EP0280362A2 - Thin film heating element - Google Patents

Thin film heating element Download PDF

Info

Publication number
EP0280362A2
EP0280362A2 EP88200279A EP88200279A EP0280362A2 EP 0280362 A2 EP0280362 A2 EP 0280362A2 EP 88200279 A EP88200279 A EP 88200279A EP 88200279 A EP88200279 A EP 88200279A EP 0280362 A2 EP0280362 A2 EP 0280362A2
Authority
EP
European Patent Office
Prior art keywords
heating element
metal oxide
element according
oxide layer
doped
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP88200279A
Other languages
German (de)
French (fr)
Other versions
EP0280362B1 (en
EP0280362A3 (en
Inventor
Hans Auding
Günter Dipl.-Phys. Frank
Heiner Dr. rer. nat. Köstlin
Bruno Dr. Rer. Nat. Vitt
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koninklijke Philips NV
Original Assignee
Philips Patentverwaltung GmbH
Philips Gloeilampenfabrieken NV
Koninklijke Philips Electronics NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Philips Patentverwaltung GmbH, Philips Gloeilampenfabrieken NV, Koninklijke Philips Electronics NV filed Critical Philips Patentverwaltung GmbH
Publication of EP0280362A2 publication Critical patent/EP0280362A2/en
Publication of EP0280362A3 publication Critical patent/EP0280362A3/en
Application granted granted Critical
Publication of EP0280362B1 publication Critical patent/EP0280362B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/10Heater elements characterised by the composition or nature of the materials or by the arrangement of the conductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C17/00Apparatus or processes specially adapted for manufacturing resistors
    • H01C17/06Apparatus or processes specially adapted for manufacturing resistors adapted for coating resistive material on a base
    • H01C17/20Apparatus or processes specially adapted for manufacturing resistors adapted for coating resistive material on a base by pyrolytic processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C7/00Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
    • H01C7/02Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material having positive temperature coefficient
    • H01C7/021Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material having positive temperature coefficient formed as one or more layers or coatings
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/20Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater
    • H05B3/22Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater non-flexible
    • H05B3/26Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater non-flexible heating conductor mounted on insulating base
    • H05B3/265Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater non-flexible heating conductor mounted on insulating base the insulating base being an inorganic material, e.g. ceramic

Definitions

  • the invention relates to a thin-film heating element, consisting of a temperature-stable, electrically insulating substrate with a thin, electrically conductive, mutually compensating foreign atoms, each consisting of at least one acceptor-forming element and at least one donor-forming element doped metal oxide layer, which is provided with connection electrodes .
  • An acceptor is a local defect in a semiconductor that can pick up an electron or equivalent to give up a defect electron.
  • the associated electronic energy level is in the forbidden band, whereby the exact position together with the cross-section for electrons determines the effect of the acceptor.
  • the host lattice atom is replaced by an atom that has one valence electron less than the host lattice atom.
  • a donor is an impurity in a semiconductor that can donate an electron located at it.
  • the associated electronic energy level is in the forbidden band, the exact position and the cross-section for electrons and defect electrons determining the effect of the donor.
  • a host lattice atom is replaced by an atom that has one valence electron more than the host lattice atom.
  • electrically conductive, thin metal oxide layers on a temperature-stable, electrically insulating substrate serve as resistance heaters in devices to be heated, for example heated glass panes (eg car windows) or warming plates or similar devices can be used, these thin layers being usable as heaters in a temperature range up to 500 ° C.
  • glass or ceramic substrates are coated in a pyrolytic process from solutions which, for example, the chlorides, bromides, iodides, sulfates, nitrates, oxalates or acetates of tin, indium, cadmium, tin and antimony, tin and indium or tin and cadmium with or contain no dopant additives such as tin, iron, copper or chrome.
  • the layers formed by pyrolytic deposition themselves then consist of the corresponding metal oxide (s).
  • thin-film heating elements that reach surface temperatures higher than 500 ° C.
  • US Pat. No. 2,564,709 discloses thin, electrically conductive indium oxide layers which are doped with each other in pairs to compensate for foreign atoms composed of at least one acceptor and at least one donor-forming element in an amount of up to 10 atom%, however, the amounts of the acceptor and donor-forming elements each differ by more than 10%.
  • This known layer material has proven to be insufficiently stable at higher surface temperatures.
  • the invention has for its object to provide a thin-film heating element that is stable up to temperatures of over 600 ° C and high enough to operate it on mains voltage.
  • the metal oxide layer is doped with amounts of the mutually compensating foreign atoms which differ by no more than 10% in an amount of up to 10 atom% each.
  • the invention is based on the knowledge that with thin, electrically conductive metal oxide layers on appropriately temperature-stable substrates, surface temperatures of 1000 ° C. at power densities of more than 10 W / cm2, corresponding to current densities of more than 1000 A / cm2 with a low positive temperature coefficient of electrical resistance ⁇ ⁇ 3.10 ⁇ 4 K ⁇ 1 can be achieved if the metal oxide layers are doped with both relatively high and approximately equal amounts of mutually compensating foreign atoms each consisting of at least one element forming an acceptor and at least one element forming a donor.
  • the relatively high doping leads to reduced electron mobility and thus to relatively high resistance values.
  • the low positive temperature coefficient of the electrical resistance and its temperature stability of the layers according to the invention are attributed to the pairwise compensation of the elements forming the acceptors and donors.
  • SnO2 layers are used as metal oxide layers on hard glass, quartz glass or glass ceramic substrates for the construction of the heating element.
  • the metal oxide layers are not to be considered independently of the substrate, in particular the thermal stability, the thermal expansion coefficient of the substrate material and also a possible diffusion of foreign substances from the substrate into the metal oxide layer.
  • quartz glasses and glass ceramics with their extremely low expansion coefficients ( ⁇ 0/1000 ⁇ 0.5 or 0.1.10 ⁇ 6 K sich1) are suitable for a coating with doped SnO2 or In2O3 layers ( ⁇ ⁇ 4.10 ⁇ 6 K ⁇ 1) have proven to be equally suitable substrates, such as hard glasses with an expansion coefficient ⁇ ⁇ 3 to 4.10 ⁇ 6 K ⁇ 1.
  • a SnO2 layer is doped with indium, boron and / or aluminum as the acceptor-forming element (s) and with antimony and / or fluorine as the donor-forming element (s).
  • the metal oxide layer is doped with at least one element which forms an acceptor and a donor in an amount of 3 to 5 atom% each.
  • the advantages achieved with the invention consist in particular in the fact that heating elements are created which can be switched on and off suddenly, which, due to their low heat capacity, have already reached their final temperature after a relatively short period ( ⁇ 4 to 5 min), and which have been switched off cool down the power supply just as quickly.
  • Another advantage is that the metal oxide layers according to the invention are optically clear, free from streaks, streak-free and crack-free and have a high degree of transparency. These properties of the metal oxide layers according to the invention have a particularly advantageous effect if transparent substrates are used; For example, a bread roaster can be equipped with transparent heating disks, with which the browning of the toast can be easily checked visually.
  • the heating elements according to the invention retain unchanged properties in air for several 1000 operating hours and switching cycles. This also applies to large-area heating elements of more than 1dm2. Another advantage is that the sheet resistance of the layers according to the invention can be selected so that they can be operated directly from the mains voltage after electrodes, for example metal layer electrodes, have been attached.
  • Layers according to the invention were produced by spray pyrolysis from a solution.
  • 9.6 g of SbCl3 and 9.3 g of InCl3 were dissolved as dopants in a solution of 100 ml of SnCl4 in 500 ml of butyl acetate.
  • This dopant addition corresponds to a doping of 4.5 atom% Sb and 4.5 atom% In.
  • SnO2 layers with a density of free charge carriers of N ⁇ 6.1020 / cm3 were by spraying the above solution as a fine aerosol on about 500 ° C hot substrates with a dimension of 15 ⁇ 15 cm2 from a hard sprayed on glass as it is commercially available under the trademarks Pyrex or Tempax.
  • the layers had a layer thickness of 0.1 ⁇ m and, after an annealing process (forming process) in air at a temperature of 600 ° C. over a period of 1 h, a sheet resistance of 160 ⁇ .
  • the metal oxide layers produced in the context of the invention have surface resistances of between approximately 20 and 500 ⁇ with layer thicknesses in the range from 0.05 to 0.5 ⁇ m.
  • substrates with a dimension of 15 ⁇ 15 cm2 were further coated from glass ceramic with SnO2 layers with a thickness of 0.3 ⁇ m. These layers also had a stable sheet resistance of ⁇ 60 ⁇ after a formation process at a temperature of ⁇ 600 ° C for a period of ⁇ 1 h.
  • Metal-layer electrodes were also attached to the substrates coated in this way, and electrically heated hot plates were built from these heating elements, which were operated at a mains voltage of 220 V with a power of 800 W and a surface temperature of 600 C.
  • the electrical resistance of the layers was unchanged after a 200 switch-on and switch-off cycle. This heating element was still operational even with an output of 1.1 kW.
  • Quartz glass tubes can e.g. use as a heat exchanger in instantaneous water heaters, in coffee machines or generally as a heat exchanger in professional applications.
  • While continuous operation of the heating elements up to a recrystallization temperature of around 700 ° C is possible on glass ceramic substrates, operating temperatures of 1000 ° C can be achieved on quartz glass tubes, quartz glass rods or quartz glass plates. For example, a 1 dm2 quartz glass plate with an area resistance of R 37 ⁇ was operated at this temperature for a period of 1000 h.
  • Heating elements with plate-shaped substrates can be used as heating disks for toasters, heating or hot plates, hot plates, table ovens, irons, as underfloor heating in heatable thermos jugs or similar devices.
  • Heating elements with tubular substrates can be used as heat exchangers for instantaneous heaters, coffee machines, dishwashers, washing machines, tumble dryers, room air heaters, hair dryers or similar devices.
  • Heating elements with rod-shaped or tubular substrates can be used, for example, as infrared radiators or radiation ovens.

Abstract

Dünnschicht-Heizelement, bestehend aus einem temperaturstabilen, elektrisch isolierenden Substrat mit einer dünnen, elektrisch leitfähigen, mit einander paarweise kompensierenden Fremdatomen aus je mindestens einem Akzeptoren bildenden Element und je mindestens einem Donatoren bildenden Element dotierten Metalloxidschicht, die mit Anschlußelektroden versehen ist, wobei die Metalloxidschicht mit um nicht mehr als 10% voneinander abweichenden Mengen der einander paarweise kompensierenden Fremdatome in einer Menge bis zu je 10 Atom% dotiert ist.Thin-film heating element, consisting of a temperature-stable, electrically insulating substrate with a thin, electrically conductive, with mutually compensating foreign atoms each consisting of at least one element forming an acceptor and at least one element forming a donor-doped metal oxide layer, which is provided with connecting electrodes, the metal oxide layer is doped with amounts of the mutually compensating foreign atoms which differ from one another in an amount of up to 10 atom% each by no more than 10%.

Description

Die Erfindung betrifft ein Dünnschicht-Heizelement, beste­hend aus einem temperaturstabilen, elektrisch isolierenden Substrat mit einer dünnen, elektrisch leitfähigen, mit einander paarweise kompensierenden Fremdatomen aus je mindestens einem Akzeptoren bildenden Element und je mindestens einem Donatoren bildenden Element dotierten Metalloxidschicht, die mit Anschlußelektroden versehen ist.The invention relates to a thin-film heating element, consisting of a temperature-stable, electrically insulating substrate with a thin, electrically conductive, mutually compensating foreign atoms, each consisting of at least one acceptor-forming element and at least one donor-forming element doped metal oxide layer, which is provided with connection electrodes .

Ein Akzeptor stellt eine lokale Störstelle in einem Halb­leiter dar, die ein Elektron aufnehmen oder äquivalent da­mit ein Defektelektron abgeben kann. Das zugehörige elek­tronische Energieniveau liegt im verbotenen Band, wobei die genaue Lage zusammen mit dem Einfangquerschnitt für Elektronen die Wirkung des Akzeptors bestimmt.
Das Wirtsgitteratom wird bei einer Dotierung mit Akzep­toren durch ein Atom ersetzt, das ein Valenzelektron weni­ger besitzt als das Wirtsgitteratom.
Ein Donator ist eine Störstelle in einem Halbleiter, die ein bei ihr lokalisiertes Elektron abgeben kann. Das zuge­hörige elektronische Energieniveau liegt im verbotenen Band, wobei die genaue Lage und der Einfangquerschnitt für Elektronen und Defektelektronen die Wirkung des Donators bestimmt. Bei einer Dotierung mit Donatoren wird ein Wirtsgitteratom durch ein Atom ersetzt, das ein Valenz­elektron mehr besitzt als das Wirtsgitteratom.
An acceptor is a local defect in a semiconductor that can pick up an electron or equivalent to give up a defect electron. The associated electronic energy level is in the forbidden band, whereby the exact position together with the cross-section for electrons determines the effect of the acceptor.
When doped with acceptors, the host lattice atom is replaced by an atom that has one valence electron less than the host lattice atom.
A donor is an impurity in a semiconductor that can donate an electron located at it. The associated electronic energy level is in the forbidden band, the exact position and the cross-section for electrons and defect electrons determining the effect of the donor. When doping with donors, a host lattice atom is replaced by an atom that has one valence electron more than the host lattice atom.

Es ist bekannt, z.B. aus US-PS 3 108 019, daß elektrisch leitfähige, dünne Metalloxidschichten auf einem tempera­turstabilen, elektrisch isolierenden Substrat als Wider­standsheizungen in zu beheizenden Vorrichtungen wie z.B. beheizte Glasscheiben (z.B. Autoscheiben) oder Warmhalte­platten oder ähnliche Vorrichtungen eingesetzt werden, wo­bei diese dünnen Schichten als Beheizungen in einem Tempe­raturbereich bis zu 500 C einsetzbar sind.
Hierzu werden Glas- oder Keramiksubstrate in einem pyroly­tischen Prozeß aus Lösungen beschichtet, die z.B. die Chloride, Bromide, Jodide, Sulfate, Nitrate, Oxalate oder Acetate von Zinn, Indium, Cadmium, Zinn und Antimon, Zinn und Indium oder Zinn und Cadmium mit oder ohne Dotier­stoffzusatz wie Zinn, Eisen, Kupfer oder Chrom enthalten. Die durch pyrolytische Abscheidung gebildeten Schichten selbst bestehen dann aus dem(den) entsprechenden Metall­oxid(en).
It is known, for example from US Pat. No. 3,108,019, that electrically conductive, thin metal oxide layers on a temperature-stable, electrically insulating substrate serve as resistance heaters in devices to be heated, for example heated glass panes (eg car windows) or warming plates or similar devices can be used, these thin layers being usable as heaters in a temperature range up to 500 ° C.
For this purpose, glass or ceramic substrates are coated in a pyrolytic process from solutions which, for example, the chlorides, bromides, iodides, sulfates, nitrates, oxalates or acetates of tin, indium, cadmium, tin and antimony, tin and indium or tin and cadmium with or contain no dopant additives such as tin, iron, copper or chrome. The layers formed by pyrolytic deposition themselves then consist of the corresponding metal oxide (s).

Für gewisse Anwendungszwecke ist es erwünscht, Dünn­schicht-Heizelemente einzusetzen, die höhere Oberflächen­temperaturen als 500 °C erreichen.For certain applications, it is desirable to use thin-film heating elements that reach surface temperatures higher than 500 ° C.

Der Vollständigkeit halber wird darauf hingewiesen, daß aus US-PS 2 564 709 dünne elektrisch leitfähige Indium­oxidschichten bekannt sind, die miteinander paarweise kom­pensierenden Fremdatomen aus je mindestens einem Akzepto­ren und je mindestens einem Donatoren bildenden Element in einer Menge bis zu 10 Atom% dotiert sind, wobei die Mengen der Akzeptoren- und der Donatoren- bildenden Elemente je­weils jedoch um mehr als 10% voneinander abweichen. Dieses bekannte Schichtmaterial hat sich als nicht ausreichend stabil bei höheren Oberflächentemperaturen erwiesen.For the sake of completeness, it is pointed out that US Pat. No. 2,564,709 discloses thin, electrically conductive indium oxide layers which are doped with each other in pairs to compensate for foreign atoms composed of at least one acceptor and at least one donor-forming element in an amount of up to 10 atom%, however, the amounts of the acceptor and donor-forming elements each differ by more than 10%. This known layer material has proven to be insufficiently stable at higher surface temperatures.

Der Erfindung liegt die Aufgabe zugrunde, ein Dünnschicht-­Heizelement zu schaffen, das bis zu Temperaturen von über 600 °C stabil und hochohmig genug ist, um es an Netzspan­nung zu betreiben.The invention has for its object to provide a thin-film heating element that is stable up to temperatures of over 600 ° C and high enough to operate it on mains voltage.

Diese Aufgabe wird erfindungsgemäß dadurch gelöst, daß die Metalloxidschicht mit um nicht mehr als 10% voneinander abweichenden Mengen der einander paarweise kompensierenden Fremdatome in einer Menge bis zu je 10 Atom% dotiert ist.This object is achieved according to the invention in that the metal oxide layer is doped with amounts of the mutually compensating foreign atoms which differ by no more than 10% in an amount of up to 10 atom% each.

Der Erfindung liegt die Erkenntnis zugrunde, daß mit dünnen, elektrisch leitfähigen Metalloxidschichten auf entsprechend temperaturstabilen Substraten Oberflächentem­peraturen von 1000 °C bei Leistungsdichten von mehr als 10 W/cm², entsprechend Stromdichten von mehr als 1000 A/cm² mit einem niedrigen positiven Temperaturkoeffizienten des elektrischen Widerstandes α ≦ 3.10⁻⁴ K⁻¹ erreicht werden können, wenn die Metalloxidschichten mit sowohl relativ hohen als auch etwa gleichen Mengen einander paarweise kompensierender Fremdatome aus je mindestens einem Akzep­toren bildenden Element und mindestens einem Donatoren bildenden Element dotiert sind. Die relativ hohe Dotierung führt zu einer erniedrigten Elektronenbeweglichkeit und damit zu relativ hohen Widerstandswerten. Der niedrige po­sitive Temperaturkoeffizient des elektrischen Widerstandes und seine Temperaturstabilität der erfindungsgemäßen Schichten wird auf die paarweise Kompensation der Akzep­toren und Donatoren bildenden Elemente zurückgeführt.The invention is based on the knowledge that with thin, electrically conductive metal oxide layers on appropriately temperature-stable substrates, surface temperatures of 1000 ° C. at power densities of more than 10 W / cm², corresponding to current densities of more than 1000 A / cm² with a low positive temperature coefficient of electrical resistance α ≦ 3.10⁻⁴ K⁻¹ can be achieved if the metal oxide layers are doped with both relatively high and approximately equal amounts of mutually compensating foreign atoms each consisting of at least one element forming an acceptor and at least one element forming a donor. The relatively high doping leads to reduced electron mobility and thus to relatively high resistance values. The low positive temperature coefficient of the electrical resistance and its temperature stability of the layers according to the invention are attributed to the pairwise compensation of the elements forming the acceptors and donors.

Nach vorteilhaften Weiterbildungen der Erfindung werden als Metalloxidschichten SnO₂-Schichten auf Hartglas-, Quarzglas- oder Glaskeramik-Substraten für den Aufbau des Heizelementes eingesetzt. Die Metalloxidschichten sind nicht unabhängig vom Substrat zu betrachten, wobei insbesondere die thermische Stabilität, der thermische Ausdehnungskoeffizient des Substratmaterials und auch eine mögliche Diffusion von Fremdstoffen aus dem Substrat in die Metalloxidschicht eine Rolle spielen.According to advantageous developments of the invention, SnO₂ layers are used as metal oxide layers on hard glass, quartz glass or glass ceramic substrates for the construction of the heating element. The metal oxide layers are not to be considered independently of the substrate, in particular the thermal stability, the thermal expansion coefficient of the substrate material and also a possible diffusion of foreign substances from the substrate into the metal oxide layer.

Insofern ist es ein überraschendes Ergebnis der der Her­stellung der vorliegenden Heizelemente zugrundeliegenden Versuche, daß sich Quarzgläser und Glaskeramiken mit ihren extrem niedrigen Ausdehnungskoeffizienten (α 0/1000 ≈ 0,5 bzw. 0,1.10⁻⁶ K⁻¹) für eine Beschichtung mit dotierten SnO₂- oder In₂O₃-Schichten (α ≈ 4.10⁻⁶ K⁻¹) als ebenso geeignete Substrate erwiesen haben, wie z.B. Hartgläser mit einem Ausdehnungskoeffizienten α ≈ 3 bis 4.10⁻⁶ K⁻¹.In this respect, it is a surprising result of the experiments on which the production of the present heating elements are based that quartz glasses and glass ceramics with their extremely low expansion coefficients ( α 0/1000 ≈ 0.5 or 0.1.10⁻⁶ K sich¹) are suitable for a coating with doped SnO₂ or In₂O₃ layers (α ≈ 4.10⁻⁶ K⁻¹) have proven to be equally suitable substrates, such as hard glasses with an expansion coefficient α ≈ 3 to 4.10⁻⁶ K⁻¹.

Nach vorteilhaften Weiterbildungen der Erfindung ist eine SnO₂-Schicht mit Indium, Bor und/oder Aluminium als Akzep­toren bildendem(bildenden) Element(en) und mit Antimon und/oder Fluor als Donatoren- bildendem(bildenden) Ele­ment(en) dotiert.According to advantageous developments of the invention, a SnO₂ layer is doped with indium, boron and / or aluminum as the acceptor-forming element (s) and with antimony and / or fluorine as the donor-forming element (s).

Nach einer weiteren vorteilhaften Ausbildung der Erfindung ist die Metalloxidschicht mit mindestens je einem Akzep­toren- und Donatoren- bildenden Element in einer Menge von jeweils 3 bis 5 Atom% dotiert.According to a further advantageous embodiment of the invention, the metal oxide layer is doped with at least one element which forms an acceptor and a donor in an amount of 3 to 5 atom% each.

Die mit der Erfindung erzielten Vorteile bestehen insbe­sondere darin, daß Heizelemente geschaffen sind, die schlagartig aus- und eingeschaltet werden können, die we­gen ihrer geringen Wärmekapazität nach relativ kurzer Dau­er ( ≈ 4 bis 5 min) bereits ihre Endtemperatur erreicht haben, und die nach Abschalten der Stromversorgung ebenso schnell abkühlen. Ein weiterer Vorteil ist, daß die erfin­dungsgemäßen Metalloxidschichten optisch klar, streufrei, schlierenfrei und rißfrei sind und eine hohe Transparenz aufweisen. Diese Eigenschaften der erfindungsgemäßen Me­talloxidschichten wirken sich besonders vorteilhaft aus, wenn transparente Substrate eingesetzt werden; so kann z.B. ein Brotröster mit transparenten Heizscheiben ausge­rüstet werden, bei dem die Bräunung des Röstgutes leicht visuell kontrolliert werden kann.The advantages achieved with the invention consist in particular in the fact that heating elements are created which can be switched on and off suddenly, which, due to their low heat capacity, have already reached their final temperature after a relatively short period (≈ 4 to 5 min), and which have been switched off cool down the power supply just as quickly. Another advantage is that the metal oxide layers according to the invention are optically clear, free from streaks, streak-free and crack-free and have a high degree of transparency. These properties of the metal oxide layers according to the invention have a particularly advantageous effect if transparent substrates are used; For example, a bread roaster can be equipped with transparent heating disks, with which the browning of the toast can be easily checked visually.

Bei Dauerstandsversuchen hat sich erwiesen, daß die erfin­dungsgemäßen Heizelemente unveränderte Eigenschaften über mehrere 1000 Betriebsstunden und Schaltzyklen an Luft bei­behalten. Dies betrifft auch großflächige Heizelemente von mehr als 1dm².
Ein weiterer Vorteil ist, daß der Flächenwiderstand der erfindungsgemäßen Schichten so gewählt werden kann, daß sie nach Anbringen von Elektroden, z.B. Metallschicht­elektroden, direkt an Netzspannung betrieben werden kön­nen.
In endurance tests, it has been found that the heating elements according to the invention retain unchanged properties in air for several 1000 operating hours and switching cycles. This also applies to large-area heating elements of more than 1dm².
Another advantage is that the sheet resistance of the layers according to the invention can be selected so that they can be operated directly from the mains voltage after electrodes, for example metal layer electrodes, have been attached.

Es ist somit zur Erzielung eines angepaßten elektrischen Widerstandes nicht notwendig, die Schicht z.B. in Mäander­struktur herzustellen, was technologisch aufwendig ist und obendrein das Risiko birgt, daß bei Anwendungen einer Be­triebsspannung von 220 V elektrische Überschläge auftreten können.It is thus not necessary to achieve an adapted electrical resistance, e.g. to produce in a meandering structure, which is technologically complex and also bears the risk that electrical flashovers can occur in applications with an operating voltage of 220 V.

Anhand von Ausführungsbeispielen wird die Erfindung in ihrer Wirkungsweise erläutert.The mode of operation of the invention is explained on the basis of exemplary embodiments.

Erfindungsgemäße Schichten wurden durch Sprühpyrolyse aus einer Lösung hergestellt. Hierzu wurden in einer Lösung aus 100 ml SnCl₄ in 500 ml Butylacetat 9,6 g SbCl₃ und 9,3 g InCl₃ als Dotierstoffe gelöst. Dieser Dotierstoffzu­satz entspricht einer Dotierung von 4,5 Atom% Sb und 4,5 Atom% In.Layers according to the invention were produced by spray pyrolysis from a solution. For this purpose, 9.6 g of SbCl₃ and 9.3 g of InCl₃ were dissolved as dopants in a solution of 100 ml of SnCl₄ in 500 ml of butyl acetate. This dopant addition corresponds to a doping of 4.5 atom% Sb and 4.5 atom% In.

Es ist z.B. auch möglich, eine Dotierung mit Zink als Akzeptoren bildendem Element vorzusehen.It is e.g. also possible to provide a doping with zinc as the element forming the acceptors.

SnO₂-Schichten mit einer Dichte an freien Ladungsträgern von N ≈ 6.10²⁰/cm³ wurden durch Aufsprühen der oben ge­nannten Lösung als feines Aerosol auf etwa 500 °C heiße Substrate einer Abmessung von 15×15 cm² aus einem Hart­ glas, wie es unter den Warenzeichen Pyrex oder Tempax im Handel erhältlich ist, aufgesprüht. Die Schichten hatten eine Schichtdicke von 0,1 µm und nach einem Temperprozeß (Formierprozeß) an Luft bei einer Temperatur von 600 °C über eine Dauer von 1 h einen Flächenwiderstand von 160Ω. Der tatsächliche Endwiderstand der erfindungsgemä­ßen Schichten, ausgedrückt als Flächenwiderstand R = ρ/d (ρ = spezifischer Widerstand der Metalloxidschicht, d = Schichtdicke), wird durch geeignete Wahl der Dotierstoffe und der Schichtdicke festgelegt. Die im Rahmen der Erfin­dung hergestellten Metalloxidschichten weisen Flächen­widerstände zwischen etwa 20 und 500Ω auf bei Schicht­dicken im Bereich von 0,05 bis 0,5 µm.SnO₂ layers with a density of free charge carriers of N ≈ 6.10²⁰ / cm³ were by spraying the above solution as a fine aerosol on about 500 ° C hot substrates with a dimension of 15 × 15 cm² from a hard sprayed on glass as it is commercially available under the trademarks Pyrex or Tempax. The layers had a layer thickness of 0.1 μm and, after an annealing process (forming process) in air at a temperature of 600 ° C. over a period of 1 h, a sheet resistance of 160Ω. The actual final resistance of the layers according to the invention, expressed as sheet resistance R = ρ / d (ρ = specific resistance of the metal oxide layer, d = layer thickness), is determined by a suitable choice of the dopants and the layer thickness. The metal oxide layers produced in the context of the invention have surface resistances of between approximately 20 and 500Ω with layer thicknesses in the range from 0.05 to 0.5 μm.

Mit dem wie oben beschrieben hergestellten beschichteten Substrat wurde nach Anbringen von Metallschichtelektroden, z.B. aus Silber, ein transparenter Brotröster gebaut. Die Bräunung von Brotscheiben war bei einer Oberflächentempe­ratur von 520 °C nach etwa 3 min zu beobachten.With the coated substrate prepared as described above, after the application of metal layer electrodes, e.g. made of silver, a transparent toaster. The browning of bread slices was observed after about 3 minutes at a surface temperature of 520 ° C.

Mit der oben angegebenen Lösung zur Herstellung von dotierten SnO₂-Schichten wurden weiterhin Substrate einer Abmessung von 15×15 cm² aus Glaskeramik mit SnO₂-Schichten einer Dicke von 0,3 µm beschichtet. Diese Schichten hatten, ebenfalls nach einem Formierungsprozeß bei einer Temperatur von ≈ 600 °C über eine Dauer von ≈ 1 h einen stabilen Flächenwiderstand von ≈ 60Ω. An den so beschichteten Substraten wurden ebenfalls Metallschicht­elektroden angebracht und aus diesen Heizelementen wurden elektrisch beheizte Kochplatten gebaut, die bei einer Netzspannung von 220 V mit einer Leistung von 800 W mit einer Oberflächentemperatur von 600 C betrieben wurden. Nach einem 200-maligen An- und Abschaltzyklus war der elektrische Widerstand der Schichten unverändert. Dieses Heizelement war auch bei einer Leistung von 1,1 kW noch betriebsfähig.With the above-mentioned solution for the production of doped SnO₂ layers, substrates with a dimension of 15 × 15 cm² were further coated from glass ceramic with SnO₂ layers with a thickness of 0.3 μm. These layers also had a stable sheet resistance of ≈ 60Ω after a formation process at a temperature of ≈ 600 ° C for a period of ≈ 1 h. Metal-layer electrodes were also attached to the substrates coated in this way, and electrically heated hot plates were built from these heating elements, which were operated at a mains voltage of 220 V with a power of 800 W and a surface temperature of 600 C. The electrical resistance of the layers was unchanged after a 200 switch-on and switch-off cycle. This heating element was still operational even with an output of 1.1 kW.

Im Rahmen der vorliegenden Erfindung ist es z.B. auch mög­lich, Quarzglasrohre, Quarzglasstäbe oder Quarzglasplatten mit den erfindungsgemäßen Metalloxidschichten zu verse­hen. Quarzglasrohre lassen sich z.B. als Wärmetauscher in Durchlauferhitzern, in Kaffeemaschinen oder allgemein als Wärmetauscher in professionellen Anwendungen einsetzen.In the context of the present invention it is e.g. it is also possible to provide quartz glass tubes, quartz glass rods or quartz glass plates with the metal oxide layers according to the invention. Quartz glass tubes can e.g. use as a heat exchanger in instantaneous water heaters, in coffee machines or generally as a heat exchanger in professional applications.

Während auf Glaskeramik-Substraten ein Dauerbetrieb der Heizelemente bis zur Rekristallisationstemperatur von etwa 700 °C möglich ist, lassen sich auf Quarzglasrohren, Quarzglasstäben oder Quarzglasplatten Betriebstemperaturen von 1000 °C realisieren.
Beispielsweise wurde eine 1 dm² große Quarzglasplatte mit einem Flächenwiderstand von R = 37Ω über eine Dauer von 1000 h bei dieser Temperatur betrieben.
While continuous operation of the heating elements up to a recrystallization temperature of around 700 ° C is possible on glass ceramic substrates, operating temperatures of 1000 ° C can be achieved on quartz glass tubes, quartz glass rods or quartz glass plates.
For example, a 1 dm² quartz glass plate with an area resistance of R = 37Ω was operated at this temperature for a period of 1000 h.

Heizelemente mit plattenförmigen Substraten lassen sich als Heizscheiben für Brotröster, Heiz- oder Kochplatten, Warmhalteplatten, Tischbacköfen, Bügeleisen, als Bodenhei­zung in heizbaren Thermoskannen oder ähnlichen Vorrichtun­gen verwenden.Heating elements with plate-shaped substrates can be used as heating disks for toasters, heating or hot plates, hot plates, table ovens, irons, as underfloor heating in heatable thermos jugs or similar devices.

Heizelemente mit rohrförmigen Substraten lassen sich als Wärmeaustauscher für Durchlauferhitzer, Kaffeemaschinen, Geschirrspülmaschinen, Waschmaschinen, Wäschetrockner, Raumluftheizgeräte, Haartrockner oder ähnliche Vorrichtun­gen verwenden.Heating elements with tubular substrates can be used as heat exchangers for instantaneous heaters, coffee machines, dishwashers, washing machines, tumble dryers, room air heaters, hair dryers or similar devices.

Heizelemente mit stabförmigen oder rohrförmigen Substraten lassen sich beispielsweise als Infrarotstrahler oder Strahlungsöfen verwenden.Heating elements with rod-shaped or tubular substrates can be used, for example, as infrared radiators or radiation ovens.

Claims (13)

1. Dünnschicht-Heizelement bestehend aus einem temperatur­stabilen, elektrisch isolierenden Substrat mit einer dünnen, elektrisch leitfähigen, mit einander paarweise kompensierenden Fremdatomen aus je mindestens einem Akzeptoren bildenden Element und je mindestens einem Donatoren bildenden Element dotierten Metalloxidschicht, die mit Anschlußelektroden versehen ist,
dadurch gekennzeichnet,
daß die Metalloxidschicht mit um nicht mehr als 10% von­einander abweichenden Mengen der einander paarweise kom­pensierenden Fremdatome in einer Menge bis zu je 10 Atom% dotiert ist.
1. Thin-film heating element consisting of a temperature-stable, electrically insulating substrate with a thin, electrically conductive, mutually compensating foreign atoms, each consisting of at least one element forming an acceptor and at least one element forming a donor, which is provided with connecting electrodes,
characterized,
that the metal oxide layer is doped with amounts of the mutually compensating foreign atoms which differ by no more than 10% in an amount of up to 10 atom% each.
2. Heizelement nach Anspruch 1, dadurch gekennzeichnet,
daß die Metalloxidschicht eine SnO₂-Schicht ist.
2. Heating element according to claim 1, characterized in
that the metal oxide layer is a SnO₂ layer.
3. Heizelement nach Anspruch 2, dadurch gekennzeichnet,
daß die Metalloxidschicht mit Indium, Bor und/oder Alumi­nium als Akzeptoren bildendem(bildenden) Element(en) do­tiert ist.
3. Heating element according to claim 2, characterized in
that the metal oxide layer is doped with indium, boron and / or aluminum as the acceptor-forming element (s).
4. Heizelement nach Anspruch 2, dadurch gekennzeichnet
daß die Metalloxidschicht mit Antimon und/oder Fluor als Donatoren bildendem(bildenden) Element(en) dotiert ist.
4. Heating element according to claim 2, characterized
that the metal oxide layer is doped with antimony and / or fluorine as the donor-forming element (s).
5. Heizelement nach Anspruch 2, dadurch gekennzeichnet,
daß die Metalloxidschicht mit Zink als Akzeptoren bilden­dem Element dotiert ist.
5. Heating element according to claim 2, characterized in
that the metal oxide layer is doped with zinc as the element forming the acceptors.
6. Heizelement nach Anspruch 1, dadurch gekennzeichnet,
daß die Metalloxidschicht mit mindestens je einem Akzeptoren und Donatoren bildenden Element in einer Menge von jeweils 3 bis 5 Atom% dotiert ist.
6. Heating element according to claim 1, characterized in
that the metal oxide layer is doped with at least one acceptor and donor-forming element in an amount of 3 to 5 atom% each.
7. Heizelement nach mindestens einem der vorhergehenden Ansprüche, dadurch gekennzeichnet,
daß die Metalloxidschicht durch Pyrolyse einer die am Schichtaufbau beteiligten Elemente enthaltenden Lösung hergestellt ist.
7. Heating element according to at least one of the preceding claims, characterized in that
that the metal oxide layer is produced by pyrolysis of a solution containing the elements involved in the layer structure.
8. Heizelement nach mindestens einem der vorhergehenden Ansprüche, dadurch gekennzeichnet,
daß das Substrat aus Hartglas besteht.
8. Heating element according to at least one of the preceding claims, characterized in that
that the substrate is made of tempered glass.
9. Heizelement nach mindestens einem der vorhergehenden Ansprüche, dadurch gekennzeichnet,
daß das Substrat aus Quarzglas besteht.
9. Heating element according to at least one of the preceding claims, characterized in that
that the substrate is made of quartz glass.
10. Heizelement nach mindestens einem der vorhergehenden Ansprüche, dadurch gekennzeichnet,
daß das Substrat aus Glaskeramik besteht.
10. Heating element according to at least one of the preceding claims, characterized in that
that the substrate is made of glass ceramic.
11. Verwendung des Heizelementes nach den Ansprüchen 1 bis 10 als Heizscheibe für Brotröster, Heiz- oder Kochplatten, Warmhalteplatten, Tischbacköfen, Bügeleisen oder heizbare Thermoskannen.11. Use of the heating element according to claims 1 to 10 as a heating disc for toasters, heating or hot plates, hot plates, table ovens, irons or heatable thermos flasks. 12. Verwendung rohrförmiger Heizelemente nach den Ansprü­chen 1 bis 10 als Wärmetauscher für Durchlauferhitzer, Kaffeemaschinen, Geschirrspülmaschinen, Waschmaschinen, Wäschetrockner, Raumluftheizgeräte oder Haartrockner.12. Use of tubular heating elements according to claims 1 to 10 as a heat exchanger for instantaneous water heaters, coffee machines, dishwashers, washing machines, tumble dryers, room air heaters or hairdryers. 13. Verwendung stabförmiger oder rohrförmiger Heizelemente nach den Ansprüchen 1 bis 10 als Infrarotstrahler oder Strahlungsöfen.13. Use of rod-shaped or tubular heating elements according to claims 1 to 10 as infrared radiators or radiation ovens.
EP88200279A 1987-02-21 1988-02-16 Thin film heating element Expired - Lifetime EP0280362B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19873705639 DE3705639A1 (en) 1987-02-21 1987-02-21 THICK LAYER HEATING ELEMENT
DE3705639 1987-02-21

Publications (3)

Publication Number Publication Date
EP0280362A2 true EP0280362A2 (en) 1988-08-31
EP0280362A3 EP0280362A3 (en) 1990-01-31
EP0280362B1 EP0280362B1 (en) 1994-05-04

Family

ID=6321510

Family Applications (1)

Application Number Title Priority Date Filing Date
EP88200279A Expired - Lifetime EP0280362B1 (en) 1987-02-21 1988-02-16 Thin film heating element

Country Status (4)

Country Link
US (1) US4889974A (en)
EP (1) EP0280362B1 (en)
JP (1) JP2616947B2 (en)
DE (2) DE3705639A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2640803A1 (en) * 1988-12-15 1990-06-22 Neiman Sa High temperature ceramic resistor
GB2267421A (en) * 1992-05-28 1993-12-01 Chinacraft Ltd A glass hot plate having a resistive heating coating
EP0654956A1 (en) * 1993-11-24 1995-05-24 U'LAMP ENTERPRISES Co., Ltd. A method of manufacturing an electric heating film
DE19535068A1 (en) * 1995-09-21 1997-03-27 Lpkf Cad Cam Systeme Gmbh Coating for the structured generation of conductor tracks on the surface of electrically insulating substrates
EP0772954A1 (en) * 1994-07-29 1997-05-14 Thermal Dynamics U.S.A., Ltd. Co. Resistance heating element with large-area, thin film and method
WO2012084710A1 (en) * 2010-12-22 2012-06-28 BSH Bosch und Siemens Hausgeräte GmbH Heating unit, household appliance having a heating unit and method for producing same
EP3319397A4 (en) * 2015-07-02 2019-03-06 Goo, Gak Hoi Sheet heating element and electrically conductive thin film
CN111447695A (en) * 2020-05-05 2020-07-24 中山市烯帝科技有限公司 Manufacturing method and formula of graphene far infrared heating plate

Families Citing this family (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02220386A (en) * 1989-02-21 1990-09-03 Nippon Electric Glass Co Ltd Far infrared ray heater
US5408574A (en) * 1989-12-01 1995-04-18 Philip Morris Incorporated Flat ceramic heater having discrete heating zones
JP2961466B2 (en) * 1992-08-19 1999-10-12 株式会社河合楽器製作所 heater
US5468936A (en) * 1993-03-23 1995-11-21 Philip Morris Incorporated Heater having a multiple-layer ceramic substrate and method of fabrication
US5725912A (en) * 1993-11-22 1998-03-10 Lin; Pan-Tien Method of manufacturing an electric heating film of semiconductor
US5577158A (en) * 1995-07-17 1996-11-19 White Consolidated Industries, Inc. Capacitive leakage current cancellation for heating panel
US5940579A (en) * 1997-02-26 1999-08-17 White Consolidated Industries, Inc. Capacitive leakage current cancellation for heating panel
US5932128A (en) * 1997-02-26 1999-08-03 White Consolidated Industries, Inc. Switching control system for heating panel with leakage current cancellation
US6037572A (en) * 1997-02-26 2000-03-14 White Consolidated Industries, Inc. Thin film heating assemblies
AU7291398A (en) 1997-05-06 1998-11-27 Thermoceramix, L.L.C. Deposited resistive coatings
FR2778304B1 (en) * 1998-05-04 2000-06-02 Production De L Aube Soc Ind D METHOD FOR PROVIDING HEAT TO AN OBJECT AND CONTAINER FOR MAINTAINING AND RECOVERING DISHES
AUPP599598A0 (en) * 1998-09-18 1998-10-08 Email Limited Self-regulating nanoscale heating element
US6111224A (en) * 1999-12-02 2000-08-29 Hatco Corporation Food warming oven with transparent heating shelves
US6674053B2 (en) 2001-06-14 2004-01-06 Trebor International Electrical, thin film termination
US6580061B2 (en) * 2000-02-01 2003-06-17 Trebor International Inc Durable, non-reactive, resistive-film heater
US6663914B2 (en) 2000-02-01 2003-12-16 Trebor International Method for adhering a resistive coating to a substrate
US7081602B1 (en) 2000-02-01 2006-07-25 Trebor International, Inc. Fail-safe, resistive-film, immersion heater
CN101638765A (en) 2000-11-29 2010-02-03 萨莫希雷梅克斯公司 Resistive heaters and uses thereof
US6728479B2 (en) * 2001-06-11 2004-04-27 Aoyagi (H.K.) Ltd. Panel-type heating element and method for the manufacture thereof
DE10258727A1 (en) * 2002-12-05 2004-06-24 Schott Glas oven
US20060014151A1 (en) * 2002-12-25 2006-01-19 Jun Ogura Optical dna sensor, dna reading apparatus, identification method of dna and manufacturing method of optical dna sensor
US6991003B2 (en) * 2003-07-28 2006-01-31 M.Braun, Inc. System and method for automatically purifying solvents
DE602004011386T2 (en) * 2003-11-20 2009-01-08 Koninklijke Philips Electronics N.V. thin-film
DE102004019715A1 (en) * 2004-04-20 2005-11-17 Daimlerchrysler Ag Fuel tank
EP1653778A1 (en) * 2004-10-26 2006-05-03 Cheng-Ping Lin Film heating element having automatic temperature stabilisation function
EP1681905A1 (en) * 2005-01-17 2006-07-19 Cheng-Ping Lin Method of fabricating semiconductor electric heating film
US8428445B2 (en) * 2007-02-20 2013-04-23 Thermoceramix, Inc. Gas heating apparatus and methods
DE202008008709U1 (en) 2008-06-28 2009-11-19 Moser, Helmut Table and table top of a table
DE102008050895A1 (en) 2008-09-25 2010-04-01 E.G.O. Elektro-Gerätebau GmbH Pump for fluids
GB0908860D0 (en) * 2009-05-22 2009-07-01 Sagentia Ltd Iron
US9408497B2 (en) 2013-08-21 2016-08-09 Whirlpool Corporation Multi-functional toasting platform utilizing a coated clear-glass heating element
US20150297030A1 (en) * 2014-04-16 2015-10-22 Spectrum Brands, Inc. Toaster using thin-film heating element
WO2015161120A1 (en) 2014-04-16 2015-10-22 Spectrum Brands, Inc. Portable container system for heating a beverage
WO2015160890A1 (en) 2014-04-16 2015-10-22 Spectrum Brands, Inc. Cooking appliance using thin-film heating element
EP3317134B1 (en) * 2015-07-03 2022-01-12 Kautex Textron GmbH & Co. KG Thawing device for operating fluid containers
US11428437B2 (en) 2017-01-20 2022-08-30 Bunn-O-Matic Corporation Instant-response on-demand water heater
EP3447304A1 (en) * 2017-08-25 2019-02-27 Sanhua AWECO Appliance Systems GmbH Thin layered heating element for a fluid pump

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2564709A (en) * 1950-11-24 1951-08-21 Corning Glass Works Electrically conducting coating on glass and other ceramic bodies
US3044903A (en) * 1958-08-25 1962-07-17 Philco Corp Thin film resistors
US3108019A (en) * 1958-02-14 1963-10-22 Corning Glass Works Method of stabilizing the electrical resistance of a metal oxide film
DE2642161A1 (en) * 1975-12-08 1977-06-30 Popov CONDUCTING FILM FOR ELECTRIC HEATERS

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3551195A (en) * 1968-08-29 1970-12-29 Matsushita Electric Ind Co Ltd Resistor composition and article
US4340508A (en) * 1979-01-29 1982-07-20 Trw Inc. Resistance material, resistor and method of making the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2564709A (en) * 1950-11-24 1951-08-21 Corning Glass Works Electrically conducting coating on glass and other ceramic bodies
US3108019A (en) * 1958-02-14 1963-10-22 Corning Glass Works Method of stabilizing the electrical resistance of a metal oxide film
US3044903A (en) * 1958-08-25 1962-07-17 Philco Corp Thin film resistors
DE2642161A1 (en) * 1975-12-08 1977-06-30 Popov CONDUCTING FILM FOR ELECTRIC HEATERS

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
J. ELECTROCHEM. SOC.: SOLID-STATE SCIENCE AND TECHNOLOGY, Band 123, Nr. 2, 1976, Seiten 270-277, US; J. KANE et al.: "Chemical vapor deposition of antimony-doped tin oxide films formed from dibutyl tin diacetate" *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2640803A1 (en) * 1988-12-15 1990-06-22 Neiman Sa High temperature ceramic resistor
GB2267421A (en) * 1992-05-28 1993-12-01 Chinacraft Ltd A glass hot plate having a resistive heating coating
GB2267421B (en) * 1992-05-28 1996-04-10 Chinacraft Ltd Method of making a hot plate
EP0654956A1 (en) * 1993-11-24 1995-05-24 U'LAMP ENTERPRISES Co., Ltd. A method of manufacturing an electric heating film
EP0772954A1 (en) * 1994-07-29 1997-05-14 Thermal Dynamics U.S.A., Ltd. Co. Resistance heating element with large-area, thin film and method
EP0772954A4 (en) * 1994-07-29 1998-10-14 Thermal Dynamics U S A Ltd Co Resistance heating element with large-area, thin film and method
DE19535068A1 (en) * 1995-09-21 1997-03-27 Lpkf Cad Cam Systeme Gmbh Coating for the structured generation of conductor tracks on the surface of electrically insulating substrates
WO1997011589A1 (en) * 1995-09-21 1997-03-27 Fa. Lpkf Cad/Cam Systeme Gmbh Coating for the structured production of conductors on the surface of electrically insulating substrates
WO2012084710A1 (en) * 2010-12-22 2012-06-28 BSH Bosch und Siemens Hausgeräte GmbH Heating unit, household appliance having a heating unit and method for producing same
EP3319397A4 (en) * 2015-07-02 2019-03-06 Goo, Gak Hoi Sheet heating element and electrically conductive thin film
CN111447695A (en) * 2020-05-05 2020-07-24 中山市烯帝科技有限公司 Manufacturing method and formula of graphene far infrared heating plate

Also Published As

Publication number Publication date
US4889974A (en) 1989-12-26
DE3889359D1 (en) 1994-06-09
JPS63252378A (en) 1988-10-19
EP0280362B1 (en) 1994-05-04
EP0280362A3 (en) 1990-01-31
JP2616947B2 (en) 1997-06-04
DE3705639A1 (en) 1988-09-01

Similar Documents

Publication Publication Date Title
EP0280362B1 (en) Thin film heating element
Frank et al. Transparent heat-reflecting coatings for solar applications based on highly doped tin oxide and indium oxide
DE4321373A1 (en) Transparent or translucent inorganic material with high transmission in the wavelength range from 2700 to 3300 nm.
DE602004011386T2 (en) thin-film
DE2614433A1 (en) SELF-REGULATING HEATING ELEMENT
US3114066A (en) Transparent high dielectric constant material, method and electroluminescent device
EP3319397B1 (en) Sheet heating element and electrically conductive thin film
DE2912402A1 (en) GLASS-LIKE MATERIAL FOR ELECTRICAL RESISTANCE AND METHOD FOR MANUFACTURING IT
WO2018054610A1 (en) Infrared radiating element
CN102036433B (en) Infrared electric heating film heating tube with double-film layer structure as well as preparation method and application thereof
EP3786122B1 (en) Enamel composition, manufacturing method therefor, and cooking utensils
DE908882C (en) Electrical resistance and process for its manufacture
CN104486849A (en) Saturated solution for preparing semiconductor electrothermal films
US4322477A (en) Electrical resistor material, resistor made therefrom and method of making the same
DE2642161C2 (en) Conductive film for electrical heating devices
CN1072700A (en) A kind of thin-thick film compound electro-thermal coatings
DE2150651B2 (en) ELECTRICALLY NON-CHARGING COVER GLASS, IN PARTICULAR COVER GLASS FOR SOLAR CELLS FOR SPACE VEHICLES
EP2856842B1 (en) Thin film heater with pyramid-shaped laser cutting pattern
JPS6116153A (en) Conductive transparent member of automobile
WO2011018390A1 (en) Solar cell
Frank et al. Transparent heat reflecting coatings (THRC) based on highly doped tin oxide and indium oxide
CN1136263A (en) Inorganic oxide electric heating film and the manufacture thereof
DE764267C (en) Process for the production of electrical resistance layers arranged in a band shape
JPH0238556B2 (en) ENSEKIGAISENHIITAANARABINISONOSEIZOHO
DE2010706C (en) Sintered photoconductive element and process for its manufacture

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): DE FR GB IT NL SE

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): DE FR GB IT NL SE

17P Request for examination filed

Effective date: 19900712

17Q First examination report despatched

Effective date: 19930602

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19940504

Ref country code: NL

Effective date: 19940504

REF Corresponds to:

Ref document number: 3889359

Country of ref document: DE

Date of ref document: 19940609

ITF It: translation for a ep patent filed

Owner name: ING. C. GREGORJ S.P.A.

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19940715

ET Fr: translation filed
NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

ITPR It: changes in ownership of a european patent

Owner name: CAMBIO RAGIONE SOCIALE;PHILIPS ELECTRONICS N.V.

26N No opposition filed
REG Reference to a national code

Ref country code: FR

Ref legal event code: CD

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19960131

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19960228

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19960424

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19970216

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19970216

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19971030

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19971101

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050216