- 239000011701 zinc Substances 0.000 claims description 2
- 238000000197 pyrolysis Methods 0.000 claims 1
- 239000005341 toughened glass Substances 0.000 claims 1
- 239000011521 glass Substances 0.000 description 6
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 5
- 229910052718 tin Inorganic materials 0.000 description 5
- 239000002019 doping agent Substances 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 230000007547 defect Effects 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 235000008429 bread Nutrition 0.000 description 2
- 229910052793 cadmium Inorganic materials 0.000 description 2
- BDOSMKKIYDKNTQ-UHFFFAOYSA-N cadmium atom Chemical compound [Cd] BDOSMKKIYDKNTQ-UHFFFAOYSA-N 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000018109 developmental process Effects 0.000 description 2
- PSCMQHVBLHHWTO-UHFFFAOYSA-K indium(iii) chloride Chemical compound Cl[In](Cl)Cl PSCMQHVBLHHWTO-UHFFFAOYSA-K 0.000 description 2
- PJXISJQVUVHSOJ-UHFFFAOYSA-N indium(iii) oxide Chemical compound [O-2].[O-2].[O-2].[In+3].[In+3] PJXISJQVUVHSOJ-UHFFFAOYSA-N 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- RZVAJINKPMORJF-UHFFFAOYSA-N Acetaminophen Chemical compound CC(=O)NC1=CC=C(O)C=C1 RZVAJINKPMORJF-UHFFFAOYSA-N 0.000 description 1
- DKPFZGUDAPQIHT-UHFFFAOYSA-N Butyl acetate Natural products CCCCOC(C)=O DKPFZGUDAPQIHT-UHFFFAOYSA-N 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910021627 Tin(IV) chloride Inorganic materials 0.000 description 1
- 150000001242 acetic acid derivatives Chemical class 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 239000000443 aerosol Substances 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- FAPDDOBMIUGHIN-UHFFFAOYSA-K antimony trichloride Chemical compound Cl[Sb](Cl)Cl FAPDDOBMIUGHIN-UHFFFAOYSA-K 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 150000001649 bromium compounds Chemical class 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000002800 charge carrier Substances 0.000 description 1
- 150000001805 chlorine compounds Chemical class 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- FUZZWVXGSFPDMH-UHFFFAOYSA-N hexanoic acid Chemical compound CCCCCC(O)=O FUZZWVXGSFPDMH-UHFFFAOYSA-N 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 229910003437 indium oxide Inorganic materials 0.000 description 1
- 150000004694 iodide salts Chemical class 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 150000002823 nitrates Chemical class 0.000 description 1
- 150000003891 oxalate salts Chemical class 0.000 description 1
- 239000005297 pyrex Substances 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 238000001953 recrystallisation Methods 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 238000005118 spray pyrolysis Methods 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 1
- 239000011135 tin Substances 0.000 description 1
- HPGGPRDJHPYFRM-UHFFFAOYSA-J tin(iv) chloride Chemical compound Cl[Sn](Cl)(Cl)Cl HPGGPRDJHPYFRM-UHFFFAOYSA-J 0.000 description 1
- 238000010792 warming Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B3/00—Ohmic-resistance heating
- H05B3/10—Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01C—RESISTORS
- H01C17/00—Apparatus or processes specially adapted for manufacturing resistors
- H01C17/06—Apparatus or processes specially adapted for manufacturing resistors adapted for coating resistive material on a base
- H01C17/20—Apparatus or processes specially adapted for manufacturing resistors adapted for coating resistive material on a base by pyrolytic processes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01C—RESISTORS
- H01C7/00—Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
- H01C7/02—Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material having positive temperature coefficient
- H01C7/021—Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material having positive temperature coefficient formed as one or more layers or coatings
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B3/00—Ohmic-resistance heating
- H05B3/20—Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater
- H05B3/22—Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater non-flexible
- H05B3/26—Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater non-flexible heating conductor mounted on insulating base
- H05B3/265—Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater non-flexible heating conductor mounted on insulating base the insulating base being an inorganic material, e.g. ceramic
Definitions
- the invention relates to a thin-film heating element, consisting of a temperature-stable, electrically insulating substrate with a thin, electrically conductive, mutually compensating foreign atoms, each consisting of at least one acceptor-forming element and at least one donor-forming element doped metal oxide layer, which is provided with connection electrodes .
- An acceptor is a local defect in a semiconductor that can pick up an electron or equivalent to give up a defect electron.
- the associated electronic energy level is in the forbidden band, whereby the exact position together with the cross-section for electrons determines the effect of the acceptor.
- the host lattice atom is replaced by an atom that has one valence electron less than the host lattice atom.
- a donor is an impurity in a semiconductor that can donate an electron located at it.
- the associated electronic energy level is in the forbidden band, the exact position and the cross-section for electrons and defect electrons determining the effect of the donor.
- a host lattice atom is replaced by an atom that has one valence electron more than the host lattice atom.
- electrically conductive, thin metal oxide layers on a temperature-stable, electrically insulating substrate serve as resistance heaters in devices to be heated, for example heated glass panes (eg car windows) or warming plates or similar devices can be used, these thin layers being usable as heaters in a temperature range up to 500 ° C.
- glass or ceramic substrates are coated in a pyrolytic process from solutions which, for example, the chlorides, bromides, iodides, sulfates, nitrates, oxalates or acetates of tin, indium, cadmium, tin and antimony, tin and indium or tin and cadmium with or contain no dopant additives such as tin, iron, copper or chrome.
- the layers formed by pyrolytic deposition themselves then consist of the corresponding metal oxide (s).
- thin-film heating elements that reach surface temperatures higher than 500 ° C.
- US Pat. No. 2,564,709 discloses thin, electrically conductive indium oxide layers which are doped with each other in pairs to compensate for foreign atoms composed of at least one acceptor and at least one donor-forming element in an amount of up to 10 atom%, however, the amounts of the acceptor and donor-forming elements each differ by more than 10%.
- This known layer material has proven to be insufficiently stable at higher surface temperatures.
- the invention has for its object to provide a thin-film heating element that is stable up to temperatures of over 600 ° C and high enough to operate it on mains voltage.
- the metal oxide layer is doped with amounts of the mutually compensating foreign atoms which differ by no more than 10% in an amount of up to 10 atom% each.
- the invention is based on the knowledge that with thin, electrically conductive metal oxide layers on appropriately temperature-stable substrates, surface temperatures of 1000 ° C. at power densities of more than 10 W / cm2, corresponding to current densities of more than 1000 A / cm2 with a low positive temperature coefficient of electrical resistance ⁇ ⁇ 3.10 ⁇ 4 K ⁇ 1 can be achieved if the metal oxide layers are doped with both relatively high and approximately equal amounts of mutually compensating foreign atoms each consisting of at least one element forming an acceptor and at least one element forming a donor.
- the relatively high doping leads to reduced electron mobility and thus to relatively high resistance values.
- the low positive temperature coefficient of the electrical resistance and its temperature stability of the layers according to the invention are attributed to the pairwise compensation of the elements forming the acceptors and donors.
- SnO2 layers are used as metal oxide layers on hard glass, quartz glass or glass ceramic substrates for the construction of the heating element.
- the metal oxide layers are not to be considered independently of the substrate, in particular the thermal stability, the thermal expansion coefficient of the substrate material and also a possible diffusion of foreign substances from the substrate into the metal oxide layer.
- quartz glasses and glass ceramics with their extremely low expansion coefficients ( ⁇ 0/1000 ⁇ 0.5 or 0.1.10 ⁇ 6 K sich1) are suitable for a coating with doped SnO2 or In2O3 layers ( ⁇ ⁇ 4.10 ⁇ 6 K ⁇ 1) have proven to be equally suitable substrates, such as hard glasses with an expansion coefficient ⁇ ⁇ 3 to 4.10 ⁇ 6 K ⁇ 1.
- a SnO2 layer is doped with indium, boron and / or aluminum as the acceptor-forming element (s) and with antimony and / or fluorine as the donor-forming element (s).
- the metal oxide layer is doped with at least one element which forms an acceptor and a donor in an amount of 3 to 5 atom% each.
- the advantages achieved with the invention consist in particular in the fact that heating elements are created which can be switched on and off suddenly, which, due to their low heat capacity, have already reached their final temperature after a relatively short period ( ⁇ 4 to 5 min), and which have been switched off cool down the power supply just as quickly.
- Another advantage is that the metal oxide layers according to the invention are optically clear, free from streaks, streak-free and crack-free and have a high degree of transparency. These properties of the metal oxide layers according to the invention have a particularly advantageous effect if transparent substrates are used; For example, a bread roaster can be equipped with transparent heating disks, with which the browning of the toast can be easily checked visually.
- the heating elements according to the invention retain unchanged properties in air for several 1000 operating hours and switching cycles. This also applies to large-area heating elements of more than 1dm2. Another advantage is that the sheet resistance of the layers according to the invention can be selected so that they can be operated directly from the mains voltage after electrodes, for example metal layer electrodes, have been attached.
- Layers according to the invention were produced by spray pyrolysis from a solution.
- 9.6 g of SbCl3 and 9.3 g of InCl3 were dissolved as dopants in a solution of 100 ml of SnCl4 in 500 ml of butyl acetate.
- This dopant addition corresponds to a doping of 4.5 atom% Sb and 4.5 atom% In.
- SnO2 layers with a density of free charge carriers of N ⁇ 6.1020 / cm3 were by spraying the above solution as a fine aerosol on about 500 ° C hot substrates with a dimension of 15 ⁇ 15 cm2 from a hard sprayed on glass as it is commercially available under the trademarks Pyrex or Tempax.
- the layers had a layer thickness of 0.1 ⁇ m and, after an annealing process (forming process) in air at a temperature of 600 ° C. over a period of 1 h, a sheet resistance of 160 ⁇ .
- the metal oxide layers produced in the context of the invention have surface resistances of between approximately 20 and 500 ⁇ with layer thicknesses in the range from 0.05 to 0.5 ⁇ m.
- substrates with a dimension of 15 ⁇ 15 cm2 were further coated from glass ceramic with SnO2 layers with a thickness of 0.3 ⁇ m. These layers also had a stable sheet resistance of ⁇ 60 ⁇ after a formation process at a temperature of ⁇ 600 ° C for a period of ⁇ 1 h.
- Metal-layer electrodes were also attached to the substrates coated in this way, and electrically heated hot plates were built from these heating elements, which were operated at a mains voltage of 220 V with a power of 800 W and a surface temperature of 600 C.
- the electrical resistance of the layers was unchanged after a 200 switch-on and switch-off cycle. This heating element was still operational even with an output of 1.1 kW.
- Quartz glass tubes can e.g. use as a heat exchanger in instantaneous water heaters, in coffee machines or generally as a heat exchanger in professional applications.
- While continuous operation of the heating elements up to a recrystallization temperature of around 700 ° C is possible on glass ceramic substrates, operating temperatures of 1000 ° C can be achieved on quartz glass tubes, quartz glass rods or quartz glass plates. For example, a 1 dm2 quartz glass plate with an area resistance of R 37 ⁇ was operated at this temperature for a period of 1000 h.
- Heating elements with plate-shaped substrates can be used as heating disks for toasters, heating or hot plates, hot plates, table ovens, irons, as underfloor heating in heatable thermos jugs or similar devices.
- Heating elements with tubular substrates can be used as heat exchangers for instantaneous heaters, coffee machines, dishwashers, washing machines, tumble dryers, room air heaters, hair dryers or similar devices.
- Heating elements with rod-shaped or tubular substrates can be used, for example, as infrared radiators or radiation ovens.
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Ceramic Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Manufacturing & Machinery (AREA)
- Resistance Heating (AREA)
- Surface Heating Bodies (AREA)
Abstract
Description
- Die Erfindung betrifft ein Dünnschicht-Heizelement, bestehend aus einem temperaturstabilen, elektrisch isolierenden Substrat mit einer dünnen, elektrisch leitfähigen, mit einander paarweise kompensierenden Fremdatomen aus je mindestens einem Akzeptoren bildenden Element und je mindestens einem Donatoren bildenden Element dotierten Metalloxidschicht, die mit Anschlußelektroden versehen ist.
- Ein Akzeptor stellt eine lokale Störstelle in einem Halbleiter dar, die ein Elektron aufnehmen oder äquivalent damit ein Defektelektron abgeben kann. Das zugehörige elektronische Energieniveau liegt im verbotenen Band, wobei die genaue Lage zusammen mit dem Einfangquerschnitt für Elektronen die Wirkung des Akzeptors bestimmt.
Das Wirtsgitteratom wird bei einer Dotierung mit Akzeptoren durch ein Atom ersetzt, das ein Valenzelektron weniger besitzt als das Wirtsgitteratom.
Ein Donator ist eine Störstelle in einem Halbleiter, die ein bei ihr lokalisiertes Elektron abgeben kann. Das zugehörige elektronische Energieniveau liegt im verbotenen Band, wobei die genaue Lage und der Einfangquerschnitt für Elektronen und Defektelektronen die Wirkung des Donators bestimmt. Bei einer Dotierung mit Donatoren wird ein Wirtsgitteratom durch ein Atom ersetzt, das ein Valenzelektron mehr besitzt als das Wirtsgitteratom. - Es ist bekannt, z.B. aus US-PS 3 108 019, daß elektrisch leitfähige, dünne Metalloxidschichten auf einem temperaturstabilen, elektrisch isolierenden Substrat als Widerstandsheizungen in zu beheizenden Vorrichtungen wie z.B. beheizte Glasscheiben (z.B. Autoscheiben) oder Warmhalteplatten oder ähnliche Vorrichtungen eingesetzt werden, wobei diese dünnen Schichten als Beheizungen in einem Temperaturbereich bis zu 500 C einsetzbar sind.
Hierzu werden Glas- oder Keramiksubstrate in einem pyrolytischen Prozeß aus Lösungen beschichtet, die z.B. die Chloride, Bromide, Jodide, Sulfate, Nitrate, Oxalate oder Acetate von Zinn, Indium, Cadmium, Zinn und Antimon, Zinn und Indium oder Zinn und Cadmium mit oder ohne Dotierstoffzusatz wie Zinn, Eisen, Kupfer oder Chrom enthalten. Die durch pyrolytische Abscheidung gebildeten Schichten selbst bestehen dann aus dem(den) entsprechenden Metalloxid(en). - Für gewisse Anwendungszwecke ist es erwünscht, Dünnschicht-Heizelemente einzusetzen, die höhere Oberflächentemperaturen als 500 °C erreichen.
- Der Vollständigkeit halber wird darauf hingewiesen, daß aus US-PS 2 564 709 dünne elektrisch leitfähige Indiumoxidschichten bekannt sind, die miteinander paarweise kompensierenden Fremdatomen aus je mindestens einem Akzeptoren und je mindestens einem Donatoren bildenden Element in einer Menge bis zu 10 Atom% dotiert sind, wobei die Mengen der Akzeptoren- und der Donatoren- bildenden Elemente jeweils jedoch um mehr als 10% voneinander abweichen. Dieses bekannte Schichtmaterial hat sich als nicht ausreichend stabil bei höheren Oberflächentemperaturen erwiesen.
- Der Erfindung liegt die Aufgabe zugrunde, ein Dünnschicht-Heizelement zu schaffen, das bis zu Temperaturen von über 600 °C stabil und hochohmig genug ist, um es an Netzspannung zu betreiben.
- Diese Aufgabe wird erfindungsgemäß dadurch gelöst, daß die Metalloxidschicht mit um nicht mehr als 10% voneinander abweichenden Mengen der einander paarweise kompensierenden Fremdatome in einer Menge bis zu je 10 Atom% dotiert ist.
- Der Erfindung liegt die Erkenntnis zugrunde, daß mit dünnen, elektrisch leitfähigen Metalloxidschichten auf entsprechend temperaturstabilen Substraten Oberflächentemperaturen von 1000 °C bei Leistungsdichten von mehr als 10 W/cm², entsprechend Stromdichten von mehr als 1000 A/cm² mit einem niedrigen positiven Temperaturkoeffizienten des elektrischen Widerstandes α ≦ 3.10⁻⁴ K⁻¹ erreicht werden können, wenn die Metalloxidschichten mit sowohl relativ hohen als auch etwa gleichen Mengen einander paarweise kompensierender Fremdatome aus je mindestens einem Akzeptoren bildenden Element und mindestens einem Donatoren bildenden Element dotiert sind. Die relativ hohe Dotierung führt zu einer erniedrigten Elektronenbeweglichkeit und damit zu relativ hohen Widerstandswerten. Der niedrige positive Temperaturkoeffizient des elektrischen Widerstandes und seine Temperaturstabilität der erfindungsgemäßen Schichten wird auf die paarweise Kompensation der Akzeptoren und Donatoren bildenden Elemente zurückgeführt.
- Nach vorteilhaften Weiterbildungen der Erfindung werden als Metalloxidschichten SnO₂-Schichten auf Hartglas-, Quarzglas- oder Glaskeramik-Substraten für den Aufbau des Heizelementes eingesetzt. Die Metalloxidschichten sind nicht unabhängig vom Substrat zu betrachten, wobei insbesondere die thermische Stabilität, der thermische Ausdehnungskoeffizient des Substratmaterials und auch eine mögliche Diffusion von Fremdstoffen aus dem Substrat in die Metalloxidschicht eine Rolle spielen.
- Insofern ist es ein überraschendes Ergebnis der der Herstellung der vorliegenden Heizelemente zugrundeliegenden Versuche, daß sich Quarzgläser und Glaskeramiken mit ihren extrem niedrigen Ausdehnungskoeffizienten (α 0/1000 ≈ 0,5 bzw. 0,1.10⁻⁶ K⁻¹) für eine Beschichtung mit dotierten SnO₂- oder In₂O₃-Schichten (α ≈ 4.10⁻⁶ K⁻¹) als ebenso geeignete Substrate erwiesen haben, wie z.B. Hartgläser mit einem Ausdehnungskoeffizienten α ≈ 3 bis 4.10⁻⁶ K⁻¹.
- Nach vorteilhaften Weiterbildungen der Erfindung ist eine SnO₂-Schicht mit Indium, Bor und/oder Aluminium als Akzeptoren bildendem(bildenden) Element(en) und mit Antimon und/oder Fluor als Donatoren- bildendem(bildenden) Element(en) dotiert.
- Nach einer weiteren vorteilhaften Ausbildung der Erfindung ist die Metalloxidschicht mit mindestens je einem Akzeptoren- und Donatoren- bildenden Element in einer Menge von jeweils 3 bis 5 Atom% dotiert.
- Die mit der Erfindung erzielten Vorteile bestehen insbesondere darin, daß Heizelemente geschaffen sind, die schlagartig aus- und eingeschaltet werden können, die wegen ihrer geringen Wärmekapazität nach relativ kurzer Dauer ( ≈ 4 bis 5 min) bereits ihre Endtemperatur erreicht haben, und die nach Abschalten der Stromversorgung ebenso schnell abkühlen. Ein weiterer Vorteil ist, daß die erfindungsgemäßen Metalloxidschichten optisch klar, streufrei, schlierenfrei und rißfrei sind und eine hohe Transparenz aufweisen. Diese Eigenschaften der erfindungsgemäßen Metalloxidschichten wirken sich besonders vorteilhaft aus, wenn transparente Substrate eingesetzt werden; so kann z.B. ein Brotröster mit transparenten Heizscheiben ausgerüstet werden, bei dem die Bräunung des Röstgutes leicht visuell kontrolliert werden kann.
- Bei Dauerstandsversuchen hat sich erwiesen, daß die erfindungsgemäßen Heizelemente unveränderte Eigenschaften über mehrere 1000 Betriebsstunden und Schaltzyklen an Luft beibehalten. Dies betrifft auch großflächige Heizelemente von mehr als 1dm².
Ein weiterer Vorteil ist, daß der Flächenwiderstand der erfindungsgemäßen Schichten so gewählt werden kann, daß sie nach Anbringen von Elektroden, z.B. Metallschichtelektroden, direkt an Netzspannung betrieben werden können. - Es ist somit zur Erzielung eines angepaßten elektrischen Widerstandes nicht notwendig, die Schicht z.B. in Mäanderstruktur herzustellen, was technologisch aufwendig ist und obendrein das Risiko birgt, daß bei Anwendungen einer Betriebsspannung von 220 V elektrische Überschläge auftreten können.
- Anhand von Ausführungsbeispielen wird die Erfindung in ihrer Wirkungsweise erläutert.
- Erfindungsgemäße Schichten wurden durch Sprühpyrolyse aus einer Lösung hergestellt. Hierzu wurden in einer Lösung aus 100 ml SnCl₄ in 500 ml Butylacetat 9,6 g SbCl₃ und 9,3 g InCl₃ als Dotierstoffe gelöst. Dieser Dotierstoffzusatz entspricht einer Dotierung von 4,5 Atom% Sb und 4,5 Atom% In.
- Es ist z.B. auch möglich, eine Dotierung mit Zink als Akzeptoren bildendem Element vorzusehen.
- SnO₂-Schichten mit einer Dichte an freien Ladungsträgern von N ≈ 6.10²⁰/cm³ wurden durch Aufsprühen der oben genannten Lösung als feines Aerosol auf etwa 500 °C heiße Substrate einer Abmessung von 15×15 cm² aus einem Hart glas, wie es unter den Warenzeichen Pyrex oder Tempax im Handel erhältlich ist, aufgesprüht. Die Schichten hatten eine Schichtdicke von 0,1 µm und nach einem Temperprozeß (Formierprozeß) an Luft bei einer Temperatur von 600 °C über eine Dauer von 1 h einen Flächenwiderstand von 160Ω. Der tatsächliche Endwiderstand der erfindungsgemäßen Schichten, ausgedrückt als Flächenwiderstand R = ρ/d (ρ = spezifischer Widerstand der Metalloxidschicht, d = Schichtdicke), wird durch geeignete Wahl der Dotierstoffe und der Schichtdicke festgelegt. Die im Rahmen der Erfindung hergestellten Metalloxidschichten weisen Flächenwiderstände zwischen etwa 20 und 500Ω auf bei Schichtdicken im Bereich von 0,05 bis 0,5 µm.
- Mit dem wie oben beschrieben hergestellten beschichteten Substrat wurde nach Anbringen von Metallschichtelektroden, z.B. aus Silber, ein transparenter Brotröster gebaut. Die Bräunung von Brotscheiben war bei einer Oberflächentemperatur von 520 °C nach etwa 3 min zu beobachten.
- Mit der oben angegebenen Lösung zur Herstellung von dotierten SnO₂-Schichten wurden weiterhin Substrate einer Abmessung von 15×15 cm² aus Glaskeramik mit SnO₂-Schichten einer Dicke von 0,3 µm beschichtet. Diese Schichten hatten, ebenfalls nach einem Formierungsprozeß bei einer Temperatur von ≈ 600 °C über eine Dauer von ≈ 1 h einen stabilen Flächenwiderstand von ≈ 60Ω. An den so beschichteten Substraten wurden ebenfalls Metallschichtelektroden angebracht und aus diesen Heizelementen wurden elektrisch beheizte Kochplatten gebaut, die bei einer Netzspannung von 220 V mit einer Leistung von 800 W mit einer Oberflächentemperatur von 600 C betrieben wurden. Nach einem 200-maligen An- und Abschaltzyklus war der elektrische Widerstand der Schichten unverändert. Dieses Heizelement war auch bei einer Leistung von 1,1 kW noch betriebsfähig.
- Im Rahmen der vorliegenden Erfindung ist es z.B. auch möglich, Quarzglasrohre, Quarzglasstäbe oder Quarzglasplatten mit den erfindungsgemäßen Metalloxidschichten zu versehen. Quarzglasrohre lassen sich z.B. als Wärmetauscher in Durchlauferhitzern, in Kaffeemaschinen oder allgemein als Wärmetauscher in professionellen Anwendungen einsetzen.
- Während auf Glaskeramik-Substraten ein Dauerbetrieb der Heizelemente bis zur Rekristallisationstemperatur von etwa 700 °C möglich ist, lassen sich auf Quarzglasrohren, Quarzglasstäben oder Quarzglasplatten Betriebstemperaturen von 1000 °C realisieren.
Beispielsweise wurde eine 1 dm² große Quarzglasplatte mit einem Flächenwiderstand von R = 37Ω über eine Dauer von 1000 h bei dieser Temperatur betrieben. - Heizelemente mit plattenförmigen Substraten lassen sich als Heizscheiben für Brotröster, Heiz- oder Kochplatten, Warmhalteplatten, Tischbacköfen, Bügeleisen, als Bodenheizung in heizbaren Thermoskannen oder ähnlichen Vorrichtungen verwenden.
- Heizelemente mit rohrförmigen Substraten lassen sich als Wärmeaustauscher für Durchlauferhitzer, Kaffeemaschinen, Geschirrspülmaschinen, Waschmaschinen, Wäschetrockner, Raumluftheizgeräte, Haartrockner oder ähnliche Vorrichtungen verwenden.
- Heizelemente mit stabförmigen oder rohrförmigen Substraten lassen sich beispielsweise als Infrarotstrahler oder Strahlungsöfen verwenden.
Claims (13)
dadurch gekennzeichnet,
daß die Metalloxidschicht mit um nicht mehr als 10% voneinander abweichenden Mengen der einander paarweise kompensierenden Fremdatome in einer Menge bis zu je 10 Atom% dotiert ist.
daß die Metalloxidschicht eine SnO₂-Schicht ist.
daß die Metalloxidschicht mit Indium, Bor und/oder Aluminium als Akzeptoren bildendem(bildenden) Element(en) dotiert ist.
daß die Metalloxidschicht mit Antimon und/oder Fluor als Donatoren bildendem(bildenden) Element(en) dotiert ist.
daß die Metalloxidschicht mit Zink als Akzeptoren bildendem Element dotiert ist.
daß die Metalloxidschicht mit mindestens je einem Akzeptoren und Donatoren bildenden Element in einer Menge von jeweils 3 bis 5 Atom% dotiert ist.
daß die Metalloxidschicht durch Pyrolyse einer die am Schichtaufbau beteiligten Elemente enthaltenden Lösung hergestellt ist.
daß das Substrat aus Hartglas besteht.
daß das Substrat aus Quarzglas besteht.
daß das Substrat aus Glaskeramik besteht.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE3705639 | 1987-02-21 | ||
DE19873705639 DE3705639A1 (de) | 1987-02-21 | 1987-02-21 | Duennschicht-heizelement |
Publications (3)
Publication Number | Publication Date |
---|---|
EP0280362A2 true EP0280362A2 (de) | 1988-08-31 |
EP0280362A3 EP0280362A3 (en) | 1990-01-31 |
EP0280362B1 EP0280362B1 (de) | 1994-05-04 |
Family
ID=6321510
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP88200279A Expired - Lifetime EP0280362B1 (de) | 1987-02-21 | 1988-02-16 | Dünnschicht-Heizelement |
Country Status (4)
Country | Link |
---|---|
US (1) | US4889974A (de) |
EP (1) | EP0280362B1 (de) |
JP (1) | JP2616947B2 (de) |
DE (2) | DE3705639A1 (de) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2640803A1 (fr) * | 1988-12-15 | 1990-06-22 | Neiman Sa | Resistance en ceramique a haute temperature |
GB2267421A (en) * | 1992-05-28 | 1993-12-01 | Chinacraft Ltd | A glass hot plate having a resistive heating coating |
EP0654956A1 (de) * | 1993-11-24 | 1995-05-24 | U'LAMP ENTERPRISES Co., Ltd. | Verfahren zum Herstellen einer elektrische beheizte Schicht |
DE19535068A1 (de) * | 1995-09-21 | 1997-03-27 | Lpkf Cad Cam Systeme Gmbh | Beschichtung zur strukturierten Erzeugung von Leiterbahnen auf der Oberfläche von elektrisch isolierenden Substraten |
EP0772954A1 (de) * | 1994-07-29 | 1997-05-14 | Thermal Dynamics U.S.A., Ltd. Co. | Grossflachiges, dünnfilm widerstandsheizelement und anwendungsverfahren |
WO2012084710A1 (de) * | 2010-12-22 | 2012-06-28 | BSH Bosch und Siemens Hausgeräte GmbH | Heizkörper sowie haushaltsgerät mit einem heizkörper und verfahren zum herstellen |
EP3319397A4 (de) * | 2015-07-02 | 2019-03-06 | Goo, Gak Hoi | Blattheizelement und elektrisch leitfähige dünnschicht |
CN111447695A (zh) * | 2020-05-05 | 2020-07-24 | 中山市烯帝科技有限公司 | 石墨烯远红外发热板的制作方法及其配方 |
Families Citing this family (37)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02220386A (ja) * | 1989-02-21 | 1990-09-03 | Nippon Electric Glass Co Ltd | 遠赤外線ヒーター |
US5408574A (en) * | 1989-12-01 | 1995-04-18 | Philip Morris Incorporated | Flat ceramic heater having discrete heating zones |
JP2961466B2 (ja) * | 1992-08-19 | 1999-10-12 | 株式会社河合楽器製作所 | ヒーター |
US5468936A (en) * | 1993-03-23 | 1995-11-21 | Philip Morris Incorporated | Heater having a multiple-layer ceramic substrate and method of fabrication |
US5725912A (en) * | 1993-11-22 | 1998-03-10 | Lin; Pan-Tien | Method of manufacturing an electric heating film of semiconductor |
US5577158A (en) * | 1995-07-17 | 1996-11-19 | White Consolidated Industries, Inc. | Capacitive leakage current cancellation for heating panel |
US5932128A (en) * | 1997-02-26 | 1999-08-03 | White Consolidated Industries, Inc. | Switching control system for heating panel with leakage current cancellation |
US6037572A (en) * | 1997-02-26 | 2000-03-14 | White Consolidated Industries, Inc. | Thin film heating assemblies |
US5940579A (en) * | 1997-02-26 | 1999-08-17 | White Consolidated Industries, Inc. | Capacitive leakage current cancellation for heating panel |
WO1998051127A1 (en) | 1997-05-06 | 1998-11-12 | Thermoceramix, L.L.C. | Deposited resistive coatings |
FR2778304B1 (fr) * | 1998-05-04 | 2000-06-02 | Production De L Aube Soc Ind D | Procede d'apport de chaleur a un objet et conteneur de maintien et de remise en temperature de plats |
AUPP599598A0 (en) * | 1998-09-18 | 1998-10-08 | Email Limited | Self-regulating nanoscale heating element |
US6111224A (en) * | 1999-12-02 | 2000-08-29 | Hatco Corporation | Food warming oven with transparent heating shelves |
US6663914B2 (en) | 2000-02-01 | 2003-12-16 | Trebor International | Method for adhering a resistive coating to a substrate |
US6580061B2 (en) * | 2000-02-01 | 2003-06-17 | Trebor International Inc | Durable, non-reactive, resistive-film heater |
US7081602B1 (en) | 2000-02-01 | 2006-07-25 | Trebor International, Inc. | Fail-safe, resistive-film, immersion heater |
US6674053B2 (en) | 2001-06-14 | 2004-01-06 | Trebor International | Electrical, thin film termination |
CN101638765A (zh) | 2000-11-29 | 2010-02-03 | 萨莫希雷梅克斯公司 | 电阻加热器及其应用 |
US6728479B2 (en) * | 2001-06-11 | 2004-04-27 | Aoyagi (H.K.) Ltd. | Panel-type heating element and method for the manufacture thereof |
DE10258727A1 (de) * | 2002-12-05 | 2004-06-24 | Schott Glas | Ofen |
AU2003290429A1 (en) * | 2002-12-25 | 2004-07-22 | Casio Computer Co., Ltd. | Optical dna sensor, dna reading apparatus, identification method of dna and manufacturing method of optical dna sensor |
US6991003B2 (en) * | 2003-07-28 | 2006-01-31 | M.Braun, Inc. | System and method for automatically purifying solvents |
DE602004011386T2 (de) * | 2003-11-20 | 2009-01-08 | Koninklijke Philips Electronics N.V. | Dünnschichtheizelement |
DE102004019715A1 (de) * | 2004-04-20 | 2005-11-17 | Daimlerchrysler Ag | Kraftstoffbehälter |
EP1653778A1 (de) * | 2004-10-26 | 2006-05-03 | Cheng-Ping Lin | Schichtartig aufgebautes Heizelement mit automatischer Temperaturstabilisierung |
EP1681905A1 (de) * | 2005-01-17 | 2006-07-19 | Cheng-Ping Lin | Verfahren zur Herstellung einer halbleitenden Heizelement -Schicht |
EP2122260A2 (de) * | 2007-02-20 | 2009-11-25 | Thermoceramix, Inc. | Gaserwärmungsvorrichtung und -verfahren |
DE202008008709U1 (de) | 2008-06-28 | 2009-11-19 | Moser, Helmut | Tisch sowie Tischplatte eines Tisches |
DE102008050895A1 (de) | 2008-09-25 | 2010-04-01 | E.G.O. Elektro-Gerätebau GmbH | Pumpe für Fluide |
GB0908860D0 (en) * | 2009-05-22 | 2009-07-01 | Sagentia Ltd | Iron |
US9408497B2 (en) | 2013-08-21 | 2016-08-09 | Whirlpool Corporation | Multi-functional toasting platform utilizing a coated clear-glass heating element |
US20150297030A1 (en) * | 2014-04-16 | 2015-10-22 | Spectrum Brands, Inc. | Toaster using thin-film heating element |
US20150297029A1 (en) | 2014-04-16 | 2015-10-22 | Spectrum Brands, Inc. | Cooking appliance using thin-film heating element |
US9642191B2 (en) | 2014-04-16 | 2017-05-02 | Spectrum Brands, Inc. | Portable container system for heating a beverage |
WO2017005662A1 (de) * | 2015-07-03 | 2017-01-12 | Kautex Textron Gmbh & Co. Kg | Auftauvorrichtung für betriebsflüssigkeitsbehälter |
CN110191664B (zh) | 2017-01-20 | 2021-08-17 | 班奥麦迪克公司 | 即时响应按需水加热器 |
EP3447304A1 (de) * | 2017-08-25 | 2019-02-27 | Sanhua AWECO Appliance Systems GmbH | Dünnschichtiges heizelement für eine flüssigkeitspumpe |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2564709A (en) * | 1950-11-24 | 1951-08-21 | Corning Glass Works | Electrically conducting coating on glass and other ceramic bodies |
US3044903A (en) * | 1958-08-25 | 1962-07-17 | Philco Corp | Thin film resistors |
US3108019A (en) * | 1958-02-14 | 1963-10-22 | Corning Glass Works | Method of stabilizing the electrical resistance of a metal oxide film |
DE2642161A1 (de) * | 1975-12-08 | 1977-06-30 | Popov | Stromleitender film fuer elektrische heizgeraete |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3551195A (en) * | 1968-08-29 | 1970-12-29 | Matsushita Electric Ind Co Ltd | Resistor composition and article |
US4340508A (en) * | 1979-01-29 | 1982-07-20 | Trw Inc. | Resistance material, resistor and method of making the same |
-
1987
- 1987-02-21 DE DE19873705639 patent/DE3705639A1/de not_active Withdrawn
-
1988
- 1988-02-16 DE DE3889359T patent/DE3889359D1/de not_active Expired - Fee Related
- 1988-02-16 EP EP88200279A patent/EP0280362B1/de not_active Expired - Lifetime
- 1988-02-18 JP JP63034117A patent/JP2616947B2/ja not_active Expired - Lifetime
- 1988-02-22 US US07/158,522 patent/US4889974A/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2564709A (en) * | 1950-11-24 | 1951-08-21 | Corning Glass Works | Electrically conducting coating on glass and other ceramic bodies |
US3108019A (en) * | 1958-02-14 | 1963-10-22 | Corning Glass Works | Method of stabilizing the electrical resistance of a metal oxide film |
US3044903A (en) * | 1958-08-25 | 1962-07-17 | Philco Corp | Thin film resistors |
DE2642161A1 (de) * | 1975-12-08 | 1977-06-30 | Popov | Stromleitender film fuer elektrische heizgeraete |
Non-Patent Citations (1)
Title |
---|
J. ELECTROCHEM. SOC.: SOLID-STATE SCIENCE AND TECHNOLOGY, Band 123, Nr. 2, 1976, Seiten 270-277, US; J. KANE et al.: "Chemical vapor deposition of antimony-doped tin oxide films formed from dibutyl tin diacetate" * |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2640803A1 (fr) * | 1988-12-15 | 1990-06-22 | Neiman Sa | Resistance en ceramique a haute temperature |
GB2267421A (en) * | 1992-05-28 | 1993-12-01 | Chinacraft Ltd | A glass hot plate having a resistive heating coating |
GB2267421B (en) * | 1992-05-28 | 1996-04-10 | Chinacraft Ltd | Method of making a hot plate |
EP0654956A1 (de) * | 1993-11-24 | 1995-05-24 | U'LAMP ENTERPRISES Co., Ltd. | Verfahren zum Herstellen einer elektrische beheizte Schicht |
EP0772954A1 (de) * | 1994-07-29 | 1997-05-14 | Thermal Dynamics U.S.A., Ltd. Co. | Grossflachiges, dünnfilm widerstandsheizelement und anwendungsverfahren |
EP0772954A4 (de) * | 1994-07-29 | 1998-10-14 | Thermal Dynamics U S A Ltd Co | Grossflachiges, dünnfilm widerstandsheizelement und anwendungsverfahren |
DE19535068A1 (de) * | 1995-09-21 | 1997-03-27 | Lpkf Cad Cam Systeme Gmbh | Beschichtung zur strukturierten Erzeugung von Leiterbahnen auf der Oberfläche von elektrisch isolierenden Substraten |
WO1997011589A1 (de) * | 1995-09-21 | 1997-03-27 | Fa. Lpkf Cad/Cam Systeme Gmbh | Beschichtung zur strukturierten erzeugung von leiterbahnen auf der oberfläche von elektrisch isolierenden substraten |
WO2012084710A1 (de) * | 2010-12-22 | 2012-06-28 | BSH Bosch und Siemens Hausgeräte GmbH | Heizkörper sowie haushaltsgerät mit einem heizkörper und verfahren zum herstellen |
EP3319397A4 (de) * | 2015-07-02 | 2019-03-06 | Goo, Gak Hoi | Blattheizelement und elektrisch leitfähige dünnschicht |
CN111447695A (zh) * | 2020-05-05 | 2020-07-24 | 中山市烯帝科技有限公司 | 石墨烯远红外发热板的制作方法及其配方 |
Also Published As
Publication number | Publication date |
---|---|
JPS63252378A (ja) | 1988-10-19 |
EP0280362B1 (de) | 1994-05-04 |
JP2616947B2 (ja) | 1997-06-04 |
DE3705639A1 (de) | 1988-09-01 |
DE3889359D1 (de) | 1994-06-09 |
EP0280362A3 (en) | 1990-01-31 |
US4889974A (en) | 1989-12-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0280362B1 (de) | Dünnschicht-Heizelement | |
Frank et al. | Transparent heat-reflecting coatings for solar applications based on highly doped tin oxide and indium oxide | |
DE3884569T2 (de) | Vitrokeramisches Heizelement. | |
EP3319397B1 (de) | Blattheizelement und elektrisch leitfähige dünnschicht | |
CN102036433B (zh) | 一种双膜层结构的红外电热膜加热管、其制备方法及其应用 | |
DE2614433A1 (de) | Selbstregelndes heizelement | |
US3114066A (en) | Transparent high dielectric constant material, method and electroluminescent device | |
DE2912402A1 (de) | Glasartiges material fuer einen elektrischen widerstand und verfahren zu dessen herstellung | |
EP3786122B1 (de) | Emaillezusammensetzung, herstellungsverfahren dafür und kochutensilien | |
WO2018054610A1 (de) | Infrarot-strahler | |
DE102011056639A1 (de) | Verfahren zum Herstellen einer transparenten leitenden Oxidschicht und einer photovoltaischen Vorrichtung | |
CN104486849A (zh) | 一种用于制备半导体电热膜的饱和溶液 | |
DE908882C (de) | Elektrischer Widerstand und Verfahren zu seiner Herstellung | |
DE2642161C2 (de) | Stromleitender Film für elektrische Heizgeräte | |
DE2640316A1 (de) | Material fuer einen elektrischen widerstand und verfahren zur herstellung eines widerstandes | |
DE3887689T2 (de) | Substrat für solarzelle und herstellungsverfahren. | |
CN1072700A (zh) | 一种薄厚膜复合电热涂层 | |
DE2150651B2 (de) | Sich elektrisch nicht aufladendes abdeckglas, insbesondere abdeckglas fuer solarzellen fuer raumfahrzeuge | |
Frank et al. | Transparent heat reflecting coatings (THRC) based on highly doped tin oxide and indium oxide | |
EP2856842B1 (de) | Dünnschichtheizkörper mit pyramidenförmigem laserschnittmuster | |
JPS6116153A (ja) | 自動車用導電性透明部材 | |
SU581893A3 (ru) | Состав и способ изготовлени полупроводникового нагревательного элемента | |
CN1136263A (zh) | 无机氧化物电热薄膜及其制法 | |
DE2506261C3 (de) | Pulvermassen aus einer festen Lösung von Bi2 Ru2 O7 mit anderen pyrochlorvenvandten Oxiden | |
JPH0238556B2 (ja) | Ensekigaisenhiitaanarabinisonoseizoho |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): DE FR GB IT NL SE |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): DE FR GB IT NL SE |
|
17P | Request for examination filed |
Effective date: 19900712 |
|
17Q | First examination report despatched |
Effective date: 19930602 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE FR GB IT NL SE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY Effective date: 19940504 Ref country code: NL Effective date: 19940504 |
|
REF | Corresponds to: |
Ref document number: 3889359 Country of ref document: DE Date of ref document: 19940609 |
|
ITF | It: translation for a ep patent filed | ||
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 19940715 |
|
ET | Fr: translation filed | ||
NLV1 | Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
ITPR | It: changes in ownership of a european patent |
Owner name: CAMBIO RAGIONE SOCIALE;PHILIPS ELECTRONICS N.V. |
|
26N | No opposition filed | ||
REG | Reference to a national code |
Ref country code: FR Ref legal event code: CD |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 19960131 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 19960228 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 19960424 Year of fee payment: 9 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Effective date: 19970216 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 19970216 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Effective date: 19971030 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Effective date: 19971101 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20050216 |