EP0256383A1 - Verfahren zum Aufwickeln von Fäden - Google Patents

Verfahren zum Aufwickeln von Fäden Download PDF

Info

Publication number
EP0256383A1
EP0256383A1 EP87111025A EP87111025A EP0256383A1 EP 0256383 A1 EP0256383 A1 EP 0256383A1 EP 87111025 A EP87111025 A EP 87111025A EP 87111025 A EP87111025 A EP 87111025A EP 0256383 A1 EP0256383 A1 EP 0256383A1
Authority
EP
European Patent Office
Prior art keywords
winding
speed
traversing speed
traversing
thread
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP87111025A
Other languages
English (en)
French (fr)
Other versions
EP0256383B1 (de
Inventor
Heinz Dr. Schippers
Siegmar Gerhartz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oerlikon Barmag AG
Original Assignee
Barmag AG
Barmag Barmer Maschinenfabrik AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=25846433&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0256383(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority claimed from DE3627081A external-priority patent/DE3627081C2/de
Application filed by Barmag AG, Barmag Barmer Maschinenfabrik AG filed Critical Barmag AG
Publication of EP0256383A1 publication Critical patent/EP0256383A1/de
Application granted granted Critical
Publication of EP0256383B1 publication Critical patent/EP0256383B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H54/00Winding, coiling, or depositing filamentary material
    • B65H54/02Winding and traversing material on to reels, bobbins, tubes, or like package cores or formers
    • B65H54/28Traversing devices; Package-shaping arrangements
    • B65H54/2806Traversing devices driven by cam
    • B65H54/2809Traversing devices driven by cam rotating grooved cam
    • B65H54/2812Traversing devices driven by cam rotating grooved cam with a traversing guide running in the groove
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H54/00Winding, coiling, or depositing filamentary material
    • B65H54/02Winding and traversing material on to reels, bobbins, tubes, or like package cores or formers
    • B65H54/28Traversing devices; Package-shaping arrangements
    • B65H54/2836Traversing devices; Package-shaping arrangements with a rotating guide for traversing the yarn
    • B65H54/2839Traversing devices; Package-shaping arrangements with a rotating guide for traversing the yarn counter rotating guides, e.g. wings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H54/00Winding, coiling, or depositing filamentary material
    • B65H54/02Winding and traversing material on to reels, bobbins, tubes, or like package cores or formers
    • B65H54/38Arrangements for preventing ribbon winding ; Arrangements for preventing irregular edge forming, e.g. edge raising or yarn falling from the edge
    • B65H54/381Preventing ribbon winding in a precision winding apparatus, i.e. with a constant ratio between the rotational speed of the bobbin spindle and the rotational speed of the traversing device driving shaft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H54/00Winding, coiling, or depositing filamentary material
    • B65H54/02Winding and traversing material on to reels, bobbins, tubes, or like package cores or formers
    • B65H54/38Arrangements for preventing ribbon winding ; Arrangements for preventing irregular edge forming, e.g. edge raising or yarn falling from the edge
    • B65H54/381Preventing ribbon winding in a precision winding apparatus, i.e. with a constant ratio between the rotational speed of the bobbin spindle and the rotational speed of the traversing device driving shaft
    • B65H54/383Preventing ribbon winding in a precision winding apparatus, i.e. with a constant ratio between the rotational speed of the bobbin spindle and the rotational speed of the traversing device driving shaft in a stepped precision winding apparatus, i.e. with a constant wind ratio in each step
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H54/00Winding, coiling, or depositing filamentary material
    • B65H54/02Winding and traversing material on to reels, bobbins, tubes, or like package cores or formers
    • B65H54/38Arrangements for preventing ribbon winding ; Arrangements for preventing irregular edge forming, e.g. edge raising or yarn falling from the edge
    • B65H54/385Preventing edge raising, e.g. creeping arrangements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H55/00Wound packages of filamentary material
    • B65H55/04Wound packages of filamentary material characterised by method of winding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H59/00Adjusting or controlling tension in filamentary material, e.g. for preventing snarling; Applications of tension indicators
    • B65H59/38Adjusting or controlling tension in filamentary material, e.g. for preventing snarling; Applications of tension indicators by regulating speed of driving mechanism of unwinding, paying-out, forwarding, winding, or depositing devices, e.g. automatically in response to variations in tension
    • B65H59/384Adjusting or controlling tension in filamentary material, e.g. for preventing snarling; Applications of tension indicators by regulating speed of driving mechanism of unwinding, paying-out, forwarding, winding, or depositing devices, e.g. automatically in response to variations in tension using electronic means
    • B65H59/385Regulating winding speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2701/00Handled material; Storage means
    • B65H2701/30Handled filamentary material
    • B65H2701/31Textiles threads or artificial strands of filaments

Definitions

  • the invention relates to a method for winding threads, in particular freshly spun and / or drawn chemical threads, into cylindrical cross-wound bobbins with straight end edges.
  • Cross-wound bobbins made of a synthetic thread which have been produced at a constant traversing speed or at least within a constant traversing speed, usually have bulges and beads on both their circumference and on their end faces.
  • the bulges on the end faces not only affect the appearance of the package, but also the quality.
  • the quality is affected by the fact that so-called "cutters" are created in the areas of the bulges. These are pieces of thread that slide out of the package of the package onto the end face and span one or more thread turns secantially. Such strikers lead to malfunctions when the thread is withdrawn from the spool, in particular is to be withdrawn at high speeds.
  • the object of the invention is to produce a spool with good running properties.
  • the coil produced should in particular have no strikers. Strippers are pieces of thread that leave their thread layer at the front edges and span the thread layers lying further inward.
  • the coil produced should also be stable, ie it should have an ideal cylindrical shape and show neither constrictions nor bulges on the front edges.
  • the thread layers of a good spool must be stable even when the winding layer becomes thicker. This means that the pieces of thread deposited in the reversal areas of the bobbin must not tend to slip in the direction of the center of the bobbin in any winding layer and also not when pulled off. This would also give rise to the danger that the slipping thread pieces would lie over thread layers lying further outside and clamp these thread layers lying further outside when pulling them off.
  • the maximum traversing speed is already reached with a layer thickness that is less than 10% of the total layer thickness of the coil.
  • the maximum traversing speed is then preferably maintained in any case over 80% of the total layer thickness, preferably even during the entire winding cycle.
  • a base layer of the coil deposited on the sleeve is deposited with a traversing speed which rises steadily from a lowest value to an uppermost value.
  • the layer thickness of this base layer is a fraction - maximum 10% - of the total layer thickness of the coil.
  • the layer thickness of the entire coil is referred to as the layer thickness of the coil with the coil diameter that can be achieved in practice. It is neglected that incompletely wound coils may also be produced. Even with such incompletely wound coils, the thickness of the base layer is determined depending on the possible total diameter of the coil. For the purposes of this application, the layer thickness is the difference between the radius of the coil and the radius of the sleeve on which the coil is wound.
  • the layer thickness of the base layer, in which the coil is wound with increasing traversing speed is between 10 and 30 mm, preferably between 15 and 25 mm.
  • the traversing speed during winding of the base layer is only changed in such a way that a change in the filing angle of the thread on the bobbin results from 3 to 7 °, preferably from 4 to 6 °. It has been found that this change is sufficient to achieve the object of this invention.
  • the tendency to take off was reduced in particular by selecting the initial traversing speed to be very low in such a way that the depositing angle of the thread on the sleeve is not more than 6 °.
  • the deposit angle at the highest traversing speed is not more than 10 °, preferably less than 9 °.
  • the lower value of the traversing speed is 2 to 6 °, preferably between 3 and 5 °, and the uppermost value of the traversing speed is between 6 and 10 °, preferably between 7 and 9 °. This particularly prevents the deposited thread from sliding towards the center of the bobbin.
  • a spool that also differs from conventional spools in terms of appearance in that the end faces are free of strikers and exactly straight, i.e. lie in a normal plane to the coil axis (plane perpendicular to the coil axis).
  • the base layer is suitable for securely supporting the rest of the coil and counteracting deformations.
  • the theoretical cone angle alpha of the base layer is between 65 and 80 °. This is mainly achieved by gradually increasing the traversing speed - starting from the smallest deposit angle - during the winding of the base layer until the largest deposit angle is reached, the difference between the smallest deposit angle and the largest deposit angle - as mentioned - at least 3 ° is.
  • the placement angles are defined in accordance with DIN 61 800 (angle between thread and tangent).
  • the coil has really conical, that is, sloping end edges.
  • the cone angle of the base layer is purely theoretical and only means that changing the traversing speed also results in a change in the traversing stroke with a factor of 15% to 45% of the layer thickness.
  • This factor is referred to as slope factor B below.
  • the slope factor B is the reciprocal of the tangent of the theoretical slope angle.
  • B one-sided stroke reduction / layer thickness.
  • the layer thickness at which the maximum traversing speed must be reached and also the slope factor depend on the diameter of the sleeve on which the thread is formed.
  • the thread tension at which the thread is wound is also taken into account.
  • the layer thickness of the base layer and the slope factor are determined by experiment. The higher the winding tension, the lower the layer thickness and the greater the slope factor.
  • any type of winding in which the traversing frequency is not constantly changed with the speed of the spindle in the course of the winding travel is referred to as wild winding or wild cross winding.
  • the traversing frequency is constant.
  • those types of winding in which the traversing frequency is changed without a fixed relationship to the speed of the spindle are also referred to as wild winding.
  • step precision winding Another type of winding that has all the advantages of wild winding, but which does not result in mirror windings, is the step precision winding.
  • the traversing speed continuously between a predetermined upper limit and a predetermined lower limit in a recurring sequence of cycles (steps) in each stage of the precision winding is first reduced proportionally to the spindle speed and then increased again to achieve a predetermined smaller winding ratio.
  • the ratio of spindle speed / double stroke rate is referred to as the winding ratio.
  • the double stroke number is the traversing frequency and denotes the number of movements of the thread back and forth over the length of the spool in the course of a unit of time.
  • the upper and lower limits of the traversing speed will have their minimum value at the start of the winding cycle and will be increased continuously or in stages depending on the diameter until a base layer is wound according to this invention.
  • the upper limit of the traversing speed is preferably changed between F ⁇ sin 5 ° and F ⁇ sin 9 ° and the lower limit between F ⁇ sin 4 ° and F ⁇ sin 8 °, where F is the thread speed.
  • the distance between the upper limit and the lower limit is chosen so that even during the individual stages of the stage precision winding there are only slight changes in the traversing speed, which the thread can easily bear.
  • FIG. 1 shows the cross section
  • FIG. 2 shows the view of a first winding machine (partially schematically)
  • FIG. 4 shows the cross section of a further winding machine on which the invention can be carried out.
  • FIGS. 1 and 2 on the one hand and FIG. 4 on the other hand:
  • the thread 3 running continuously in the direction of 2 is first guided through the stationary thread guide 1 and then through the traverse 4.
  • the winding spindle 5 is freely rotatable.
  • An empty tube 10 is slipped onto the winding spindle 5.
  • the thread 3, which starts at a constant speed, e.g. freshly spun and / or drawn man-made fibers are wound up on the empty tube 10 to form a cheese 6.
  • the empty tube 10 and then the forming coil 6 are driven at their circumference by a drive roller 21 (not visible in FIG. 2) at a constant circumferential speed.
  • the thread 3 is moved back and forth along the cross-wound bobbin by the traversing 4, which is described below.
  • the traversing mechanism 4 and the drive roller 21 are mounted together on a carriage 22 which can be moved up and down (arrow), so that the drive roller 21 can avoid the growing coil diameter of the coil 6.
  • the traversing device 4 is driven by an asynchronous motor 14.
  • the drive roller 21 is driven by the synchronous motor 20 at a substantially constant peripheral speed driven. This will be discussed later.
  • the three-phase motors 14 and 20 receive their energy from frequency converters 15 and 16.
  • the synchronous motor 20, which serves as a coil drive, is connected to the frequency converter 16, which supplies the adjustable frequency f2.
  • the asynchronous motor 14 is operated by frequency converter 15, which is connected to a computer 23.
  • the output signal 24 of the computer 23 depends on the input.
  • the input is made by the program unit 19, in which the following can be programmed: On the one hand, the course of the traversing speed, ie the control frequency f3, is entered via the winding cycle.
  • the mean value of the traversing speed and additionally the frequency as well as the amplitude and shape of the periodic deviation from the predetermined mean value are entered.
  • the desired course of the peripheral speed of the coil is programmed. This is based on the fact that with increasing traversing speed an increase in the thread tension with which the thread is wound on the bobbin occurs. It can now happen that this thread tension affects the thread quality and / or the quality of the package. To avoid such an impairment, the invention provides that the peripheral speed of the coil is adapted to the change in the traversing speed. This change in the peripheral speed of the bobbin can also be entered into the program unit 19 and used via the output signal 25 of the computer to control the frequency converter 16 in such a way that the speed of the drive roller 21 is reduced when the thread tension detected by the thread tension meter 26 increases.
  • the thread tension can be measured and the output signal can be used to control the frequency converter 16.
  • the thread tension meter 26 is indicated in FIG. 1.
  • the output signal of this thread tension meter 26 is applied to the frequency converter 16 via a converter and amplifier 27 in such a way that the speed of the drive roller 21 is reduced when the thread tension detected by the thread tension meter 26 is increased.
  • Fig. 1/2 The thread 3 runs from the traverse 4 with a drag length L1 onto the roller 11, loops around it and runs tangentially onto the spool with a drag length L2.
  • the drag lengths L1 and L2 have the effect that the depositing length H of the thread on the bobbin or sleeve (see FIG. 8) is shortened by increasing the traversing speed and, according to this invention, when the base layer is wound from HB to H (FIG. 8).
  • the traversing 4 consists of a wing traversing and a roller 11 arranged downstream of it in the thread run.
  • the traversing has its own drive, described later.
  • Wing traversing and roller 11 are connected by gears (not shown).
  • the roller can be connected to the drive roller 21 in a geared manner.
  • the particular advantage of the traversing shown is that the deposit angle of the thread on the spool can be changed - within limits - since the traversing speed can be set independently of the winding speed. In particular, it is possible to constantly oscillate the oscillation speed around an average value for the purpose of avoiding mirrors or switch between two values that are close to each other if there is a risk of mirror damage, or in any case change temporarily in proportion to the spool speed.
  • the wing traversing has the rotor 12 and the rotor 13. Both rotors can be mounted concentrically or eccentrically to one another. Both rotors are driven in opposite directions by a drive and transmission described later in the transmission housing 20.
  • the rotor 12 carries two or three or four driver arms 8 which rotate in the plane of rotation I (arrow 18).
  • the rotor 13 carries the same number of driver arms 7 which rotate in the closely adjacent plane of rotation II (arrow 17).
  • the driver arms guide the thread along the guide ruler 9. Each driver arm 8 transports the thread - in FIG. 2 - to the right and transfers it there at the guide end to a driver arm 7, which transports the thread in the opposite direction to the other guide end, where in turn one of the driver arms 8 takes over the return.
  • FIG. 3 shows the programmed course of the mean value of the traversing speed over the winding travel.
  • the ordinate shows the ratio of the traversing speed to the constant peripheral speed of the coil (C / U).
  • the abscissa shows the build-up of the coil radius or the build-up layer thickness S of the coil, shown for a coil that is formed on a sleeve with a diameter of 100 mm. The traversing speed increases steadily from the lowest value at the beginning of the winding cycle to the highest value.
  • the maximum traversing speed is reached after winding the base layer with the layer thickness SB.
  • the minimum traversing speed is specified so that there is a deposit angle of approx. 5 ° on the sleeve.
  • the maximum traversing speed leads to a placement angle that is at least 3 ° larger, here 9 °.
  • the traversing speed is increased steadily and linearly with the increasing layer thickness from the minimum to the maximum value. This maximum traversing speed then remains constant until the end of the winding cycle, or in any case constant, until at least 80% of the total layer thickness of the coil is built up.
  • FIG. 3 also contains a diagram of the circumferential speed U of the coil, the circumferential speed being given as a percentage of the initial value of the circumferential speed. From the diagram it can be seen that the initial value of the peripheral speed is reduced by approximately 1% in the course of the winding of the base layer, so that inadmissible changes in the thread tension are compensated for and, ideally, the winding speed remains constant.
  • the traversing 4 first has the traversing thread guide 33 in the thread run, which is caused to reciprocate by the reversing thread shaft 32 transversely to the running direction of the thread.
  • the traversing device includes the grooved roller 35, in whose endless, reciprocating groove the thread is guided with partial looping.
  • the distance between the running line on which the thread runs from the grooving roller 4 and the running line on which the thread runs onto the spool 7 is referred to as the drag length L.
  • Their size determines the increase in the storage length H of the thread on the bobbin a reduction in the traversing speed is connected (Fig. 8).
  • the current traversing speed or double stroke rate is also advantageously sensed by measuring sensor 37 and input to the computer, which in turn carries out a target / actual value comparison and thereby the traversing speed of the traversing devices driven by asynchronous motor 14 to the target value, ie regulates the setpoint proportional to the spindle speed via the stored winding ratios.
  • the main task of the computer 23 is to carry out this setpoint determination of the traversing speed. Details are described in European patent application 86103045.
  • the computer receives the pre-calculated ideal winding conditions through the program memory 19.
  • the computer calculates "ideal" spindle speeds from these ideal winding ratios and the initial value of the traversing speed.
  • the values of the "ideal" spindle speeds are compared with the current spindle speeds determined by the sensor 38. If the computer determines the identity of the spindle speeds, it outputs the output value 24 of the traversing speed, which is also predetermined by the programmer 19, as the setpoint to the frequency converter 13. In the following course of the winding trip min the computer changes this setpoint in proportion to the constantly measured spindle speed, which decreases hyperbolically with increasing coil diameter at constant coil circumferential speed.
  • the predetermined "ideal” winding ratio thus remains constant during this stage of the precision winding.
  • the computer ascertains the identity of the currently measured spindle speed with the "ideal" spindle speed determined by the next winding ratio specified as "ideal”
  • the output value of the traversing speed is again specified as the setpoint as output signal 20.
  • a new level of precision winding follows.
  • the traversing speed always remains between a predetermined upper limit value and a predetermined lower limit value.
  • the traversing law is now additionally programmed according to the diagram in FIG. 5.
  • the coil layer thickness S is plotted on the abscissa, starting from the tube diameter of 100 mm.
  • the ratio of the traversing speed to the peripheral speed of the coil is plotted on the ordinate, it being assumed that the peripheral speed of the coil is essentially constant.
  • the ordinate shows the tangent of the storage angle, which also results from the above-mentioned DIN regulation.
  • Upper limit OGC and lower limit UGC of the traversing speed or the quotient plotted on the ordinate are set relatively low at the beginning of the winding travel, that is to say with the tube diameter 100, so that there is an average crossing angle of approximately 5 °. Within the relatively small base layer with the layer thickness SB, the upper limit and lower limit are then continuously increased to values which correspond to an average offset angle at least 3 ° larger. After winding the base layer with the layer thickness SB, the upper limit OGC and the lower limit UGC of the traversing speed or the quotient of traversing speed and peripheral speed remain constant.
  • the upper limit value and the lower limit value of the traversing speed are basically parallel.
  • a program is entered in the computer 23 according to FIG. 4, by means of which the traversing speed is controlled between the upper limit value and the lower limit value as indicated in FIG. 5 via the winding travel.
  • the traversing speed initially drops hyperbolic and proportional to the spindle speed and is then suddenly increased to the upper limit. This process is followed in a large number of cycles over the entire winding cycle.
  • the course of the circumferential speed of the coil can also be programmed in program memory 19.
  • the peripheral speed of the coil is adapted to the change in the limit values of the traversing speed.
  • FIG. 5 contains a diagram of the peripheral speed vU of the coil, the peripheral speed being given as a percentage of the initial value of the peripheral speed. From the diagram it can be seen that the initial value of the peripheral speed is reduced by approximately 1% in the course of the winding of the base layer, so that inadmissible changes in the thread tension are compensated for and, ideally, the winding speed remains constant.
  • the thickness SB of the base layer and the theoretical angle of repose of the base layer are also dependent on the sleeve diameter.
  • FIG. 7 shows the dependency between the sleeve diameter and the thickness of the base layer to be produced, during the winding of which the traversing speed (FIGS. 1, 2, 3) or upper limit and lower limit (FIGS. 4, 5) are increased.
  • the sleeve diameter is plotted on the ordinate
  • the base layer thickness SB is plotted on the abscissa. It follows that the base layer thickness is inversely proportional to the sleeve diameter. It has been found that a good, stable and rack-free coil construction can be achieved if the above dependency is observed.
  • the layer thickness SB of the base layer at which the maximum average value or the maximum limit values of the traversing speed should be reached, should be between 14 and 16 mm .
  • S A (100 - r) / 100, where r is the sleeve radius, given in millimeters and A is a value between 24 and 34.
  • Factor A is the thread tension with which the thread is wound. Within this framework, A can be determined by experiment. The higher the winding tension, the lower the factor A.
  • the tendency to tee off could be reduced in particular by choosing the mean values or limit values of the initial traversing speed to be very low, that the filing angle of the thread on the sleeve is not more than 5 °. On the other hand, the deposit angle at the highest traversing speed is no more than 10 °.
  • Fig. 6 shows the relationship between the theoretical slope angle alpha of the base layer and the sleeve diameter.
  • a steeper end edge must theoretically be wound with a smaller sleeve; the theoretical angle alpha is therefore larger than when the base layer is wound on a sleeve with a large diameter.
  • the difference between the maximum traversing speed and the minimum traversing speed or between the largest and the smallest placement angle is used to control the slope angle.
  • This invention provides that in order to achieve straight end edges, the difference between the largest and the smallest placement angle should be at least 3 °.
  • Fig. 8 shows the theoretical view of a cheese 6 according to this invention, which is formed on the sleeve 10 with the radius r and the diameter d and has the total layer thickness S.
  • the cheese is cylindrical and has practically essentially straight end edges which lie in a normal plane.
  • the coil theoretically has oblique front edges with a theoretical angle of repose alpha.
  • the intersecting thread turns on the outermost layers of the bobbin are indicated with the deposit angle that each piece of thread has relative to the tangent to the bobbin lying in a normal plane to the bobbin.
  • the base layer serves as a side support for the coil. This support prevents the end edges of the spool from bulging out laterally and causing strikers.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Winding Filamentary Materials (AREA)

Abstract

Verfahren zum Aufwickeln von Fäden zu zylindrischen Kreuzspulen ergeben sehr häufig Wülste und Ausbauchungen im Bereich der an sich geraden Stirnkanten. Es wird eine Basisschicht auf jede Hülse gewickelt, die eine geringfügig größere Spullänge als die Restschicht der Kreuzspule besitzt. Die Vergrößerung der Spullänge kommt dadurch zustande, daß die Basisschicht mit einer geringen Changiergeschwindigkeit aufgewickelt wird, wobei die Changiergeschwindigkeit laufend bis zu einem Höchstwert zunimmt. Die Basisschicht hat eine Dicke von 10% der gesamten Spulschicht. Die Basisschicht liegt dabei in den Grenzen von 10 bis 30 mm Schichtdicke. Nach Erreichen der maximalen Changiergeschwindigkeit bleibt die Changiergeschwindigkeit konstant bzw. wird um nicht mehr als 10% wieder abgesenkt.

Description

  • Die Erfindung betrifft ein Verfahren zum Aufwickeln von Fäden, insbesondere frischgesponnenen und/oder verstreckten Chemiefäden, zu zylindrischen Kreuzspulen mit geraden Stirn­kanten.
  • Kreuzspulen aus einem synthetischen Faden, die bei gleich bleibender Changiergeschwindigkeit oder zumindest in Grenzen gleich bleibender Changiergeschwindigkeit hergestellt worden sind, haben meistens sowohl auf ihrem Umfang als auch auf ihren Stirnflächen Ausbauchungen und Wülste. Die Ausbau­chungen auf den Stirnflächen beeinträchtigen nicht nur das Aussehen der Kreuzspule, sondern auch die Qualität. Die Qualität ist dadurch beeinträchtigt, daß in den Bereichen der Ausbauchungen sog. "Abschläger" entstehen. Es handelt sich dabei um Fadenstücke, die aus dem Verband der Kreuzspu­le auf die Stirnfläche rutschen und eine oder mehrere Faden­windungen sekantial überspannen. Derartige Abschläger führen zu Ablaufstörungen, wenn der Faden von der Spule abgezogen wird, insbesondere mit hohen Geschwindigkeiten abgezogen werden soll.
  • Aufgabe der Erfindung ist die Herstellung einer Spule mit guten Ablaufeigenschaften. Die erzeugte Spule soll insbeson­dere keine Abschläger haben. Als Abschläger werden Faden­stücke bezeichnet, die an den Stirnkanten ihre Fadenlage verlassen und weiter innen liegende Fadenlagen sekantial überspannen. Die erzeugte Spule soll ferner stabil sein, d.h. sie soll eine möglichst ideal zylindrische Form haben und an den Stirnkanten weder Einschnürungen noch Ausbau­chungen zeigen. Ferner müssen die Fadenlagen einer guten Spule auch bei dicker werdender Wickelschicht stabil sein. Das bedeutet, daß die in den Umkehrbereichen der Spule abgelegten Fadenstücke in keiner Wickelschicht und auch nicht beim Abziehen dazu neigen dürfen, in Richtung auf die Spulenmitte abzurutschen. Auch hierdurch würde die Gefahr entstehen, daß die abrutschenden Fadenstücke sich über weiter außen liegende Fadenlagen legen und diese weiter außen liegenden Fadenlagen beim Abziehen festklemmen.
  • Ferner soll verhindert werden, daß die Zugkräfte, die auf den aufzuwickelnden Faden einwirken, großen Schwankungen unterworfen sind.
  • Nach der Erfindung wird vorgeschlagen, daß die maximale Changiergeschwindigkeit bereits bei einer Schichtdicke erreicht ist, die weniger als 10% der gesamten Schichtdicke der Spule beträgt. Vorzugsweise wird die maximale Changier­geschwindigkeit sodann jedenfalls über 80% der gesamten Schichtdicke beibehalten, vorzugsweise sogar während der gesamten Spulreise.
  • Dies ist deshalb vorteilhaft und möglich, weil sich hierbei keine weiteren Fadenspannungsänderungen infolge Änderung der Changiergeschwindigkeit ergeben. In jedem Falle sollten die Änderungen der Fadenspannung in Grenzen gehalten werden. Es wird daher in einer Alternative vorgeschlagen, daß die Changiergeschwindigkeit nach Erreichen des Maximalwertes um nicht mehr als 20% des Maximalwertes wieder abgesenkt wird. Diese Absenkung kann unmittelbar im Anschluß an das Erreichen des Maximalwertes geschehen. Es ist aber auch möglich, den Maximalwert zunächst beizubehalten und erst später die Changiergeschwindigkeit wieder abzusenken.
  • Nach dieser Erfindung wird eine auf der Hülse abgelegte Basisschicht der Spule mit einer Changiergeschwindigkeit abgelegt, die von einem untersten Wert aus bis auf einen obersten Wert stetig ansteigt. Die Schichtdicke dieser Basisschicht ist ein Bruchteil - maximal 10% - der gesamten Schichtdicke der Spule. Als Schichtdicke der gesamten Spule wird in dieser Anmeldung die Schichtdicke der Spule mit dem praktisch erreichbaren Spulendurchmesser bezeichnet. Es wird außer Acht gelassen, daß unter Umständen auch unvollständig bewickelte Spulen hergestellt werden. Auch bei derartig unvollständig bewickelten Spulen wird die Dicke der Basis­schicht in Abhängigkeit von dem möglichen Gesamtdurchmesser der Spule bestimmt. Die Schichtdicke im Sinne dieser Anmel­dung ist die Differenz des Radius der Spule und des Radius der Hülse, auf die die Spule gewickelt ist.
  • Die Schichtdicke der Basisschicht, in der die Spule mit zunehmender Changiergeschwindigkeit gewickelt wird, liegt zwischen 10 und 30 mm, vorzugsweise zwischen 15 und 25 mm.
  • Um die Fadenspannung zu vergleichmäßigen und große Faden­spannungsänderungen zu vermeiden, wird die Changiergeschwin­digkeit beim Wickeln der Basisschicht nur so geändert, daß sich eine Änderung des Ablagewinkels des Fadens auf der Spule von 3 bis 7°, vorzugsweise von 4 bis 6° ergibt. Es hat sich herausgestellt, daß diese Änderung ausreichend ist, um die Aufgabe dieser Erfindung zu lösen.
  • Die Abschlägerneigung konnte insbesondere dadurch gemindert werden, daß die Anfangs-Changiergeschwindigkeit sehr niedrig derart gewählt wird, daß der Ablagewinkel des Fadens auf der Hülse nicht mehr als 6° beträgt. Andererseits beträgt der Ablagewinkel bei der höchsten Changiergeschwindigkeit nicht mehr als 10°, vorzugsweise weniger als 9°.
  • Dabei liegt der untere Wert der Changiergeschwindigkeit bei 2 bis 6°, vorzugsweise zwischen 3 und 5°, und der oberste Wert der Changiergeschwindigkeit zwischen 6 und 10°, vor­zugsweise zwischen 7 und 9°. Hiermit wird insbesondere vermieden, daß der abgelegte Faden in Richtung zur Spulen­mitte rutscht.
  • Mit diesem Verfahren gelingt es, eine Spule herzustellen, die sich auch vom Aussehen her von konventionellen Spulen dadurch unterscheidet, daß die Stirnflächen abschlägerfrei und genau gerade sind, d.h. in einer Normalebene zur Spulen­achse liegen (Ebene senkrecht zur Spulenachse). Dabei ist die Basisschicht geeignet, die übrige Spule sicher abzu­stützen und Deformierungen entgegenzuwirken.
  • Der theoretische Konuswinkel alpha der Basisschicht liegt zwischen 65 und 80°. Dies wird vor allem dadurch erzielt, daß die Changiergeschwindigkeit - vom kleinsten Ablagewinkel ausgehend - allmählich während der Wicklung der Basisschicht erhöht wird, bis der größte Ablagewinkel erreicht ist, wobei die Differenz zwischen dem kleinsten Ablagewinkel und dem größten Ablagewinkel - wie gesagt - mindestens 3° beträgt. Dabei sind die Ablagewinkel nach DIN 61 800 definiert (Winkel zwischen Faden und Tangente).
  • Das bedeutet allerdings nicht, daß die Spule wirklich konische, d.h. schräge Stirnkanten besitzt. Vielmehr ist der Konuswinkel der Basisschicht rein theoretisch und bedeutet lediglich, daß durch Änderung der Changiergeschwindigkeit auch eine Änderung des Changierhubs mit dem Faktor 15% bis 45% der Schichtdicke eintritt. Dieser Faktor wird im folgen­den als Böschungsfaktor B bezeichnet. Dabei ist der Böschungsfaktor B der Reziprokwert des Tangens des theore­tischen Böschungswinkels. B = einseitige Hubminderung/­Schichtdicke.
  • Es hat sich herausgestellt, daß die Schichtdicke, bei der die maximale Changiergeschwindigkeit erreicht sein muß, und auch der Böschungsfaktor von dem Durchmesser der Hülse, auf der der Faden gebildet ist, abhängig ist.
  • Bei der Bestimmung der erforderlichen Schichtdicke der Basisschicht und des erforderlichen Böschungsfaktors wird auch die Fadenspannung berücksichtigt, bei der der Faden aufgewickelt ist. In diesem Rahmen werden die Schichtdicke der Basisschicht und der Böschungsfaktor durch Versuch ermittelt. Je höher die Aufwickelspannung, desto niedriger ist die Schichtdicke und desto größer ist der Böschungs­faktor.
  • Infolge der Änderung der Changiergeschwindigkeit ergeben sich nach dem Stand der Technik negative Auswirkungen auf den Wickelaufbau. Diese negativen Auswirkungen werden dadurch hervorgerufen, daß mit der Änderung der Changierge­schwindigkeit eine erhebliche Änderung der Fadenspannung einhergeht, mit der der Faden auf die Spule aufgewickelt wird.
  • In der weiteren Ausgestaltung der Erfindung wird dafür Sorge getragen, daß die Aufwickelspannung unzulässige Werte nicht erreicht und sich insbesondere nicht in unzulässiger Weise ändert. Dabei wird insbesondere berücksichtigt, daß die Fadenspannung innerhalb bestimmter Grenzwerte liegen muß und daß die Fadenspannung im Verlauf der Spulreise im wesent­lichen konstant bleiben muß. Es wird daher weiterhin vorge­schlagen, daß beim Wickeln der Basisschicht die Umfangsge­schwindigkeit der Spule abhängig von der Erhöhung der Changiergeschwindigkeit derart herabgesetzt wird, daß die Aufwickelgeschwindigkeit des Fadens als geometrische Summe von Umfangsgeschwindigkeit und Changiergeschwindigkeit im wesentlichen konstant bleibt.
  • Wie bereits zuvor beschrieben, werden in dieser Anmeldung die Verfahren der Spiegelstörung nicht mitbeschrieben. Insofern wird auch bei Anwendung dieser Erfindung die herkömmliche Technologie der wilden Wicklung angewandt.
  • Als wilde Wicklung oder wilde Kreuzwicklung wird in dieser Anmeldung jede Wicklungsart bezeichnet, bei der die Changierfrequenz im Verlaufe der Spulreise nicht konstant mit der Drehzahl der Spindel verändert wird. Hierzu gehören alle Kreuzwicklungen, die keine Präzisionswicklungen ent­sprechend DIN 61 801 sind, die also nicht ein konstantes Verhältnis zwischen der Changierfrequenz und der Umfangsge­schwindigkeit der Spule haben. Derartige wilde Kreuzwick­lungen werden insbesondere beim Aufwickeln von Chemiefasern erzeugt, die mit hoher konstanter Geschwindigkeit anfallen. Hierbei ist die Changierfrequenz konstant. Als wilde Wick­lung werden aber auch solche Wicklungsarten bezeichnet, bei denen die Changierfrequenz ohne festes Verhältnis zur Dreh­zahl der Spindel verändert wird.
  • Außer Betracht bleiben im Rahmen dieser Anmeldung perio­dische und/oder zeitweilige Änderungen der Changierfrequenz zum Zwecke der Spiegelstörung (vgl. z.B. EP-A 93258- (Bag. 1283, US-PS 4,504,021); DE-A 28 55 616 (Bag. 1100, US-PS 4,296,889)).
    Zu beachten ist jedoch, daß - wenn im Rahmen dieser Anmel­dung von Changiergeschwindigkeit gesprochen wird - stets der Mittelwert der Changiergeschwindigkeit gemeint ist.
  • Eine andere Wicklungsart, die alle Vorteile der wilden Wicklung hat, bei der es aber nicht zu Spiegelwicklungen kommen kann, ist die Stufenpräzisionswicklung. In Anwendung der Erfindung auf die Stufenpräzisionswicklung wird vorge­schlagen, daß die Changiergeschwindigkeit laufend zwischen einer vorgegebenen Obergrenze und einer vorgegebenen Unter­grenze in einer wiederkehrenden Folge von Zyklen (Stufen) in jeder Stufe der Präzisionswicklung zunächst proportional zur Spindeldrehzahl vermindert und sodann zur Erreichung eines vorgegebenen kleineren Spulverhältnisses wieder erhöht wird. Als Spulverhältnis wird dabei das Verhältnis von Spindeldrehzahl/Doppelhubzahl bezeichnet. Die Doppelhubzahl ist die Changierfrequenz und bezeichnet die Anzahl der Hin-­und Herbewegungen des Fadens über die Spullänge im Laufe einer Zeiteinheit. Bei einem derartigen Verfahren wird erfindungsgemäß die Ober- und Untergrenze der Changierge­schwindigkeit bei Beginn der Spulreise ihren Minimalwert haben und durchmesserabhängig stetig oder in Stufen erhöht werden, bis eine Basisschicht nach dieser Erfindung gewickelt ist.
  • Hierbei wird die Obergrenze der Changiergeschwindigkeit vorzugsweise zwischen F × sin 5° und F × sin 9° und die Untergrenze zwischen F × sin 4° und F × sin 8° verändert, wobei F die Fadengeschwindigkeit ist. Der Abstand zwischen der Obergrenze und der Untergrenze wird so gewählt, daß sich auch während den einzelnen Stufen der Stufenpräzisions­wicklung nur geringe Änderungen der Changiergeschwindigkeit ergeben, die vom Faden ohne weiteres ertragen werden können.
  • Im folgenden wird die Erfindung anhand eines Ausführungs­beispiels beschrieben.
  • Es zeigen:
    • Fig. 1 den Querschnitt;
    • Fig. 2 die Ansicht einer Aufspulmaschine, teilweise schematisch;
    • Fig. 3 Diagramm der Changiergeschwindigkeit bei wilder Wicklung;
    • Fig. 4 Querschnitt eines Ausführungsbeispiels zur Wicklung einer Kreuzspule in Stufenpräzisionswicklung;
    • Fig. 5 Diagramm der Changiergeschwindigkeit bei Stufen­präzisionswicklung;
    • Fig. 6 Diagramm des theoretischen Böschungswinkels über dem Hülsendurchmesser;
    • Fig. 7 Diagramm der Basisschichtdicke in Abhängigkeit vom Hülsendurchmesser;
    • Fig. 8 Ansicht der Kreuzspule (theoretisch).
  • Fig. 1 zeigt den Querschnitt, Fig. 2 die Ansicht einer ersten Aufspulmaschine (teilweise schematisch), Fig. 4 den Querschnitt einer weiteren Aufspulmaschine, auf denen die Erfindung ausgeführt werden kann.
    Für Fig. 1 und 2 einerseits und Fig. 4 andererseits gilt folgendes:
  • Der kontinuierlich mit Richtung 2 anlaufende Faden 3 wird zunächst durch den ortsfesten Fadenführer 1 und sodann durch die Changierung 4 geführt. Die Spulspindel 5 ist frei dreh­bar gelagert. Auf der Spulspindel 5 ist eine Leerhülse 10 aufgesteckt. Der Faden 3, der mit konstanter Geschwindigkeit anläuft, z.B. frisch gesponnene und/oder verstreckte Chemie­fasern, wird auf der Leerhülse 10 zu einer Kreuzspule 6 aufgewickelt. Hierzu werden zu Beginn der Spulreise die Leerhülse 10 und sodann die sich bildende Spule 6 an ihrem Umfang durch eine Treibwalze 21 (in Fig. 2 nicht sichtbar) mit konstanter Umfangsgeschwindigkeit angetrieben. Dabei wird der Faden 3 durch die Changierung 4, die weiter unten beschrieben wird, längs jeder Kreuzspule hin- und her­verlegt. Die Changierung 4 und die Treibwalze 21 sind gemeinsam auf einem Schlitten 22 gelagert, der auf- und abbeweglich ist (Pfeil), so daß die Treibwalze 21 dem wachsenden Spulendurchmesser der Spule 6 ausweichen kann.
  • Die Changiereinrichtung 4 wird durch Asynchronmotor 14 ange­trieben. Die Treibwalze 21 wird durch den Synchronmotor 20 mit im wesentlichen konstanter Umfangsgeschwindigkeit ange­ trieben. Hierauf wird später eingegangen. Die Drehstrom­motoren 14 und 20 erhalten ihre Energie durch Frequenz­wandler 15 und 16. Der Synchronmotor 20, der als Spulantrieb dient, ist an den Frequenzwandler 16 angeschlossen, der die einstellbare Frequenz f2 liefert. Der Asynchronmotor 14 wird durch Frequenzwandler 15 betrieben, der mit einem Rechner 23 verbunden ist. Das Ausgangssignal 24 des Rechners 23 hängt ab von der Eingabe. Die Eingabe erfolgt durch die Programm­einheit 19, in der folgendes programmierbar ist: Zum einen wird der Verlauf der Changiergeschwindigkeit, d.h. der Steuerfrequenz f3 über die Spulreise eingegeben. Sofern eine Spiegelstörung erfolgt, wird der Mittelwert der Changier­geschwindigkeit und zusätzlich die Frequenz sowie Amplitude und Form der periodischen Abweichung von dem vorgegebenen Mittelwert eingegeben. Alternativ können anstelle einer Spiegelstörung mit periodisch veränderbarer Changierfrequenz auch Spulverhältnisse eingegeben werden, die nacheinander in einzelnen Phasen der Wicklung gefahren werden sollen und die nicht spiegelbildend sind (siehe unten S. 15/16).
  • Zusätzlich wird der gewünschte Verlauf der Umfangsgeschwin­digkeit der Spule einprogrammiert. Dem liegt zugrunde, daß bei zunehmender Changiergeschwindigkeit eine Erhöhung der Fadenzugkraft, mit der der Faden auf der Spule aufgewickelt wird, eintritt. Es kann nun vorkommen, daß diese Fadenzug­kraft die Fadenqualität und/oder die Qualität der Kreuzspule beeinträchtigt. Zur Vermeidung einer solchen Beeinträchti­gung ist nach der Erfindung vorgesehen, daß die Umfangsge­schwindigkeit der Spule an die Änderung der Changierge­schwindigkeit angepaßt wird. Diese Änderung der Umfangsge­schwindigkeit der Spule kann der Programmeinheit 19 zusätz­lich eingegeben und über Ausgangssignal 25 des Rechners zur Steuerung des Frequenzwandlers 16 derart benutzt werden, daß die Drehzahl der Treibwalze 21 bei Erhöhung der Fadenspan­nung, die der Fadenspannungsmesser 26 erfaßt, herabgesetzt wird.
  • Alternativ kann die Fadenzugkraft gemessen und das Ausgangs­signal zur Steuerung des Frequenzwandlers 16 benutzt werden. Hierzu ist in Fig. 1 der Fadenspannungsmesser 26 angedeutet.
  • Das Ausgangssignal dieses Fadenspannungsmessers 26 wird über einen Wandler und Verstärker 27 dem Frequenzwandler 16 derart aufgegeben, daß die Drehzahl der Treibwalze 21 bei Erhöhung der Fadenspannung, die der Fadenspannungsmesser 26 erfaßt, herabgesetzt wird.
  • Bis hierher gilt die Beschreibung für Fig. 1/2 und Fig. 4.
  • Für Fig. 1/2 gilt darüberhinaus folgendes:
    Der Faden 3 läuft von der Changierung 4 aus mit einer Schlepplänge L1 auf die Walze 11, umschlingt diese und läuft mit Schlepplänge L2 tangential auf die Spule. Die Schlepp­längen L1 und L2 bewirken, daß die Ablagelänge H des Fadens auf der Spule bzw. Hülse (vgl. Fig. 8) durch Erhöhung der Changiergeschwindigkeit und nach dieser Erfindung bei Wicklung der Basisschicht von HB auf H (Fig. 8) verkürzt wird.
  • Die Changierung 4 besteht aus einer Flügelchangierung und einer dieser im Fadenlauf nachgeschalteten Walze 11. Die Changierung besitzt einen eigenen, später beschriebenen Antrieb. Flügelchangierung und Walze 11 sind getrieblich (nicht dargestellt) verbunden. Alternativ kann die Walze mit Treibwalze 21 getrieblich verbunden sein. Der besondere Vorteil der gezeigten Changierung liegt darin, daß der Ablagewinkel des Fadens auf der Spule - in Grenzen - verän­dert werden kann, da die Changiergeschwindigkeit unabhängig von der Spulgeschwindigkeit einstellbar ist. Insbesondere ist es möglich, die Changiergeschwindigkeit zum Zwecke der Spiegelvermeidung ständig um einen Mittelwert pendeln zu lassen oder zwischen zwei nahe beieinander liegenden Werten bei Spiegelgefahr umzuschalten oder proportional zur Spulen­drehzahl jedenfalls zeitweilig zu verändern.
  • Die Flügelchangierung weist den Rotor 12 und den Rotor 13 auf. Beide Rotoren können konzentrisch oder exzentrisch zueinander gelagert sein. Beide Rotoren werden durch einen später beschriebenen Antrieb und Getriebe in Getriebegehäuse 20 gegensinnig angetrieben. Der Rotor 12 trägt zwei oder drei oder vier Mitnehmerarme 8, die in der Drehebene I rotieren (Pfeil 18). Der Rotor 13 trägt die gleiche Anzahl von Mitnehmerarmen 7, die in der eng benachbarten Drehebene II rotieren (Pfeil 17). Die Mitnehmerarme führen den Faden an dem Leitlineal 9 entlang. Jeder Mitnehmerarm 8 transpor­tiert den Faden - in Fig. 2 - nach rechts und übergibt ihn dort am Führungsende an einen Mitnehmerarm 7, der den Faden in die Gegenrichtung bis zum anderen Führungsende transpor­tiert, wo wiederum einer der Mitnehmerarme 8 die Rückführung übernimmt.
  • Weitere Einzelheiten ergeben sich aus den Anmeldungen EP 84100433.6 und EP 84100848.5 sowie DE-OS 34 04 303.9, auf die Bezug genommen wird.
  • In Fig. 3 ist der einprogrammierte Verlauf des Mittelwertes der Changiergeschwindigkeit über die Spulreise dargestellt. Die Ordinate zeigt das Verhältnis der Changiergeschwindig­keit zu der konstanten Umfangsgeschwindigkeit der Spule (C/U). Die Abszisse zeigt den sich aufbauenden Spulenradius bzw. die sich aufbauende Schichtdicke S der Spule, darge­stellt für eine Spule, die auf einer Hülse mit einem Durch­messer von 100 mm gebildet wird. Die Changiergeschwindigkeit nimmt von einem geringsten Wert zu Anfang der Spulreise stetig bis auf einen höchsten Wert zu.
  • Wie aus Fig. 3 ersichtlich, wird nach Wicklung der Basis­schicht mit der Schichtdicke SB die maximale Changierge­schwindigkeit erreicht. Dabei ist die minimale Changierge­schwindigkeit so vorgegeben, daß sich ein Ablagewinkel von ca. 5° auf der Hülse ergibt. Die maximale Changiergeschwin­digkeit führt zu einem Ablagewinkel, der mindestens 3° größer, hier 9°, ist. Die Changiergeschwindigkeit wird in dem Beispiel stetig und linear mit der wachsenden Schicht­dicke von dem minimalen auf den maximalen Wert erhöht. Diese maximale Changiergeschwindigkeit bleibt sodann bis zum Ende der Spulreise konstant, jedenfalls aber konstant, bis zumindest 80% der gesamten Schichtdicke der Spule aufgebaut ist.
  • In Fig. 3 ist ferner ein Diagramm der Umfangsgeschwindigkeit U der Spule enthalten, wobei die Umfangsgeschwindigkeit in Prozent vom Ausgangswert der Umfangsgeschwindigkeit angege­ben ist. Aus dem Diagramm ist ersichtlich, daß der Ausgangs­wert der Umfangsgeschwindigkeit um ca. 1% im Verlauf der Wicklung der Basisschicht herabgesetzt wird, damit unzuläs­sige Änderungen der Fadenspannung ausgeglichen und im Ideal­falle die Aufwickelgeschwindigkeit konstant bleibt.
  • Für die Aufspulmaschine nach Fig. 4 gilt zusätzlich fol­gendes:
    Die Changierung 4 weist im Fadenlauf zuerst den Changier­fadenführer 33 auf, welcher durch die Kehrgewindewelle 32 in eine Hin- und Herbewegung quer zur Laufrichtung des Fadens versetzt wird. Neben dem Fadenführer 33 gehört zur Changier­einrichtung die Nutwalze 35, in deren endloser, hin- und hergehender Nut der Faden mit teilweiser Umschlingungung geführt ist. Der Abstand zwischen der Ablauflinie, auf der der Faden von der Nutwalze 4 abläuft, und der Auflauflinie, auf der der Faden auf die Spule 7 aufläuft, wird als Schlepplänge L bezeichnet. Ihre Größe bestimmt die Vergrö­ßerung der Ablagelänge H des Fadens auf der Spule, die mit einer Verkleinerung der Changiergeschwindigkeit verbunden ist (Fig. 8).
  • In Rechner 23 werden fortlaufend eingegeben: die Drehzahl der Spulspindel 5, die durch Meßfühler 38 ermittelt wird; das Ausgangssignal der dem Rechner vorgeschalteten Programm­einheit 19, die vorzugsweise frei programmierbar ist und in der die Spulverhältnisse eingegeben worden sind, die im Verlauf der Spulreise in den einzelnen Phasen mit Präzi­sionswicklung nacheinander gefahren werden sollen.
  • Mit Vorteil wird auch durch Meßfühler 37 die aktuelle Changiergeschwindigkeit bzw. Doppelhubzahl durch Meßfühler 17 abgetastet und dem Rechner eingegeben, der wiederum einen Soll-/Ist-Wert-Vergleich durchführt und hierdurch die Changiergeschwindigkeit der durch Asynchronmotor 14 ange­triebenen Changiereinrichtungen auf den Soll-Wert, d.h. den der Spindeldrehzahl über die gespeicherten Spulverhältnisse proportionalen Sollwert, ausregelt.
  • Die Hauptaufgabe des Rechners 23 besteht darin, diese Soll­wertermittlung der Changiergeschwindigkeit durchzuführen. Einzelheiten sind in der europäischen Patentanmeldung 86103045 beschrieben.
  • Der Rechner erhält zunächst einmal durch den Programm­speicher 19 die vorausberechneten idealen Spulverhältnisse. Aus diesen idealen Spulverhältnissen und dem Ausgangswert der Changiergeschwindigkeit errechnet der Rechner "ideale" Spindeldrehzahlen. Die Werte der "idealen" Spindeldrehzahlen werden mit den aktuellen, durch den Meßfühler 38 ermittelten Spindeldrehzahlen verglichen. Wenn der Rechner Identität der Spindeldrehzahlen feststellt, gibt er als Ausgangssignal 24 den ebenfalls durch Programmgeber 19 vorgegebenen Ausgangs­wert der Changiergeschwindigkeit als Sollwert dem Frequenz­wandler 13 vor. Im folgenden Verlauf der Spulreise vermin­ dert der Rechner diesen Sollwert proportional zur ständig gemessenen Spindeldrehzahl, die mit wachsendem Spulendurch­messer bei konstanter Spulenumfangsgeschwindigkeit hyperbo­lisch abnimmt. Das vorgegebene "ideale" Spulverhältnis bleibt also während dieser Stufe der Präzisionswicklung konstant. Sobald der Rechner nunmehr Identität der aktuell gemessenen Spindeldrehzahl mit der durch das nächste als "ideal" vorgegebene Spulverhältnis ermittelten "idealen" Spindeldrehzahl feststellt, wird als Ausgangssignal 20 wiederum der Ausgangswert der Changiergeschwindigkeit als Sollwert vorgegeben. Es folgt eine neue Stufe der Präzi­sionswicklung.
  • Es ergibt sich hieraus, daß in der geschilderten Ausführung die Changiergeschwindigkeit stets zwischen einem vorgege­benen oberen Grenzwert und einem vorgegebenen unteren Grenz­wert bleibt.
  • Erfindungsgemäß wird nun zusätzlich das Changiergesetz nach dem Diagramm nach Fig. 5 einprogrammiert.
  • In dem Diagramm nach Fig. 5 ist auf der Abszisse - ausgehend von dem Hülsendurchmesser von 100 mm - die Spulschichtdicke S aufgetragen. Auf der Ordinate ist das Verhältnis der Changiergeschwindigkeit zu der Umfangsgeschwindigkeit der Spule aufgetragen, wobei davon auszugehen ist, daß die Umfangsgeschwindigkeit der Spule im wesentlichen konstant ist. Die Ordinate zeigt also mit anderen Worten den Tangens des Ablagewinkels, der sich ebenfalls aus der obengenannten DIN-Vorschrift ergibt.
  • Obergrenze OGC und Untergrenze UGC der Changiergeschwindig­keit bzw. des auf der Ordinate abgetragenen Quotienten werden zu Beginn der Spulreise, also bei dem Hülsendurch­messer 100 verhältnismäßig niedrig angesetzt, so daß sich ein mittlerer Kreuzungswinkel von ca. 5° ergibt. Innerhalb der verhältnismäßig geringen Basisschicht mit der Schicht­dicke SB werden sodann Obergrenze und Untergrenze stetig erhöht auf Werte, die einem mindestens 3° größeren mittleren Ablagewinkel entsprechen. Nach dem Wickeln der Basisschicht mit der Schichtdicke SB bleiben die Obergrenze OGC und die Untergrenze UGC der Changiergeschwindigkeit bzw. der Quotient aus Changiergeschwindigkeit und Umfangsgeschwindig­keit konstant.
  • Es sei erwähnt, daß der obere Grenzwert und der untere Grenzwert der Changiergeschwindigkeit grundsätzlich parallel verlaufen. In dem Rechner 23 nach Fig. 4 wird ein Programm eingegeben, durch das über die Spulreise hin die Changier­geschwindigkeit wie in Fig. 5 angegeben zwischen dem oberen Grenzwert und dem unteren Grenzwert gesteuert wird. Dabei fällt die Changiergeschwindigkeit zunächst hyperbolisch und proportional zu der Spindeldrehzahl ab und wird sodann sprunghaft wieder auf den oberen Grenzwert erhöht. Dieses Verfahren wird in einer Vielzahl von Zyklen über die gesamte Spulreise hin eingehalten.
  • Wie bei dem ersten Ausführungsbeispiel kann auch hier in Programmspeicher 19 der Verlauf der Umfangsgeschwindigkeit der Spule einprogrammiert werden. Die Umfangsgeschwindigkeit der Spule wird an die Änderung der Grenzwerte der Changier­geschwindigkeit angepaßt.
  • In Fig. 5 ist ein Diagramm der Umfangsgeschwindigkeit vU der Spule enthalten, wobei die Umfangsgeschwindigkeit in Prozent vom Ausgangswert der Umfangsgeschwindigkeit angegeben ist. Aus dem Diagramm ist ersichtlich, daß der Ausgangswert der Umfangsgeschwindigkeit um ca. 1% im Verlauf der Wicklung der Basisschicht herabgesetzt wird, damit unzulässige Änderungen der Fadenspannung ausgeglichen und im Idealfalle die Auf­wickelgeschwindigkeit konstant bleibt.
  • Nach dieser Erfindung sind die Dicke SB der Basisschicht sowie der theoretische Böschungswinkel der Basisschicht auch von dem Hülsendurchmesser abhängig.
  • Fig. 7 zeigt die Abhängigkeit zwischen dem Hülsendurchmesser und der Dicke der herzustellenden Basisschicht, bei deren Wicklung die Changiergeschwindigkeit (Fig. 1, 2, 3) bzw. Obergrenze und Untergrenze (Fig. 4, 5) erhöht werden. Auf der Ordinate ist der Hülsendurchmesser, auf der Abszisse die Basisschichtdicke SB abgetragen. Daraus ergibt sich, daß die Basisschichtdicke zu dem Hülsendurchmesser umgekehrt propor­tional ist. Es wurde gefunden, daß bei Einhaltung der oben angegebenen Abhängigkeit ein guter, stabiler und abschläger­freier Spulenaufbau erzielt werden kann.
  • Für eine Hülse mit einem Außendurchmesser von 100 mm ist aus dem Diagramm nach Fig. 7 zu entnehmen, daß die Schichtdicke SB der Basisschicht, bei der der maximale Mittelwert bzw. die maximalen Grenzwerte der Changiergeschwindigkeit erreicht sein sollten, zwischen 14 und 16 mm betragen sollte.
    Dem liegt für übliche Hülsendurchmesser folgende Formel für die Basisschichtdicke in Abhängigkeit von dem Hülsenradius zugrunde:
    S = A (100 - r) / 100, wobei
    r der Hülsenradius, angegeben in Millimetern und A ein Wert zwischen 24 und 34 ist.
  • In den Faktor A geht die Fadenspannung ein, mit der der Faden aufgewickelt ist. In diesem Rahmen ist A durch Versuch zu ermitteln. Je höher die Aufwickelspannung, desto nied­riger ist der Faktor A.
  • Die Abschlägerneigung konnte insbesondere dadurch gemindert werden, daß die Mittelwerte bzw. Grenzwerte der Anfangs-­Changiergeschwindigkeit sehr niedrig derart gewählt wird, daß der Ablagewinkel des Fadens auf der Hülse nicht mehr als 5° beträgt. Andererseits beträgt der Ablagewinkel bei der höchsten Changiergeschwindigkeit nicht mehr als 10°.
  • Fig. 6 zeigt die Abhängigkeit zwischen dem theoretischen Böschungswinkel alpha der Basisschicht und dem Hülsendurch­messer. Um eine Spule mit geraden Stirnseiten zu erhalten, ist bei kleinerer Hülse theoretisch eine steilere Stirnkante zu wickeln; der theoretische Winkel alpha ist also größer als bei Wicklung der Basisschicht auf eine Hülse mit großem Durchmesser.
  • Zur Steuerung des Böschungswinkels dient die zu wählende Differenz zwischen der maximalen Changiergeschwindigkeit und der minimalen Changiergeschwindigkeit bzw. zwischen dem größten und dem kleinsten Ablagewinkel. Diese Erfindung sieht vor, daß zur Erreichung gerader Stirnkanten die Diffe­renz zwischen dem größten und dem kleinsten Ablagewinkel mindestens 3° betragen sollte.
  • Fig. 8 zeigt die theoretische Ansicht einer Kreuzspule 6 nach dieser Erfindung, die auf der Hülse 10 mit dem Radius r und dem Durchmesser d gebildet ist und die Gesamtschicht­dicke S hat. Die Kreuzspule ist zylindrisch und hat prak­tisch im wesentlichen gerade Stirnkanten, die in einer Normalebene liegen. Im Bereich einer Basisschicht mit der Schichtdicke SB hat die Spule theoretisch schräge Stirn­kanten mit einem theoretischen Böschungswinkel alpha. Die sich kreuzenden Fadenwindungen auf den äußersten Lagen der Spule sind angedeutet mit dem Ablagewinkel, den jedes Faden­stück gegenüber der in einer Normalebene zur Spule liegenden Tangente an die Spule hat. Praktisch dient die Basisschicht jedoch als seitliche Stütze der Spule. Durch diese Stütze wird verhindert, daß die Stirnkanten der Spule sich seitlich ausbauchen und Abschläger entstehen.

Claims (10)

1. Verfahren zum Aufwickeln von Fäden,
insbesondere frischgesponnenen und verstreckten Chemiefäden,
zu zylindrischen Kreuzspulen mit geraden Stirnkanten, bei welchem der Mittelwert der Changiergeschwindigkeit während der Wickelbildung verändert wird,
dadurch gekennzeichnet, daß
der Mittelwert bei Beginn der Spulreise seinen Minimal­wert hat und durchmesserabhängig stetig oder in Stufen derart erhöht wird,
daß der Maximalwert bei Aufbau einer vorbestimmten Basisschicht mit einer Dicke (SB) von nicht mehr als 10% der gesamten Schichtdicke der Spule erreicht wird.
2. Verfahren nach Anspruch 1,
dadurch gekennzeichnet, daß
der Maximalwert nach Erreichen der vorgegebenen Schicht­dicke über einen Durchmesserbereich von mindestens 80% des Gesamtdurchmessers vorzugsweise bis zum Ende der Spulreise eingehalten wird.
3. Verfahren nach Anspruch 1,
dadurch gekennzeichnet, daß
der Maximalwert nach Erreichen der vorgegebenen Schicht­dicke im weiteren Verlauf der Spulreise um nicht mehr als 20%, vorzugsweise um weniger als 10% abgesenkt wird.
4. Verfahren nach einem der Ansprüche 1 bis 3,
dadurch gekennzeichnet, daß
die Erhöhung der Changiergeschwindigkeit erfolgt, während auf der Spulhülse eine Fadenschicht mit einer Schichtdicke von 10 bis 30 mm, vorzugsweise 15 bis 25 mm aufgebaut wird.
5. Verfahren nach einem der vorangegangenen Ansprüche,
dadurch gekennzeichnet, daß
die Changiergeschwindigkeit derart geändert wird, daß der Böschungsfaktor bei der Wicklung der Basisschicht 15% bis 45% beträgt, wobei der Böschungsfaktor das Verhältnis der Hubminderung an einer Stirnkante zu der Basisschichtdicke ist.
6. Verfahren nach einem der Ansprüche 1 bis 5,
dadurch gekennzeichnet, daß
die Changiergeschwindigkeit derart geändert wird, daß der Ablagewinkel des Fadens auf der Spule sich zwischen dem untersten Mittelwert und dem obersten Mittelwert der Changiergeschwindigkeit um 3 bis 7°, vorzugsweise um 4 bis 6° ändert,
wobei der unterste Mittelwert der Changiergeschwindig­keit einen Ablagewinkel zwischen 2 und 5°, vorzugsweise zwischen 4 und 6°
und der oberste Mittelwert der Changiergeschwindigkeit einen Ablagewinkel zwischen 6 und 10°, vorzugsweise zwischen 7 und 9° ergibt.
7. Verfahren nach einem der vorangegangenen Ansprüche,
dadurch gekennzeichnet, daß
die Umfangsgeschwindigkeit der Spule während der Wick­lung der Basisschicht abhängig von der Erhöhung der Changiergeschwindigkeit derart herabgesetzt wird, daß die Aufwickelgeschwindigkeit des Fadens als geometrische Summe von Umfangsgeschwindigkeit und Changiergeschwin­digkeit im wesentlichen konstant bleibt.
8. Verfahren nach Anspruch 7,
dadurch gekennzeichnet, daß
die Umfangsgeschwindigkeit der Spule nach einem einge­speicherten Programm herabgesetzt wird.
9. Verfahren nach einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, daß
die Kreuzspule in gestufter Präzisionswicklung gewickelt wird, wobei die Changiergeschwindigkeit in einer Viel­zahl von Zyklen/Stufen zwischen einer vorgegebenen Ober­grenze urd einer vorgegebenen Untergrenze in jeder Stufe der Präzisionswicklung proportional zur Spindeldrehzahl vermindert und sodann zur Erreichung eines vorgegebenen kleineren Spulverhältnisses (Spindeldrehzahl/Doppel­hubzahl) wieder erhöht wird,
wobei die Ober- und Untergrenze bei Beginn der Spulreise ihren jeweiligen Minimalwert haben und durchmesser­abhängig stetig oder in Stufen derart erhöht werden, daß Ober- und Untergrenze bei Aufbau einer vorbestimmten Basisschicht mit einer Dicke (SB) von nicht mehr als 10% der gesamten Schichtdicke der Spule ihren jeweiligen Maximalwert erreichen,
und daß sodann Obergrenze und Untergrenze parallel zum Mittelwert der Changiergeschwindigkeit verlaufen.
10. Verfahren nach Anspruch 9,
dadurch gekennzeichnet, daß
die Obergrenze der Changiergeschwindigkeit zwischen
F × sin (5°) und F × sin (9°)
und die Untergrenze parallel dazu zwischen
F × sin (4°) und F × sin (8°)
verändert wird, wobei
F die Fadengeschwindigkeit ist.
EP87111025A 1986-08-09 1987-07-30 Verfahren zum Aufwickeln von Fäden Expired - Lifetime EP0256383B1 (de)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE3627081 1986-08-09
DE3627081A DE3627081C2 (de) 1986-08-09 1986-08-09 Verfahren zum Aufwickeln von Fäden
DE3627082 1986-08-09
DE3627082 1986-08-09

Publications (2)

Publication Number Publication Date
EP0256383A1 true EP0256383A1 (de) 1988-02-24
EP0256383B1 EP0256383B1 (de) 1990-01-31

Family

ID=25846433

Family Applications (1)

Application Number Title Priority Date Filing Date
EP87111025A Expired - Lifetime EP0256383B1 (de) 1986-08-09 1987-07-30 Verfahren zum Aufwickeln von Fäden

Country Status (5)

Country Link
US (1) US4789112A (de)
EP (1) EP0256383B1 (de)
KR (1) KR900006650B1 (de)
CN (1) CN1011686B (de)
DE (1) DE3761556D1 (de)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0256411B1 (de) * 1986-08-16 1989-10-11 B a r m a g AG Verfahren zum Aufwickeln von Fäden
EP0349939A2 (de) * 1988-07-06 1990-01-10 Barmag Ag Verfahren zum Spulenwechsel
EP0710616A1 (de) * 1993-11-05 1996-05-08 Zinser Textilmaschinen GmbH Verfahren und Vorrichtung zum Aufspulen von Fäden
US6024320A (en) * 1996-10-12 2000-02-15 Barmag Ag Yarn traversing mechanism for winding apparatus
EP0992445A1 (de) * 1998-10-05 2000-04-12 Schärer Schweiter Mettler AG Fadenführungsvorrichtung

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2050766T3 (es) * 1988-12-22 1994-06-01 Barmag Barmer Maschf Maquina bobinadora.
DE59105706D1 (de) * 1990-10-30 1995-07-20 Ssm Ag Verfahren zur Herstellung einer Garnspule.
US5348238A (en) * 1991-07-30 1994-09-20 Murata Kikai Kabushiki Kaisha Doubler winder
CH691474A5 (de) * 1992-11-13 2001-07-31 Rieter Ag Maschf Verfahren und Vorrichtung zum Aufspulen eines Fadens.
DE19619706A1 (de) * 1995-05-29 1996-12-05 Barmag Barmer Maschf Verfahren zur Erzielung einer Spiegelstörung
US5725167A (en) * 1995-12-19 1998-03-10 Ppg Industries, Inc. Process for winding fiber strand on a bobbin
DE59707728D1 (de) * 1996-10-12 2002-08-22 Barmag Barmer Maschf Aufspulmaschine für kontinuierlich anlaufenden faden
DE19845325A1 (de) * 1997-10-10 1999-04-15 Barmag Barmer Maschf Aufspulmaschine
US6568623B1 (en) * 2000-03-21 2003-05-27 Owens-Corning Fiberglas Technology, Inc. Method for controlling wind angle and waywind during strand package buildup
DE10342266B4 (de) * 2002-09-25 2016-02-04 Saurer Germany Gmbh & Co. Kg Verfahren zum Herstellen einer Kreuzspule

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3946956A (en) * 1972-12-29 1976-03-30 F.Lli Marzoli & C. S.P.A. Control device for equipment for winding yarn into cops
US4049211A (en) * 1975-11-05 1977-09-20 Rieter Machine Works, Ltd. Winding apparatus for textile threads
EP0064579A1 (de) * 1981-05-08 1982-11-17 Toray Industries, Inc. Fadenaufwickelvorrichtung

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2539942A (en) * 1947-03-24 1951-01-30 American Enka Corp Production of cross wound bobbins
GB861140A (en) * 1957-10-25 1961-02-15 Ici Ltd Treatment of yarns
GB1022054A (en) * 1963-10-22 1966-03-09 British Nylon Spinners Ltd Improvements in or relating to winding yarns
US3564958A (en) * 1967-07-17 1971-02-23 Leesona Corp Yarn handling apparatus
US3638872A (en) * 1968-03-28 1972-02-01 Du Pont Process for winding a yarn package
DE1966159B2 (de) * 1968-10-14 1972-09-28 Fadenspeicher- und -liefervorrichtung fuer textilmaschinen
US3666431A (en) * 1969-11-10 1972-05-30 Owens Corning Fiberglass Corp Apparatus for advancing glass fibers
BR7601196A (pt) * 1975-03-07 1976-09-14 Barmag Barmer Maschf Dispositivo transportador de cabo de fibras sinteticas,e,processo de sua operacao
DE2540148C3 (de) * 1975-09-09 1980-06-26 Barmag Barmer Maschinenfabrik Ag, 5630 Remscheid Ablegevorrichtung fur Chemiefaserkabel und Arbeitsverfahren zum Betrieb der Vorrichtung
DE2633474C3 (de) * 1976-07-26 1980-06-04 Franz Fourne Vorrichtung zum Ablegen eines fadenförmigen Gutes bzw. eines Fadenkabels in einen Behälter o.dgl. endlos, oder in Form von Teilen begrenzter Länge
DE2855616A1 (de) * 1978-12-22 1980-06-26 Barmag Barmer Maschf Verfahren zum aufspulen von faeden
BE890315A (fr) * 1981-09-11 1982-01-04 Inventa Ag Procede de tirage et de depot d'une matiere sans fin semblable a un cable, un cordon ou un filament
US4504021A (en) * 1982-03-20 1985-03-12 Barmag Barmer Maschinenfabrik Ag Ribbon free wound yarn package and method and apparatus for producing the same
US4504024A (en) * 1982-05-11 1985-03-12 Barmag Barmer Maschinenfabrik Ag Method and apparatus for producing ribbon free wound yarn package
US4505436A (en) * 1983-01-19 1985-03-19 Barmag Barmer Maschinenfabrik Ag Yarn winding apparatus
DE3461067D1 (en) * 1983-01-28 1986-12-04 Barmag Barmer Maschf Traversing device with rotating fingers for a winding machine
DE3401530A1 (de) * 1984-01-18 1985-07-25 Fritjof Dipl.-Ing. Dr.-Ing. 6233 Kelkheim Maag Praezisionsspule, sowie verfahren und vorrichtung zu deren herstellung
CN1005029B (zh) * 1985-03-05 1989-08-23 巴马格·巴默机器制造股份公司 卷绕方法
EP0195325B1 (de) * 1985-03-11 1988-09-07 B a r m a g AG Aufwickelverfahren
DE3632338A1 (de) * 1985-09-27 1987-05-27 Barmag Barmer Maschf Einrichtung zur speicherung und beseitigung von fadenabfall

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3946956A (en) * 1972-12-29 1976-03-30 F.Lli Marzoli & C. S.P.A. Control device for equipment for winding yarn into cops
US4049211A (en) * 1975-11-05 1977-09-20 Rieter Machine Works, Ltd. Winding apparatus for textile threads
EP0064579A1 (de) * 1981-05-08 1982-11-17 Toray Industries, Inc. Fadenaufwickelvorrichtung

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0256411B1 (de) * 1986-08-16 1989-10-11 B a r m a g AG Verfahren zum Aufwickeln von Fäden
EP0349939A2 (de) * 1988-07-06 1990-01-10 Barmag Ag Verfahren zum Spulenwechsel
EP0349939A3 (de) * 1988-07-06 1992-02-12 Barmag Ag Verfahren zum Spulenwechsel
EP0710616A1 (de) * 1993-11-05 1996-05-08 Zinser Textilmaschinen GmbH Verfahren und Vorrichtung zum Aufspulen von Fäden
US6024320A (en) * 1996-10-12 2000-02-15 Barmag Ag Yarn traversing mechanism for winding apparatus
EP0992445A1 (de) * 1998-10-05 2000-04-12 Schärer Schweiter Mettler AG Fadenführungsvorrichtung

Also Published As

Publication number Publication date
DE3761556D1 (de) 1990-03-08
US4789112A (en) 1988-12-06
KR900006650B1 (ko) 1990-09-15
CN1011686B (zh) 1991-02-20
KR880002734A (ko) 1988-05-11
CN87105449A (zh) 1988-08-31
EP0256383B1 (de) 1990-01-31

Similar Documents

Publication Publication Date Title
EP0195325B1 (de) Aufwickelverfahren
EP0256411B1 (de) Verfahren zum Aufwickeln von Fäden
DE3332382C2 (de)
EP0256383B1 (de) Verfahren zum Aufwickeln von Fäden
DE2649780C3 (de) Wickelmaschine fUr Textilgarne
EP0334211B1 (de) Verfahren zur Herstellung eines spulenlosen Gebindes
DE68907875T2 (de) Verfahren zum Kontrollieren der Fadenführung auf einem Wickel in einer Aufspulvorrichtung für synthetische Fäden.
EP0194524B1 (de) Aufwickelverfahren
EP0237892A1 (de) Verfahren und Einrichtung zum Umspulen eines Fadens
DE3781719T2 (de) Ueberfuehrungsapparat fuer faden.
EP0578966B1 (de) Verfahren zum Aufspulen eines Fadens in gestufter Präzisionswicklung
EP1625091B2 (de) Bandaufwickelverfahren
WO2007057109A1 (de) Verfahren zur vermeidung von bildwicklungen
DE3401530A1 (de) Praezisionsspule, sowie verfahren und vorrichtung zu deren herstellung
DE19817111A1 (de) Verfahren zum Aufwickeln eines Fadens zu einer zylindrischen Kreuzspule
EP0093258B1 (de) Verfahren zur Spiegelstörung beim Aufwickeln eines Fadens in wilder Wicklung
EP0349939B1 (de) Verfahren zum Spulenwechsel
DE4112768A1 (de) Verfahren zum wickeln von kreuzspulen
DE3210244A1 (de) Verfahren zur spiegelstoerung beim aufwickeln eines fadens in wilder wicklung
EP0629174B1 (de) Verfahren und vorrichtung zum aufspulen eines fadens
EP2468669B1 (de) Verfahren zur Herstellung einer Färbespule
DE2406641A1 (de) Aufwickelvorrichtung mit automatischem wechsel von huelsen
DE3219880A1 (de) Verfahren zur spiegelstoerung beim aufwickeln eines fadens in wilder wicklung
DE19628402A1 (de) Verfahren zur Vermeidung von Bildwicklungen
DE3627081C2 (de) Verfahren zum Aufwickeln von Fäden

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19871215

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE FR GB IT LI

17Q First examination report despatched

Effective date: 19881208

ITF It: translation for a ep patent filed
GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE FR GB IT LI

ET Fr: translation filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
REF Corresponds to:

Ref document number: 3761556

Country of ref document: DE

Date of ref document: 19900308

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
ITTA It: last paid annual fee
REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: BARMAG GMBH ENGINEERING & MANUFACTURING

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19990616

Year of fee payment: 13

Ref country code: FR

Payment date: 19990616

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19990722

Year of fee payment: 13

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000730

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000731

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000731

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20000730

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010330

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20030804

Year of fee payment: 17

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050730