EP0262419B1 - Verfahren zum Entfernen von Säure aus kathodischen Elektrotauchlackier-Bädern - Google Patents

Verfahren zum Entfernen von Säure aus kathodischen Elektrotauchlackier-Bädern Download PDF

Info

Publication number
EP0262419B1
EP0262419B1 EP87112627A EP87112627A EP0262419B1 EP 0262419 B1 EP0262419 B1 EP 0262419B1 EP 87112627 A EP87112627 A EP 87112627A EP 87112627 A EP87112627 A EP 87112627A EP 0262419 B1 EP0262419 B1 EP 0262419B1
Authority
EP
European Patent Office
Prior art keywords
ultrafiltrate
acid
aqueous
membrane
dialysis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP87112627A
Other languages
English (en)
French (fr)
Other versions
EP0262419A2 (de
EP0262419A3 (en
Inventor
Hartwig Dr. Voss
Thomas Dr. Bruecken
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF Coatings GmbH
Original Assignee
BASF SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BASF SE filed Critical BASF SE
Priority to AT87112627T priority Critical patent/ATE89339T1/de
Publication of EP0262419A2 publication Critical patent/EP0262419A2/de
Publication of EP0262419A3 publication Critical patent/EP0262419A3/de
Application granted granted Critical
Publication of EP0262419B1 publication Critical patent/EP0262419B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D13/00Electrophoretic coating characterised by the process
    • C25D13/22Servicing or operating apparatus or multistep processes
    • C25D13/24Regeneration of process liquids

Definitions

  • the present invention relates to a new process for removing acid from cathodic electrocoating baths, in which electrically conductive substrates are coated with cationic resins present in the form of their aqueous dispersions, by removing the resin by means of ultrafiltration, deacidifying the ultrafiltrate and recycling the deacidified ultrafiltrate to the immersion bath .
  • Cathodic electrocoating is known and is e.g. described in detail in F. Loop, "Cathodic electrodeposition for automotive coatings” World Surface Coatings Abstracts (1978), para. 3929.
  • electrically conductive substrates are coated with cationic resins in the form of aqueous dispersions.
  • Resins that can be deposited by cathode usually contain amino groups.
  • acids also called solubilizing agents in some publications
  • the protonation in the immediate vicinity of the metallic object to be coated is reversed by neutralization with the hydroxyl ions formed by electrolytic water decomposition, so that the binder precipitates on the substrate ("coagulates").
  • the acid is not co-precipitated, so that the acid accumulates in the bath with increasing painting time. This causes the pH to drop, which leads to destabilization of the electrocoat. The excess acid must therefore be neutralized or removed from the bath.
  • US-A-3 663 405 describes the ultrafiltration of electrocoat materials.
  • the electrocoat is passed under a certain pressure along a membrane that retains the higher molecular weight components of the lacquer, which allows low molecular weight components such as organic impurities, decomposition products, resin solubilizing agents (acids) and solvents to pass through.
  • part of the ultrafiltrate is discarded and thus removed from the system.
  • a other part of the ultrafiltrate is led into the rinsing zone of the painting line and is used there to rinse off the paint dispersions still adhering to the painted objects ("drag-out").
  • Ultrafiltrate and rinsed paint dispersions are returned to the electrocoating tank for the purpose of recovering the discharge. Since the solubilizing agent is used in large quantities, it is not possible to remove it from the bath in sufficient quantities by discarding ultrafiltrate.
  • US-A-3 663 406 describes the combined use of ultrafiltration and electrodialysis for processing and for controlling the solubilizing agent budget of electrocoating materials.
  • Electrodialysis is installed in the electrodeposition basin so that the counter electrode to the coated object is separated from the actual varnish by a semi-permeable membrane and an electrolyte that contains the solubilizing agent.
  • the ions which are oppositely charged to the ionic resin groups migrate through the ion exchange membrane into the electrolyte and can be discharged from there via a separate circuit.
  • These electrodialysis units installed in the electrocoat require a lot of space and are very maintenance-intensive.
  • the membranes can settle with paint particles or can be mechanically damaged by the objects to be painted, so that an exchange of the membranes is necessary. This is time and cost intensive and can put the painting process out of operation for a certain time.
  • the object of the invention was therefore to remove excess acid from the ultrafiltrate of cathodic electrocoating baths without the disadvantages described above.
  • the acid can be removed from the ultrafiltrate without electrodialysis using an exchange cell, that is to say by electroless dialysis.
  • a large number of paints can be used for cathodic electrocoating.
  • the paints obtain their ionic character from cationic resins, which usually contain amino groups, which are mixed with conventional acids, e.g. Formic acid, acetic acid, lactic acid or phosphoric acid are neutralized, forming cationic salt groups.
  • cationic resins which usually contain amino groups, which are mixed with conventional acids, e.g. Formic acid, acetic acid, lactic acid or phosphoric acid are neutralized, forming cationic salt groups.
  • Such cationically depositable compositions are described, for example, in US-A-4,031,050, US-A-4,190,567, DE-A-2,752,555 and EP-A-12,463.
  • cationic resin dispersions are combined with pigments, soluble dyes, solvents, flow improvers, stabilizers, antifoams, crosslinking agents, curing catalysts, lead and other metal salts and other auxiliaries and additives to give the electrocoating materials.
  • a solids content of the electrocoating bath of 5 to 30, preferably 10 to 20,% by weight is generally established by dilution with deionized water.
  • the deposition is generally carried out at temperatures of 15 to 40 ° C. for a period of 1 to 3 minutes and at pH bath values of 5.0 to 8.5, preferably pH 6.0 to 7.5, with deposition voltages between 50 and 500 volts.
  • After rinsing off the film deposited on the electrically conductive body it is cured at about 140 ° C. to 200 ° C. for 10 to 30 minutes, preferably at 150 to 180 ° C. for about 20 minutes.
  • Electro dip painting baths are operated continuously, i.e. the objects to be coated are constantly introduced into the bath, coated and then removed again. That is why it is also necessary to constantly supply the bathroom with paint.
  • undesirable contaminants and solubilizing agents accumulate in the bathroom.
  • contaminants are oils, phosphates and chromates which are introduced into the bath from the substrates to be coated, carbonates, excess solubilizing agents, solvents, oligomers which accumulate in the bath because they are not deposited with the resin.
  • Such undesirable components negatively affect the coating process, so that the chemical and physical properties of the deposited film become unsatisfactory.
  • part of the bath is drawn off and subjected to ultrafiltration.
  • the solutions to be ultrafiltered are brought under pressure in a cell, for example either by compressed gas or a liquid pump, into contact with a filtration membrane which is arranged on a porous support. Any membrane or filter that is chemically compatible with the system and has the desired separation properties can be used.
  • the contents of the ultrafiltration cell are preferably stirred in order to prevent accumulation of the retained material on the membrane surface and to prevent these substances from being firmly deposited on the membrane.
  • Ultrafiltrate is continuously produced, which is collected until the retained solution in the cell has reached the desired concentration or the desired proportion of solvents or solvents with dissolved low-molecular substances is removed. Suitable devices for ultrafiltration are described, for example, in US Pat. No. 3,495,465.
  • ultrafiltration can be used to remove numerous impurities from the immersion bath, it is not possible to remove solubilizing agents from the bath satisfactorily.
  • the ultrafiltrate is used to wash and rinse freshly coated objects to rinse off loose paint particles. This washing solution is returned to the immersion bath. Although part of the ultrafiltrate is usually discarded, this is usually not sufficient to remove the excess acid. It is therefore necessary to feed at least part of the ultrafiltrate to an exchange cell.
  • the dialysis process is carried out in an exchange cell which contains at least two chambers separated by an anion exchange membrane, so that two separate liquid flows are possible.
  • Exchange cells of this type are e.g. used for the known methods of electrodialysis, but in the present case the electrode chambers are omitted since no electrical field is required.
  • Suitable equipment is e.g. in EP-A-126 830.
  • Suitable as exchange cells are e.g. apparatus equipped with membrane stacks, which a variety. e.g. Contain 2 to 800 chambers arranged parallel to each other. Since no electric field has to be applied, one is not bound to these so-called plate membrane modules. All other exchange cells can also be used, such as hollow fiber, tube or winding modules.
  • the chambers of the exchange cells can alternatively be charged with the ultrafiltrate and an aqueous solution of an organic or inorganic base, which may also contain salts.
  • the hydroxides or carbonates of the alkali or alkaline earth metals or of ammonium are used as inorganic bases.
  • Sodium hydroxide, potassium hydroxide, sodium carbonate, potassium carbonate, calcium hydroxide, barium hydroxide, ammonia or ammonium carbonate are preferred.
  • Amines such as the trialkylamines, e.g.
  • Trimethylamine and triethylamine, or diazabicyclooctane and dicyclohexylethylamine or polyamines, such as polyethyleneimines and polyvinylamines, or quaternary ammonium hydroxides are used.
  • the solution generally has a pH of 7 to 14, preferably 11 to 13.
  • At least one salt preferably consisting of a cation of the above-mentioned bases and an anion of the above-mentioned customary acids, in a concentration of 0.001 to 10 equivalents per liter, preferably 0.001 to 1 equivalent per liter.
  • Sodium and potassium acetate and sodium and potassium lactate are preferred.
  • the process can be carried out continuously or batchwise.
  • the solutions pass through the exchange cell a number of times and during continuous operation once.
  • the two solutions can be passed through the exchange cell in parallel, cross or countercurrent.
  • the exchange cells can be arranged in the form of a multi-stage cascade, in particular during continuous operation.
  • anion exchange membranes which e.g. have a thickness of 0.1 to 1 mm and a pore diameter of 1 to 30 ⁇ m or a gel-like structure. Since it is a diffusion process, particularly thin membranes, e.g. those with a thickness of less than 0.2 mm are preferred.
  • the anion exchange membranes are constructed according to a generally known principle from a matrix polymer which is functionalized with cationic groups.
  • matrix polymers are polystyrene, which is e.g. Divinylbenzene or butadiene has been crosslinked, high or low density polyethylene, polysulfone or polytetrafluoroethylene.
  • the matrix polymers are functionalized e.g. by copolymerization, grafting or condensation reaction with monomers containing cationic groups.
  • monomers containing cationic groups examples include vinylbenzylammonium, vinylpyridinium or vinylimidazolidinium salts.
  • Amines which still have quaternary ammonium groups are introduced into the matrix polymer via an amide or sulfonamide condensation reaction.
  • Polystyrene-based membranes are e.g. commercially available under the names Selemion® (Asahi Glas), Neosepta® (Tokoyama Soda) or Aciplex® (Asahi Chem.).
  • Membranes based on polyethylene grafted with quaternized vinylbenzylamine are available under the name Raipore® R-5035 (from RAI Research Corp.), with grafted polytetrafluoroethylene under the name Raipore R-1035.
  • EP-A-166 015 describes membranes based on polytetrafluoroethylene with a quaternary ammonium group bonded via a sulfonamide group.
  • the anion exchange membranes have good stability towards the alkaline medium.
  • the process is characterized by high exchange rates, depending on the process conditions and the electrocoating bath compositions used, the exchange rates may drop after some operating time. In these cases, an intermediate rinsing of the membranes with e.g. diluted acids.
  • the flow rate at which the ultrafiltrate and the aqueous solution of an organic or inorganic base are passed through the exchange cell is generally 0.001 m / s to 2.0 m / s, preferably 0.01 to 0.10 m / s.
  • the dialysis process is generally carried out at temperatures from 0 to 100 ° C., preferably 20 to 50 ° C. and at pressures from 1 to 10 bar, preferably at atmospheric pressure.
  • the pressure drop across the membranes used is up to 5 bar, in particular up to 0.2 bar.
  • cathodic electrocoating is used to coat electrically conductive surfaces, e.g. Automotive bodies, metal parts, sheets, etc. made of brass, copper, aluminum, metallized plastics or materials coated with conductive carbon, as well as iron and steel, which may have been chemically pretreated, e.g. are phosphated.
  • electrically conductive surfaces e.g. Automotive bodies, metal parts, sheets, etc. made of brass, copper, aluminum, metallized plastics or materials coated with conductive carbon, as well as iron and steel, which may have been chemically pretreated, e.g. are phosphated.
  • the process of removing acid from the electrocoating bath is characterized by high exchange rates.
  • Example 2 This example was carried out analogously to Example 1, with the difference that a mixture of 0.02 equivalent / l sodium hydroxide and 0.17 equivalent / l sodium acetate was used as the aqueous base solution.
  • Example 4 The same experimental setup and an ultrafiltrate of the same electrocoat material as in Example 4 were used.
  • a 0.001N sodium hydroxide solution with a pH of 10.4 was used as the aqueous base solution.
  • the pH of the base solution was kept between 9.4 and 10.6 by regular addition of 0.01N NaOH solution.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Paints Or Removers (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Description

  • Die vorliegende Erfindung betrifft ein neues Verfahren zum Entfernen von Säure aus kathodischen Elektrotauchlackierbädern, in denen elektrisch leitende Substrate mit in Form ihrer wäßrigen Dispersionen vorliegenden kationischen Harzen beschichtet werden, durch Abtrennung des Harzes mittels Ultrafiltration, Entsäuerung des Ultrafiltrates und Rückführung des entsäuerten Ultrafiltrates in das Tauchbad.
  • Die kathodische Elektrotauchlackierung ist bekannt und wird z.B. ausführlich beschrieben in F. Loop, "Cathodic electrodeposition for automotive coatings" World Surface Coatings Abstracts (1978), Abs. 3929.
  • Bei diesem Verfahren werden elektrisch leitende Substrate mit in Form von wäßrigen Dispersionen vorliegenden kationischen Harzen beschichtet. Kathodisch abscheidbare Harze enthalten üblicherweise Aminogruppen. Um sie in eine stabile wäßrige Dispersion zu überführen, werden sie mit Säuren (in einigen Veröffentlichungen auch als Solubilisierungsmittel bezeichnet), wie Ameisensäure, Essigsäure, Milchsäure oder Phosphorsäure, protoniert. Während einer Elektrotauchlackbeschichtung wird die Protonierung in unmittelbarer Nähe des zu beschichtenden metallischen Gegenstandes durch Neutralisation mit den durch elektrolytische Wasserzersetzung entstehenden Hydroxylionen wieder rückgängig gemacht, so daß das Bindemittel auf dem Substrat ausfällt ("koaguliert"). Die Säure wird nicht mit ausgefällt, so daß es mit zunehmender Lackierdauer zu einer Anreicherung der Säure im Bad kommt. Dadurch fällt der pH-Wert, was zu einer Destabilisierung des Elektrotauchlackes führt. Deshalb muß die überschüssige Säure neutralisiert oder aus dem Bad entfernt werden.
  • In US-A-3 663 405 wird die Ultrafiltration von Elektrotauchlacken beschrieben. Bei der Ultrafiltration wird der Elektrotauchlack unter einem gewissen Druck entlang einer Membran geführt, die die höhermolekularen Bestandteile des Lacks zurückhält, die niedermolekulare Bestandteile, wie organische Verunreinigungen, Zersetzungsprodukte, Harzsolubilisierungsmittel (Säuren) und Lösungsmittel, passieren läßt. Zur Entfernung dieser niedermolekularen Bestandteile wird ein Teil des Ultrafiltrates verworfen und somit aus dem System entfernt. Ein anderer Teil des Ultrafiltrates wird in die Spülzone der Lackierstraße geführt und wird dort zum Abspülen der noch an den lackierten Gegenständen anhaftenden Lackdispersionen ("drag-out") verwendet. Ultrafiltrat und abgespülte Lackdispersionen werden zwecks Rückgewinnung des Austrags wieder dem Elektrotauchlackbecken zugeführt. Da das Solubilisierungsmittel in großen Mengen verwendet wird, ist es nicht möglich, es durch Verwerfen von Ultrafiltrat in ausreichender Menge aus dem Bad zu entfernen.
  • In US-A-3 663 406 ist die kombinierte Anwendung von Ultrafiltration und Elektrodialyse zur Aufarbeitung und zur Steuerung des Solubilisierungsmittel-Haushalts von Elektrotauchlacken beschrieben. Die Elektrodialyse wird im Elektrotauchlackbecken so installiert, daß die Gegenelektrode zum beschichteten Gegenstand durch eine semipermeable Membran und einen Elektrolyt, der das Solubilisierungsmittel enthält, vom eigentlichen Lack getrennt ist. Durch Anlegen eines elektrischen Feldes wandern die zu den ionischen Harzgruppen entgegengesetzt geladenen Ionen durch die Ionenaustauschermembran in den Elektrolyten und können von dort über einen separaten Kreislauf ausgeschleust werden. Diese im Elektrotauchlackbecken installierten Elektrodialyseeinheiten benötigen viel Platz und sind sehr wartungsintensiv. Die Membranen können sich mit Lackpartikeln zu setzen oder können durch die zu lackierenden Gegenstände mechanisch beschädigt werden, so daß ein Austausch der Membranen erforderlich wird. Dies ist zeit- und kostenintensiv und kann den Lackierprozess für eine gewisse Zeit außer Betrieb setzen.
  • Aus diesem Grund gibt es Verfahren die es ermöglichen, die Elektrodialyse aus dem Elektrotauchlackbecken in die Anlagenperipherie zu verlegen. In DE-A-32 43 770 und EP-A-01 56 341 werden derartige Verfahren beschrieben, bei dem der Teil des Ultrafiltrates, der in die Spülzone und dann in das Elektrotauchbecken zurückgeführt wird, vor dem Eintritt in die Spülzone einer Elektrodialysebehandlung unterzogen wird. Dadurch lassen sich die im Ultrafiltrat angereicherten Solubilisierungsmittel (Säuren) aus dem Lackierprozess entfernen. Der große Nachteil dieser Elektrodialyseverfahren besteht darin, daß an der Kathode neben anderen Kationen auch Blei abgeschieden wird, das aus einem Korrosionsschutzpigment stammt. Deshalb wurde die Kathode beweglich und damit regenerierbar ausgelegt, was sehr aufwendig ist.
  • Der Erfindung lag daher die Aufgabe zugrunde überschüssige Säure aus dem Ultrafiltrat von kathodischen Elektrotauchlackierbädern zu entfernen ohne die zuvor beschriebenen Nachteile.
  • Überraschenderweise wurde gefunden, daß man die Säure ohne Elektrodialyse über eine Austauschzelle, also durch stromlose Dialyse, aus dem Ultrafiltrat entfernen kann.
  • Weiterhin wurde gefunden, daß alle Kationen und Lösungsmittel nach der Dialyse-Behandlung im Ultrafiltrat verbleiben.
  • Demgemäß wurde ein Verfahren zum Entfernen von Säure aus kathodischen Elektrotauchlackierbädern gefunden, in denen elektrisch leitende Substrate mit in Form ihrer wäßrigen Dispersionen vorliegenden kationischen Harzen beschichtet werden, durch Abtrennung des Harzes mittels Ultrafiltration, Entsäuerung des Ultrafiltrates und Rückführung des entsäuerten Ultrafiltrates in das Tauchbad. Das Verfahren ist dadurch gekennzeichnet, daß man das Ultrafiltrat der stromlosen Dialyse in einer Zelle Z, welche durch eine Anionenaustauschermembran A in zwei Kammern K₁ und K₂ unterteilt ist, unterwirft, indem man
    • durch die Kammer K₁ das Ultrafiltrat und
    • durch die Kammer K₂ eine wäßrige Lösung einer organischen oder anorganischen Base
    leitet.
  • Für die kathodische Elektrotauchlackierung können eine große Anzahl von Lacken verwendet werden. Die Lacke erhalten ihren ionischen Charakter durch kationische Harze, die üblicherweise Aminogruppen enthalten, die mit üblichen Säuren, wie z.B. Ameisensäure, Essigsäure, Milchsäure oder Phosphorsäure neutralisiert werden, wobei kationische Salzgruppen gebildet werden. Derartige kationisch abscheidbare Zusammensetzungen sind beispielsweise beschrieben in US-A-4 031 050, US-A-4 190 567, DE-A-27 52 555 und EP-A-12 463.
  • Diese kationischen Harzdispersionen werden mit Pigmenten, löslichen Farbstoffen, Lösungsmitteln, Verlaufsverbesserern, Stabilisatoren, Antischaummitteln, Vernetzern, Härtungskatalysatoren, Blei- und andere Metallsalze sowie anderen Hilfs- und Zusatzstoffen zu den Elektrotauchlacken kombiniert.
  • Zur kathodischen Elektrotauchlackierung wird im allgemeinen durch Verdünnen mit entionisiertem Wasser ein Feststoffgehalt des Elektrotauchbades von 5 bis 30, vorzugsweise 10 bis 20 Gew.% eingestellt. Die Abscheidung erfolgt im allgemeinen bei Temperaturen von 15 bis 40°C während einer Zeit von 1 bis 3 Minuten und bei pH-Badwerten von 5,0 bis 8,5, vorzugsweise pH 6,0 bis 7,5, bei Abscheidespannungen zwischen 50 und 500 Volt. Nach dem Abspülen des auf dem elektrisch leitenden Körper abgeschiedenen Films wird dieser bei etwa 140°C bis 200°C 10 bis 30 Minuten, vorzugsweise bei 150 bis 180°C ca. 20 Minuten gehärtet.
  • Elektrotauchlackierbäder werden kontinuierlich betrieben, d.h. die zu beschichtenden Gegenstände werden ständig in das Bad eingeführt, beschichtet und dann wieder entfernt. Deshalb ist es auch erforderlich, ständig das Bad mit Lack zu beschicken.
  • Nach einigen Monaten Betriebszeit reichern sich unerwünschte Verunreinigungen und Solubilisierungsmittel im Bad an. Beispiele für derartige Verunreinigungen sind Öle, Phosphate und Chromate, die in das Bad von den zu beschichteten Substraten eingebracht werden, Carbonate, überschüssige Solubilisierungsmittel, Lösungsmittel, Oligomere, die sich im Bad anreichern, weil sie nicht mit dem Harz abgeschieden werden. Derartige unerwünschte Bestandteile beeinflussen das Beschichtungsverfahren negativ, so daß die chemischen und physikalischen Eigenschaften des abgelagerten Filmes unbefriedigend werden.
  • Um diese Verunreinigungen zu entfernen und die Zusammensetzung des Elektrotauchlackierbades relativ gleichmäßig zu halten, wird ein Teil des Bades abgezogen und einer Ultrafiltration zugeführt.
  • Die zu ultrafiltrierenden Lösungen werden unter Druck, beispielsweise entweder durch komprimiertes Gas oder eine Flüssigkeitspumpe, in einer Zelle in Berührung mit einer Filtrationsmembran gebracht, die auf einem porösen Träger angeordnet ist. Jede Membran oder jedes Filter, das mit dem System chemisch verträglich ist und die gewünschten Trenneigenschaften aufweist, kann verwendet werden. Vorzugsweise wird der Inhalt der Ultrafiltrationszelle gerührt, um eine Anreicherung des zurückgehaltenen Materials auf der Membranoberfläche und eine feste Ablagerung dieser Stoffe auf der Membran zu verhindern. Es entsteht kontinuierlich Ultrafiltrat, das gesammelt wird, bis die zurückgehaltene Lösung in der Zelle die gewünschte Konzentration erreicht hat oder der gewünschte Anteil an Lösungsmittel oder Lösungsmittel mit gelösten niedermolekularen Stoffen entfernt ist. Geeignete Vorrichtungen zur Ultrafiltration sind z.B. in der US-A-3 495 465 beschrieben.
  • Obwohl die Ultrafiltration einsetzbar ist zum Entfernen von zahlreichen Verunreinigungen aus dem Tauchbad, ist damit eine zufriedenstellende Entfernung von Solubilisierungsmitteln aus dem Bad nicht möglich. Einer der Gründe dafür ist, daß bei der industriellen Verwendung das Ultrafiltrat zum Waschen und Spülen von frisch beschichteten Gegenständen verwendet wird, um lose haftende Lackteilchen abzuspülen. Diese Waschlösung wird in das Tauchbad zurückgeführt. Obwohl ein Teil des Ultrafiltrates üblicherweise verworfen wird, reicht dies in der Regel nicht aus, um den Überschuß an Säure zu entfernen. Deshalb ist es erforderlich, mindestens einen Teil des Ultrafiltrates einer Austauschzelle zuzuführen.
  • Das Dialyse-Verfahren wird in einer Austauschzelle durchgeführt, die mindestens zwei durch eine Anionenaustauschermembran getrennte Kammern enthält, so daß zwei voneinander getrennte Flüssigkeitsströme möglich sind. Austauschzellen dieser Art werden z.B. für die bekannten Verfahren der Elektrodialyse verwendet, wobei im vorliegenden Fall jedoch die Elektrodenkammern entfallen, da kein elektrisches Feld benötigt wird. Eine geeignete Apparatur wird z.B. in der EP-A-126 830 beschrieben. Gut geeignet sind als Austauscherzellen z.B. mit Membranstapeln ausgerüstete Apparate, die eine Vielzahl. z.B. 2 bis 800 parallel zueinanger angeordnete Kammern enthalten. Da kein elektrisches Feld anzulegen ist, ist man jedoch nicht an diese sogenannten Plattenmembranmodule gebunden. Alle anderen Austauschzellen sind ebenfalls einsetzbar, wie Hohlfaser-, Rohr- oder Wickelmodule. Die Kammern der Austauschzellen können alternativ mit dem Ultrafiltrat und einer wäßrigen Lösung einer organischen oder anorganischen Base, die gegebenenfalls noch Salze enthält, beschickt werden. Als anorganische Basen werden die Hydroxide oder Carbonate der Alkali oder Erdalkalimetalle oder des Ammoniums verwendet. Bevorzugt sind Natriumhydroxid, Kaliumhydroxid, Natriumcarbonat, Kaliumcarbonat, Calciumhydroxid, Bariumhydroxid, Ammoniak oder Ammoniumcarbonat. Als organische Basen werden Amine, wie die Trialkylamine, z.B. Trimethylamin und Triethylamin, oder Diazabicyclooctan und Dicyclohexylethylamin oder Polyamine, wie Polyethylenimine und Polyvinylamine, oder quaternäre Ammoniumhydroxide verwendet. Die Lösung hat im allgemeinen einen pH-Wert von 7 bis 14, vorzugsweise 11 bis 13.
  • Gegebenenfalls wird in der wäßrigen Lösung einer organischen oder anorganischen Base neben den genannten Basen noch mindestens ein Salz, vorzugsweise bestehend aus einem Kation der obengenannten Basen und einem Anion der obengenannten üblichen Säuren, in einer Konzentration von 0,001 bis 10 Äquivalenten pro Liter, vorzugsweise 0,001 bis 1 Äquivalent pro Liter mitverwendet. Bevorzugt sind Natrium- und Kaliumacetat sowie Natrium- und Kaliumlactat.
  • Man kann das Verfahren kontinuierlich oder diskontinuierlich durchführen. Beim Batchverfahren erfolgt ein mehrfacher und beim kontinuierlichen Betrieb ein einmaliger Durchlauf der Lösungen durch die Austauschzelle. Die beiden Lösungen können dabei im Parallel-, Kreuz- oder Gegenstrom durch die Austauschzelle geleitet werden. Die Austauschzellen können in Form einer mehrstufigen Kaskade angeordnet sein, insbesondere beim kontinuierlichen Betrieb.
  • Für das Verfahren kommen an sich bekannte Anionenaustauschermembranen in Betracht, die z.B. eine Dicke von 0,1 bis 1 mm und einen Porendurchmesser von 1 bis 30 µm bzw. eine gelartige Struktur aufweisen. Da es sich um einen Diffusionsprozeß handelt, werden besonders dünne Membranen, z.B. solche mit einer Dicke von kleiner 0,2 mm bevorzugt.
  • Die Anionenaustauschermembranen sind nach einem allgemein bekannten Prinzip aus einem Matrixpolymer, das mit kationischen Gruppen funktionalisiert ist, aufgebaut.
  • Beispiele für Matrixpolymere sind Polystyrol, das mit z.B. Divinylbenzol oder Butadien vernetzt wurde, hoch- oder niedrigdichtes Polyethylen, Polysulfon oder Polytetrafluorethylen.
  • Funktionalisiert werden die Matrixpolymere z.B. durch Copolymerisation, Pfropfung oder Kondensationsreaktion mit kationischen Gruppen aufweisenden Monomeren. Beispiele für derartige Monomere sind Vinylbenzylammonium-, Vinylpyridinium- oder Vinylimidazolidinium-Salze. Über Amid- oder Sulfonamid-Kondensationsreaktion werden Amine, die noch quaternäre Ammoniumgruppen aufweisen, in das Matrixpolymere eingeführt.
  • Membranen auf Polystyrolbasis sind z.B. unter den Bezeichnungen Selemion® (Fa. Asahi Glas), Neosepta® (Fa. Tokoyama Soda) oder Aciplex® (Fa. Asahi Chem.) im Handel.
  • Membranen auf Basis mit quaterniertem Vinylbenzylamin gepfropftem Polyethylen sind unter der Bezeichnung Raipore® R-5035 (Fa. RAI Research Corp.), mit gepfropftem Polytetrafluorethylen unter der Bezeichnung Raipore R-1035 erhältlich.
  • In der EP-A-166 015 sind Membranen auf Basis Polytetrafluorethylen beschrieben mit einer über eine Sulfonamidgruppe gebundenen quaternären Ammoniumgruppe.
  • Die Anionenaustauschermembranen weisen eine gute Stabilität gegenüber dem alkalischen Medium auf.
  • Obwohl sich das Verfahren durch hohe Austauschraten auszeichnet, kann es je nach Verfahrensbedingungen und den verwendeten Elektrotauchlackierbadzusammensetzungen nach einiger Betriebszeit zu einem Abfall der Austauschraten kommen. In diesen Fällen wird eine Zwischenspülung der Membranen mit z.B. verdünnten Säuren vorgenommen.
  • Die Strömungsgeschwindigkeit, mit der das Ultrafiltrat und die wäßrige Lösung einer organischen oder anorganischen Base durch die Austauschzelle geführt werden, beträgt im allgemeinen 0,001 m/s bis 2,0 m/s, vorzugsweise 0,01 bis 0,10 m/s.
  • Das Dialyse-Verfahren wird in der Regel bei Temperaturen von 0 bis 100°C, vorzugsweise 20 bis 50°C und bei Drücken von 1 bis 10 bar, vorzugsweise bei Atmosphärendruck durchgeführt. Der Druckabfall über die eingesetzten Membranen beträgt bis zu 5 bar, insbesondere bis zu 0,2 bar.
  • Mit dem Verfahren der kathodischen Elektrotauchlackierung werden elektrisch leitende Flächen beschichtet, z.B. Automobilkarosserien, Metallteile, Bleche usw. aus Messing, Kupfer, Aluminium, metallisierten Kunststoffen oder mit leitendem Kohlenstoff überzogenen Materialien, sowie Eisen und Stahl, die gegebenenfalls chemisch vorbehandelt, z.B. phosphatiert, sind.
  • Das Verfahren der Entfernung von Säure aus dem Elektrotauchlackierbad zeichnet sich durch hohe Austauschraten aus.
  • Beispiel 1
  • Durch die mittlere Kammer einer runden Drei-Kammer-Austauschzelle mit zwei Anionenaustauschermembranen vom Typ Selemion DMV der Fa. Asahi Glas mit einem Membranabstand von 1 cm und einer Fläche pro Membran von 3,14 cm² wurden bei 25°C 150 g Ultrafiltrat (Lösung a)) vom pH-Wert 5,74 über ein Vorratsgefäß so lange im Kreis gepumpt, bis ein pH-Wert von 6,5 erreicht war. Durch die beiden äußeren Kammern wurden bei 25°C 150 g einer 0,02 normalen wäßrigen Natriumhydroxidlösung (Lösung b)) vom pH-Wert 12,2 über ein Vorratsgefäß und über den selben Zeitraum im Kreis gepumpt. Nach Versuchsende konnte keine Gewichtsänderung der beiden Lösungen festgestellt werden.
  • Änderungen der Zusammensetzung der Lösungen sowie die Meßdaten sind in der Tabelle aufgeführt.
  • Beispiel 2
  • Die Durchführung dieses Beispiels erfolgte analog Beispiel 1, nur mit dem Unterschied, daß als wäßrige Basenlösung ein Gemisch aus 0,02 Äquivalenten/l Natriumhydroxid und 0,17 Äquivalenten/l Natriumacetat verwendet wurde.
  • Beispiel 3
  • Durch die mittlere Kammer einer Laborplattenstapelzelle mit zwei Anionenaustauschermembranen vom Typ Selemion DMV mit einem Membranabstand von 0,3 cm und einer Fläche pro Membran von 37,8 cm² wurden bei 25°C 900 g Ultrafiltrat vom pH-Wert 5,74 wie unter Beispiel 1 so lange im Kreis gepumpt, bis ein pH-Wert von 6,5 erreicht war.
  • Beispiel 4
  • Durch die mittlere Kammer einer Laborplattenstapelzelle (wie in Beispiel 3 beschrieben) wurden 1000 g Ultrafiltrat eines weiteren Elektrotauchlacks vom pH-Wert 5,88 wie unter Beispiel 1 so lange im Kreis gepumpt, bis ein pH-Wert von 6,5 erreicht war. Als wäßrige Basenlösung wurde eine 0,01 n Natriumhydroxidlösung mit einem pH-Wert von 11,8 verwendet.
  • Beispiel 5
  • Es wurde die gleiche Versuchsanordnung und ein Ultrafiltrat des gleichen Elektrotauchlacks wie in Beispiel 4 verwendet. Als wäßrige Basenlösung wurde eine 0,001 n Natriumhydroxidlösung mit einem pH-Wert von 10,4 eingesetzt. Durch regelmäßige Zugabe von 0,01 n NaOH-Lösung wurde der pH-Wert der Basenlösung zwischen 9,4 und 10,6 gehalten.
    Figure imgb0001

Claims (6)

  1. Verfahren zum Entfernen von Säure aus kathodischen Elektrotauchlackierbädern, in denen elektrisch leitende Substrate mit in Form ihrer wäßrigen Dispersionen vorliegenden kationischen Harzen beschichtet werden, durch Abtrennung des Harzes mittels Ultrafiltration, Entsäuerung des Ultrafiltrates und Rückführung des entsäuerten Ultrafiltrates in das Tauchbad, dadurch gekennzeichnet, daß man das Ultrafiltrat der stromlosen Dialyse in einer Zelle Z, welche durch eine Anionenaustauschermembran A in zwei Kammern K₁ und K₂ unterteilt ist, unterwirft, indem man
    - durch die Kammer K₁ das Ultrafiltrat und
    - durch die Kammer K₂ eine wäßrige Lösung einer organischen oder anorganischen Base
    leitet.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß man die stromlose Dialyse in einer Zelle Z mit mehreren parallel angeordneten Kammern und Membranen vornimmt.
  3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß man die stromlose Dialyse bei 0 bis 100°C mit Strömungsgeschwindigkeiten von 0,001 bis 2 m/s vornimmt.
  4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß man es auf Ultrafiltrate anwendet, welche Ameisensäure, Essigsäure, Milchsäure und/oder Phosphorsäure enthalten.
  5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß die wäßrige basische Lösung Natriumhydroxid, Kaliumhydroxid, Natriumcarbonat, Kaliumcarbonat, Calciumhydroxid, Bariumhydroxid, Ammoniak oder Ammoniumcarbonat als Base enthält.
  6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß man wäßrige Lösungen von Basen mit pH-Werten von 7 bis 14 verwendet.
EP87112627A 1986-09-03 1987-08-29 Verfahren zum Entfernen von Säure aus kathodischen Elektrotauchlackier-Bädern Expired - Lifetime EP0262419B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT87112627T ATE89339T1 (de) 1986-09-03 1987-08-29 Verfahren zum entfernen von saeure aus kathodischen elektrotauchlackier-baedern.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19863629981 DE3629981A1 (de) 1986-09-03 1986-09-03 Verfahren zum entfernen von saeure aus kathodischen elektrotauchlackier-baedern
DE3629981 1986-09-03

Publications (3)

Publication Number Publication Date
EP0262419A2 EP0262419A2 (de) 1988-04-06
EP0262419A3 EP0262419A3 (en) 1989-05-31
EP0262419B1 true EP0262419B1 (de) 1993-05-12

Family

ID=6308829

Family Applications (1)

Application Number Title Priority Date Filing Date
EP87112627A Expired - Lifetime EP0262419B1 (de) 1986-09-03 1987-08-29 Verfahren zum Entfernen von Säure aus kathodischen Elektrotauchlackier-Bädern

Country Status (5)

Country Link
US (1) US4775478A (de)
EP (1) EP0262419B1 (de)
JP (1) JPS6362899A (de)
AT (1) ATE89339T1 (de)
DE (2) DE3629981A1 (de)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3642164A1 (de) * 1986-12-10 1988-06-23 Basf Ag Verfahren zum entfernen von saeure aus kathodischen elektrotauchlackier-baedern mittels elektrodialyse
US5047128A (en) * 1990-01-02 1991-09-10 Shipley Company Inc. Electrodialysis cell for removal of excess electrolytes formed during electrodeposition of photoresists coatings
DE4207425A1 (de) * 1992-03-09 1993-09-16 Eisenmann Kg Maschbau Verfahren zur lack-overspray-rueckgewinnung bei spritzapplikationen und vorrichtung zur verfahrensdurchfuehrung
JP2634509B2 (ja) * 1991-07-31 1997-07-30 川崎重工業株式会社 乗降場の引戸装置
JP2601902Y2 (ja) * 1991-07-31 1999-12-13 川崎重工業株式会社 軌道車両用の乗降場の引戸装置
JP2634510B2 (ja) * 1991-07-31 1997-07-30 川崎重工業株式会社 乗降場等の扉開閉駆動装置
JP2556731Y2 (ja) * 1991-07-31 1997-12-08 川崎重工業株式会社 軌道車両用の乗降場の折戸装置
JPH05246330A (ja) * 1992-03-06 1993-09-24 East Japan Railway Co 可動ゲート付き安全柵
JPH07100437B2 (ja) * 1993-03-05 1995-11-01 東日本旅客鉄道株式会社 可動ゲート付き安全柵
US6001255A (en) * 1993-07-12 1999-12-14 Eyal; Aharon Process for the production of water-soluble salts of carboxylic and amino acids
ATE183661T1 (de) * 1993-07-12 1999-09-15 Aharon Eyal Verfahren zur herstellung von wasserlöslichen salzen von carbonsäuren und aminosäuren
DE19604700C1 (de) * 1996-02-09 1997-05-07 Geesthacht Gkss Forschung Verfahren zur Separierung organischer Säuren aus einem Fermentationsmedium
US6260407B1 (en) * 1998-04-03 2001-07-17 Symyx Technologies, Inc. High-temperature characterization of polymers
CN1093571C (zh) * 1998-12-01 2002-10-30 陈渭贤 补色法电沉积制造彩色铝合金制品的方法
AU2001266354A1 (en) * 2000-06-30 2002-01-14 Asahi Kasei Kabushiki Kaisha Method and apparatus for treatment of waste water from cationic electrodeposition coating process
US8801909B2 (en) * 2006-01-06 2014-08-12 Nextchem, Llc Polymetal hydroxychloride processes and compositions: enhanced efficacy antiperspirant salt compositions
US7846318B2 (en) * 2006-01-06 2010-12-07 Nextchem, Llc Polyaluminum chloride and aluminum chlorohydrate, processes and compositions: high-basicity and ultra high-basicity products

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3132094A (en) * 1958-09-11 1964-05-05 Gulf Research Development Co Ultrafiltration of electrolyte solutions through ion-exchange memberanes
US3495465A (en) * 1968-08-28 1970-02-17 Gen Motors Corp Phase modulated electric suspension
US3799854A (en) * 1970-06-19 1974-03-26 Ppg Industries Inc Method of electrodepositing cationic compositions
US3663398A (en) * 1970-09-14 1972-05-16 Ppg Industries Inc Ion exchange of an ultrafiltrate derived from an electrodeposition bath
US3663405A (en) * 1971-02-25 1972-05-16 Ppg Industries Inc Ultrafiltration of electrodepositable compositions
US3663406A (en) * 1971-03-11 1972-05-16 Ppg Industries Inc Combined electrodialysis and ultrafiltration of an electrodeposition bath
JPS5243187B2 (de) * 1972-10-06 1977-10-28
JPS5373294A (en) * 1976-12-13 1978-06-29 Kao Corp Cationic polyurethane emulsion coposition
US4320009A (en) * 1977-07-25 1982-03-16 Frito-Lay, Inc. Processed anthocyanin pigment extracts
CA1143498A (en) * 1978-12-11 1983-03-22 Petrus G. Kooymans Thermosetting resinous binder compositions, their preparation, and use as coating materials
US4412922A (en) * 1980-07-02 1983-11-01 Abcor, Inc. Positive-charged ultrafiltration membrane for the separation of cathodic/electrodeposition-paint compositions
JPS6010118B2 (ja) * 1981-11-26 1985-03-15 ハニ−化成株式会社 電着塗装装置
GB2111081A (en) * 1981-12-09 1983-06-29 Aeg Elotherm Gmbh Electrochemical machining
US4664808A (en) * 1982-08-13 1987-05-12 General Electric Company Method for continuous separation of dissolved materials
CH657144A5 (de) * 1983-05-04 1986-08-15 Ciba Geigy Ag Verfahren zur umwandlung schwerloeslicher salze anionischer farbstoffe und optischer aufheller in leichter loesliche salze mittels kationenaustausch.
US4581111A (en) * 1984-03-28 1986-04-08 Ppg Industries, Inc. Treatment of ultrafiltrate by electrodialysis
EP0166015B1 (de) * 1984-06-26 1988-12-28 Tosoh Corporation Fluorkohlenstoff-Anionenaustauscher und deren Herstellungsverfahren

Also Published As

Publication number Publication date
EP0262419A2 (de) 1988-04-06
DE3785814D1 (de) 1993-06-17
JPS6362899A (ja) 1988-03-19
ATE89339T1 (de) 1993-05-15
DE3629981A1 (de) 1988-03-17
EP0262419A3 (en) 1989-05-31
US4775478A (en) 1988-10-04

Similar Documents

Publication Publication Date Title
EP0271015B1 (de) Verfahren zum Entfernen von Säure aus kathodischen Elektrotauchlackier-Bädern mittels Elektrodialyse
EP0262419B1 (de) Verfahren zum Entfernen von Säure aus kathodischen Elektrotauchlackier-Bädern
US3663406A (en) Combined electrodialysis and ultrafiltration of an electrodeposition bath
DE69002165T2 (de) Semipermeable membranen mit hohem fluss.
EP0318827B1 (de) Verfahren zum Entfernen von Säure aus kathodischen Elektrotauchlackier-Bädern mittels Elektrodialyse
DE4128569C1 (de)
US3419488A (en) Electro-deposition of paint using an ion exchange membrane
US3663402A (en) Pretreating electrodepositable compositions
US3663407A (en) Treatment of an ultrafiltrate derived from an electrodeposition process by reverse osmosis
US4581111A (en) Treatment of ultrafiltrate by electrodialysis
DE2057438C3 (de) Verfahren zur Steuerung der Zusammensetzung eines für die elektrische Ablagerung eines synthetischen Harzes geeigneten Bades
DE2914550A1 (de) Verfahren zur herstellung eines kationischen kathodischen elektroueberzugs
DE2061445C3 (de) Verfahren zum Behandeln von bei der elektrischen Ablagerung anfallenden Spülwässern
DE3124295C1 (de) Verfahren zur Steuerung der Zusammensetzung eines für die elektrophoretische Beschichtung geeigneten Bades sowie Verwendung eines organischen Chelatkomplex-Bildners in einem Elektrotauchbad
DE3111369A1 (de) Bad und verfahren zum galvanischen aluminieren von polytetrafluoraethylenteilen
US3444063A (en) Method for improving operational stability of electrocoating bath
DE4223181A1 (de) Verfahren zur Wiederaufbereitung von Elektrotauchlackbädern
DE69301501T2 (de) Vorrichtung und Verfahren zum elektrophoretischen Lackieren von Metallstrukturen, insbesondere von gewickelten Metallblechen
DE4303812C1 (de) Verfahren zur Herstellung von Elektrotauchlacküberzügen, die frei von Oberflächenstörungen sind und Verwendung von Oberflächenstörungen entgegenwirkenden Mitteln
DE3840159C1 (en) Method for the cathodic electro-dipping process, and use of nitric acid and/or nitrous acid for neutralising coating baths
DE10241733B4 (de) Verfahren zur Rückgewinnung von Wertstoffen aus dem nachgeschalteten Spülbad eines Phosphatierprozesses
DE3908875A1 (de) Verfahren zur herstellung einer waessrigen bindemittelzusammensetzung , die erhaltene bindemittelzusammensetzung und deren verwendung zur herstellung von elektrotauchlack-ueberzugsmitteln
DE1696642A1 (de) Verfahren zur Elektrotauchlackierung
DE4005619A1 (de) Vorrichtung zum kathodischen elektrolackieren von gegenstaenden
DD284256A5 (de) Anodensystem fuer kathodische elektrotauch-baeder

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH DE FR GB IT LI NL SE

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH DE FR GB IT LI NL SE

17P Request for examination filed

Effective date: 19890803

17Q First examination report despatched

Effective date: 19910207

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE FR GB IT LI NL SE

REF Corresponds to:

Ref document number: 89339

Country of ref document: AT

Date of ref document: 19930515

Kind code of ref document: T

ITF It: translation for a ep patent filed
REF Corresponds to:

Ref document number: 3785814

Country of ref document: DE

Date of ref document: 19930617

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19930526

ET Fr: translation filed
EAL Se: european patent in force in sweden

Ref document number: 87112627.2

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: SCHMAUDER & PARTNER AG PATENTANWALTSBUERO

NLS Nl: assignments of ep-patents

Owner name: BASF COATINGS AKTIENGESELLSCHAFT

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20000720

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20000817

Year of fee payment: 14

Ref country code: AT

Payment date: 20000817

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20000818

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20000822

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20000921

Year of fee payment: 14

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010829

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010829

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010830

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010831

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010831

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010831

BERE Be: lapsed

Owner name: BASF A.G.

Effective date: 20010831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020301

EUG Se: european patent has lapsed

Ref document number: 87112627.2

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20020301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050829

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20060808

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20060824

Year of fee payment: 20

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT