EP0254111B1 - UV-Strahler - Google Patents

UV-Strahler Download PDF

Info

Publication number
EP0254111B1
EP0254111B1 EP87109674A EP87109674A EP0254111B1 EP 0254111 B1 EP0254111 B1 EP 0254111B1 EP 87109674 A EP87109674 A EP 87109674A EP 87109674 A EP87109674 A EP 87109674A EP 0254111 B1 EP0254111 B1 EP 0254111B1
Authority
EP
European Patent Office
Prior art keywords
electrode
dielectric
radiator according
tube
discharge space
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP87109674A
Other languages
German (de)
English (en)
French (fr)
Other versions
EP0254111A1 (de
Inventor
Baldur Dr. Eliasson
Peter Dr. Erni
Michael. Dr Hirth
Ulrich Dr. Kogelschatz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Heraeus Noblelight GmbH
Original Assignee
BBC Brown Boveri AG Switzerland
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BBC Brown Boveri AG Switzerland filed Critical BBC Brown Boveri AG Switzerland
Publication of EP0254111A1 publication Critical patent/EP0254111A1/de
Application granted granted Critical
Publication of EP0254111B1 publication Critical patent/EP0254111B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J65/00Lamps without any electrode inside the vessel; Lamps with at least one main electrode outside the vessel

Definitions

  • the invention relates to a UV lamp with a discharge space filled with filling gas and delimited by walls, at least one wall being formed by a dielectric, with a first and a second metallic electrode, the first electrode on the surface of the dielectric facing away from the discharge space is arranged, and an alternating current source connected to the two electrodes for supplying the discharge, and means for directing the radiation generated by silent electrical discharges into an outside space.
  • the invention relates to a state of the art, such as that obtained from the publication "Vacuum-ultraviolet lamps with a barrier discharge in inert gases" by GA Volkova. NN Kirillova, EN Pavlovskaya and AV Yakovleva in the SU magazine Zhurnal Prikladnoi Spektoskopii 41 - (1984) No. 4, 691-695. published in an English translation by Plenum Publishing Corporation 1985. Doc. No. 0021-9037 / 84 / 4104-1194 $ 08.50. P. 1194 ff., Results.
  • high-performance lamps especially high-performance UV lamps, e.g. Disinfection, curing of paints and synthetic resins, flue gas cleaning, destruction and synthesis of special chemical compounds.
  • the wavelength of the emitter will have to be matched very precisely to the intended process.
  • the best-known UV lamp is probably the mercury lamp, which emits UV radiation with wavelengths of 254 nm and 185 nm with high efficiency.
  • a low-pressure glow discharge burns in a noble gas-mercury vapor mixture in these lamps.
  • This radiator consists of a tube made of dielectric material with a rectangular cross section. Two opposite tube walls are provided with flat electrodes in the form of metal foils, which are connected to a pulse generator. The tube is closed at both ends and filled with an inert gas (argon, krypton or xenon). Such filling gases form so-called excimers when an electrical discharge is ignited under certain conditions.
  • An excimer is a molecule that is formed from an excited atom and an atom in the ground state. e.g. Ar + Ar - Ar * 2nd
  • the UV light generated in a first embodiment reaches the outside through an end window in the dielectric tube.
  • the broad sides of the tube are provided with metal foils which form the electrodes.
  • the tube is provided with recesses, over which special windows are glued, through which the radiation can escape.
  • the efficiency that can be achieved with the known radiator is of the order of 1%, which is far below the theoretical value of around 50% because the filling gas heats up inadmissibly.
  • Another inadequacy of the known radiator can be seen in the fact that its light exit window has only a comparatively small area for reasons of stability.
  • a low-pressure UV lamp for the near UV spectrum is known from BE-A-739 064.
  • the walls of this lamp consist of a UV-permeable dielectric, which is provided on both sides with a UV-permeable electrically conductive layer.
  • This three-layer arrangement serves as a capacitor for stabilizing the lamp.
  • the outer of the two layers is also an electrode and consists of indium or tin oxide, i.e. materials which are known to be only transparent to visible light or near UV.
  • the invention has for its object to provide a UV lamp that has a high efficiency, can be operated with high electrical power densities, enables the generation of UV radiation in a wide spectral range and the construction of large-area lamps with practically any large light emission areas.
  • the geometry of the high-performance lamp can be adapted to the process in which it is used within wide limits. In addition to large, flat spotlights, cylindrical ones that radiate inwards or outwards are also possible.
  • the discharges can be operated at high pressure (0.1 - 10 bar. With this construction, electrical power densities of 1 - 50 KW / m2 can be realized.
  • the wavelength of the radiation can be adjusted by the kind of the filling gas eg mercury (185 nm, 254 nm), nitrogen (337-415 nm), selenium (196, 204, 206 nm), xenon (119, 130, 147 nm), Krypton (124 nm) As with other gas discharges, it is also advisable to mix different types of gas.
  • the filling gas eg mercury (185 nm, 254 nm), nitrogen (337-415 nm), selenium (196, 204, 206 nm), xenon (119, 130, 147 nm), Krypton (124 nm)
  • the advantage of these emitters is the areal radiation of large radiation outputs with high efficiency. Almost all of the radiation is concentrated in one or a few wavelength ranges. It is important in all cases that the radiation can escape through one of the electrodes.
  • This problem can be solved with transparent, electrically conductive layers or else by using a fine-mesh wire network or applied conductor tracks as electrodes, which on the one hand ensure the current supply to the dielectric, but on the other hand are largely transparent to the radiation.
  • a transparent electrolyte for example H2O, can be used as a further electrode, which is particularly advantageous for the irradiation of water / waste water, since in this way the radiation generated passes directly into the liquid to be irradiated and this liquid also serves as a coolant.
  • a metal electrode 1 which is in contact on one side with a cooling medium 2, for example water.
  • a plate 4 made of dielectric material is arranged, spaced apart by electrically insulating spacers 3, which are distributed over a certain area.
  • a UV high-performance lamp it consists, for example, of quartz or sapphire, which is transparent to the UV radiation. Materials such as magnesium fluoride and calcium fluoride are also suitable for very short-wave radiation.
  • Dielectric 4 and metal electrode 1 delimit a discharge space 5 with a typical gap width between 1 and 10 mm.
  • a wire mesh there can also be a transparent, electrically conductive layer, the layer of indium or tin oxide being used for visible light, a gold layer 50-100 angstroms thick for visible and UV light, and especially a thin layer of alkali metals in UV can.
  • An AC power source 7 is connected between the metal electrode 1 and the counter electrode (wire mesh 6).
  • alternating current source 7 those can generally be used which have long been used in connection with ozone generators.
  • the discharge space 5 is laterally closed in the usual way, was evacuated before closing and was filled with an inert gas or a substance that forms excimers under discharge conditions, e.g. Mercury, noble gas, noble gas-metal vapor mixture, noble gas-halogen mixture, filled, optionally using an additional further noble gas (Ar, He, Ne) as a buffer gas.
  • an inert gas or a substance that forms excimers under discharge conditions e.g. Mercury, noble gas, noble gas-metal vapor mixture, noble gas-halogen mixture, filled, optionally using an additional further noble gas (Ar, He, Ne) as a buffer gas.
  • a substance according to the following table can be used: Filling gas radiation helium 60-100 nm neon 80 - 90 nm argon 107 - 165 nm xenon 160-190 nm nitrogen 337 - 415 nm krypton 124 nm, 140-160 nm Krypton + fluorine 240 - 255 nm mercury 185, 254 nm selenium 196, 204, 206 nm deuterium 150-250 nm Xenon + fluorine 400 - 550 nm Xenon + chlorine 300-320 nm
  • the electron energy distribution can be optimally adjusted by varying the gap width of the discharge space, pressure and / or temperature (via the intensity of the cooling).
  • a metal tube 8, a tube 9 made of dielectric material and an outer metal tube 10 are arranged coaxially one inside the other. Coolant or a gaseous coolant is passed through the interior 11 of the metal tube.
  • the annular gap 12 between the tubes 8 and 9 forms the discharge space.
  • the dielectric tube 9 a quartz tube in the example
  • the outer metal tube spaced from it by a further annular gap 13 is the liquid to be irradiated, in the example water, which forms the other electrode due to its electrolytic property.
  • the AC power source 7 is therefore connected to the two metal tubes 8 and 10.
  • This arrangement has the advantage that the radiation can act directly on the water, the water also serves as a coolant, and a separate electrode on the outer surface of the dielectric tube 9 is therefore unnecessary.
  • one of the electrodes mentioned in connection with FIG. 1 can be used (transparent electrically conductive layer, wire mesh) can be applied to the outer surface of the dielectric tube 9.
  • a quartz tube 9 provided with a transparent, electrically conductive inner electrode 14 is arranged coaxially in a metal tube 8.
  • An annular discharge gap 12 extends between the two tubes 8, 9.
  • the metal tube 8 is formed to form an annular cooling gap 15 through which a coolant, e.g. Water that can be passed through is surrounded by an outer tube 10.
  • the AC power source 7 is connected between the inner electrode 14 and the metal tube 8.
  • the substance to be irradiated is guided through the interior 16 of the dielectric tube 9 and, if suitable, simultaneously serves as a coolant.
  • an electrolyte e.g. Use water as an electrode.
  • the individual tubes are spaced or fixed relative to one another by means of spacing elements, such as are used in ozone technology.
  • FIG. 4 The basic structure of such a high-power radiator is shown in FIG. 4. There are those with the same effect as Fig. 1 Provide parts with the same reference numerals.
  • the basic difference between FIGS. 1 and 4 consists in the interposition of a second dielectric 17 between the discharge space 5 and the metallic electrode 1.
  • the metallic electrode 1 is cooled by a cooling medium 2; the radiation leaves the discharge space 5 through the dielectric 4 which is permeable to the radiation and the wire mesh 6 serving as the second electrode.
  • FIG. 5 A practical implementation of such a high-power radiator is illustrated schematically in FIG. 5.
  • a double-walled quartz tube 18, consisting of an inner tube 19 and an outer tube 20, is surrounded on the outside by a wire mesh 6, which serves as the first electrode.
  • the second electrode is designed as a metal layer 21 on the inner wall of the inner tube 19.
  • the AC power source 7 is connected to these two electrodes.
  • the annular space between the inner and outer tube serves as a discharge space 5. This is sealed off from the outer space by melting the filler neck.
  • the radiator is cooled by passing a coolant through the interior of the inner tube 19, a tube 23 being inserted into the inner tube 19 to guide the coolant, leaving an annular space 24 between the inner tube 19 and the tube 23.
  • the direction of flow of the coolant is shown by arrows.
  • the hermetically sealed radiator according to FIG. 5 can also be operated as an internal radiator analogous to FIG. 3 if the cooling is fitted on the outside and the UV-permeable electrode on the inside.
  • the high-power radiators according to FIGS. 4 and 5 can also be modified in a variety of ways without departing from the scope of the invention: 4, the metallic electrode 1 can be dispensed with if the cooling medium is an electrolyte which also serves as an electrode.
  • the wire mesh 6 can also be replaced by an electrically conductive, radiation-permeable layer.
  • the wire mesh 6 can be replaced by such a layer.
  • the metal layer 21 is formed as a layer which is transparent to the radiation, e.g. from indium or tin oxide, the radiation can be applied directly to the cooling medium, e.g. Water. If the coolant itself is an electrolyte, this can take over the function of the electrode 21.
  • each volume element in the discharge gap will emit its radiation in the entire solid angle 4 ⁇ . If one only wants to use the radiation that emerges from the UV-permeable electrode 6, the usable radiation can be practically doubled if the counter electrode 21 is made of a material that reflects UV radiation well (e.g. aluminum). 5, the inner electrode could be aluminum vapor deposition.
  • Thin (0.1-1 ⁇ m) layers of alkali metals are also suitable for the UV-permeable, electrically conductive electrode 6.
  • the alkali metals lithium, potassium, rubidium, cesium in the ultraviolet spectral range have a high transparency with little reflection. Alloys (e.g. 25% sodium / 75% potassium) are also suitable. Since the alkali metals react with air (sometimes very violently), they must be provided with a UV-permeable protective layer (e.g. Mg F2) after application in a vacuum.
  • a UV-permeable protective layer e.g. Mg F2

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Discharge Lamps And Accessories Thereof (AREA)
EP87109674A 1986-07-22 1987-07-06 UV-Strahler Expired - Lifetime EP0254111B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH2924/86A CH670171A5 (enrdf_load_stackoverflow) 1986-07-22 1986-07-22
CH2924/86 1986-07-22

Publications (2)

Publication Number Publication Date
EP0254111A1 EP0254111A1 (de) 1988-01-27
EP0254111B1 true EP0254111B1 (de) 1992-01-02

Family

ID=4244683

Family Applications (1)

Application Number Title Priority Date Filing Date
EP87109674A Expired - Lifetime EP0254111B1 (de) 1986-07-22 1987-07-06 UV-Strahler

Country Status (5)

Country Link
US (1) US4837484A (enrdf_load_stackoverflow)
EP (1) EP0254111B1 (enrdf_load_stackoverflow)
CA (1) CA1288800C (enrdf_load_stackoverflow)
CH (1) CH670171A5 (enrdf_load_stackoverflow)
DE (1) DE3775647D1 (enrdf_load_stackoverflow)

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0363832A1 (de) * 1988-10-10 1990-04-18 Heraeus Noblelight GmbH Hochleistungsstrahler
EP0371304A1 (de) * 1988-12-01 1990-06-06 Heraeus Noblelight GmbH Hochleistungsstrahler
US4945290A (en) * 1987-10-23 1990-07-31 Bbc Brown Boveri Ag High-power radiator
EP0385205A1 (de) * 1989-02-27 1990-09-05 Heraeus Noblelight GmbH Hochleistungsstrahler
EP0389980A1 (de) * 1989-03-29 1990-10-03 Heraeus Noblelight GmbH Hochleistungsstrahler
EP0378826A3 (de) * 1989-01-17 1991-04-17 Heidelberger Druckmaschinen Aktiengesellschaft Einrichtung zum Trocknen von Farben auf Papier
WO1991009984A1 (de) * 1989-12-22 1991-07-11 Asea Brown Boveri Aktiengesellschaft Beschichtungsverfahren
CH678128A5 (en) * 1989-01-26 1991-07-31 Asea Brown Boveri High power ultraviolet lamp with particle density control - heats and cools mercury reservoir connected to discharge space above dielectric covered wire counter electrode
EP0458140A1 (de) * 1990-05-22 1991-11-27 Heraeus Noblelight GmbH Hochleistungsstrahler
EP0459127A1 (de) * 1990-04-24 1991-12-04 Asea Brown Boveri Ag Hochleistungsstrahler mit Stromversorgungseinrichtung
EP0489184A1 (de) * 1990-12-03 1992-06-10 Heraeus Noblelight GmbH Hochleistungsstrahler
EP0515711A1 (de) * 1991-05-27 1992-12-02 Heraeus Noblelight GmbH Hochleistungsstrahler
EP0517929A1 (de) * 1991-06-01 1992-12-16 Heraeus Noblelight GmbH Bestrahlungseinrichtung mit einem Hochleistungsstrahler
EP0510503A3 (en) * 1991-04-25 1993-03-17 Abb Patent Gmbh Process for the treatment of surfaces
EP0547366A1 (de) * 1991-12-09 1993-06-23 Heraeus Noblelight GmbH Hochleistungsstrahler
US5225251A (en) * 1989-12-22 1993-07-06 Asea Brown Boveri Aktiengesellschaft Method for forming layers by UV radiation of aluminum nitride
US5288305A (en) * 1991-03-20 1994-02-22 Asea Brown Boveri Ltd. Method for charging particles
DE4242171A1 (de) * 1992-12-15 1994-06-16 Heraeus Noblelight Gmbh Flüssigkeitsentkeimung
DE4332866A1 (de) * 1993-09-27 1995-03-30 Fraunhofer Ges Forschung Oberflächenbehandlung mit Barrierenentladung
US5432398A (en) * 1992-07-06 1995-07-11 Heraeus Noblelight Gmbh High-power radiator with local field distortion for reliable ignition
EP0782871A2 (de) 1995-11-22 1997-07-09 Heraeus Noblelight GmbH Verfahren und Strahlungsanordnung zur Erzeugung von UV-Strahlen zur Körperbestrahlung sowie Verwendung
US5698039A (en) * 1995-02-04 1997-12-16 Leybold Ag Process for cleaning a substrate using a barrier discharge
US6060828A (en) * 1996-09-11 2000-05-09 Patent-Treuhand-Gesellschaft Fuer Elektrische Gluehlampen Mbh Electric radiation source and irradiation system with this radiation source
US6409842B1 (en) 1999-11-26 2002-06-25 Heraeus Noblelight Gmbh Method for treating surfaces of substrates and apparatus
DE19922566B4 (de) * 1998-12-16 2004-11-04 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren zur Erzeugung von Ultraviolettstrahlung
WO2023222178A1 (de) 2022-05-19 2023-11-23 IOT - Innovative Oberflächentechnologien GmbH Bestrahlungsgerät mit excimerstrahlern als uv-quelle

Families Citing this family (92)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH675504A5 (enrdf_load_stackoverflow) * 1988-01-15 1990-09-28 Asea Brown Boveri
US5118989A (en) * 1989-12-11 1992-06-02 Fusion Systems Corporation Surface discharge radiation source
DE59009300D1 (de) * 1990-10-22 1995-07-27 Heraeus Noblelight Gmbh Hochleistungsstrahler.
DE4041884A1 (de) * 1990-12-27 1992-07-02 Abb Patent Gmbh Verfahren zur behandlung von oberflaechen
US5220236A (en) * 1991-02-01 1993-06-15 Hughes Aircraft Company Geometry enhanced optical output for rf excited fluorescent lights
DE59105798D1 (de) 1991-04-15 1995-07-27 Heraeus Noblelight Gmbh Bestrahlungseinrichtung.
DE4113524A1 (de) * 1991-04-25 1992-10-29 Abb Patent Gmbh Verfahren zur behandlung von oberflaechen
DE69210113T2 (de) * 1991-07-01 1996-11-21 Philips Patentverwaltung Hochdrucksglimmentladungslampe
DE4208376A1 (de) * 1992-03-16 1993-09-23 Asea Brown Boveri Hochleistungsstrahler
DE4235743A1 (de) * 1992-10-23 1994-04-28 Heraeus Noblelight Gmbh Hochleistungsstrahler
DE4238324A1 (de) * 1992-11-13 1994-05-19 Abb Research Ltd Verfahren und Einrichtung zur Entgiftung von schadstoffhaltigen Gasen
DE4242172A1 (de) * 1992-12-15 1994-06-16 Heraeus Noblelight Gmbh Verfahren zur Entkeimung
DE4243208A1 (de) * 1992-12-19 1994-06-23 Heraeus Noblelight Gmbh Verfahren zur Abwasserreinigung
DE4243210A1 (de) * 1992-12-19 1994-06-30 Heraeus Noblelight Gmbh Hochleistungsstrahler
DE69409677T3 (de) * 1993-01-20 2001-09-20 Ushiodenki K.K., Tokio/Tokyo Entladungslampe mit dielektrischer Sperrschicht
DE4302465C1 (de) * 1993-01-29 1994-03-10 Fraunhofer Ges Forschung Vorrichtung zum Erzeugen einer dielektrisch behinderten Entladung
DE4305704B4 (de) * 1993-02-25 2006-02-16 Matter + Siegmann Ag Verfahren und Vorrichtung zur Untersuchung von in einem Gas befindlichen Partikeln
DE4314510A1 (de) * 1993-05-03 1994-11-10 Abb Research Ltd Verfahren zur Erzeugung von Ozon
TW348262B (en) * 1993-09-08 1998-12-21 Ushio Electric Inc Dielectric barrier discharge lamp
DE4342643C2 (de) * 1993-09-13 1999-04-29 Fraunhofer Ges Forschung Erwärmungsarme Fixierung mit Barrierenentladung in Tintenstrahldruckern
TW260806B (enrdf_load_stackoverflow) * 1993-11-26 1995-10-21 Ushio Electric Inc
DE4415242A1 (de) * 1994-04-30 1995-11-02 Wissenschaftlich Tech Optikzen Quasi-kontinuierlich emittierender UV-Laser, insbesondere Excimer-Laser
DE4430300C1 (de) * 1994-08-26 1995-12-21 Abb Research Ltd Excimerstrahler und dessen Verwendung
JP3025414B2 (ja) * 1994-09-20 2000-03-27 ウシオ電機株式会社 誘電体バリア放電ランプ装置
JP2775699B2 (ja) * 1994-09-20 1998-07-16 ウシオ電機株式会社 誘電体バリア放電ランプ
JP3082638B2 (ja) * 1995-10-02 2000-08-28 ウシオ電機株式会社 誘電体バリア放電ランプ
DE19627119A1 (de) * 1996-07-05 1998-01-15 Hassia Verpackung Ag Vorrichtung zum Entkeimen und/oder Sterilisieren von Packstoffbahnen
DE19628133A1 (de) * 1996-07-12 1998-01-15 Heraeus Noblelight Gmbh Verfahren zum Desinfizieren und Reinigen von Kleinteilen und dafür geeignete Vorrichtung
US5843374A (en) * 1996-10-11 1998-12-01 Tetra Laval Holdings & Finance, Sa Method and apparatus for sterilizing packaging
US6888041B1 (en) 1997-02-12 2005-05-03 Quark Systems Co., Ltd. Decomposition apparatus of organic compound, decomposition method thereof, excimer UV lamp and excimer emission apparatus
US6194821B1 (en) * 1997-02-12 2001-02-27 Quark Systems Co., Ltd. Decomposition apparatus of organic compound, decomposition method thereof, excimer UV lamp and excimer emission apparatus
DE19708148A1 (de) * 1997-02-28 1998-09-03 Umex Ges Fuer Umweltberatung U Vorrichtung zur UV-Bestrahlung strömender Flüssigkeiten und Gase mit elektrodenloser Entladungslampe
DE19708149A1 (de) * 1997-02-28 1998-09-03 Umex Ges Fuer Umweltberatung U Vorrichtung zur UV-Bestrahlung von Flüssigkeiten und Gasen
US5945790A (en) * 1997-11-17 1999-08-31 Schaefer; Raymond B. Surface discharge lamp
US6015759A (en) * 1997-12-08 2000-01-18 Quester Technology, Inc. Surface modification of semiconductors using electromagnetic radiation
CA2224699A1 (en) * 1997-12-12 1999-06-12 Resonance Ltd. Hollow electrode electrodeless lamp
US6049086A (en) * 1998-02-12 2000-04-11 Quester Technology, Inc. Large area silent discharge excitation radiator
JP3346291B2 (ja) 1998-07-31 2002-11-18 ウシオ電機株式会社 誘電体バリア放電ランプ、および照射装置
JP3264898B2 (ja) * 1999-02-25 2002-03-11 大村 智 液状、泥状物の殺菌用紫外線照射装置
FR2792774B1 (fr) 1999-04-26 2003-08-01 Joint Industrial Processors For Electronics Procede et dispositif de traitement d'un materiau par rayonnement electromagnetique et sous atmosphere controlee
DE19920693C1 (de) * 1999-05-05 2001-04-26 Inst Oberflaechenmodifizierung Offener UV/VUV-Excimerstrahler und Verfahren zur Oberflächenmodifizierung von Polymeren
US6133694A (en) * 1999-05-07 2000-10-17 Fusion Uv Systems, Inc. High-pressure lamp bulb having fill containing multiple excimer combinations
KR20010106114A (ko) * 1999-10-07 2001-11-29 다나카 아키히로 자외선 조사장치
IES20000339A2 (en) * 2000-05-05 2001-11-14 G A Apollo Ltd Apparatus for irradiating material
EP1337281B1 (de) * 2000-11-29 2006-03-22 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren und vorrichtung zur oberflächenbehandlung von objekten
US20020067130A1 (en) * 2000-12-05 2002-06-06 Zoran Falkenstein Flat-panel, large-area, dielectric barrier discharge-driven V(UV) light source
US6759664B2 (en) * 2000-12-20 2004-07-06 Alcatel Ultraviolet curing system and bulb
US7381976B2 (en) 2001-03-13 2008-06-03 Triton Thalassic Technologies, Inc. Monochromatic fluid treatment systems
DE10112900C1 (de) * 2001-03-15 2002-07-11 Heraeus Noblelight Gmbh Excimer-Strahler, insbesondere UV-Strahler
US6597003B2 (en) * 2001-07-12 2003-07-22 Axcelis Technologies, Inc. Tunable radiation source providing a VUV wavelength planar illumination pattern for processing semiconductor wafers
US6646256B2 (en) 2001-12-18 2003-11-11 Agilent Technologies, Inc. Atmospheric pressure photoionization source in mass spectrometry
US6559607B1 (en) 2002-01-14 2003-05-06 Fusion Uv Systems, Inc. Microwave-powered ultraviolet rotating lamp, and process of use thereof
US20030157000A1 (en) * 2002-02-15 2003-08-21 Kimberly-Clark Worldwide, Inc. Fluidized bed activated by excimer plasma and materials produced therefrom
WO2003093526A2 (de) * 2002-04-29 2003-11-13 Fachhochschule Hildesheim/Holzmin Den/Göttingen Verfahren und vorrichtung zur behandlung der äusseren oberfläche eines metalldrahts, insbesondere als beschichtungsvorbehandlung .
DE10235036A1 (de) * 2002-07-31 2004-02-26 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. UV-Lichtquelle
DE10260579A1 (de) * 2002-12-21 2004-07-08 Gesellschaft zur Förderung der Spektrochemie und angewandten Spektroskopie e.V. Verfahren zur Gasionisierung eines Analyten in einem Ionenbeweglichkeitsspektrometer sowie Ionenbeweglichkeitsspektrometer
RU2236060C1 (ru) * 2002-12-25 2004-09-10 Закрытое акционерное общество Научно-производственный центр "СОЛИТОН-НТТ" Газоразрядный источник ультрафиолетового излучения
US7268355B2 (en) 2002-12-27 2007-09-11 Franek Olstowski Excimer UV fluorescence detection
US6971939B2 (en) * 2003-05-29 2005-12-06 Ushio America, Inc. Non-oxidizing electrode arrangement for excimer lamps
DE102004018887B4 (de) * 2004-04-15 2009-04-16 Heraeus Quarzglas Gmbh & Co. Kg Verfahren für die Herstellung eines Bauteils aus Quarzglas zum Einsatz mit einer UV-Strahlenquelle und Verfahren für die Eignungsdiagnose eines derartigen Quarzglas-Bauteils
DE102004020398A1 (de) * 2004-04-23 2005-11-10 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Dielektrische Barriere-Entladungslampe mit Außenelektroden und Beleuchtungssystem mit dieser Lampe
DE102004022859B4 (de) * 2004-05-06 2006-04-13 Kalle Gmbh Künstliche Nahrungsmittelhülle sowie Verfahren zu deren Herstellung
US7196473B2 (en) * 2004-05-12 2007-03-27 General Electric Company Dielectric barrier discharge lamp
US7687997B2 (en) * 2004-07-09 2010-03-30 Koninklijke Philips Electronics N.V. UVC/VUV dielectric barrier discharge lamp with reflector
DE102005007370B3 (de) * 2005-02-17 2006-09-21 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Kompakte UV-Lichtquelle
RU2294034C1 (ru) * 2005-10-26 2007-02-20 Закрытое акционерное общество Научно-производственный центр "СОЛИТОН-НТТ" (ЗАО НПЦ "СОЛИТОН-НТТ") Газоразрядный источник ультрафиолетового излучения
WO2007071074A1 (en) * 2005-12-21 2007-06-28 Trojan Technologies Inc. Excimer radiation lamp assembly, and source module and fluid treatment system containing same
WO2007071043A2 (en) * 2005-12-21 2007-06-28 Trojan Technologies Inc. Excimer radiation lamp assembly, and source module and fluid treatment system containing same
US20090274576A1 (en) * 2006-01-18 2009-11-05 Barry Ressler System and method for container sterilization using UV light source
JP4971665B2 (ja) * 2006-03-31 2012-07-11 公立大学法人名古屋市立大学 皮膚疾患治療用光線治療器
ATE457295T1 (de) * 2006-07-13 2010-02-15 Koninkl Philips Electronics Nv Flüssigkeitsverarbeitungssystem mit einem strahlungsquellenmodul und einem kühlmittel
DE102007030915A1 (de) * 2007-07-03 2009-01-22 Cinogy Gmbh Vorrichtung zur Behandlung von Oberflächen mit einem mittels einer Elektrode über ein Feststoff-Dielektrikum durch eine dielektrische behinderte Gasentladung erzeugten Plasma
DE112007003669A5 (de) * 2007-11-26 2011-01-13 Osram Gesellschaft mit beschränkter Haftung Dielektrische Barrieren-Entladungslampe in Doppelrohrkonfiguration
EP2297377B1 (en) * 2008-05-30 2017-12-27 Colorado State University Research Foundation Plasma-based chemical source device and method of use thereof
US8125333B2 (en) * 2008-06-04 2012-02-28 Triton Thalassic Technologies, Inc. Methods, systems and apparatus for monochromatic UV light sterilization
GB2474032B (en) * 2009-10-01 2016-07-27 Heraeus Noblelight Gmbh Flash lamp or gas discharge lamp with integrated reflector
KR101795827B1 (ko) 2010-06-04 2017-11-08 액세스 비지니스 그룹 인터내셔날 엘엘씨 무선 전력 공급식 유전체 배리어 방전 램프, 및 무선 전력 공급식 유체 처리 시스템용 베이스 스테이션
DE102010043208A1 (de) * 2010-11-02 2012-05-03 Osram Ag Vorrichtung zum Bestrahlen von Oberflächen
DE102011120412B4 (de) 2011-12-08 2018-03-08 Heraeus Quarzglas Gmbh & Co. Kg Excimerlampe mit Emissionsfenster aus Quarzglas mit einem bestimmten Gehalt an Hydroxylgruppen, Wasserstoff und Chlor
TWI483285B (zh) 2012-11-05 2015-05-01 Ind Tech Res Inst 介電質屏障放電燈及其製作方法
US9269544B2 (en) 2013-02-11 2016-02-23 Colorado State University Research Foundation System and method for treatment of biofilms
US9117636B2 (en) 2013-02-11 2015-08-25 Colorado State University Research Foundation Plasma catalyst chemical reaction apparatus
US9532826B2 (en) 2013-03-06 2017-01-03 Covidien Lp System and method for sinus surgery
US9555145B2 (en) 2013-03-13 2017-01-31 Covidien Lp System and method for biofilm remediation
US10237962B2 (en) 2014-02-26 2019-03-19 Covidien Lp Variable frequency excitation plasma device for thermal and non-thermal tissue effects
US9722550B2 (en) 2014-04-22 2017-08-01 Hoon Ahn Power amplifying radiator (PAR)
DE102014207688A1 (de) * 2014-04-24 2015-10-29 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Vorrichtung zur photochemischen Behandlung von verunreinigtem Wasser
US10524849B2 (en) 2016-08-02 2020-01-07 Covidien Lp System and method for catheter-based plasma coagulation
KR102116867B1 (ko) 2018-05-08 2020-05-29 주식회사 원익큐엔씨 임플란트 표면개질 처리장치
JP7132540B2 (ja) * 2018-06-13 2022-09-07 ウシオ電機株式会社 エキシマランプ
DE102018214715B4 (de) * 2018-08-30 2020-07-09 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren zum Abbau von Schadstoffen in Wasser
DE102021108009B4 (de) 2021-03-30 2023-02-09 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung eingetragener Verein Multi-Wellenlängen UV-Strahlungsquelle sowie UV-Sonde, insbesondere für die Fluoreszenzanalyse

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2769117A (en) * 1952-07-01 1956-10-30 Pirillo Santo Ozone producing device
US2943223A (en) * 1958-05-02 1960-06-28 Union Carbide Corp Silent electric discharge light source
NL6913956A (enrdf_load_stackoverflow) * 1968-09-19 1970-03-23
DE6753632U (de) * 1968-09-19 1969-05-29 Philips Nv Niederdruckentladungslampe mit einer den entladungsraum unschliessenden wand, die u.a. aus einen traeger besteht.
DE2222454A1 (de) * 1972-05-08 1973-11-22 Patra Patent Treuhand Gekuehlte fuesse fuer hochleistungsentladungslampe
US3763806A (en) * 1972-10-16 1973-10-09 C & W Sewing Machine Separately retractable paired needles
FR2406606A1 (fr) * 1977-10-18 1979-05-18 Degremont Electrode pour appareil generateur d'ozone
US4179616A (en) * 1978-02-21 1979-12-18 Thetford Corporation Apparatus for sanitizing liquids with ultra-violet radiation and ozone
CH631950A5 (de) * 1978-06-07 1982-09-15 Bbc Brown Boveri & Cie Vorrichtung zum entkeimen von fluessigkeiten, insbesondere wasser, mittels ultravioletter strahlen.
US4266166A (en) * 1979-11-09 1981-05-05 Gte Laboratories Incorporated Compact fluorescent light source having metallized electrodes
JPS5834560A (ja) * 1981-08-21 1983-03-01 周 成祥 放電灯ディスプレイ装置
US4427921A (en) * 1981-10-01 1984-01-24 Gte Laboratories Inc. Electrodeless ultraviolet light source
US4492898A (en) * 1982-07-26 1985-01-08 Gte Laboratories Incorporated Mercury-free discharge lamp

Cited By (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4945290A (en) * 1987-10-23 1990-07-31 Bbc Brown Boveri Ag High-power radiator
US5006758A (en) * 1988-10-10 1991-04-09 Asea Brown Boveri Ltd. High-power radiator
EP0363832A1 (de) * 1988-10-10 1990-04-18 Heraeus Noblelight GmbH Hochleistungsstrahler
CH676168A5 (enrdf_load_stackoverflow) * 1988-10-10 1990-12-14 Asea Brown Boveri
EP0371304A1 (de) * 1988-12-01 1990-06-06 Heraeus Noblelight GmbH Hochleistungsstrahler
JPH02199767A (ja) * 1988-12-01 1990-08-08 Asea Brown Boveri Ag 高出力ビーム発生器
CH677846A5 (enrdf_load_stackoverflow) * 1988-12-01 1991-06-28 Asea Brown Boveri
EP0378826A3 (de) * 1989-01-17 1991-04-17 Heidelberger Druckmaschinen Aktiengesellschaft Einrichtung zum Trocknen von Farben auf Papier
CH678128A5 (en) * 1989-01-26 1991-07-31 Asea Brown Boveri High power ultraviolet lamp with particle density control - heats and cools mercury reservoir connected to discharge space above dielectric covered wire counter electrode
CH677292A5 (enrdf_load_stackoverflow) * 1989-02-27 1991-04-30 Asea Brown Boveri
US5013959A (en) * 1989-02-27 1991-05-07 Asea Brown Boveri Limited High-power radiator
EP0385205A1 (de) * 1989-02-27 1990-09-05 Heraeus Noblelight GmbH Hochleistungsstrahler
EP0389980A1 (de) * 1989-03-29 1990-10-03 Heraeus Noblelight GmbH Hochleistungsstrahler
CH677557A5 (enrdf_load_stackoverflow) * 1989-03-29 1991-05-31 Asea Brown Boveri
US5049777A (en) * 1989-03-29 1991-09-17 Asea Brown Boveri Limited High-power radiator
WO1991009984A1 (de) * 1989-12-22 1991-07-11 Asea Brown Boveri Aktiengesellschaft Beschichtungsverfahren
US5225251A (en) * 1989-12-22 1993-07-06 Asea Brown Boveri Aktiengesellschaft Method for forming layers by UV radiation of aluminum nitride
CH680246A5 (enrdf_load_stackoverflow) * 1990-04-24 1992-07-15 Asea Brown Boveri
EP0459127A1 (de) * 1990-04-24 1991-12-04 Asea Brown Boveri Ag Hochleistungsstrahler mit Stromversorgungseinrichtung
US5214344A (en) * 1990-05-22 1993-05-25 Asea Brown Boveri Ltd. High-power radiator
CH680099A5 (enrdf_load_stackoverflow) * 1990-05-22 1992-06-15 Asea Brown Boveri
EP0458140A1 (de) * 1990-05-22 1991-11-27 Heraeus Noblelight GmbH Hochleistungsstrahler
EP0489184A1 (de) * 1990-12-03 1992-06-10 Heraeus Noblelight GmbH Hochleistungsstrahler
US5198717A (en) * 1990-12-03 1993-03-30 Asea Brown Boveri Ltd. High-power radiator
US5288305A (en) * 1991-03-20 1994-02-22 Asea Brown Boveri Ltd. Method for charging particles
EP0510503A3 (en) * 1991-04-25 1993-03-17 Abb Patent Gmbh Process for the treatment of surfaces
EP0515711A1 (de) * 1991-05-27 1992-12-02 Heraeus Noblelight GmbH Hochleistungsstrahler
EP0517929A1 (de) * 1991-06-01 1992-12-16 Heraeus Noblelight GmbH Bestrahlungseinrichtung mit einem Hochleistungsstrahler
EP0547366A1 (de) * 1991-12-09 1993-06-23 Heraeus Noblelight GmbH Hochleistungsstrahler
US5386170A (en) * 1991-12-09 1995-01-31 Heraeus Noblelight Gmbh High-power radiator
US5432398A (en) * 1992-07-06 1995-07-11 Heraeus Noblelight Gmbh High-power radiator with local field distortion for reliable ignition
DE4242171A1 (de) * 1992-12-15 1994-06-16 Heraeus Noblelight Gmbh Flüssigkeitsentkeimung
DE4332866A1 (de) * 1993-09-27 1995-03-30 Fraunhofer Ges Forschung Oberflächenbehandlung mit Barrierenentladung
US5698039A (en) * 1995-02-04 1997-12-16 Leybold Ag Process for cleaning a substrate using a barrier discharge
EP0782871A2 (de) 1995-11-22 1997-07-09 Heraeus Noblelight GmbH Verfahren und Strahlungsanordnung zur Erzeugung von UV-Strahlen zur Körperbestrahlung sowie Verwendung
US5955840A (en) * 1995-11-22 1999-09-21 Heraeus Noblelight Gmbh Method and apparatus to generate ultraviolet (UV) radiation, specifically for irradiation of the human body
US6060828A (en) * 1996-09-11 2000-05-09 Patent-Treuhand-Gesellschaft Fuer Elektrische Gluehlampen Mbh Electric radiation source and irradiation system with this radiation source
DE19922566B4 (de) * 1998-12-16 2004-11-04 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren zur Erzeugung von Ultraviolettstrahlung
US6409842B1 (en) 1999-11-26 2002-06-25 Heraeus Noblelight Gmbh Method for treating surfaces of substrates and apparatus
US6588122B2 (en) 1999-11-26 2003-07-08 Heraeus Noblelight Gmbh Method for treating surfaces of substrates and apparatus
WO2023222178A1 (de) 2022-05-19 2023-11-23 IOT - Innovative Oberflächentechnologien GmbH Bestrahlungsgerät mit excimerstrahlern als uv-quelle

Also Published As

Publication number Publication date
US4837484A (en) 1989-06-06
EP0254111A1 (de) 1988-01-27
CH670171A5 (enrdf_load_stackoverflow) 1989-05-12
DE3775647D1 (de) 1992-02-13
CA1288800C (en) 1991-09-10

Similar Documents

Publication Publication Date Title
EP0254111B1 (de) UV-Strahler
EP0312732B1 (de) Hochleistungsstrahler
EP0324953B1 (de) Hochleistungsstrahler
EP0578953B1 (de) Hochleistungsstrahler
EP0458140B1 (de) Hochleistungsstrahler
DE4113241C2 (de) Gepulster Gasentladungslaser
EP0371304B1 (de) Hochleistungsstrahler
EP0389980B1 (de) Hochleistungsstrahler
DE4140497C2 (de) Hochleistungsstrahler
DE10209191A1 (de) Vorrichtung zur Erzeugung von UV-Strahlung
CH676168A5 (enrdf_load_stackoverflow)
EP0517929B1 (de) Bestrahlungseinrichtung mit einem Hochleistungsstrahler
DE19543342A1 (de) Verfahren und Strahlungsanordnung zur Erzeugung von UV-Strahlen zur Körperbestrahlung sowie Verwendung
EP2128888A2 (de) Quecksilberfreie Metallhalogenid-Hochdruckentladungslampe
EP0489184A1 (de) Hochleistungsstrahler
DE4302465C1 (de) Vorrichtung zum Erzeugen einer dielektrisch behinderten Entladung
DE4235743A1 (de) Hochleistungsstrahler
DE4036122A1 (de) Koronaentladungs-lichtquellenzelle
DE4022279A1 (de) Bestrahlungseinrichtung
DE4208376A1 (de) Hochleistungsstrahler
DE2461568A1 (de) Dampfentladungslampe
DE3240757A1 (de) Optische anzeigevorrichtung
EP0334355B1 (de) Wandstabilisierte Hochdruck-Entladungslampe
DE19613357A1 (de) Gepulste Lichtquelle
WO1994013330A1 (de) Flüssigkeitsentkeimung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): BE CH DE FR GB IT LI NL

17P Request for examination filed

Effective date: 19880627

17Q First examination report despatched

Effective date: 19890905

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE CH DE FR GB IT LI NL

ITF It: translation for a ep patent filed
REF Corresponds to:

Ref document number: 3775647

Country of ref document: DE

Date of ref document: 19920213

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
ET Fr: translation filed
ITTA It: last paid annual fee
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: CH

Ref legal event code: PUE

Owner name: HERAEUS NOBLELIGHT GMBH

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

ITPR It: changes in ownership of a european patent

Owner name: CESSIONE;HERAEUS NOBLELIGHT GMBH

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

NLS Nl: assignments of ep-patents

Owner name: HERAEUS NOBLELIGHT GMBH TE KLEINOSTHEIM, BONDSREPU

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20060714

Year of fee payment: 20

Ref country code: FR

Payment date: 20060714

Year of fee payment: 20

Ref country code: DE

Payment date: 20060714

Year of fee payment: 20

Ref country code: CH

Payment date: 20060714

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20060720

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20060731

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20060822

Year of fee payment: 20

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20070706

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

NLV7 Nl: ceased due to reaching the maximum lifetime of a patent

Effective date: 20070706

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20070705

BE20 Be: patent expired

Owner name: *HERAEUS NOBLELIGHT G.M.B.H.

Effective date: 20070706