EP0312732A1 - Hochleistungsstrahler - Google Patents
Hochleistungsstrahler Download PDFInfo
- Publication number
- EP0312732A1 EP0312732A1 EP88113593A EP88113593A EP0312732A1 EP 0312732 A1 EP0312732 A1 EP 0312732A1 EP 88113593 A EP88113593 A EP 88113593A EP 88113593 A EP88113593 A EP 88113593A EP 0312732 A1 EP0312732 A1 EP 0312732A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- electrodes
- power radiator
- radiator according
- gas
- radiation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000005855 radiation Effects 0.000 claims abstract description 27
- 239000000203 mixture Substances 0.000 claims abstract description 10
- 229910052756 noble gas Inorganic materials 0.000 claims abstract description 7
- 239000003989 dielectric material Substances 0.000 claims abstract description 6
- 239000007789 gas Substances 0.000 claims description 11
- 239000000126 substance Substances 0.000 claims description 6
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 4
- 239000011261 inert gas Substances 0.000 claims description 4
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical group [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 claims description 4
- 229910052753 mercury Inorganic materials 0.000 claims description 4
- 229910052783 alkali metal Inorganic materials 0.000 claims description 3
- 150000001340 alkali metals Chemical class 0.000 claims description 3
- 229910052786 argon Inorganic materials 0.000 claims description 3
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims description 3
- 239000010931 gold Substances 0.000 claims description 3
- 229910052737 gold Inorganic materials 0.000 claims description 3
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 claims description 3
- 229910003437 indium oxide Inorganic materials 0.000 claims description 3
- 229910052743 krypton Inorganic materials 0.000 claims description 3
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 claims description 3
- 229910001887 tin oxide Inorganic materials 0.000 claims description 3
- 229910052724 xenon Inorganic materials 0.000 claims description 3
- BUGBHKTXTAQXES-UHFFFAOYSA-N Selenium Chemical compound [Se] BUGBHKTXTAQXES-UHFFFAOYSA-N 0.000 claims description 2
- 229910052736 halogen Inorganic materials 0.000 claims description 2
- 229910052734 helium Inorganic materials 0.000 claims description 2
- 229910052754 neon Inorganic materials 0.000 claims description 2
- 229910052757 nitrogen Inorganic materials 0.000 claims description 2
- 229910052711 selenium Inorganic materials 0.000 claims description 2
- 239000011669 selenium Substances 0.000 claims description 2
- YZCKVEUIGOORGS-OUBTZVSYSA-N Deuterium Chemical compound [2H] YZCKVEUIGOORGS-OUBTZVSYSA-N 0.000 claims 1
- 229910052805 deuterium Inorganic materials 0.000 claims 1
- 150000002367 halogens Chemical class 0.000 claims 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 10
- 239000010453 quartz Substances 0.000 description 9
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 2
- 230000004888 barrier function Effects 0.000 description 2
- 239000003546 flue gas Substances 0.000 description 2
- 239000011888 foil Substances 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 239000011810 insulating material Substances 0.000 description 2
- DNNSSWSSYDEUBZ-UHFFFAOYSA-N krypton atom Chemical compound [Kr] DNNSSWSSYDEUBZ-UHFFFAOYSA-N 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- ORUIBWPALBXDOA-UHFFFAOYSA-L magnesium fluoride Chemical compound [F-].[F-].[Mg+2] ORUIBWPALBXDOA-UHFFFAOYSA-L 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 125000006850 spacer group Chemical group 0.000 description 2
- FHNFHKCVQCLJFQ-UHFFFAOYSA-N xenon atom Chemical compound [Xe] FHNFHKCVQCLJFQ-UHFFFAOYSA-N 0.000 description 2
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 1
- 230000002745 absorbent Effects 0.000 description 1
- 239000002250 absorbent Substances 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- WUKWITHWXAAZEY-UHFFFAOYSA-L calcium difluoride Chemical compound [F-].[F-].[Ca+2] WUKWITHWXAAZEY-UHFFFAOYSA-L 0.000 description 1
- 229910001634 calcium fluoride Inorganic materials 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 239000002826 coolant Substances 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 239000007772 electrode material Substances 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 230000005283 ground state Effects 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 229910001635 magnesium fluoride Inorganic materials 0.000 description 1
- 239000003973 paint Substances 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 229910052594 sapphire Inorganic materials 0.000 description 1
- 239000010980 sapphire Substances 0.000 description 1
- IHQKEDIOMGYHEB-UHFFFAOYSA-M sodium dimethylarsinate Chemical class [Na+].C[As](C)([O-])=O IHQKEDIOMGYHEB-UHFFFAOYSA-M 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 238000004659 sterilization and disinfection Methods 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- 239000000057 synthetic resin Substances 0.000 description 1
- 239000002351 wastewater Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J65/00—Lamps without any electrode inside the vessel; Lamps with at least one main electrode outside the vessel
- H01J65/04—Lamps in which a gas filling is excited to luminesce by an external electromagnetic field or by external corpuscular radiation, e.g. for indicating plasma display panels
- H01J65/042—Lamps in which a gas filling is excited to luminesce by an external electromagnetic field or by external corpuscular radiation, e.g. for indicating plasma display panels by an external electromagnetic field
- H01J65/046—Lamps in which a gas filling is excited to luminesce by an external electromagnetic field or by external corpuscular radiation, e.g. for indicating plasma display panels by an external electromagnetic field the field being produced by using capacitive means around the vessel
Definitions
- the invention relates to a high-power radiator, in particular for ultraviolet light, with a discharge space filled with filling gas, the walls of which are formed by a first and a second dielectric, which is provided with first and second electrodes on its surfaces facing away from the discharge space the first and second electrodes connected AC power source to feed the discharge.
- the invention relates to a state of the art, as described, for example, in the publication "Vacuum-ultra-violet lamps with a barrier discharge in inert gases" by G.A. Volkova, N.N. Kirillova, E.N. Pavlovskaya and A.V. Yakovleva in the SU magazine Zhurnal Prikladnoi Spektoskopii 41 - (1984) No. 4, 691-695, published in an English translation by Plenum Publishing Corporation 1985, Doc. No. 0021-9037 / 84 / 4104-1194 08.50, p. 1194 ff.
- high-performance lamps in particular high-performance UV lamps, e.g. Disinfection, curing of paints and synthetic resins, flue gas cleaning, destruction and synthesis of special chemical compounds.
- the wavelength of the emitter will have to be matched very precisely to the intended process.
- the best-known UV lamp is probably the mercury lamp, which emits UV radiation with wavelengths of 254 nm and 185 nm with high efficiency.
- a low-pressure glow discharge burns in a noble gas-mercury vapor mixture in these lamps.
- This radiator consists of a tube made of dielectric material with a rectangular cross section. Two opposite tube walls are provided with flat electrodes in the form of metal foils, which are connected to a pulse generator. The tube is closed at both ends and filled with an inert gas (argon, krypton or xenon). Such filling gases form so-called excimers when an electrical discharge is ignited under certain conditions.
- An excimer is a molecule that is formed from an excited atom and an atom in the ground state.
- the UV light generated in a first embodiment reaches the outside through an end window in the dielectric tube.
- the broad sides of the tube are provided with metal foils which form the electrodes.
- the tube is provided with recesses, over which special windows are glued, through which the radiation can escape.
- the efficiency that can be achieved with the known radiator is of the order of 1%, which is far below the theoretical value of around 50% because the filling gas heats up inadmissibly.
- Another inadequacy of the known radiator can be seen in the fact that its light exit window has only a comparatively small area for reasons of stability.
- This high-performance radiator can be operated with high electrical power densities and high efficiency. Its geometry is widely adaptable to the process in which it is used. In addition to large, flat spotlights, cylindrical ones that radiate inwards or outwards are also possible.
- the discharges can be operated at high pressure (0.1 - 10 bar). With this design, electrical power densities of 1 - 50 KW / m 2 can be realized. Since the electron energy in the discharge can be largely optimized, the efficiency of such emitters is very high, even if one excites resonance lines of suitable atoms.
- the wavelength of the radiation can be set by the type of filling gas, for example mercury (185 nm, 254 nm), nitrogen (337-415 nm), selenium (196, 204, 206 nm), xenon (119, 130, 147 nm), Krypton (124 nm). As with other gas discharges, it is also advisable to mix different types of gas.
- type of filling gas for example mercury (185 nm, 254 nm), nitrogen (337-415 nm), selenium (196, 204, 206 nm), xenon (119, 130, 147 nm), Krypton (124 nm).
- mercury 185 nm, 254 nm
- nitrogen 337-415 nm
- selenium (196, 204, 206 nm)
- xenon 119, 130, 147 nm
- Krypton 124 nm
- the advantage of these emitters is the areal radiation of large radiation outputs with high efficiency. Almost all of the radiation is concentrated in one or a few wavelength ranges. It is important in all cases that the radiation can escape through one of the electrodes.
- This problem can be solved with transparent, electrically conductive layers or else by using a fine-mesh wire network or applied conductor tracks as electrodes, which on the one hand ensure the current supply to the dielectric, but on the other hand are largely transparent to the radiation.
- a transparent electrolyte, for example H 2 O can also be used as an additional electrode, which is particularly advantageous for the irradiation of water / wastewater, since in this way the radiation generated reaches the liquid to be irradiated directly and at the same time this liquid serves as a coolant .
- the invention has for its object to provide a high-performance radiator that can be operated with high electrical power densities, has a maximum light exit area and also enables optimal use of the radiation.
- this object is achieved in that, in the case of a high-power radiator of the generic type, both the dielectrics and the electrodes are transparent to the said radiation.
- the gas emitted and emitted by a silent discharge fills the gap of up to 1 cm between two dielectric walls (e.g. made of quartz).
- the UV radiation can leave the discharge gap on both sides, which doubles the available radiation energy and thus also the efficiency.
- the electrodes can be designed as a relatively wide-meshed grid.
- the grid wires can be embedded in quartz. However, this should be done in such a way that the UV permeability of the is not significantly impaired.
- Another variation of the design would be the application of a UV-permeable electrically conductive layers instead of the grids.
- the radiator 1 consists essentially of two quartz or sapphire plates 1, 2, which are separated from one another by spacers 3 made of insulating material, and delimit a discharge space 4 with a typical gap width between 1 and 10 mm.
- the outer surfaces of the quartz plates 1, 2 are provided with a relatively wide-mesh wire network 5, 6, which forms the first and second electrodes of the radiator.
- the radiator is electrically supplied by an AC power source 7 connected to these electrodes.
- AC power source 7 can generally be used as they have long been used in connection with ozone generators with the frequencies there common between 50 Hz and a few kilohertz.
- the discharge space 5 is laterally closed in the usual way, was evacuated before closing and was filled with an inert gas or a substance that forms excimers under discharge conditions, e.g. Mercury, noble gas, noble gas-metal vapor mixture.
- an inert gas or a substance that forms excimers under discharge conditions e.g. Mercury, noble gas, noble gas-metal vapor mixture.
- Noble gas-halogen mixture filled, possibly using an additional noble gas (Ar, He, Ne) as a buffer gas.
- the electron energy distribution can be optimally adjusted by varying the gap width (up to 10 mm) of the discharge space, pressure (up to 10 bar) and / or temperature.
- plate materials such as Magnesium fluoride and calcium fluoride in question.
- the plate material is glass for spotlights that are supposed to deliver radiation in the visible range of light.
- a wire mesh there can also be a transparent, electrically conductive layer, the layer of indium or tin oxide being used for visible light, a gold layer 50-100 angstroms thick for visible and UV light, and especially a thin layer of alkali metals in UV can.
- a first quartz tube and a second quartz tube 9 distanced therefrom are arranged coaxially one inside the other and are spaced apart by means of annular spacer elements 10 made of insulating material.
- the annular gap 11 between the tubes 8 and 9 forms the discharge space.
- the first electrode is a thin UV-permeable electrically conductive layer 12, e.g. made of indium or tin oxide or alkali metal or gold, on the outer wall of the outer quartz tube 8 and a layer 13 of the same type provided as a second electrode on the inner wall of the inner glass tube 9.
- the discharge space is filled with a substance or mixture of substances according to the table above. Depending on the wavelength of the radiation, other electrode materials and types can also be used here, as were mentioned in connection with FIG. 1.
- the emitters described are well suited as high-yield photochemical reactors.
- the reacting medium is guided past the front surface and the rear surface of the radiator.
- the medium is passed both inside and outside.
- the flat radiators can be hung, for example, as "UV panels” in the flue gas chimney of chemical cleaners and other industrial companies to remove residues of solvents (eg chlorinated Destroy hydrocarbons).
- solvents eg chlorinated Destroy hydrocarbons
- omnidirectional radiators can be combined into larger batteries and used for similar purposes.
- Improvements can also be achieved in the mirroring of the UV emitters emitting on one side according to the patent application mentioned at the beginning.
- the above-mentioned three times through the absorbent quartz walls can be avoided by attaching the UV reflective coating (e.g. aluminum) on the inside and then covering it with a thin layer of magnesium fluoride (MgF 2 ). In this way, the radiation would only have to pass one quartz wall at a time.
- the UV reflective coating e.g. aluminum
- MgF 2 magnesium fluoride
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Engineering & Computer Science (AREA)
- Plasma & Fusion (AREA)
- Discharge Lamp (AREA)
- Discharge Lamps And Accessories Thereof (AREA)
- Physical Or Chemical Processes And Apparatus (AREA)
Abstract
Description
- Technisches Gebiet
- Die Erfindung bezieht sich auf einen Hochleistungsstrahler, insbesondere für ultraviolettes Licht, mit einem mit Füllgas gefüllten Entladungsraum, dessen Wandungen durch ein erstes und ein zweites Dielektrikum gebildet sind, welches auf seinen dem Entladungsraum abgewandten Oberflächen mit ersten und zweiten Elektroden versehen ist, mit einer an die ersten und zweiten Elektroden angeschlossenen Wechselstromquelle zur Speisung der Entladung.
- Die Erfindung nimmt dabei Bezug auf einen Stand der Technik, wie er beispielsweise aus der Veröffentlichung "Vacuum-ultra-violet lamps with a barrier discharge in inert gases" von G.A. Volkova, N.N. Kirillova, E.N. Pavlovskaya and A.V. Yakovleva in der SU-Zeitschrift Zhurnal Prikladnoi Spektroskopii 41 - (1984) No. 4, 691-695, veröffentlicht in einer englischsprachigen Uebersetzung der Plenum Publishing Corporation 1985, Dok. Nr. 0021-9037/84/4104-1194 08.50, S. 1194 ff., ergibt.
- Technologischer Hintergrund und Stand der Technik Für Hochleistungsstrahler, insbesondere Hochleistungs-UV-Strahler, gibt es diverse Anwendungen wie z.B. Entkeimung, Aushärten von Lacken und Kunstharzen, Rauchgasreinigung, Zerstörung und Synthese spezieller chemischer Verbindungen. Im allgemeinen wird die Wellenlänge des Strahlers sehr genau auf den beabsichtigten Prozess abgestimmt sein müssen. Der bekannteste UV-Strahler ist vermutlich der Quecksilberstrahler, der UV-Strahlung der Wellenlänge 254 nm und 185 nm mit hohem Wirkungsgrad abstrahlt. In diesen Strahlern brennt eine NiederdruckGlimmentladung in einem Edelgas-Quecksilberdampf-Gemisch.
- In der eingangs genannten Veröffentlichung "Vakuum ultra-violet lamps ..." wird eine auf dem Prinzip der stillen elektrischen Entladung basierende UV-Strahlenquelle beschrieben. Dieser Strahler besteht aus einem Rohr aus dielektrischem Material mit Rechteckquerschnitt. Zwei gegenüberliegende Rohrwände sind mit flächenhaften Elektroden in Form von Metallfolien versehen, die an einen Impulsgenerator angeschlossen sind. Das Rohr ist an beiden Enden verschlossen und mit einem Edelgas (Argon, Krypton oder Xenon) gefüllt. Derartige Füllgase bilden beim Zünden einer elektrischen Entladung unter bestimmten Bedingungen sogenannte Excimere. Ein Excimer ist ein Molekül, das aus einem angeregten Atom und einem Atom im Grundzustand gebildet wird.
- Es ist bekannt, dass die Umwandlung von Elektronenenergie in UV-Strahlung mit diesen Excimeren sehr effizient erfolgt. Bis zu 50 % der Elektronenenergie kann in UV-Strahlung umgewandelt werden, wobei die angeregten Komplexe nur einige Nanosekunden leben und beim Zerfall ihre Bindungsenergie in Form von UV-Strahlung abgehen. Wellenlängenbereiche:
- Bei dem bekannten Strahler gelangt das erzeugte UV-Licht bei einer ersten Ausführung über ein stirnseitiges Fenster im dielektrischen Rohr in den Aussenraum. Bei einer zweiten Ausführungsform sind die Breitseiten des Rohres mit Metallfolien versehen, welche die Elektroden bilden. An den Schmalseiten ist das Rohr mit Ausnehmungen versehen, über welche spezielle Fenster geklebt sind, durch welche die Strahlung austreten kann.
- Der mit dem bekannten Strahler erreichbare Wirkungsgrad liegt in der Grössenordnung von 1 %, also weit unter dem theoretischen Wert von um 50 %, weil sich das Füllgas unzulässig aufheizt. Eine weitere Unzulänglichkeit des bekannten Strahlers ist darin zu sehen, dass sein Lichtaustrittsfenster aus Stabilitätsgründen nur eine vergleichsweise kleine Fläche aufweist.
- In der EP-Anmeldung 87109674.9 vom 6.7.1987, der CH-Anmeldung 2924/86-8 vom 22.7.1986 oder der US-Anmeldung 07/076926 vom 22.7.1986 ist ein Hochleistungsstrahler vorgeschlagen worden, der einen wesentlich grösseren Wirkungsgrad aufweist, mit höheren elektrischen Leistungsdichten betrieben werden kann und dessen Lichtaustrittsfläche den genannten Beschränkungen nicht unterliegt. Dazu ist bei dem gattungsgemässen Hochleistungsstrahler sowohl das Dielektrikum als auch die ersten Elektroden für die besagte Strahlung durchlässig sind und zumindest die zweiten Elektroden gekühlt sind.
- Dieser Hochleistungsstrahler kann mit grossen elektrischen Leistungsdichten und hohem Wirkungsgrad betrieben werden. Seine Geometrie ist in weiten Grenzen dem Prozess anpassbar, in welchem er eingesetzt wird. So sind neben grossflächigen ebenen Strahlern auch zylindrische, die nach innen oder nach aussen strahlen, möglich. Die Entladungen können bei hohem Druck (0.1 - 10 bar) betrieben werden. Mit dieser Bauweise lassen sich elektrische Leistungsdichten von 1 - 50 KW/m2 realisieren. Da die Elektronenenergie in der Entladung weitgehend optimiert werden kann, liegt der Wirkungsgrad solcher Strahler sehr hoch, auch dann, wenn man Resonanzlinien geeigneter Atome anregt. Die Wellenlänge der Strahlung lässt sich durch die Art des Füllgases einstellen z.B. Quecksilber (185 nm, 254 nm), Stickstoff (337-415 nm), Selen (196, 204. 206 nm), Xenon (119, 130, 147 nm), Krypton (124 nm). Wie bei anderen Gasentladungen empfiehlt sich auch die Mischung verschiedener Gasarten.
- Der Vorteil dieser Strahler liegt in der flächenhaften Abstrahlung grosser Strahlungsleistungen mit hohem Wirkungsgrad. Fast die gesamte Strahlung ist auf einen oder wenige Wellenlängenbereiche konzentriert. Wichtig ist in allen Fällen, dass die Strahlung durch eine der Elektroden austreten kann. Dieses Problem ist lösbar mit transparenten, elektrisch leitenden Schichten oder aber auch, indem man ein feinmaschiges Drahtnetz oder aufgebrachte Leiterbahnen als Elektrode benützt, die einerseits die Stromzufuhr zum Dielektrikum gewährleisten, andererseits für die Strahlung aber weitgehend transparent sind. Auch kann ein transparenter Elektrolyt, z.B. H20, als weitere Elektrode verwendet werden, was insbesondere für die Bestrahlung von Wasser/Abwasser vorteilhaft ist, da auf diese Weise die erzeugte Strahlung unmittelbar in die zu bestrahlende Flüssigkeit gelangt und diese Flüssigkeit gleichzeitig als Kühlmittel dient.
- Derartige Strahler strahlen nur in einem Raumwinkel von 2 π. Da aber jedes sich im Entladungsspalt befindliche Volumenelement nach allen Richtungen, d.h. in einen Raumwinkel 4 π strahlt, geht im oben beschriebenen Strahler zunächst die eine Hälfte der Strahlung verloren. Man kann sie teilweise durch ein geschicktes Anbringen von Spiegeln zurückgewinnen, wie es a.a.0. bereits vorgeschlagen wurde. Dabei ist zweierlei zu beachten:
- - jede spiegelnde Oberfläche hat im UV-Bereich einen Reflektionskoeffizienten, der merklich kleiner als 1 sein kann;
- - die so reflektierte Strahlung muss dreimal durch das absorbierende Quarzglas hindurch.
- Der Erfindung liegt die Aufgabe zugrunde einen Hochleistungsstrahler zu schaffen, der mit hohen elektrischen Leistungsdichten betrieben werden kann, eine maximale Lichtaustrittsfläche aufweist und darüber hinaus eine optimale Ausnützung der Strahlung ermöglicht.
- Diese Aufgabe wird erfindungsgemäss dadurch gelöst, dass bei einem gattungsgemässen Hochleistungsstrahler sowohl die Dielektrika als auch die Elektroden für die besagte Strahlung durchlässig sind.
- Das durch eine stille Entladung angeregte und abstrahlende Gas füllt den bis zu 1 cm breiten Spalt zwischen zwei dielektrischen Wänden (bestehend z.B. aus Quarz). Die UV-Strahlung kann nach beiden Seiten den Entladungsspalt verlassen, was die zur Verfügung stehende Strahlungsenergie und damit auch den Wirkungsgrad verdoppelt. Die Elektroden können als relativ weitmaschige Gitter ausgebildet werden. Alternativ können die Gitterdrähte in Quarz eingebettet sein. Dies müsste aber so geschehen, dass die UV-Durchlässigkeit des nicht wesentlich beeinträchtigt wird. Eine weitere Variation der Ausführung wäre das Aufbringen einer für UV durchlässigen elektrisch leitenden Schichten anstelle der Gitter.
- Kurze Beschreibung der Zeichnung In der Zeichnung sind Ausführungsbeispiele der Erfindung schematisch dargestellt, und zwar zeigt
- Fig. 1 ein Ausführungsbeispiel der Erfindung in Gestalt eines ebenen Flächenstrahlers,
- Fig. 2 einen zylindrischen nach aussen und innen abstrahlenden Strahler, mit strahlungsdurchlässigen flächenhaften Elektroden.
- Der plattenförmige UV-Hochleistungsstrahler nach Fig. 1 besteht im wesentlichen aus zwei Quarz- oder Saphirplatten 1, 2, die durch Distanzstücke 3 aus Isoliermaterial voneinander getrennt sind, und einen Entladungsraum 4 mit einer typischen Spaltweite zwischen 1 und 10 mm begrenzen. Die äusseren Oberflächen der Quarzplatten 1, 2 sind mit einem relativ weitmaschigen Drahtnetz 5, 6 versehen, das die erste bzw. zweite Elektrode des Strahlers bildet. Die elektrische Anspeisung des Strahlers erfolgt durch eine an diese Elektroden angeschlossene Wechselstromquelle 7.
- Als Wechselstromquelle 7 können generell solche verwendet werden, wie sie im Zusammenhang mit Ozonerzeugern seit langem eingesetzt werden mit den dort üblichen Frequenzen zwischen 50 Hz und einigen Kilohertz.
- Der Entladungsraum 5 ist seitlich in üblicher Weise geschlossen, wurde vor dem Verschliessen evakuiert und mit einem inerten Gas, oder einer bei Entladungsbedingungen Excimere bildenden Substanz, z.B. Quecksilber, Edelgas, Edelgas-Metalldampf-Gemisch. Edelgas-Halogen-Gemisch, gefüllt, ge gebenenfalls unter Verwendung eines zusätzlichen weiteren Edelgases (Ar, He, Ne) als Puffergas.
-
- In der sich bildenden stillen Entladung (dielectric barrier discharge) kann die Elektronenenergieverteilung durch Variation der Spaltweite (bis 10 mm) des Entladungsraumes, Druck (bis 10 bar) und/oder Temperatur optimal eingestellt werden.
- Für sehr kurzweilige Strahlungen kommen auch Platten-Materialien, wie z.B. Magnesiumfluorid und Calziumfluorid in Frage. Für Strahler, welche Strahlung im sichtbaren Bereich des Lichtes liefern sollen, ist das Platten-Material Glas. Anstelle eines Drahtnetzes kann auch eine transparente elektrisch leitende Schicht vorhanden sein, wobei für sichtbares Licht die Schicht aus Indium- oder Zinnoxid, für sichtbares und UV-Licht eine 50 - 100 Angström dicke Goldschicht und speziell im UV auch eine dünne Schicht aus Alkalimetallen verwendet werden kann.
- Beim Ausführungsbeispiel nach Fig. 2 sind ein erstes Quarzrohr ein von diesem distanziertes zweites Quarzrohr 9 koaxial ineinander angeordnet und mittels ringförmiger Distanzelemente 10 aus Isoliermaterial beabstandet. Der Ringspalt 11 zwischen den Rohren 8 und 9 bildet den Entladungsraum. Als erste Elektrode ist eine dünne UV-durchlässige elektrisch leitende Schicht 12, z.B. aus Indium- oder Zinnoxid oder Alkalimetall oder Gold, auf der Aussenwandung des äusseren Quarzrohrs 8 und eine ebensolche Schicht 13 als zweite Elektrode auf der Innenwandung des inneren Glasrohrs 9 vorgesehen. Der Entladungsraum ist analog zum Ausführungsbeispiel nach Fig. 1 mit einer Substanz bzw. Substanzgemisch gemäss der vorstehenden Tabelle gefüllt. Auch hier können - je nach Wellenlänge der Strahlung andere Elektroden-Materialien und -Typen Verwendung finden, wie sie im Zusammenhang mit Fig. 1 genannt wurden.
- Die beschriebenen Strahler eignen sich gut als photochemische Reaktoren hoher Ausbeute. Im Fall des flachen Strahlers wird das reagierende Medium an der Vorderfläche und der Hinterfläche des Strahlers vorbeigeführt. Im Falte des Rundstrahlers wird das Medium sowohl innen als auch aussen hindurchgeführt.
- Die Flachstrahler können zum Beispiel als "UV-Paneele" in den Abgasschornstein von chemischen Reinigungen und anderen Industriebetrieben gehängt, um Reste von Lösungsmitteln (z.B. chlorierte Kohlenwasserstoffe) zu zerstören. Aehnlich kann eine grössere Anzahl solcher "Rundstrahler" zu grösseren Batterien zusammengefasst und für ähnliche Zwecke eingesetzt werden.
- Auch bei der Verspiegelung der einseitig abstrahlenden UV-Strahler nach der eingangs genannten Patentanmeldung lassen sich Verbesserungen erzielen. Den oben erwähnten dreimaligen Durchgang durch die absorbierenden Quarzwände kann man ver meiden, wenn man die UV-Verspiegelung (z.B. Aluminium) innen anbringt und dann mit einer dünnen Schicht aus Magnesiumfluorid (MgF2) abdeckt. Auf diese Weise müsste die Strahlung jeweils nur eine Quarzwand passieren.
Claims (11)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CH4156/87A CH675178A5 (de) | 1987-10-23 | 1987-10-23 | |
CH4156/87 | 1987-10-23 |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0312732A1 true EP0312732A1 (de) | 1989-04-26 |
EP0312732B1 EP0312732B1 (de) | 1992-04-15 |
Family
ID=4270852
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP88113593A Expired - Lifetime EP0312732B1 (de) | 1987-10-23 | 1988-08-22 | Hochleistungsstrahler |
Country Status (7)
Country | Link |
---|---|
US (1) | US4945290A (de) |
EP (1) | EP0312732B1 (de) |
JP (1) | JPH0821369B2 (de) |
CA (1) | CA1298345C (de) |
CH (1) | CH675178A5 (de) |
DE (1) | DE3870140D1 (de) |
NO (1) | NO884516L (de) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE4123915A1 (de) * | 1990-07-19 | 1992-01-23 | Herberts Gmbh | Verfahren zum schutz von thermisch empfindlichen aufzeichnungsmaterialien gegen aeussere einfluesse unter verwendung von radikalisch polymerisierbaren ueberzugsmitteln |
EP0703603A1 (de) * | 1994-09-20 | 1996-03-27 | Ushiodenki Kabushiki Kaisha | Dielektrikumbegrenzte Entladungslampe |
EP0767484A1 (de) * | 1995-10-02 | 1997-04-09 | Ushiodenki Kabushiki Kaisha | Entladungslampe mit dielektrischer Sperrschicht |
EP0836220A1 (de) * | 1996-04-30 | 1998-04-15 | Ushio Denki Kabushiki Kaisha | Leuchtstofflampe mit ausserer elektrode und beleuchtungseinheit |
US6060828A (en) * | 1996-09-11 | 2000-05-09 | Patent-Treuhand-Gesellschaft Fuer Elektrische Gluehlampen Mbh | Electric radiation source and irradiation system with this radiation source |
US6398970B1 (en) | 1999-04-28 | 2002-06-04 | U.S. Philips Corporation | Device for disinfecting water comprising a UV-C gas discharge lamp |
DE10133949C1 (de) * | 2001-07-17 | 2003-03-20 | Inst Niedertemperatur Plasmaph | Vorrichtung zur Erzeugung von Gasentladungen, die nach dem Prinzip der dielektrisch behinderten Entladung aufgebaut ist, für Lichtquellen und Sichtanzeigeeinrichtungen |
DE102004055328B3 (de) * | 2004-11-16 | 2006-04-13 | Institut für Niedertemperatur-Plasmaphysik e.V. | Vorrichtung nach dem Prinzip einer dielektrisch behinderten Entladung zur Strahlungserzeugung |
Families Citing this family (47)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CH676168A5 (de) * | 1988-10-10 | 1990-12-14 | Asea Brown Boveri | |
CH677557A5 (de) * | 1989-03-29 | 1991-05-31 | Asea Brown Boveri | |
US5118989A (en) * | 1989-12-11 | 1992-06-02 | Fusion Systems Corporation | Surface discharge radiation source |
US5798611A (en) * | 1990-10-25 | 1998-08-25 | Fusion Lighting, Inc. | Lamp having controllable spectrum |
US5834895A (en) * | 1990-10-25 | 1998-11-10 | Fusion Lighting, Inc. | Visible lamp including selenium |
AU3977193A (en) * | 1990-10-25 | 1993-11-18 | Fusion Systems Corporation | Lamp having controllable characteristics |
US5404076A (en) * | 1990-10-25 | 1995-04-04 | Fusion Systems Corporation | Lamp including sulfur |
HU214794B (hu) * | 1990-10-25 | 1998-05-28 | Fusion Lighting Inc. | Látható fényt kibocsátó gázkisülő fényforrás |
EP0515711A1 (de) * | 1991-05-27 | 1992-12-02 | Heraeus Noblelight GmbH | Hochleistungsstrahler |
EP0521553B1 (de) * | 1991-07-01 | 1996-04-24 | Koninklijke Philips Electronics N.V. | Hochdrucksglimmentladungslampe |
JP2733155B2 (ja) * | 1991-10-24 | 1998-03-30 | 松下電工株式会社 | 面状発光体 |
US5504391A (en) * | 1992-01-29 | 1996-04-02 | Fusion Systems Corporation | Excimer lamp with high pressure fill |
JP2893158B2 (ja) * | 1992-04-23 | 1999-05-17 | 株式会社荏原製作所 | 放電反応装置 |
US5549874A (en) * | 1992-04-23 | 1996-08-27 | Ebara Corporation | Discharge reactor |
EP0607960B2 (de) * | 1993-01-20 | 2001-05-16 | Ushiodenki Kabushiki Kaisha | Entladungslampe mit dielektrischer Sperrschicht |
AU1396295A (en) * | 1993-10-15 | 1995-05-04 | Fusion Lighting, Inc. | Tellurium lamp |
US5914564A (en) * | 1994-04-07 | 1999-06-22 | The Regents Of The University Of California | RF driven sulfur lamp having driving electrodes which face each other |
JP3025414B2 (ja) | 1994-09-20 | 2000-03-27 | ウシオ電機株式会社 | 誘電体バリア放電ランプ装置 |
US5585641A (en) * | 1995-05-23 | 1996-12-17 | The Regents Of The University Of California | Large area, surface discharge pumped, vacuum ultraviolet light source |
US5818167A (en) * | 1996-02-01 | 1998-10-06 | Osram Sylvania Inc. | Electrodeless high intensity discharge lamp having a phosphorus fill |
DE19613502C2 (de) * | 1996-04-04 | 1998-07-09 | Heraeus Noblelight Gmbh | Langlebiger Excimerstrahler und Verfahren zu seiner Herstellung |
US5945790A (en) * | 1997-11-17 | 1999-08-31 | Schaefer; Raymond B. | Surface discharge lamp |
US6015759A (en) * | 1997-12-08 | 2000-01-18 | Quester Technology, Inc. | Surface modification of semiconductors using electromagnetic radiation |
US6049086A (en) * | 1998-02-12 | 2000-04-11 | Quester Technology, Inc. | Large area silent discharge excitation radiator |
US5993278A (en) * | 1998-02-27 | 1999-11-30 | The Regents Of The University Of California | Passivation of quartz for halogen-containing light sources |
JP2000173554A (ja) * | 1998-12-01 | 2000-06-23 | Md Komu:Kk | 誘電体バリア放電ランプ |
JP3458757B2 (ja) | 1999-03-30 | 2003-10-20 | ウシオ電機株式会社 | 誘電体バリア放電ランプ装置 |
DE19920693C1 (de) * | 1999-05-05 | 2001-04-26 | Inst Oberflaechenmodifizierung | Offener UV/VUV-Excimerstrahler und Verfahren zur Oberflächenmodifizierung von Polymeren |
US6614181B1 (en) * | 2000-08-23 | 2003-09-02 | Applied Materials, Inc. | UV radiation source for densification of CVD carbon-doped silicon oxide films |
US6566278B1 (en) | 2000-08-24 | 2003-05-20 | Applied Materials Inc. | Method for densification of CVD carbon-doped silicon oxide films through UV irradiation |
US20020067130A1 (en) * | 2000-12-05 | 2002-06-06 | Zoran Falkenstein | Flat-panel, large-area, dielectric barrier discharge-driven V(UV) light source |
US6559607B1 (en) | 2002-01-14 | 2003-05-06 | Fusion Uv Systems, Inc. | Microwave-powered ultraviolet rotating lamp, and process of use thereof |
DE10235036A1 (de) * | 2002-07-31 | 2004-02-26 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | UV-Lichtquelle |
FR2843483B1 (fr) * | 2002-08-06 | 2005-07-08 | Saint Gobain | Lampe plane, procede de fabrication et application |
US7226677B2 (en) * | 2003-05-01 | 2007-06-05 | Ernest Gladstone | Arrangement for supplying ozone to a fuel cell for a passenger car |
JP2005005258A (ja) * | 2003-05-19 | 2005-01-06 | Ushio Inc | エキシマランプ発光装置 |
JP5054517B2 (ja) * | 2004-07-09 | 2012-10-24 | コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ | 反射器を備えるuvc/vuv誘電体バリア放電ランプ |
US7166963B2 (en) * | 2004-09-10 | 2007-01-23 | Axcelis Technologies, Inc. | Electrodeless lamp for emitting ultraviolet and/or vacuum ultraviolet radiation |
JP4720154B2 (ja) * | 2004-11-19 | 2011-07-13 | ウシオ電機株式会社 | フラッシュランプ発光装置 |
JP4691004B2 (ja) * | 2006-12-07 | 2011-06-01 | 株式会社東芝 | 紫外線光による不活化処理方法 |
DE102007020655A1 (de) | 2007-04-30 | 2008-11-06 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Verfahren zum Herstellen dünner Schichten und entsprechende Schicht |
CN101946301B (zh) * | 2008-02-21 | 2012-08-22 | 欧司朗股份有限公司 | 带有保持片的介电阻挡放电灯 |
JP4748208B2 (ja) * | 2008-11-18 | 2011-08-17 | ウシオ電機株式会社 | エキシマ放電ランプおよびエキシマ放電ランプの製造方法 |
DE102010003352A1 (de) * | 2010-03-26 | 2011-09-29 | Osram Gesellschaft mit beschränkter Haftung | Dielektrische Barriere-Entladungslampe mit Haltescheibe |
US9493366B2 (en) | 2010-06-04 | 2016-11-15 | Access Business Group International Llc | Inductively coupled dielectric barrier discharge lamp |
JP2011009238A (ja) * | 2010-09-22 | 2011-01-13 | Gs Yuasa Corp | 無声放電ランプおよび照射装置 |
ITUB20159319A1 (it) * | 2015-12-29 | 2017-06-29 | Carlo Rupnik | Concentratore tubolare per irraggiamento concentrico di onde elettromagnetiche |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
BE739064A (de) * | 1968-09-19 | 1970-03-18 | ||
US4266167A (en) * | 1979-11-09 | 1981-05-05 | Gte Laboratories Incorporated | Compact fluorescent light source and method of excitation thereof |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4266166A (en) * | 1979-11-09 | 1981-05-05 | Gte Laboratories Incorporated | Compact fluorescent light source having metallized electrodes |
JPS5732564A (en) * | 1980-08-04 | 1982-02-22 | Toshiba Corp | High-frequency flat electric-discharge lamp |
US4427921A (en) * | 1981-10-01 | 1984-01-24 | Gte Laboratories Inc. | Electrodeless ultraviolet light source |
JPS614152A (ja) * | 1984-06-18 | 1986-01-10 | Okuno Denki Sangyo Kk | 面状放電発光体 |
CH670171A5 (de) * | 1986-07-22 | 1989-05-12 | Bbc Brown Boveri & Cie |
-
1987
- 1987-10-23 CH CH4156/87A patent/CH675178A5/de not_active IP Right Cessation
-
1988
- 1988-08-22 EP EP88113593A patent/EP0312732B1/de not_active Expired - Lifetime
- 1988-08-22 DE DE8888113593T patent/DE3870140D1/de not_active Expired - Lifetime
- 1988-10-04 CA CA000579293A patent/CA1298345C/en not_active Expired - Lifetime
- 1988-10-10 NO NO88884516A patent/NO884516L/no unknown
- 1988-10-21 US US07/260,869 patent/US4945290A/en not_active Expired - Lifetime
- 1988-10-24 JP JP63266300A patent/JPH0821369B2/ja not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
BE739064A (de) * | 1968-09-19 | 1970-03-18 | ||
US4266167A (en) * | 1979-11-09 | 1981-05-05 | Gte Laboratories Incorporated | Compact fluorescent light source and method of excitation thereof |
Non-Patent Citations (1)
Title |
---|
JOURNAL OF APPLIED SPECTROSCOPY, Band 41, Nr. 4, Oktober 1984, Seiten 1194-1197, Plenum Publishing Corp., New York, US; G.A. VOLKOVA et al.: "Vacuum-ultraviolet lamps with a barrier discharge in inert gases" * |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE4123915A1 (de) * | 1990-07-19 | 1992-01-23 | Herberts Gmbh | Verfahren zum schutz von thermisch empfindlichen aufzeichnungsmaterialien gegen aeussere einfluesse unter verwendung von radikalisch polymerisierbaren ueberzugsmitteln |
EP0703603A1 (de) * | 1994-09-20 | 1996-03-27 | Ushiodenki Kabushiki Kaisha | Dielektrikumbegrenzte Entladungslampe |
EP0767484A1 (de) * | 1995-10-02 | 1997-04-09 | Ushiodenki Kabushiki Kaisha | Entladungslampe mit dielektrischer Sperrschicht |
EP0836220A1 (de) * | 1996-04-30 | 1998-04-15 | Ushio Denki Kabushiki Kaisha | Leuchtstofflampe mit ausserer elektrode und beleuchtungseinheit |
EP0836220A4 (de) * | 1996-04-30 | 1998-08-26 | Ushio Electric Inc | Leuchtstofflampe mit ausserer elektrode und beleuchtungseinheit |
US5889366A (en) * | 1996-04-30 | 1999-03-30 | Ushiodenki Kabushiki Kaisha | Fluorescent lamp of the external electrode type and irradiation unit |
US6060828A (en) * | 1996-09-11 | 2000-05-09 | Patent-Treuhand-Gesellschaft Fuer Elektrische Gluehlampen Mbh | Electric radiation source and irradiation system with this radiation source |
US6398970B1 (en) | 1999-04-28 | 2002-06-04 | U.S. Philips Corporation | Device for disinfecting water comprising a UV-C gas discharge lamp |
DE10133949C1 (de) * | 2001-07-17 | 2003-03-20 | Inst Niedertemperatur Plasmaph | Vorrichtung zur Erzeugung von Gasentladungen, die nach dem Prinzip der dielektrisch behinderten Entladung aufgebaut ist, für Lichtquellen und Sichtanzeigeeinrichtungen |
DE102004055328B3 (de) * | 2004-11-16 | 2006-04-13 | Institut für Niedertemperatur-Plasmaphysik e.V. | Vorrichtung nach dem Prinzip einer dielektrisch behinderten Entladung zur Strahlungserzeugung |
Also Published As
Publication number | Publication date |
---|---|
US4945290A (en) | 1990-07-31 |
CH675178A5 (de) | 1990-08-31 |
NO884516D0 (no) | 1988-10-10 |
CA1298345C (en) | 1992-03-31 |
NO884516L (no) | 1989-04-24 |
JPH0821369B2 (ja) | 1996-03-04 |
EP0312732B1 (de) | 1992-04-15 |
DE3870140D1 (de) | 1992-05-21 |
JPH01144560A (ja) | 1989-06-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0312732B1 (de) | Hochleistungsstrahler | |
EP0254111B1 (de) | UV-Strahler | |
EP0324953B1 (de) | Hochleistungsstrahler | |
EP0458140B1 (de) | Hochleistungsstrahler | |
EP0371304B1 (de) | Hochleistungsstrahler | |
DE69409677T3 (de) | Entladungslampe mit dielektrischer Sperrschicht | |
EP0578953B1 (de) | Hochleistungsstrahler | |
DE69720184T2 (de) | Seriengeschaltete hochdruck-bogenentladungslampe mit einer vereinfachten zündhilfevorrichtung | |
CH677557A5 (de) | ||
CH676168A5 (de) | ||
EP0482230B1 (de) | Hochleistungsstrahler | |
DE19543342A1 (de) | Verfahren und Strahlungsanordnung zur Erzeugung von UV-Strahlen zur Körperbestrahlung sowie Verwendung | |
EP1447615B1 (de) | Gepulster Sonnensimulator mit verbesserter Homogenität | |
EP1984936A1 (de) | Hochdruckentladungslampe | |
EP0517929B1 (de) | Bestrahlungseinrichtung mit einem Hochleistungsstrahler | |
DE4302465C1 (de) | Vorrichtung zum Erzeugen einer dielektrisch behinderten Entladung | |
DE2346132A1 (de) | Keramik-entladungslampe | |
DE4036122A1 (de) | Koronaentladungs-lichtquellenzelle | |
DE4022279A1 (de) | Bestrahlungseinrichtung | |
DE4208376A1 (de) | Hochleistungsstrahler | |
DE4203345A1 (de) | Hochleistungsstrahler | |
DE3240757C2 (de) | ||
DE2461568A1 (de) | Dampfentladungslampe | |
DE3618573C2 (de) | ||
EP0334355B1 (de) | Wandstabilisierte Hochdruck-Entladungslampe |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): CH DE FR GB IT LI NL SE |
|
17P | Request for examination filed |
Effective date: 19891009 |
|
17Q | First examination report despatched |
Effective date: 19910522 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): CH DE FR GB IT LI NL SE |
|
REF | Corresponds to: |
Ref document number: 3870140 Country of ref document: DE Date of ref document: 19920521 |
|
ITF | It: translation for a ep patent filed | ||
ET | Fr: translation filed | ||
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PUE Owner name: HERAEUS NOBLELIGHT GMBH |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: TP |
|
ITPR | It: changes in ownership of a european patent |
Owner name: CESSIONE;HERAEUS NOBLELIGHT GMBH |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: 732E |
|
NLS | Nl: assignments of ep-patents |
Owner name: HERAEUS NOBLELIGHT GMBH TE KLEINOSTHEIM, BONDSREPU |
|
EAL | Se: european patent in force in sweden |
Ref document number: 88113593.3 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: IF02 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 20020717 Year of fee payment: 15 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 20020725 Year of fee payment: 15 Ref country code: NL Payment date: 20020725 Year of fee payment: 15 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20020730 Year of fee payment: 15 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20020809 Year of fee payment: 15 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20020812 Year of fee payment: 15 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20030822 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20030823 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20030831 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20030831 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20040301 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20040302 |
|
EUG | Se: european patent has lapsed | ||
GBPC | Gb: european patent ceased through non-payment of renewal fee | ||
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20040430 |
|
NLV4 | Nl: lapsed or anulled due to non-payment of the annual fee |
Effective date: 20040301 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED. Effective date: 20050822 |