EP0517929A1 - Bestrahlungseinrichtung mit einem Hochleistungsstrahler - Google Patents

Bestrahlungseinrichtung mit einem Hochleistungsstrahler Download PDF

Info

Publication number
EP0517929A1
EP0517929A1 EP91108988A EP91108988A EP0517929A1 EP 0517929 A1 EP0517929 A1 EP 0517929A1 EP 91108988 A EP91108988 A EP 91108988A EP 91108988 A EP91108988 A EP 91108988A EP 0517929 A1 EP0517929 A1 EP 0517929A1
Authority
EP
European Patent Office
Prior art keywords
coolant
radiator
radiation
power
coolant bath
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP91108988A
Other languages
English (en)
French (fr)
Other versions
EP0517929B1 (de
Inventor
Christoph Dr. Von Arx
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Heraeus Noblelight GmbH
Original Assignee
ABB Asea Brown Boveri Ltd
Heraeus Noblelight GmbH
Asea Brown Boveri AB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ABB Asea Brown Boveri Ltd, Heraeus Noblelight GmbH, Asea Brown Boveri AB filed Critical ABB Asea Brown Boveri Ltd
Priority to DE59104972T priority Critical patent/DE59104972D1/de
Priority to EP19910108988 priority patent/EP0517929B1/de
Priority to CA 2068574 priority patent/CA2068574A1/en
Priority to JP4140219A priority patent/JP2540415B2/ja
Publication of EP0517929A1 publication Critical patent/EP0517929A1/de
Application granted granted Critical
Publication of EP0517929B1 publication Critical patent/EP0517929B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/52Cooling arrangements; Heating arrangements; Means for circulating gas or vapour within the discharge space
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J65/00Lamps without any electrode inside the vessel; Lamps with at least one main electrode outside the vessel
    • H01J65/04Lamps in which a gas filling is excited to luminesce by an external electromagnetic field or by external corpuscular radiation, e.g. for indicating plasma display panels
    • H01J65/042Lamps in which a gas filling is excited to luminesce by an external electromagnetic field or by external corpuscular radiation, e.g. for indicating plasma display panels by an external electromagnetic field
    • H01J65/046Lamps in which a gas filling is excited to luminesce by an external electromagnetic field or by external corpuscular radiation, e.g. for indicating plasma display panels by an external electromagnetic field the field being produced by using capacitive means around the vessel

Definitions

  • the invention relates to an irradiation device with a high-power radiator, in particular for ultraviolet light, with a discharge space filled with filling gas emitting radiation under discharge conditions, the walls of which are formed by a first and a second dielectric, which have first metallic grids on its surfaces facing away from the discharge space - Or net-shaped and second electrodes is provided with an alternating current source connected to the first and second electrodes for supplying the discharge.
  • the invention relates to a state of the art, as can be seen for example from EP-A 0254 111.
  • UV sources The industrial use of photochemical processes depends heavily on the availability of suitable UV sources.
  • the classic UV lamps deliver low to medium UV intensities at some discrete wavelengths, such as the low-pressure mercury lamps at 185 nm and especially at 254 nm.
  • Really high UV powers can only be obtained from high-pressure lamps (Xe, Hg), which then but distribute their radiation over a larger wavelength range.
  • the new excimer lasers have provided some new wavelengths for basic photochemical experiments. for cost reasons for an industrial process probably only suitable in exceptional cases.
  • the object of the invention is to create an irradiation device with a radiator, in particular for UV or VUV radiation, the electrodes of which shade the radiation as little as possible and the radiator can be optimally cooled.
  • the radiator is immersed in a coolant bath, such that the first dielectric and at least the first electrodes are surrounded by the coolant, and that at least one wall of the coolant bath and the coolant itself are permeable to the radiation generated .
  • a first advantageous development of the subject matter of the invention is to provide the walls of the coolant bath with a layer that reflects UV radiation well, or to polish them in the case of walls made of aluminum or an aluminum alloy.
  • Another variant consists in providing a part of the outer surface of the outer dielectric tube with a UV-reflecting layer.
  • Another variant provides for a separate reflector to be installed in the coolant bath, which is designed in such a way that a considerable part of the UV radiation generated by the radiator leaves the bath without having to pass through the actual radiator again.
  • the coolant bath can also be used to cool the electrical and electronic components of the power source for supplying the radiator, e.g. in that the parts to be cooled are mounted directly on the outer walls.
  • the irradiation device shown schematically in FIGS. 1 and 2 comprises a UV high-power lamp with an outer dielectric tube 1, for example made of quartz glass, and an inner dielectric tube 2 arranged concentrically therewith, the inner wall of which is provided with an inner electrode 3.
  • the annular space between the two tubes 1 and 2 forms the discharge space 4 of the radiator.
  • the inner tube 2 is inserted gas-tight in the outer tube 1, which was previously filled with a gas or gas mixture which emits UV or VUV radiation under the influence of silent electrical discharges.
  • a wide-meshed metal net is used as the outer electrode 5 or it consists of individual metal wires or metal strips running in the longitudinal direction of the tube, which extends over approximately the upper half circumference of the outer tube 1.
  • both the outer electrode 5 and the outer dielectric tube 1 are transparent to the UV radiation generated.
  • the lower circumference of the tube 1 is provided with a reflector 6. This can be achieved, for example, with a vapor-deposited aluminum layer. This reflector is at the same electrical potential as the outer electrode 5.
  • the radiator just described is immersed in a coolant bath 10 delimited by metallic walls 7, 8, 9, 17, 18, through which coolant, preferably distilled water, flows through coolant inflow 11 or coolant outflow 12.
  • coolant preferably distilled water
  • a preferred embodiment optionally provides for mirroring the vessel walls to use a separate reflector 14 in the bottom section of the bath, which has a plurality of openings 15 and is at the same electrical potential as the vessel walls.
  • the breakthroughs allow a sufficient coolant flow from the inlet 11 to the outlet 12.
  • the reflector 14 is shaped in such a way that it reflects a large part of the UV light emitted downwards by the radiator without the radiation again passing through or even the two dielectric tubes 1 and 2 got to.
  • the cross section of the reflector 14 can be thought of as being composed of two parabolic sections.
  • the electrodes 3 and 5 are led to the two poles of an AC power source 16.
  • the AC power source 16 basically corresponds to those used for feeding ozone generators. Typically, it delivers an adjustable alternating voltage in the order of magnitude of several 100 volts to 20,000 volts at frequencies in the range of technical alternating current up to several 1000 kHz - depending on the electrode geometry, pressure in the discharge space 4 and composition of the filling gas.
  • the filling gas is, for example, mercury, noble gas, noble gas-metal vapor mixture, noble gas-halogen mixture, optionally under Use of an additional further noble gas, preferably Ar, He, Ne, as a buffer gas.
  • a substance / substance mixture according to the following table can be used: Filling gas radiation helium 60-100 nm neon 80 - 90 nm argon 107 - 165 nm Argon + fluorine 180-200 nm Argon + chlorine 165-190 nm Argon + krypton + chlorine 165-190, 200-240 nm xenon 160-190 nm nitrogen 337 - 415 nm krypton 124, 140-160 nm Krypton + fluorine 240 - 255 nm Krypton + chlorine 200-240 nm mercury 185, 254, 320-370, 390-420 nm selenium 196, 204, 206 nm deuterium 150-250 nm Xenon + fluorine 340 - 360 nm, 400 - 550 nm Xenon + chlorine 300-320 nm
  • the electron energy distribution can be optimally adjusted by the thickness of the dielectrics 1 and 2 and their properties, pressure and / or temperature in the discharge space 4.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Discharge Lamps And Accessories Thereof (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

Zur Verbesserung der Kühlung einer Bestrahlungseinrichtung mit einem UV-Hochleistungsstrahlern ist letzterer vollständig in ein Kühlmittelbad (10) eingetaucht, wobei das Bad und mindestens eine Wandung (13) des Bades für die erzeugte UV-Strahlung transparent sind. <IMAGE>

Description

    Technisches Gebiet
  • Die Erfindung bezieht sich auf eine Bestrahlungseinrichtung mit einem Hochleistungsstrahler, insbesondere für ultraviolettes Licht, mit einem mit unter Entladungsbedingungen Strahlung aussendendem Füllgas gefüllten Entladungsraum, dessen Wandungen durch ein erstes und ein zweites Dielektrikum gebildet sind, welches auf seinen dem Entladungsraum abgewandten Oberflächen mit ersten metallischen gitter- oder netzförmigen und zweiten Elektroden versehen ist, mit einer an die ersten und zweiten Elektroden angeschlossenen Wechselstromquelle zur Speisung der Entladung.
  • Die Erfindung nimmt dabei Bezug auf einen Stand der Technik, wie er sich etwa aus der EP-A 0254 111 ergibt.
  • Technologischer Hintergrund und Stand der Technik
  • Der industrielle Einsatz photochemischer Verfahren hängt stark von der der Verfügbarkeit geeigneter UV-Quellen ab. Die klassischen UV-Strahler liefern niedrige bis mittlere UV-Intensitäten bei einigen diskreten Wellenlängen, wie z.B. die Quecksilber-Niederdrucklampen bei 185 nm und insbesondere bei 254 nm. Wirklich hohe UV-Leistungen erhält man nur aus Hochdrucklampen (Xe, Hg), die dann aber ihre Strahlung über einen grösseren Wellenlängenbereich verteilen. Die neuen Excimer-Laser haben einige neue Wellenlängen für photochemische Grundlagenexperimente bereitgestellt, sind z.Zt. aus Kostengründen für einen industriellen Prozess wohl nur in Ausnahmefällen geeignet.
  • In der eingangs genannten EP-Patentanmeldung oder auch in dem Konferenzdruck "Neue UV- und VUV Excimerstrahler" von U. Kogelschatz und B. Eliasson, verteilt an der 10. Vortragstagung der Gesellschaft Deutscher Chemiker, Fachgruppe Photochemie, in Würzburg (BRD) 18.-20. November 1987, wird ein neuer Excimerstrahler beschrieben. Dieser neue Strahlertyp basiert auf der Grundlage, dass man Excimerstrahlung auch in stillen elektrischen Entladungen erzeugen kann, einem Entladungstyp, der in der Ozonerzeugung grosstechnisch eingesetzt wird. In den nur kurzzeitig (< 1 Mikrosekunde) vorhandenen Stromfilamenten dieser Entladung werden durch Elektronenstoss Edelgasatome angeregt, die zu angeregten Molekülkomplexen (Excimeren) weiterreagieren. Diese Excimere leben nur einige 100 Nanosekunden und geben beim Zerfall ihre Bindungsenergie in Form von UV-Strahlung ab.
  • Der Aufbau eines derartigen Excimerstrahlers entspricht bis hin zur Stromversorgung weitgehend dem eines klassichen Ozonerzeugers, mit dem wesentlichen Unterschied, dass mindestens eine der den Entladungsraum begrenzenden Elektroden und/oder Dielektrikumsschichten für die erzeugte Strahlung durchlässig ist. Zumindest eine dieser Elektroden dürfen die erzeugte Strahlung nur wenig abschatten. Eine weitere Anforderung an den Strahler besteht darin, auch er auch bei hohen Leistungsdichten möglichst wenig Wärme abstrahlt. Dies ist insbesondere bei Anwendungen in der grafischen Industrie wichtig, wo häufig Druckfarben auf einem hitzeempfindlichen Untergrund ausgehärtet werden müssen.
  • Kurze Darstellung der Erfindung
  • Ausgehend vom Stand der Technik liegt der Erfindung die Aufgabe zugrunde, einen Bestrahlungseinrichtung mit einem Strahler, insbesondere für UV- oder VUV-Strahlung, zu schaffen, dessen Elektroden die Strahlung möglichst wenig abschatten und der Strahler optimal gekühlt werden kann.
  • Zur Lösung dieser Aufgabe ist erfindungsgemäss vorgesehen, dass der Strahler in ein Kühlmittelbad eingetaucht ist, derart, dass das erste Dielektrikum und zumindest die ersten Elektroden vom Kühlmittel umspült sind, und dass zumindest eine Wandung des Kühlmittelbades und das Kühlmittel selbst für die erzeugte Strahlung durchlässig sind.
  • Eine derart aufgebaute Bestrahlungseinrichtung erfüllt alle Anforderungen der Praxis:
    • Die Erfindung ermöglicht den Aufbau eines absolut kalten Strahlers, was insbesondere im Zusammenhang mit der Aushärtung von Druckfarben auf hitzeempfindlichem Untergrund wichtig ist.
    • Die Aussenelektroden können von einfacher Konstruktion sein - es genügen einige wenige in Strahlerlängsrichtung verlaufende Metallstreifen oder Metalldrähte, die nicht notwenig auf dem äusseren Dielektrikum aufliegen müssen. Auf diese Weise können die Dielektrika leicht ausgewechselt werden.
    • Das Kühlmittel, bevorzugt Wasser, verhindert Aussenentladungen zwischen Aussenelektroden und Aussenwand des Strahlers. Dies verhindert die Ozonbildung.
    • Weil sich keine Aussenenladungen mehr ausbilden können, wird auch Metallabscheidung durch Sputtern verhindert, d.h. die UV-Durchlässigkeit wird auch nach längerer Betriebszeit nicht beeinträchtigt.
    • Falls die jeweilige Anwendung einen Betrieb nur mit einem allseitig abgeschlossenen Kühlmittelbad erlaubt und die UV-Strahlung dieses nur durch ein Fenster verlassen kann, ist dieses leicht zu reinigen oder auszuwechseln. Dies ist für die Verwendung des Strahlers in der grafischen Industrie bedeutsam, wo häufig Farbrückstände entfernt werden müssen.
    • Die Erfindung ermöglicht neben einem streng modularem Aufbau auch die Integration mehrerer Strahler im selben Bad.
  • Eine erste vorteilhafte Weiterbildung des Erfindungsgegenstandes besteht darin, die Wände des Kühlmittelbades mit einer die UV-Strahlung gut reflektierenden Schicht zu versehen, oder bei Wänden aus Aluminium oder einer Aluminium-Legierung diese zu polieren. Eine andere Variante besteht darin, einen Teil des Aussenfläche des äusseren Dielektrikumsrohrs mit einer UV-reflektierenden Schicht zu versehen. Wieder eine andere Variante sieht vor, in das Kühlmittelbad einen separaten Reflektor einzubauen, der so gestaltet ist, dass ein beträchtlicher Teil des vom Strahler erzeugten UV-Strahlung das Bad verlässt, ohne dass diese den eigentlichen Strahler nochmals passieren muss.
  • Bei all diesen Varianten kann das Kühlmittelbad auch zur Kühlung der elektrischen und elektronischen Komponenten der Stromquelle für die Speisung des Strahler herangezogen werden, z.B. dadurch, dass die zu kühlenden Teile direkt auf die Aussenwände montiert sind.
  • Besondere Ausgestaltungen der Erfindung und die damit erzielbaren weiteren Vorteile werden nachstehend unter Bezugnahme auf die Zeichnungen näher erläutert.
  • Kurze Beschreibung der Zeichnungen
  • In der Zeichnung sind Ausführungsformen von Hochleistungs-Bestrahlungseinrichtung in stark vereinfachter Form dargestellt; dabei zeigt
  • Fig.1
    eine Bestrahlungseinrichtung mit einem UV-Zylinderstrahler, der in ein Kühlmittelbad eingetaucht ist, und bei dem die UV-Strahlung durch ein Fenster nach aussen dringen kann;
    Fig.2
    Einen Längsschnitt durch die Einrichtung nach Fig.1 längs deren Linie AA;
    Fig.3
    eine Abwandlung der Einrichtung gemäss Fig.1 mit einem separaten Reflektor im Kühlmittelbad.
    Detaillierte Beschreibung der Erfindung
  • Die in Fig. 1 und 2 schematisch dargestellte Bestrahlungseinrichtung umfasst einen UV-Hochleistungsstrahler mit einem einem äusseren Dielektrikumsrohr 1, z.B. aus Quarzglas, einem dazu konzentrisch angeordneten inneren Dielelektrikumsrohr 2, dessen Innenwand mit einer Innenelektrode 3 versehen ist. Der Ringraum zwischen den beiden Rohren 1 und 2 bildet den Entladungsraum 4 des Strahlers. Das innere Rohr 2 ist gasdicht in das äussere Rohr 1 eingesetzt, das vorgängig mit einem Gas oder Gasgemisch gefüllt wurde, das unter Einfluss stiller elektrischer Entladungen UV oder VUV-Strahlung aussendet. Als äussere Elektrode 5 dient ein weitmaschiges Metallnetz oder es besteht aus einzelnen in Rohrlängsrichtung verlaufenden Metalldrähten oder Metallstreifen, das sich über etwa den oberen halben Umfang des äusseren Rohres 1 erstreckt. Bei einer streifenförmigen Elektrodenanordnung sind die einzelnen Streifen an mehreren axial verteilten Stellen untereinander verbunden. Sowohl die äussere Elektrode 5 als auch das äussere Dielektrikumsrohr 1 sind für die erzeugte UV-Strahlung durchlässig. Der untere Umfang des Rohres 1 ist mit einem Reflektor 6 versehen. Diese kann z.B. durch eine aufgedampfte Alumniumschicht realisiert werden. Diese Reflektor liegt auf dem selben elektrischen Potential wie die äussere Elektrode 5.
  • Der soeben beschriebene Strahler ist in ein von metallischen Wänden 7, 8, 9, 17, 18 begrenztes Kühlmittelbad 10 eingetaucht, das via Kühlmittelzufluss 11 bzw. Kühlmittelabfluss 12 von Kühlmittel, vorzugsweise destilliertem Wasser, durchströmt wird. Im oberen Teil ist ein UV-durchlässiges Fenster 13, z.B. aus Quarzglas, vorgesehen.
  • Eine andere Möglichkeit, die entstehende Strahlung bevorzugt durch das Fenster 13 in den Aussenraum zu leiten besteht darin, die Innenseite der Wände 7, 8 und 9 zu verspiegeln, was bei Aluminiumwänden durch Polieren der Oberflächen erfolgen kann. Eine bevorzugte Ausführungsform sieht optional zur Verspiegelung der Gefässwände vor, im Bodenabschnitt des Bades einen separaten Reflektor 14 einzusetzen, der eine Vielzahl von Durchbrüchen 15 aufweist und auf dem selben elektrischen Potential wie die Gefässwände liegt. Die Durchbrüche ermöglichen einen ausreichenden Kühlmittelfluss vom Einlauf 11 zum Abfluss 12. Der Reflektor 14 ist so geformt, dass er einen Grossteil des vom Strahler nach unten ausgesandten UV-Lichtes reflektiert, ohne dass die Strahlung nochmals das oder gar die beiden Dielektrikumsrohre 1 und 2 passieren muss. Der Querschnitt des Reflektors 14 kann man sich aus zwei Parabelabschnitten zusammengesetzt denken.
  • Die Elektroden 3 und 5 sind an die beiden Pole einer Wechselstromquelle 16 geführt. Die Wechselstromquelle 16 entspricht grundsätzlich jenen, wie sie zur Anspeisung von Ozonerzeugern verwendet werden. Typisch liefert sie eine einstellbare Wechselspannung in der Grössenordnung von mehreren 100 Volt bis 20000 Volt bei Frequenzen im Bereich des technischen Wechselstroms bis hin zu einigen 1000 kHz - abhängig von der Elektrodengeometrie, Druck im Entladungsraum 4 und Zusammensetzung des Füllgases.
  • Das Füllgas ist, z.B. Quecksilber, Edelgas, Edelgas-Metalldampf-Gemisch, Edelgas-Halogen-Gemisch, gegebenenfalls unter Verwendung eines zusätzlichen weiteren Edelgases, vorzugsweise Ar, He, Ne, als Puffergas.
  • Je nach gewünschter spektraler Zusammensetzung der Strahlung kann dabei eine Substanz/Substanzgemisch gemäss nachfolgender Tabelle Verwendung finden:
    Füllgas Strahlung
    Helium 60 - 100 nm
    Neon 80 - 90 nm
    Argon 107 - 165 nm
    Argon + Fluor 180 - 200 nm
    Argon + Chlor 165 - 190 nm
    Argon + Krypton + Chlor 165 - 190, 200 - 240 nm
    Xenon 160 - 190 nm
    Stickstoff 337 - 415 nm
    Krypton 124, 140 - 160 nm
    Krypton + Fluor 240 - 255 nm
    Krypton + Chlor 200 - 240 nm
    Quecksilber 185, 254, 320-370, 390-420 nm
    Selen 196, 204, 206 nm
    Deuterium 150 - 250 nm
    Xenon + Fluor 340 - 360 nm, 400 - 550 nm
    Xenon + Chlor 300 - 320 nm
  • Daneben kommen eine ganze Reihe weiterer Füllgase in Frage:
    • Ein Edelgas (Ar, He, Kr, Ne, Xe) oder Hg mit einem Gas bzw. Dampf aus F₂, J₂, Br₂, Cl₂ oder eine Verbindung die in der Entladung ein oder mehrere Atome F, J, Br oder Cl abspaltet;
    • ein Edelgas (Ar, He, Kr, Ne, Xe) oder Hg mit O₂ oder einer Verbindung, die in der Entladung ein oder mehrere O-Atome abspaltet;
    • ein Edelgas (Ar, He, Kr, Ne, Xe) mit Hg.
  • In der sich bildenden stillen elektrischen Entladung (silent discharge) kann die Elektronenenergieverteilung durch Dicke der Dielektrika 1 und 2 und deren Eigenschaften Druck und/oder Temperatur im Entladungsraum 4 optimal eingestellt werden.
  • Bei Anliegen einer Wechselspannung zwischen den Elektroden 3, 5 bildet sich eine Vielzahl von Entladungskanälen (Teilentladungen) im Entladungsraum 4 aus. Diese treten mit den Atomen/Molekülen des Füllgases in Wechselwirkung, was schlussendlich zur UV oder VUV-Strahlung führt.

Claims (5)

  1. Bestrahlungseinrichtung mit einem Hochleistungsstrahler, insbesondere für ultraviolettes Licht, mit einem mit unter Entladungsbedingungen Strahlung aussendendem Füllgas gefüllten Entladungsraum, dessen Wandungen durch ein erstes und ein zweites Dielektrikum gebildet sind, welches auf seinen dem Entladungsraum abgewandten Oberflächen mit ersten metallischen gitter- oder netzförmigen und zweiten Elektroden versehen ist, mit einer an die ersten und zweiten Elektroden angeschlossenen Wechselstromquelle zur Speisung der Entladung, dadurch gekennzeichnet, dass der Strahler in ein Kühlmittelbad (10) eingetaucht ist, derart, dass das erste Dielektrikum (1) und zumindest die ersten Elektroden (5) vom Kühlmittel umspült sind, und dass zumindest eine Wandung (13) des Kühlmittelbades (10) und das Kühlmittel selbst für die erzeugte Strahlung durchlässig sind.
  2. Hochleistungsstrahler nach Anspruch 1, dadurch gekennzeichnet, die Wände (7,8,9) des Kühlmittelbades (10) mit einer UV-Strahlung gut reflektierenden Schicht versehen sind, oder bei Wänden (7,8,9) aus Aluminium oder einer Aluminium-Legierung diese poliert sind.
  3. Hochleistungsstrahler nach Anspruch 1, dadurch gekennzeichnet, dass ein Teil des Aussenfläche des äusseren Dielektrikumsrohrs (1) mit einer UV-reflektierenden Schicht (6) versehen ist.
  4. Hochleistungsstrahler nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass in das Kühlmittelbad (10) ein separater Reflektor (14) eingebaut ist, der so gestaltet ist, dass ein beträchtlicher Teil des vom Strahler erzeugten UV-Strahlung das Kühlmittelbad (10) verlässt, ohne dass diese den eigentlichen Strahler nochmals passieren muss.
  5. Hochleistungsstrahler nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass das Kühlmittelbad (10) auch zur Kühlung der elektrischen und elektronischen Komponenten der Stromquelle für die Speisung des Strahler heranziehbar ist.
EP19910108988 1991-06-01 1991-06-01 Bestrahlungseinrichtung mit einem Hochleistungsstrahler Expired - Lifetime EP0517929B1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE59104972T DE59104972D1 (de) 1991-06-01 1991-06-01 Bestrahlungseinrichtung mit einem Hochleistungsstrahler.
EP19910108988 EP0517929B1 (de) 1991-06-01 1991-06-01 Bestrahlungseinrichtung mit einem Hochleistungsstrahler
CA 2068574 CA2068574A1 (en) 1991-06-01 1992-05-13 Irradiation device having a high-power radiator
JP4140219A JP2540415B2 (ja) 1991-06-01 1992-06-01 高出力ビ―ム発生器を有する照射装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP19910108988 EP0517929B1 (de) 1991-06-01 1991-06-01 Bestrahlungseinrichtung mit einem Hochleistungsstrahler

Publications (2)

Publication Number Publication Date
EP0517929A1 true EP0517929A1 (de) 1992-12-16
EP0517929B1 EP0517929B1 (de) 1995-03-15

Family

ID=8206793

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19910108988 Expired - Lifetime EP0517929B1 (de) 1991-06-01 1991-06-01 Bestrahlungseinrichtung mit einem Hochleistungsstrahler

Country Status (4)

Country Link
EP (1) EP0517929B1 (de)
JP (1) JP2540415B2 (de)
CA (1) CA2068574A1 (de)
DE (1) DE59104972D1 (de)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996033872A1 (de) * 1995-04-27 1996-10-31 Metronic-Gerätebau Gmbh & Co. Verfahren und vorrichtung zum härten von uv-druckfarben
EP1024085A2 (de) * 1999-01-29 2000-08-02 SIG Pack Systems AG Vorrichtung zum Versiegeln von Folien, insbesondere zum Versiegeln von Verpackungsfolien in einer Verpackungsmaschine
DE10112900C1 (de) * 2001-03-15 2002-07-11 Heraeus Noblelight Gmbh Excimer-Strahler, insbesondere UV-Strahler
US6567023B1 (en) 1999-09-17 2003-05-20 Kabushiki Kaisha Toshiba Analog to digital to analog converter for multi-valued current data using internal binary voltage
FR2871290A1 (fr) * 2004-06-03 2005-12-09 Dermoptics Soc Par Actions Sim Procede d'emission de rayonnement et lampe a barrieres de decharge pour mettre ce procede en oeuvre
WO2006000697A2 (fr) * 2004-06-03 2006-01-05 Dermoptics Lampe a barrieres de decharge
EP1643538A2 (de) * 2004-09-29 2006-04-05 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Dielektrisch behinderte Entladungslampe mit elektrischer Abschirmung
EP1705690A1 (de) * 2004-01-14 2006-09-27 Matsushita Electric Industries Co., Ltd. Entladungslampen-einrichtung
US7573201B2 (en) 2004-09-29 2009-08-11 Osram Gesellschaft Mit Beschraenkter Haftung Dielectric barrier discharge lamp having pluggable electrodes
US7778532B2 (en) 2004-08-26 2010-08-17 Brevetix Device for heating grounds, in particular sports ground
GB2474032A (en) * 2009-10-01 2011-04-06 Heraeus Noblelight Gmbh Flash lamp or gas discharge lamp with integrated reflector

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1059659A4 (de) * 1998-12-28 2002-03-13 Japan Storage Battery Co Ltd Stille entladungs-röhre und anwendungs-verfahren derselben
JP2004087270A (ja) * 2002-08-26 2004-03-18 Orc Mfg Co Ltd エキシマランプおよびエキシマランプ装置
KR20070034461A (ko) * 2004-04-08 2007-03-28 센 엔지니어링 가부시키가이샤 유전체 배리어 방전 엑시머 광원
WO2005104184A1 (ja) * 2004-04-22 2005-11-03 Futaba Technology Corporation 紫外線照射装置
US7683343B2 (en) * 2005-01-28 2010-03-23 Koninklijke Philips Electronics N.V. Treatment system comprising a dielectric barrier discharge lamp
JP2006331903A (ja) * 2005-05-27 2006-12-07 Sen Engineering Kk 真空紫外光源

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL48671C (de) *
US3911318A (en) * 1972-03-29 1975-10-07 Fusion Systems Corp Method and apparatus for generating electromagnetic radiation
US4503360A (en) * 1982-07-26 1985-03-05 North American Philips Lighting Corporation Compact fluorescent lamp unit having segregated air-cooling means
DE3842993A1 (de) * 1988-12-21 1990-07-05 Beerwald Hans Zuendvorrichtung fuer wassergekuehlte ringentladungsroehren
EP0385205A1 (de) * 1989-02-27 1990-09-05 Heraeus Noblelight GmbH Hochleistungsstrahler
EP0254111B1 (de) * 1986-07-22 1992-01-02 BBC Brown Boveri AG UV-Strahler

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL48671C (de) *
US3911318A (en) * 1972-03-29 1975-10-07 Fusion Systems Corp Method and apparatus for generating electromagnetic radiation
US4503360A (en) * 1982-07-26 1985-03-05 North American Philips Lighting Corporation Compact fluorescent lamp unit having segregated air-cooling means
EP0254111B1 (de) * 1986-07-22 1992-01-02 BBC Brown Boveri AG UV-Strahler
DE3842993A1 (de) * 1988-12-21 1990-07-05 Beerwald Hans Zuendvorrichtung fuer wassergekuehlte ringentladungsroehren
EP0385205A1 (de) * 1989-02-27 1990-09-05 Heraeus Noblelight GmbH Hochleistungsstrahler

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 9, no. 219 (M-410)(1942) 6. September 1985 & JP-A-60 079 662 ( IWASAKI DENKI K. K. ) 7. Mai 1985 *
PATENT ABSTRACTS OF JAPAN vol. 9, no. 305 (E-363)(2028) 3. Dezember 1985 & JP-A-60 143 554 ( IWASAKI DENKI K. K. ) 29. Juli 1985 *

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6280801B1 (en) 1995-04-27 2001-08-28 Metronic Geratebau Gmbh Process and device for curing U/V printing inks
WO1996033872A1 (de) * 1995-04-27 1996-10-31 Metronic-Gerätebau Gmbh & Co. Verfahren und vorrichtung zum härten von uv-druckfarben
EP1024085A2 (de) * 1999-01-29 2000-08-02 SIG Pack Systems AG Vorrichtung zum Versiegeln von Folien, insbesondere zum Versiegeln von Verpackungsfolien in einer Verpackungsmaschine
EP1024085A3 (de) * 1999-01-29 2002-01-23 SIG Pack Systems AG Vorrichtung zum Versiegeln von Folien, insbesondere zum Versiegeln von Verpackungsfolien in einer Verpackungsmaschine
US6567023B1 (en) 1999-09-17 2003-05-20 Kabushiki Kaisha Toshiba Analog to digital to analog converter for multi-valued current data using internal binary voltage
US6727831B2 (en) 1999-09-17 2004-04-27 Kabushiki Kaisha Toshiba Semiconductor integrated circuit device and data transmission system
DE10112900C1 (de) * 2001-03-15 2002-07-11 Heraeus Noblelight Gmbh Excimer-Strahler, insbesondere UV-Strahler
EP1705690A1 (de) * 2004-01-14 2006-09-27 Matsushita Electric Industries Co., Ltd. Entladungslampen-einrichtung
EP1705690A4 (de) * 2004-01-14 2009-11-18 Panasonic Corp Entladungslampen-einrichtung
WO2006000697A2 (fr) * 2004-06-03 2006-01-05 Dermoptics Lampe a barrieres de decharge
WO2006000697A3 (fr) * 2004-06-03 2007-03-15 Dermoptics Lampe a barrieres de decharge
FR2871290A1 (fr) * 2004-06-03 2005-12-09 Dermoptics Soc Par Actions Sim Procede d'emission de rayonnement et lampe a barrieres de decharge pour mettre ce procede en oeuvre
US7778532B2 (en) 2004-08-26 2010-08-17 Brevetix Device for heating grounds, in particular sports ground
EP1643538A2 (de) * 2004-09-29 2006-04-05 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Dielektrisch behinderte Entladungslampe mit elektrischer Abschirmung
EP1643538A3 (de) * 2004-09-29 2008-02-13 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Dielektrisch behinderte Entladungslampe mit elektrischer Abschirmung
US7573201B2 (en) 2004-09-29 2009-08-11 Osram Gesellschaft Mit Beschraenkter Haftung Dielectric barrier discharge lamp having pluggable electrodes
GB2474032A (en) * 2009-10-01 2011-04-06 Heraeus Noblelight Gmbh Flash lamp or gas discharge lamp with integrated reflector
GB2474032B (en) * 2009-10-01 2016-07-27 Heraeus Noblelight Gmbh Flash lamp or gas discharge lamp with integrated reflector

Also Published As

Publication number Publication date
CA2068574A1 (en) 1992-12-02
EP0517929B1 (de) 1995-03-15
JPH05174793A (ja) 1993-07-13
DE59104972D1 (de) 1995-04-20
JP2540415B2 (ja) 1996-10-02

Similar Documents

Publication Publication Date Title
EP0389980B1 (de) Hochleistungsstrahler
EP0458140B1 (de) Hochleistungsstrahler
EP0578953B1 (de) Hochleistungsstrahler
EP0517929B1 (de) Bestrahlungseinrichtung mit einem Hochleistungsstrahler
EP0385205B1 (de) Hochleistungsstrahler
EP0254111B1 (de) UV-Strahler
EP0324953B1 (de) Hochleistungsstrahler
EP0509110B1 (de) Bestrahlungseinrichtung
EP0482230B1 (de) Hochleistungsstrahler
DE4140497C2 (de) Hochleistungsstrahler
EP0363832B1 (de) Hochleistungsstrahler
EP0371304B1 (de) Hochleistungsstrahler
DE19636965B4 (de) Elektrische Strahlungsquelle und Bestrahlungssystem mit dieser Strahlungsquelle
EP0839436B1 (de) Verfahren zum betreiben eines beleuchtungssystems und dafür geeignetes beleuchtungssystem
CH675178A5 (de)
EP0782871A2 (de) Verfahren und Strahlungsanordnung zur Erzeugung von UV-Strahlen zur Körperbestrahlung sowie Verwendung
EP0489184B1 (de) Hochleistungsstrahler
DE4010809A1 (de) Hochleistungsstrahler
DE4022279A1 (de) Bestrahlungseinrichtung
DE4203345A1 (de) Hochleistungsstrahler
DE4235743A1 (de) Hochleistungsstrahler
EP0515711A1 (de) Hochleistungsstrahler
DE3611303A1 (de) Gaslaseranordnung
DE19613357A1 (de) Gepulste Lichtquelle
WO1994013330A1 (de) Flüssigkeitsentkeimung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IT LI LU NL SE

RBV Designated contracting states (corrected)

Designated state(s): CH DE FR GB IT LI NL

17P Request for examination filed

Effective date: 19930507

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: HERAEUS NOBLELIGHT GMBH

17Q First examination report despatched

Effective date: 19930909

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE FR GB IT LI NL

REF Corresponds to:

Ref document number: 59104972

Country of ref document: DE

Date of ref document: 19950420

ITF It: translation for a ep patent filed
ET Fr: translation filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19950608

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20030520

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20030530

Year of fee payment: 13

Ref country code: GB

Payment date: 20030530

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20030603

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20030611

Year of fee payment: 13

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040630

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050101

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050101

GBPC Gb: european patent ceased through non-payment of renewal fee
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050228

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20050101

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050601