EP0312732B1 - Hochleistungsstrahler - Google Patents

Hochleistungsstrahler Download PDF

Info

Publication number
EP0312732B1
EP0312732B1 EP88113593A EP88113593A EP0312732B1 EP 0312732 B1 EP0312732 B1 EP 0312732B1 EP 88113593 A EP88113593 A EP 88113593A EP 88113593 A EP88113593 A EP 88113593A EP 0312732 B1 EP0312732 B1 EP 0312732B1
Authority
EP
European Patent Office
Prior art keywords
electrodes
power radiator
radiator according
gas
discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP88113593A
Other languages
English (en)
French (fr)
Other versions
EP0312732A1 (de
Inventor
Baldur Dr. Eliasson
Ulrich Dr. Kogelschatz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Heraeus Noblelight GmbH
Original Assignee
BBC Brown Boveri AG Switzerland
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BBC Brown Boveri AG Switzerland filed Critical BBC Brown Boveri AG Switzerland
Publication of EP0312732A1 publication Critical patent/EP0312732A1/de
Application granted granted Critical
Publication of EP0312732B1 publication Critical patent/EP0312732B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J65/00Lamps without any electrode inside the vessel; Lamps with at least one main electrode outside the vessel
    • H01J65/04Lamps in which a gas filling is excited to luminesce by an external electromagnetic field or by external corpuscular radiation, e.g. for indicating plasma display panels
    • H01J65/042Lamps in which a gas filling is excited to luminesce by an external electromagnetic field or by external corpuscular radiation, e.g. for indicating plasma display panels by an external electromagnetic field
    • H01J65/046Lamps in which a gas filling is excited to luminesce by an external electromagnetic field or by external corpuscular radiation, e.g. for indicating plasma display panels by an external electromagnetic field the field being produced by using capacitive means around the vessel

Definitions

  • the invention relates to a high-power radiator, in particular for ultraviolet light, with a discharge space filled with filling gas between two dielectric walls, which walls are provided with first and second electrodes on their surfaces facing away from the discharge space or the electrodes are embedded in the walls with one AC power source connected to the first and second electrodes for feeding the discharge.
  • the invention relates to a state of the art, such as that from G.A.'s publication "Vacuum-ultra-violet lamps with a barrier discharge in inert gases".
  • high-performance lamps in particular high-performance UV lamps, e.g. Disinfection, curing of paints and synthetic resins, flue gas cleaning, destruction and synthesis of special chemical compounds.
  • the wavelength of the emitter will have to be matched very precisely to the intended process.
  • the best-known UV lamp is probably the mercury lamp, which emits UV radiation with wavelengths of 254 nm and 185 nm with high efficiency.
  • a low-pressure glow discharge burns in a noble gas-mercury vapor mixture in these lamps.
  • This radiator consists of a tube made of dielectric material with a rectangular cross section. Two opposite tube walls are provided with flat electrodes in the form of metal foils, which are connected to a pulse generator. The tube is closed at both ends and filled with an inert gas (argon, krypton or xenon). Such filling gases form so-called excimers when an electrical discharge is ignited under certain conditions.
  • An excimer is a molecule that is formed from an excited atom and an atom in the ground state.
  • the UV light generated in a first embodiment reaches the outside through an end window in the dielectric tube.
  • the broad sides of the tube are provided with metal foils which form the electrodes.
  • the tube is provided with recesses, over which special windows are glued, through which the radiation can escape.
  • the efficiency that can be achieved with the known radiator is of the order of 1%, which is far below the theoretical value of around 50% because the filling gas heats up inadmissibly.
  • Another inadequacy of the known radiator can be seen in the fact that its light exit window has only a comparatively small area for reasons of stability.
  • This high-performance radiator can be operated with high electrical power densities and high efficiency. Its geometry is widely adaptable to the process in which it is used. In addition to large, flat spotlights, cylindrical ones that radiate inwards or outwards are also possible.
  • the discharges can be operated at high pressure (0.1 - 10 bar). With this design, electrical power densities of 1 - 50 kW / m 2 can be achieved. Since the electron energy in the discharge can be largely optimized, the efficiency of such emitters is very high, even if one excites resonance lines of suitable atoms.
  • the wavelength of the radiation can be set by the type of fill gas, e.g.
  • mercury 185 nm, 254 nm
  • nitrogen 337-415 nm
  • selenium (196, 204, 206 nm)
  • xenon 119, 130, 147 nm
  • Krypton 124 nm
  • the advantage of these emitters is the areal radiation of large radiation outputs with high efficiency. Almost all of the radiation is concentrated in one or a few wavelength ranges. It is important in all cases that the radiation can escape through one of the electrodes.
  • This problem can be solved with transparent, electrically conductive layers or else by using a fine-mesh wire network or applied conductor tracks as electrodes, which on the one hand ensure the current supply to the dielectric, but on the other hand are largely transparent to the radiation.
  • a transparent electrolyte, for example H 2 O can also be used as an additional electrode, which is particularly advantageous for the irradiation of water / wastewater, since in this way the radiation generated reaches the liquid to be irradiated and this liquid simultaneously serves as a coolant .
  • the invention has for its object to provide a high-power radiator that can be operated with high electrical power densities, has a maximum light exit area and also enables optimal use of the radiation.
  • this object is achieved in that, in the case of a high-power radiator of the generic type, both the dielectrics and the electrodes are transparent to the said radiation.
  • the gas emitted and emitted by a silent discharge fills the gap of up to 1 cm between two dielectric walls (e.g. made of quartz).
  • the UV radiation can leave the discharge gap on both sides, which doubles the available radiation energy and thus also the efficiency.
  • the electrodes can be designed as a relatively wide-meshed grid.
  • the grid wires can be embedded in quartz. However, this should be done in such a way that the UV permeability of the is not significantly impaired.
  • a further variation of the design would be the application of an electrically conductive layers which are permeable to UV instead of the grids.
  • the radiator 1 consists essentially of two quartz or sapphire plates 1, 2, which are separated from one another by spacers 3 made of insulating material, and delimit a discharge space 4 with a typical gap width between 1 and 10 mm.
  • the outer surfaces of the quartz plates 1, 2 are provided with a relatively wide-mesh wire mesh 5, 6, which forms the first and second electrodes of the radiator.
  • the radiator is electrically supplied by an alternating current source 7 connected to these electrodes.
  • AC source 7 can generally be used as they have long been used in connection with ozone generators with the frequencies between 50 Hz and a few kHz (kilohertz).
  • the discharge space 5 is laterally closed in the usual way, was evacuated before closing and was filled with an inert gas or a substance that forms excimers under discharge conditions, e.g. Mercury, noble gas, noble gas-metal vapor mixture, noble gas-halogen mixture, filled, possibly using an additional noble gas (Ar, He, Ne) as a buffer gas.
  • an inert gas or a substance that forms excimers under discharge conditions e.g. Mercury, noble gas, noble gas-metal vapor mixture, noble gas-halogen mixture, filled, possibly using an additional noble gas (Ar, He, Ne) as a buffer gas.
  • the electron energy distribution can be optimally adjusted by varying the gap width (up to 10 mm) of the discharge space, pressure (up to 10 bar) and / or temperature.
  • plate materials also come, e.g. Magnesium fluoride and calcium fluoride in question.
  • the plate material is glass for spotlights that are supposed to deliver radiation in the visible range of light.
  • a wire mesh there can also be a transparent, electrically conductive layer, the layer made of indium or tin oxide for visible light, a 5 - 10 nm (50 - 100 angstroms) thick gold layer for visible and UV light, and especially one in UV thin layer of alkali metals can be used.
  • a first quartz tube and a second quartz tube 9 distanced therefrom are arranged coaxially one inside the other and are spaced apart by means of annular spacer elements 10 made of insulating material.
  • the annular gap 11 between the tubes 8 and 9 forms the discharge space.
  • the first electrode is a thin UV-permeable electrically conductive layer 12, e.g. made of indium or tin oxide or alkali metal or gold, provided on the outer wall of the outer quartz tube 8 and a layer 13 of the same type as a second electrode on the inner wall of the inner glass tube 9.
  • the discharge space is filled with a substance or mixture of substances according to the table above.
  • the emitters described are well suited as high-yield photochemical reactors.
  • the reacting medium is guided past the front surface and the rear surface of the radiator.
  • the medium is passed through both inside and outside.
  • the flat radiators can be hung, for example, as "UV panels” in the chimney of chemical cleaners and other industrial companies to destroy residues of solvents (e.g. chlorinated hydrocarbons).
  • solvents e.g. chlorinated hydrocarbons
  • omnidirectional radiators can be combined into larger batteries and used for similar purposes.
  • Improvements can also be achieved in the mirroring of the UV emitters emitting on one side according to the patent application mentioned at the beginning.
  • the above-mentioned three times through the absorbent quartz walls can be avoided by attaching the UV reflective coating (e.g. aluminum) on the inside and then covering it with a thin layer of magnesium fluoride (MgF 2 ). In this way, the radiation would only have to pass one quartz wall at a time.
  • the UV reflective coating e.g. aluminum
  • MgF 2 magnesium fluoride

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Discharge Lamp (AREA)
  • Discharge Lamps And Accessories Thereof (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Description

  • Die Erfindung bezieht sich auf einen Hochleistungsstrahler, insbesondere für ultraviolettes Licht, mit einem mit Füllgas gefülltem Entladungsraum zwischen zwei dielektrischen Wänden, welche Wände auf ihren dem Entladungsraum abgewandten Oberflächen mit ersten und zweiten Elektroden versehen sind oder die Elektroden in die Wände eingebettet sind, mit einer an die ersten und zweiten Elektroden angeschlossenen Wechselstromquelle zu Speisung der Entladung.
  • Die Erfindung nimmt dabei Bezug auf einen Stand der Technik, wie er beispielsweise aus der Veröffentlichung "Vacuum-ultra-violet lamps with a barrier discharge in inert gases" von G.A. Volkova, N.N. Kirillova, E.N. Pavlovskaya and A.V. Yakovleva in der SU-Zeitschrift Zhurnal Prikladnoi Spektroskopii 41 - (1984) No. 4, 691-695, veröffentlicht in einer englischsprachigen Uebersetzung der Plenum Publishing Corporation 1985, Dok. Nr. 0021-9037/84/4104-1194 $ 08.50, S. 1194 ff., ergibt.
  • Technologischer Hintergrund und Stand der Technik Für Hochleistungsstrahler, insbesondere Hochleistungs-UV-Strahler, gibt es diverse Anwendungen wie z.B. Entkeimung, Aushärten von Lacken und Kunstharzen, Rauchgasreinigung, Zerstörung und Synthese spezieller chemischer Verbindungen. Im allgemeinen wird die Wellenlänge des Strahlers sehr genau auf den beabsichtigten Prozess abgestimmt sein müssen. Der bekannteste UV-Strahler ist vermutlich der Quecksilberstrahler, der UV-Strahlung der Wellenlänge 254 nm und 185 nm mit hohem Wirkungsgrad abstrahlt. In diesen Strahlern brennt eine NiederdruckGlimmentladung in einem Edelgas-Quecksilberdampf-Gemisch.
  • In der eingangs genannten Veröffentlichung "Vakuum ultra-violet lamps ..." wird eine auf dem Prinzip der stillen elektrischen Entladung basierende UV-Strahlenquelle beschrieben. Dieser Strahler besteht aus einem Rohr aus dielektrischem Material mit Rechteckquerschnitt. Zwei gegenüberliegende Rohrwände sind mit flächenhaften Elektroden in Form von Metallfolien versehen, die an einen Impulsgenerator angeschlossen sind. Das Rohr ist an beiden Enden verschlossen und mit einem Edelgas (Argon, Krypton oder Xenon) gefüllt. Derartige Füllgase bilden beim Zünden einer elektrischen Entladung unter bestimmten Bedingungen sogenannte Excimere. Ein Excimer ist ein Molekül, das aus einem angeregten Atom und einem Atom im Grundzustand gebildet wird.
    Figure imgb0001
  • Es ist bekannt, dass die Umwandlung von Elektronenenergie in UV-Strahlung mit diesen Excimeren sehr effizient erfolgt. Bis zu 50 % der Elektronenenergie kann in UV-Strahlung umgewandelt werden, wobei die angeregten Komplexe nur einige Nanosekunden leben und beim Zerfall ihre Bindungsenergie in Form von UV-Strahlung abgehen. Wellenlängenbereiche:
    Figure imgb0002
  • Bei dem bekannten Strahler gelangt das erzeugte UV-Licht bei einer ersten Ausführung über ein stirnseitiges Fenster im dielektrischen Rohr in den Aussenraum. Bei einer zweiten Ausführungsform sind die Breitseiten des Rohres mit Metallfolien versehen, welche die Elektroden bilden. An den Schmalseiten ist das Rohr mit Ausnehmungen versehen, über welche spezielle Fenster geklebt sind, durch welche die Strahlung austreten kann.
  • Der mit dem bekannten Strahler erreichbare Wirkungsgrad liegt in der Grössenordnung von 1 %, also weit unter dem theoretischen Wert von um 50 %, weil sich das Füllgas unzulässig aufheizt. Eine weitere Unzulänglichkeit des bekannten Strahlers ist darin zu sehen, dass sein Lichtaustrittsfenster aus Stabilitätsgründen nur eine vergleichsweise kleine Fläche aufweist.
  • In der EP-A-0 254 111 (= CH-A-670.171 = US-A-4.837 484) ist ein Hochleistungsstrahler vorgeschlagen worden, der einen wesentlich grösseren Wirkungsgrad aufweist, mit höheren elektrischen Leistungsdichten betrieben werden kann und dessen Lichtaustrittsfläche den genannten Beschränkungen nicht unterliegt. Dazu ist bei dem gattungsgemässen Hochleistungsstrahler sowohl das Dielektrikum als auch die ersten Elektroden für die besagte Strahlung durchlässig sind und zumindest die zweiten Elektroden gekühlt sind.
  • Dieser Hochleistungsstrahler kann mit grossen elektrischen Leistungsdichten und hohem Wirkungsgrad betrieben werden. Seine Geometrie ist in weiten Grenzen dem Prozess anpassbar, in welchem er eingesetzt wird. So sind neben grossflächigen ebenen Strahlern auch zylindrische, die nach innen oder nach aussen strahlen, möglich. Die Entladungen können bei hohem Druck (0.1 - 10 bar) betrieben werden. Mit dieser Bauweise lassen sich elektrische Leistungsdichten von 1 - 50 kW/m2 realisieren. Da die Elektronenenergie in der Entladung weitgehend optimiert werden kann, liegt der Wirkungsgrad solcher Strahler sehr hoch, auch dann, wenn man Resonanzlinien geeigneter Atome anregt. Die Wellenlänge der Strahlung lässt sich durch die Art des Füllgases einstellen z.B. Quecksilber (185 nm, 254 nm), Stickstoff (337-415 nm), Selen (196, 204, 206 nm), Xenon (119, 130, 147 nm), Krypton (124 nm). Wie bei anderen Gasentladungen empfiehlt sich auch die Mischung verschiedener Gasarten.
  • Der Vorteil dieser Strahler liegt in der flächenhaften Abstrahlung grosser Strahlungsleistungen mit hohem Wirkungsgrad. Fast die gesamte Strahlung ist auf einen oder wenige Wellenlängenbereiche konzentriert. Wichtig ist in allen Fällen, dass die Strahlung durch eine der Elektroden austreten kann. Dieses Problem ist lösbar mit transparenten, elektrisch leitenden Schichten oder aber auch, indem man ein feinmaschiges Drahtnetz oder aufgebrachte Leiterbahnen als Elektrode benützt, die einerseits die Stromzufuhr zum Dielektrikum gewährleisten, andererseits für die Strahlung aber weitgehend transparent sind. Auch kann ein transparenter Elektrolyt, z.B. H20, als weitere Elektrode verwendet werden, was insbesondere für die Bestrahlung von Wasser/Abwasser vorteilhaft ist, da auf diese Weise die erzeugte Strahlung unmittelbar in die zu bestrahlende Flüssigkeit gelangt und diese Flüssigkeit gleichzeitig als Kühlmittel dient.
  • Derartige Strahler strahlen nur in einem Raumwinkel von 2 7T. Da aber jedes sich im Entladungsspalt befindliche Volumenelement nach allen Richtungen, d.h. in einen Raumwinkel 4 strahlt, geht im oben beschriebenen Strahler zunächst die eine Hälfte der Strahlung verloren. Man kann sie teilweise durch ein geschicktes Anbringen von Spiegeln zurückgewinnen, wie es a.a.0. bereits vorgeschlagen wurde. Dabei ist zweierlei zu beachten:
    • - jede spiegelnde Oberfläche hat im UV-Bereich einen Reflektionskoeffizienten, der merklich kleiner als 1 sein kann;
    • - die so reflektierte Strahlung muss dreimal durch das absorbierende Quarzglas hindurch.
  • Der Erfindung liegt die Aufgabe zugrunde einen Hochleistungsstrahler zu schaffen, der mit hohen elektrischen Leistungsdichten betrieben werden kann, eine maximale Lichtaustrittsfläche aufweist und darüber hinaus eine optimale Ausnützung der Strahlung ermöglicht.
  • Diese Aufgabe wird erfindungsgemäss dadurch gelöst, dass bei einem gattungsgemässen Hochleistungsstrahler sowohl die Dielektrika als auch die Elektroden für die besagte Strahlung durchlässig sind.
  • Besondere Ausführungsarten der Erfindung sind in den abhängigen Ansprüchen 2 bis 10 angegeben.
  • Das durch eine stille Entladung angeregte und abstrahlende Gas füllt den bis zu 1 cm breiten Spalt zwischen zwei dielektrischen Wänden (bestehend z.B. aus Quarz). Die UV-Strahlung kann nach beiden Seiten den Entladungsspalt verlassen, was die zur Verfügung stehende Strahlungsenergie und damit auch den Wirkungsgrad verdoppelt. Die Elektroden können als relativ weitmaschige Gitter ausgebildet werden. Alternativ können die Gitterdrähte in Quarz eingebettet sein. Dies müsste aber so geschehen, dass die UV-Durchlässigkeit des nicht wesentlich beeinträchtigt wird. Eine weitere Variation der Ausführung wäre das Aufbringen einer für UV durchlässigen elektrisch leitenden Schichten anstelle der Gitter.
  • Kurze Beschreibung der Zeichnung
  • In der Zeichnung sind Ausführungsbeispiele der Erfindung schematisch dargestellt, und zwar zeigt
    • Fig. 1 ein Ausführungsbeispiel der Erfindung in Gestalt eines ebenen Flächenstrahlers,
    • Fig. 2 einen zylindrischen nach aussen und innen abstrahlenden Strahler, mit strahlungsdurchlässigen flächenhaften Elektroden.
    Ausführliche Beschreibung von Ausführungsbeispielen der Erfindung
  • Der plattenförmige UV-Hochleistungsstrahler nach Fig. 1 besteht im wesentlichen aus zwei Quarz- oder Saphirplatten 1, 2, die durch Distanzstücke 3 aus Isoliermaterial voneinander getrennt sind, und einen Entladungsraum 4 mit einer typischen Spaltweite zwischen 1 und 10 mm begrenzen. Die äusseren Oberflächen der Quarzplatten 1, 2 sind mit einem relativ weitmaschigen Drahtnetz 5, 6 versehen, das die erste bzw. zweite Elektrode des Strahlers bildet. Die elektrische Anspeisung des Strahlers erfolgt durch eine an diese Elektroden angeschlossene Wechselstromquelle 7.
  • Als Wechselstromquelle 7 können generell solche verwendet werden, wie sie im Zusammenhang mit Ozonerzeugern seit langem eingesetzt werden mit den dort üblichen Frequenzen zwischen 50 Hz und einigen kHz (Kilohertz).
  • Der Entladungsraum 5 ist seitlich in üblicher Weise geschlossen, wurde vor dem Verschliessen evakuiert und mit einem inerten Gas, oder einer bei Entladungsbedingungen Excimere bildenden Substanz, z.B. Quecksilber, Edelgas, Edelgas-Metalldampf-Gemisch, Edelgas-Halogen-Gemisch, gefüllt, ge gebenenfalls unter Verwendung eines zusätzlichen weiteren Edelgases (Ar, He, Ne) als Puffergas.
  • Je nach gewünschter spektraler Zusammensetzung der Strahlung kann dabei eine Substanz gemäss nachfolgender Tabelle Verwendung finden:
    Figure imgb0003
  • In der sich bildenden stillen Entladung (dielectric barrier discharge) kann die Elektronenenergieverteilung durch Variation der Spaltweite (bis 10 mm) des Entladungsraumes, Druck (bis 10 bar) und/oder Temperatur optimal eingestellt werden.
  • Für sehr kurzwellige Strahlungen kommen auch Platten-Materialien, wie z.B. Magnesiumfluorid und Calziumfluorid in Frage. Für Strahler, welche Strahlung im sichtbaren Bereich des Lichtes liefern sollen, ist das Platten-Material Glas. Anstelle eines Drahtnetzes kann auch eine transparente elektrisch leitende Schicht vorhanden sein, wobei für sichtbares Licht die Schicht aus Indium- oder Zinnoxid, für sichtbares und UV-Licht eine 5 - 10 nm (50 - 100 Angström) dicke Goldschicht und speziell im UV auch eine dünne Schicht aus Alkalimetallen verwendet werden kann.
  • Beim Ausführungsbeispiel nach Fig. 2 sind ein erstes Quarzrohr ein von diesem distanziertes zweites Quarzrohr 9 koaxial ineinander angeordnet und mittels ringförmiger Distanzelemente 10 aus Isoliermaterial beabstandet. Der Ringspalt 11 zwischen den Rohren 8 und 9 bildet den Entladungsraum. Als erste Elektrode ist eine dünne UV-durchlässige elektrisch leitende Schicht 12, z.B. aus Indium- oder Zinnoxid oder Alkalimetall oder Gold, auf der Aussenwandung des äusseren Quarzrohrs 8 und eine ebensolche Schicht 13 als zweite Elektrode auf der Innenwandung des inneren Glasrohrs 9 vorgesehen. Der Entladungsraum ist analog zum Ausführungsbeispiel nach Fig. 1 mit einer Substanz bzw. Substanzgemisch gemäss der vorstehenden Tabelle gefüllt.
  • Auch hier können - je nach Wellenlänge der Strahlung andere Elektroden-Materialien und -Typen Verwendung finden, wie sie im Zusammenhang mit Fig. 1 genannt wurden.
  • Die beschriebenen Strahler eignen sich gut als photochemische Reaktoren hoher Ausbeute. Im Fall des flachen Strahlers wird das reagierende Medium an der Vorderfläche und der Hinterfläche des Strahlers vorbeigeführt. Im Falle des Rundstrahlers wird das Medium sowohl innen als auch aussen hindurchgeführt.
  • Die Flachstrahler können zum Beispiel als "UV-Paneele" in den Abgasschornstein von chemischen Reinigungen und anderen Industriebetrieben gehängt, um Reste von Lösungsmitteln (z.B. chlorierte Kohlenwasserstoffe) zu zerstören. Aehnlich kann eine grössere Anzahl solcher "Rundstrahler" zu grösseren Batterien zusammengefasst und für ähnliche Zwecke eingesetzt werden.
  • Auch bei der Verspiegelung der einseitig abstrahlenden UV-Strahler nach der eingangs genannten Patentanmeldung lassen sich Verbesserungen erzielen. Den oben erwähnten dreimaligen Durchgang durch die absorbierenden Quarzwände kann man ver meiden, wenn man die UV-Verspiegelung (z.B. Aluminium) innen anbringt und dann mit einer dünnen Schicht aus Magnesiumfluorid (MgF2) abdeckt. Auf diese Weise müsste die Strahlung jeweils nur eine Quarzwand passieren.

Claims (10)

1. Hochleistungsstrahler, insbesondere für ultraviolettes Licht, mit einem mit Füllgas gefülltem Entladungsraum (4) zwischen zwei dielektrischen Wänden (1,2), welche Wände auf ihren dem Entladungsraum abgewandten Oberflächen mit ersten (5;12) und zweiten Elektroden (6;13) versehen sind oder die Elektroden in die Wände eingebettet sind, mit einer an die ersten und zweiten Elektroden angeschlossenen Wechselstromquelle (7) zu Speisung der Entladung, dadurch gekennzeichnet, dass sowohl die Wände (1,2;8,9) als auch die ersten (5;12) und die zweiten Elektroden (6;13) für die erzeugte Strahlung durchlässig sind.
2. Hochleistungsstrahler nach Anspruch 1, dadurch gekennzeichnet, dass die Elektroden transparente elektrisch leitende Schichten (12,13), vorzugsweise aus Indium- oder Zinnoxid oder einer dünnen Schicht aus Alkalimetall oder aus Gold, sind.
3. Hochleistungsstrahler nach Anspruch 1, dadurch gekennzeichnet, dass die Elektroden aus metallischen Drähten (5,6) bestehen.
4. Hochleistungsstrahler nach Anspruch 3, dadurch gekennzeichnet, dass die Elektroden als Drahtnetze (5, 6) ausgebildet sind.
5. Hochleistungsstrahler nach Anspruch 1, 2, 3 oder 4, dadurch gekennzeichnet, dass das Füllmedium ein unter Entladungsbedingungen Excimere bildendes Edelgas oder Edelgasgemisch ist.
6. Hochleistungsstrahler nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass das Füllmedium Quecksilber, Stickstoff, Selen, Deuterium oder ein Gemisch dieser Substanzen allein oder mit einem Edelgas oder einem Edelgasgemisch ist.
7. Hochleistungsstrahler nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass der Entladungsraum (4) im wesentlichen durch zwei distanzierte Platten (1, 2) aus dielektrischem Material gebildet ist, an welche sich nach aussen hin Elektroden (5, 6) anschliessen.
8. Hochleistungsstrahler nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass der Entladungsraum (4) durch den Ringraum zweier Rohre (8, 9) aus dielektrischem Material gebildet ist, wobei beide dem Entladungsraum (4) abgewandten Oberflächen der Rohre mit für die Strahlung durchlässigen Elektroden (12, 13) versehen sind.
9. Hochleistungsstrahler nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass das Füllmedium ein Edelgas/Halogen-Gemisch, vorzugsweise ein Ar/F-, Kr/F-, Xe/CI-, XeJ-, XeBr-Gemisch ist.
10. Hochleistungsstrahler nach Anspruch 5, 6 oder9, dadurch gekennzeichnet, dass das Füllmedium ein Puffergas in Form eines zusätzlichen Edelgases, vorzugsweise Ar, He oder Ne, enthält.
EP88113593A 1987-10-23 1988-08-22 Hochleistungsstrahler Expired - Lifetime EP0312732B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH4156/87A CH675178A5 (de) 1987-10-23 1987-10-23
CH4156/87 1987-10-23

Publications (2)

Publication Number Publication Date
EP0312732A1 EP0312732A1 (de) 1989-04-26
EP0312732B1 true EP0312732B1 (de) 1992-04-15

Family

ID=4270852

Family Applications (1)

Application Number Title Priority Date Filing Date
EP88113593A Expired - Lifetime EP0312732B1 (de) 1987-10-23 1988-08-22 Hochleistungsstrahler

Country Status (7)

Country Link
US (1) US4945290A (de)
EP (1) EP0312732B1 (de)
JP (1) JPH0821369B2 (de)
CA (1) CA1298345C (de)
CH (1) CH675178A5 (de)
DE (1) DE3870140D1 (de)
NO (1) NO884516L (de)

Families Citing this family (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH676168A5 (de) * 1988-10-10 1990-12-14 Asea Brown Boveri
CH677557A5 (de) * 1989-03-29 1991-05-31 Asea Brown Boveri
US5118989A (en) * 1989-12-11 1992-06-02 Fusion Systems Corporation Surface discharge radiation source
DE4123915A1 (de) * 1990-07-19 1992-01-23 Herberts Gmbh Verfahren zum schutz von thermisch empfindlichen aufzeichnungsmaterialien gegen aeussere einfluesse unter verwendung von radikalisch polymerisierbaren ueberzugsmitteln
US5798611A (en) * 1990-10-25 1998-08-25 Fusion Lighting, Inc. Lamp having controllable spectrum
US5834895A (en) * 1990-10-25 1998-11-10 Fusion Lighting, Inc. Visible lamp including selenium
AU3977193A (en) * 1990-10-25 1993-11-18 Fusion Systems Corporation Lamp having controllable characteristics
US5404076A (en) * 1990-10-25 1995-04-04 Fusion Systems Corporation Lamp including sulfur
HU214794B (hu) * 1990-10-25 1998-05-28 Fusion Lighting Inc. Látható fényt kibocsátó gázkisülő fényforrás
EP0515711A1 (de) * 1991-05-27 1992-12-02 Heraeus Noblelight GmbH Hochleistungsstrahler
EP0521553B1 (de) * 1991-07-01 1996-04-24 Koninklijke Philips Electronics N.V. Hochdrucksglimmentladungslampe
JP2733155B2 (ja) * 1991-10-24 1998-03-30 松下電工株式会社 面状発光体
US5504391A (en) * 1992-01-29 1996-04-02 Fusion Systems Corporation Excimer lamp with high pressure fill
JP2893158B2 (ja) * 1992-04-23 1999-05-17 株式会社荏原製作所 放電反応装置
US5549874A (en) * 1992-04-23 1996-08-27 Ebara Corporation Discharge reactor
EP0607960B2 (de) * 1993-01-20 2001-05-16 Ushiodenki Kabushiki Kaisha Entladungslampe mit dielektrischer Sperrschicht
AU1396295A (en) * 1993-10-15 1995-05-04 Fusion Lighting, Inc. Tellurium lamp
US5914564A (en) * 1994-04-07 1999-06-22 The Regents Of The University Of California RF driven sulfur lamp having driving electrodes which face each other
JP2775699B2 (ja) * 1994-09-20 1998-07-16 ウシオ電機株式会社 誘電体バリア放電ランプ
JP3025414B2 (ja) 1994-09-20 2000-03-27 ウシオ電機株式会社 誘電体バリア放電ランプ装置
US5585641A (en) * 1995-05-23 1996-12-17 The Regents Of The University Of California Large area, surface discharge pumped, vacuum ultraviolet light source
JP3082638B2 (ja) * 1995-10-02 2000-08-28 ウシオ電機株式会社 誘電体バリア放電ランプ
US5818167A (en) * 1996-02-01 1998-10-06 Osram Sylvania Inc. Electrodeless high intensity discharge lamp having a phosphorus fill
DE19613502C2 (de) * 1996-04-04 1998-07-09 Heraeus Noblelight Gmbh Langlebiger Excimerstrahler und Verfahren zu seiner Herstellung
US5889366A (en) * 1996-04-30 1999-03-30 Ushiodenki Kabushiki Kaisha Fluorescent lamp of the external electrode type and irradiation unit
DE19636965B4 (de) * 1996-09-11 2004-07-01 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Elektrische Strahlungsquelle und Bestrahlungssystem mit dieser Strahlungsquelle
US5945790A (en) * 1997-11-17 1999-08-31 Schaefer; Raymond B. Surface discharge lamp
US6015759A (en) * 1997-12-08 2000-01-18 Quester Technology, Inc. Surface modification of semiconductors using electromagnetic radiation
US6049086A (en) * 1998-02-12 2000-04-11 Quester Technology, Inc. Large area silent discharge excitation radiator
US5993278A (en) * 1998-02-27 1999-11-30 The Regents Of The University Of California Passivation of quartz for halogen-containing light sources
JP2000173554A (ja) * 1998-12-01 2000-06-23 Md Komu:Kk 誘電体バリア放電ランプ
JP3458757B2 (ja) 1999-03-30 2003-10-20 ウシオ電機株式会社 誘電体バリア放電ランプ装置
DE19919169A1 (de) 1999-04-28 2000-11-02 Philips Corp Intellectual Pty Vorrichtung zur Desinfektion von Wasser mit einer UV-C-Gasentladungslampe
DE19920693C1 (de) * 1999-05-05 2001-04-26 Inst Oberflaechenmodifizierung Offener UV/VUV-Excimerstrahler und Verfahren zur Oberflächenmodifizierung von Polymeren
US6614181B1 (en) * 2000-08-23 2003-09-02 Applied Materials, Inc. UV radiation source for densification of CVD carbon-doped silicon oxide films
US6566278B1 (en) 2000-08-24 2003-05-20 Applied Materials Inc. Method for densification of CVD carbon-doped silicon oxide films through UV irradiation
US20020067130A1 (en) * 2000-12-05 2002-06-06 Zoran Falkenstein Flat-panel, large-area, dielectric barrier discharge-driven V(UV) light source
DE10133949C1 (de) * 2001-07-17 2003-03-20 Inst Niedertemperatur Plasmaph Vorrichtung zur Erzeugung von Gasentladungen, die nach dem Prinzip der dielektrisch behinderten Entladung aufgebaut ist, für Lichtquellen und Sichtanzeigeeinrichtungen
US6559607B1 (en) 2002-01-14 2003-05-06 Fusion Uv Systems, Inc. Microwave-powered ultraviolet rotating lamp, and process of use thereof
DE10235036A1 (de) * 2002-07-31 2004-02-26 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. UV-Lichtquelle
FR2843483B1 (fr) * 2002-08-06 2005-07-08 Saint Gobain Lampe plane, procede de fabrication et application
US7226677B2 (en) * 2003-05-01 2007-06-05 Ernest Gladstone Arrangement for supplying ozone to a fuel cell for a passenger car
JP2005005258A (ja) * 2003-05-19 2005-01-06 Ushio Inc エキシマランプ発光装置
JP5054517B2 (ja) * 2004-07-09 2012-10-24 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 反射器を備えるuvc/vuv誘電体バリア放電ランプ
US7166963B2 (en) * 2004-09-10 2007-01-23 Axcelis Technologies, Inc. Electrodeless lamp for emitting ultraviolet and/or vacuum ultraviolet radiation
DE102004055328B3 (de) * 2004-11-16 2006-04-13 Institut für Niedertemperatur-Plasmaphysik e.V. Vorrichtung nach dem Prinzip einer dielektrisch behinderten Entladung zur Strahlungserzeugung
JP4720154B2 (ja) * 2004-11-19 2011-07-13 ウシオ電機株式会社 フラッシュランプ発光装置
JP4691004B2 (ja) * 2006-12-07 2011-06-01 株式会社東芝 紫外線光による不活化処理方法
DE102007020655A1 (de) 2007-04-30 2008-11-06 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren zum Herstellen dünner Schichten und entsprechende Schicht
CN101946301B (zh) * 2008-02-21 2012-08-22 欧司朗股份有限公司 带有保持片的介电阻挡放电灯
JP4748208B2 (ja) * 2008-11-18 2011-08-17 ウシオ電機株式会社 エキシマ放電ランプおよびエキシマ放電ランプの製造方法
DE102010003352A1 (de) * 2010-03-26 2011-09-29 Osram Gesellschaft mit beschränkter Haftung Dielektrische Barriere-Entladungslampe mit Haltescheibe
US9493366B2 (en) 2010-06-04 2016-11-15 Access Business Group International Llc Inductively coupled dielectric barrier discharge lamp
JP2011009238A (ja) * 2010-09-22 2011-01-13 Gs Yuasa Corp 無声放電ランプおよび照射装置
ITUB20159319A1 (it) * 2015-12-29 2017-06-29 Carlo Rupnik Concentratore tubolare per irraggiamento concentrico di onde elettromagnetiche

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL6913956A (de) * 1968-09-19 1970-03-23
US4266166A (en) * 1979-11-09 1981-05-05 Gte Laboratories Incorporated Compact fluorescent light source having metallized electrodes
US4266167A (en) * 1979-11-09 1981-05-05 Gte Laboratories Incorporated Compact fluorescent light source and method of excitation thereof
JPS5732564A (en) * 1980-08-04 1982-02-22 Toshiba Corp High-frequency flat electric-discharge lamp
US4427921A (en) * 1981-10-01 1984-01-24 Gte Laboratories Inc. Electrodeless ultraviolet light source
JPS614152A (ja) * 1984-06-18 1986-01-10 Okuno Denki Sangyo Kk 面状放電発光体
CH670171A5 (de) * 1986-07-22 1989-05-12 Bbc Brown Boveri & Cie

Also Published As

Publication number Publication date
US4945290A (en) 1990-07-31
EP0312732A1 (de) 1989-04-26
CH675178A5 (de) 1990-08-31
NO884516D0 (no) 1988-10-10
CA1298345C (en) 1992-03-31
NO884516L (no) 1989-04-24
JPH0821369B2 (ja) 1996-03-04
DE3870140D1 (de) 1992-05-21
JPH01144560A (ja) 1989-06-06

Similar Documents

Publication Publication Date Title
EP0312732B1 (de) Hochleistungsstrahler
EP0254111B1 (de) UV-Strahler
EP0324953B1 (de) Hochleistungsstrahler
EP0458140B1 (de) Hochleistungsstrahler
EP0371304B1 (de) Hochleistungsstrahler
DE69409677T3 (de) Entladungslampe mit dielektrischer Sperrschicht
Lucatorto et al. Efficient laser production of a Na+ ground-state plasma column: Absorption spectroscopy and photoionization measurement of Na+
EP0578953B1 (de) Hochleistungsstrahler
DE69616000T2 (de) Neongas-Entladungslampe und Pulsbetriebsverfahren
EP0782871A2 (de) Verfahren und Strahlungsanordnung zur Erzeugung von UV-Strahlen zur Körperbestrahlung sowie Verwendung
EP1447615B1 (de) Gepulster Sonnensimulator mit verbesserter Homogenität
EP1984936A1 (de) Hochdruckentladungslampe
EP0517929B1 (de) Bestrahlungseinrichtung mit einem Hochleistungsstrahler
DE4302465C1 (de) Vorrichtung zum Erzeugen einer dielektrisch behinderten Entladung
DE69926706T2 (de) Niederdruckquecksilberdampfeentladungslampe
DE4036122A1 (de) Koronaentladungs-lichtquellenzelle
DE69019597T2 (de) Niederdruckedelgasentladungslampe.
DE4022279A1 (de) Bestrahlungseinrichtung
DE4208376A1 (de) Hochleistungsstrahler
DE3240757C2 (de)
EP0334355B1 (de) Wandstabilisierte Hochdruck-Entladungslampe
DE2657680A1 (de) Gaslaservorrichtung
DE2604916A1 (de) Quecksilberdampf-entladungslampe
WO1994013330A1 (de) Flüssigkeitsentkeimung
DE2127579C3 (de) Gasentladungslampe zum optischen Anregen für optische Sender (Laser)

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE FR GB IT LI NL SE

17P Request for examination filed

Effective date: 19891009

17Q First examination report despatched

Effective date: 19910522

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE FR GB IT LI NL SE

REF Corresponds to:

Ref document number: 3870140

Country of ref document: DE

Date of ref document: 19920521

ITF It: translation for a ep patent filed
ET Fr: translation filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: CH

Ref legal event code: PUE

Owner name: HERAEUS NOBLELIGHT GMBH

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

ITPR It: changes in ownership of a european patent

Owner name: CESSIONE;HERAEUS NOBLELIGHT GMBH

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

NLS Nl: assignments of ep-patents

Owner name: HERAEUS NOBLELIGHT GMBH TE KLEINOSTHEIM, BONDSREPU

EAL Se: european patent in force in sweden

Ref document number: 88113593.3

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20020717

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20020725

Year of fee payment: 15

Ref country code: NL

Payment date: 20020725

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20020730

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20020809

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20020812

Year of fee payment: 15

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030822

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030823

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030831

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040302

EUG Se: european patent has lapsed
GBPC Gb: european patent ceased through non-payment of renewal fee
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040430

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20040301

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050822