EP0385205A1 - Hochleistungsstrahler - Google Patents

Hochleistungsstrahler Download PDF

Info

Publication number
EP0385205A1
EP0385205A1 EP90103082A EP90103082A EP0385205A1 EP 0385205 A1 EP0385205 A1 EP 0385205A1 EP 90103082 A EP90103082 A EP 90103082A EP 90103082 A EP90103082 A EP 90103082A EP 0385205 A1 EP0385205 A1 EP 0385205A1
Authority
EP
European Patent Office
Prior art keywords
dielectric
radiator according
power radiator
discharge
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP90103082A
Other languages
English (en)
French (fr)
Other versions
EP0385205B1 (de
Inventor
Ulrich Dr. Kogelschatz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Heraeus Noblelight GmbH
Original Assignee
ABB Asea Brown Boveri Ltd
Heraeus Noblelight GmbH
Asea Brown Boveri AB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ABB Asea Brown Boveri Ltd, Heraeus Noblelight GmbH, Asea Brown Boveri AB filed Critical ABB Asea Brown Boveri Ltd
Priority to AT90103082T priority Critical patent/ATE98050T1/de
Publication of EP0385205A1 publication Critical patent/EP0385205A1/de
Application granted granted Critical
Publication of EP0385205B1 publication Critical patent/EP0385205B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J65/00Lamps without any electrode inside the vessel; Lamps with at least one main electrode outside the vessel
    • H01J65/04Lamps in which a gas filling is excited to luminesce by an external electromagnetic field or by external corpuscular radiation, e.g. for indicating plasma display panels
    • H01J65/042Lamps in which a gas filling is excited to luminesce by an external electromagnetic field or by external corpuscular radiation, e.g. for indicating plasma display panels by an external electromagnetic field
    • H01J65/046Lamps in which a gas filling is excited to luminesce by an external electromagnetic field or by external corpuscular radiation, e.g. for indicating plasma display panels by an external electromagnetic field the field being produced by using capacitive means around the vessel

Definitions

  • the invention relates to a high-power radiator, in particular for ultraviolet light, with a discharge space filled with filling gas emitting radiation under discharge conditions, the walls of which are formed by a first tubular and a second dielectric, which have first and second electrodes on its surfaces facing away from the discharge space with an AC power source connected to the first and second electrodes for feeding the discharge.
  • the invention relates to a state of the art, such as that derived from EP-A 054 111, US patent application 07/076 926 or EP patent application 88113393.3 from August 22, 1988 or US patent application 07 / 260,869 from October 21, 1988.
  • UV sources The industrial use of photochemical processes depends heavily on the availability of suitable UV sources.
  • the classic UV lamps deliver low to medium UV intensities at some discrete wavelengths, such as the low-pressure mercury lamps at 185 nm and especially at 254 nm.
  • Really high UV powers can only be obtained from high-pressure lamps (Xe, Hg), which then but their radiation over you distribute a larger wavelength range.
  • the new excimer lasers have provided some new wavelengths for basic photochemical experiments. for cost reasons for an industrial process probably only suitable in exceptional cases.
  • the high-performance radiators mentioned are characterized by high efficiency, economical structure and enable the creation of large area radiators, with the restriction that large-area flat radiators require a rather large technical effort.
  • omnidirectional radiators on the other hand, a not inconsiderable proportion of the radiation due to the shadow effect of the inner electrode is not used.
  • the invention has for its object to provide a high-performance radiator, in particular for UV or VUV radiation, which is characterized in particular by high efficiency, is economical to manufacture, enables the construction of very large area radiators and in which the Shadow effect of the inner electrode (s) is reduced to a minimum.
  • a rod made of dielectric material is arranged within the first tubular dielectric, inside which an electrical conductor is inserted or embedded, which conductor forms the second electrode.
  • the outer diameter of the rod which is preferably made of quartz glass, is preferably five to ten times smaller than the inner diameter of the outer tube.
  • the radiation should preferably be coupled out in one direction, for example in order to irradiate a surface.
  • the ideal discharge geometry for this purpose is a flat radiator mirrored on the back (for example according to EP-A-0254 111).
  • the production of flat quartz cells is associated with great technical effort and correspondingly high costs.
  • One can easily achieve a preferred direction of the radiation if the discharge is distributed unevenly in the discharge gap, which can be achieved most simply by an eccentric arrangement of the dielectric rod. It is thereby achieved that the electrical discharge takes place predominantly on the side on which the optical radiation is to be coupled out.
  • the layer simultaneously serving as an electrode and reflector is sufficient, the layer simultaneously serving as an electrode and reflector.
  • Aluminum which is provided with a suitable protective layer (anodized, MgF2 coating), is a suitable material that is both easy to vaporize and has a high UV reflection.
  • the (semi-cylindrical) recesses in the aluminum block also serve as a holder for the quartz discharge tubes, as an (earth) electrode and as a reflector. Any number of these discharge tubes can be connected in parallel by placing the internal electrodes on a common AC voltage source. For special applications you can combine tubes with different gas filling and therefore different (UV) wavelengths.
  • the aluminum blocks described do not necessarily have to have flat surfaces. One can also imagine cylindrical arrangements in which the recesses for receiving the discharge tubes are either outside or inside.
  • the individual gas discharge tubes can also be cooled if, for example, forms the inner electrode as a cooling channel.
  • UV treatment in the absence of air is indicated.
  • the first reason is when the radiation is so short-wave that it is absorbed by air and thus weakened (wavelengths ⁇ 190 nm). This radiation leads to the splitting of oxygen and thus to the un wanted ozone formation.
  • the second reason is when the intended photochemical effect of UV radiation is hindered by the presence of oxygen (oxygen inhibition). This occurs, for example, in the photo crosslinking (UV polymerization, UV drying) of paints and inks.
  • a quartz tube 1 with a wall thickness of approximately 0.5 to 1.5 mm and an outer diameter of approximately 20 to 30 mm is provided with an outer electrode 2 in the form of a wire mesh.
  • a second quartz tube 3 is arranged concentrically in the quartz tube 1 and has a substantially smaller outside diameter than the inside diameter of the quartz tube 1, typically 3 to 5 mm outside diameter.
  • a wire 4 is inserted into the inner quartz tube 3. This forms the inner electrode of the radiator, the wire mesh 2 the outer electrode of the radiator.
  • the outer quartz tube 1 is closed at both ends.
  • the space between the two tubes 1 and 3, the discharge space 5, is filled with a gas / gas mixture which emits radiation under discharge conditions.
  • the two electrodes 2, 4 are connected to the two poles of an alternating current source 6.
  • the AC power source basically corresponds to those used to feed ozone generators. Typically, it supplies an adjustable AC voltage in the order of magnitude of several 100 volts to 20,000 volts at frequencies in the range of technical alternating current up to a few 1000 kHz - depending on the electrode geometry, pressure in the discharge space and composition of the filling gas.
  • the fill gas is e.g. Mercury, noble gas, noble gas-metal vapor mixture, noble gas-halogen mixture, optionally using an additional further noble gas, preferably Ar, He, Ne, as a buffer gas.
  • a substance / substance mixture according to the following table can be used: Filling gas radiation helium 60-100 nm neon 80 - 90 nm argon 107 - 165 nm Argon + fluorine 180-200 nm Argon + chlorine 165-190 nm Argon + krypton + chlorine 165-190, 200-240 nm xenon 160-190 nm nitrogen 337 - 415 nm krypton 124, 140-160 nm Krypton + fluorine 240 - 255 nm Krypton + chlorine 200-240 nm mercury 185, 254, 320-370, 390-420 nm selenium 196, 204, 206 nm deuterium 150-250 nm Xenon + fluorine 340 - 360 nm, 400 - 550 nm Xenon + chlorine 300-320 nm
  • a noble gas Ar, He, Kr, Ne, Xe
  • Hg A gas or vapor from F2, J2, Br2, Cl2 or a compound that splits off one or more atoms F, J, Br or Cl in the discharge
  • An inert gas Ar, He, Kr, Ne, Xe
  • Hg an inert gas
  • Ar, He, Kr, Ne, Xe an inert gas with Hg.
  • the electron energy distribution can be optimally adjusted by the thickness of the dielectrics and their properties, pressure and / or temperature in the discharge space.
  • quartz rods into which a metal wire is melted can also be used.
  • Metal rods covered with a dielectric also lead to success.
  • a perforated metal foil or a UV-transparent, electrically conductive covering can also be used.
  • the discharge is distributed unevenly in the discharge space.
  • the easiest way to do this is by eccentrically arranging the inner dielectric tube 3 in the outer tube 1, as is illustrated in FIG. 2, for example.
  • the inner quartz tube 3 is arranged outside the center near the inner wall of the tube 1. In the borderline case, the pipe 3 can even rest against the pipe 1 and be glued there linearly or selectively to the inner wall.
  • the eccentric arrangement of the inner quartz tube and thus the inner electrode 4 has no decisive influence on the quality of the discharge.
  • the peak voltage is set just a small area ignites in the immediate vicinity of the quartz tube 3.
  • By increasing the voltage one can gradually increase the discharge zone until the entire discharge space 5 is filled with luminous plasma.
  • an electrode 2 (FIG. 2) applied to the entire outer circumference of the outer dielectric tube 1 (FIG. 2) is sufficient also a partial coating of the outer surface of the tube 1, as illustrated in Figure 3.
  • an eccentric arrangement of the inner quartz tube 3 is also possible here, the coating 7 only extending symmetrically over the outer wall section facing the inner quartz tube 3. This layer 7 is simultaneously the outer electrode and the reflector.
  • Aluminum is particularly suitable as a material that is both easy to vaporize and has a high UV reflection.
  • FIG. 5 illustrates the manner in which a multiplicity of concentric radiators according to FIG. 3 can be combined to form a surface radiator.
  • 6 shows a corresponding arrangement with eccentrically arranged inner quartz tubes 3 according to FIG.
  • an aluminum body 8 is provided with a plurality of parallel grooves 9 with a circular cross section, which are spaced apart from one another by more than one outer tube diameter.
  • the grooves 9 are adapted to the outer quartz tubes 1 and treated by polishing or the like so that they reflect well. Additional bores 10, which run in the direction of the tubes 1, serve to cool the radiators.
  • the AC source 6 leads with one pole to the aluminum body 8, the inner electrodes 4 of the radiators are connected in parallel and connected to the other pole of the source 6.
  • the groove walls serve both as an outer electrode and as reflectors.
  • single emitters can be combined with different gas fillings and thus different (UV) wavelengths.
  • the aluminum bodies 8 do not necessarily have to have flat surfaces.
  • E.g. 7 and 8 illustrate a variant with a hollow cylindrical aluminum body 8a with axially parallel grooves 9 regularly distributed over its inner circumference, in each of which a radiator element according to FIGS. 3 and 4 is inserted.
  • the radiator according to Fig. 9 basically corresponds to that according to Fig. 5. with additional channels 11 running in the longitudinal direction of the metal block 8. These channels are connected to the treatment room 12 via a multiplicity of bores or slots 13 in the metal block 8, specifically via the comparatively narrow gap between the outer ones, which is caused by inevitable manufacturing tolerances of the quartz tubes 1 Quartz tubes 1 and the grooves 9 in the metal block 8 in connection.
  • the channels 11 are connected to an inert gas source, not shown, e.g. Nitrogen or argon source connected.
  • the pressurized inert gas reaches the treatment room 12 from the channels 11 in the manner described. This treatment room is delimited on the one hand by legs 14 on the metal block 8 and by the substrate 15 to be irradiated.
  • FIG. 9 A further possibility of supplying inert gas to the treatment room 12 is illustrated in FIG.
  • the emitter largely corresponds to that according to Fig. 6.
  • Metal blocks 8 extending channels 11 are provided, which are connected directly to the treatment room 12 via bores or slots 13. Otherwise the structure and mode of operation correspond to those according to Fig. 9.
  • the cylinder emitters according to FIGS. 7 and 8 can also be provided with means for supplying inert gas to the treatment room (there the inside of the tube 8a) without leaving the scope of the invention.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

Um bei UV-Hochleistungszylinderstrahlern die Ausbeute zu erhöhen sind die inneren Dielektrika (3) im Vergleich zum äusseren Dielektrikumsrohr sehr klein. Durch exzentrische Anordnung der Dielektrika und äussere Elektroden (2) nur auf der dem inneren Dielektrikum (3) benachbarten Oberfläche und gleichzeitige Ausbildung der äusseren Elektrode (7) als Reflektor wird eine Vorzugsrichtung der Abstrahlung erzielt.

Description

    Technisches Gebiet
  • Die Erfindung bezieht sich auf einen Hochleistungsstrahler, insbesondere für ultraviolettes Licht, mit einem mit unter Entladungsbedingungen Strahlung aussendendem Füllgas gefüll­ten Entladungsraum, dessen Wandungen durch ein erstes rohr­förmiges und ein zweites Dielektrikum gebildet sind, welches auf seinen dem Entladungsraum abgewandten Oberflächen mit er­sten und zweiten Elektroden versehen ist, mit einer an die ersten und zweiten Elektroden angeschlossenen Wechselstrom­quelle zur Speisung der Entladung.
  • Die Erfindung nimmt dabei Bezug auf einen Stand der Technik, wie er sich etwa aus der EP-A 054 111, der US-Patentanmeldung 07/076 926 oder auch der EP-Patentanmeldung 88113393.3 vom 22.08.1988 oder der US-Patentanmeldung 07/260,869 vom 21.10.1988 ergibt.
  • Technologischer Hintergrund und Stand der Technik
  • Der industrielle Einsatz photochemischer Verfahren hängt stark von der der Verfügbarkeit geeigneter UV-Quellen ab. Die klassischen UV-Strahler liefern niedrige bis mittlere UV-In­tensitäten bei einigen diskreten Wellenlängen, wie z.B. die Quecksilber-Niederdrucklampen bei 185 nm und insbesondere bei 254 nm. Wirklich hohe UV-Leistungen erhält man nur aus Hoch­drucklampen (Xe, Hg), die dann aber ihre Strahlung über einen grösseren Wellenlängenbereich verteilen. Die neuen Excimer-­Laser haben einige neue Wellenlängen für photochemische Grundlagenexperimente bereitgestellt, sind z.Zt. aus Kosten­gründen für einen industriellen Prozess wohl nur in Ausnahme­fällen geeignet.
  • In der eingangs genannten EP-Patentanmeldung oder auch in dem Konferenzdruck "Neue UV- und VUV Excimerstrahler" von U. Ko­gelschatz und B. Eliasson, verteilt an der 10. Vortragstagung der Gesellschaft Deutscher Chemiker, Fachgruppe Photochemie, in Würzburg (BRD) 18.-20. November 1987, wird ein neuer Exci­merstrahler beschrieben. Dieser neue Strahlertyp basiert auf der Grundlage, dass man Excimerstrahlung auch in stillen elektrischen Entladungen erzeugen kann, einem Entladungstyp, der in der Ozonerzeugung grosstechnisch eingesetzt wird. In den nur kurzzeitig (< 1 Mikrosekunde) vorhandenen Stromfila­menten dieser Entladung werden durch Elektronenstoss Edelga­satome angeregt, die zu angeregten Molekülkomplexen (Excimeren) weiterreagieren. Diese Excimere leben nur einige 100 Nanosekunden und geben beim Zerfall ihre Bindungsenergie in Form von UV-Strahlung ab.
  • Der Aufbau eines derartigen Excimerstrahlers entspricht bis hin zur Stromversorgung weitgehend dem eines klassichen Ozon­erzeugers, mit dem wesentlichen Unterschied, dass mindestens eine der den Entladungsraum begrenzenden Elektroden und/oder Dielektrikumsschichten für die erzeugte Strahlung durchlässig ist.
  • Die genannten Hochleistungsstrahler zeichnen sich durch hohe Effizienz, wirtschaftlichen Aufbau aus und ermöglichen die Schaffung grosser Flächenstrahler, mit der Einschränkung, dass grossflächige Flachstrahler einen eher grossen techni­schen Aufwand erfordern. Bei Rundstrahlern hingegen wird ein nicht unbeachtlicher Anteil der Strahlung durch Schattenwir­kung der Innenelektrode nicht ausgenützt.
  • Darstellung der Erfindung
  • Ausgehend vom Stand der Technik liegt der Erfindung die Auf­gabe zugrunde, einen Hochleistungsstrahler, insbesondere für UV- oder VUV-Strahlung, zu schaffen, der sich insbesondere durch hohe Effizienz auszeichnet, wirtschaftlich zu fertigen ist, den Aufbau sehr grosser Flächenstrahler ermöglicht und bei dem die Schattenwirkung der Innenelektrode(n) auf ein Mi­nimum reduziert ist.
  • Zur Lösung dieser Aufgabe bei einem Hochleistungsstrahler der eingangs genannten Gattung ist erfindungsgemäss vorgesehen, dass innerhalb des ersten rohrförmigen Dielektrikums ein Stab aus dielektrischem Material angeordnet ist, in dessen Inneren ein elektrischer Leiter eingelegt oder eingebettet ist, wel­cher Leiter die zweite Elektrode bildet.
  • Vorzugsweise ist der Aussendurchmesser des vorzugsweise aus Quarzglas bestehenden Stabes fünf bis zehn mal kleiner als der Innendurchmesser des äusseren Rohres.
  • In vielen Fällen möchte man die Strahlung vorzugsweise in eine Richtung auskoppeln, z.B. um eine Oberfläche zu bestrah­len. Die ideale Entladungsgeometrie für diesen Zweck ist ein auf der Rückseite verspiegelter Flachstrahler (z.B. gemäss der EP-A-0254 111). Die Herstellung flacher Quarzzellen ist mit grossem technischen Aufwand und entsprechend hohen Kosten verbunden. Man kann auf einfache Weise eine Vorzugsrichtung der Abstrahlung erreichen, wenn man die Entladung un­gleichmässig im Entladungsspalt verteilt, was man am einfach­sten durch eine exzentrische Anordnung des Dielektrikumssta­bes erreichen kann. Dadurch erreicht man, dass die elektri­sche Entladung überwiegend auf der Seite erfolgt, auf der die optische Strahlung ausgekoppelt werden soll.
  • Anstelle von auf dem ganzen Umfang des äusseren Dielektri­kumsrohres aufgebrachter Aussenelektroden genügt eine teil­weise Bedampfung oder Beschichtung auf der Rückseite, wobei die Schicht gleichzeitig als Elektrode und Reflektor dient. Als Material, das sich sowohl gut aufdampfen lässt, als auch eine hohe UV-Reflexion besitzt, bietet sich Aluminium an, das mit einer geeigneten Schutzschicht versehen ist (eloxiert,MgF₂-Beschichtung).
  • Man kann leicht mehrere solcher exzentrischen Strahler zu Blöcken kombinieren, die zur Bestrahlung grosser Flächen ge­eignet sind. Die (halbzylindrischen) Aussparungen im Alumini­umblock dienen gleichzeitig als Halterung für die Quarz-Ent­ladungsröhren, als (Erd-)Elektrode und als Reflektor. Es kön­nen beliebig viele dieser Entladungsrohren parallel- geschal­tet werden, indem man die Innenlektroden an eine gemeinsame Wechselspannungsquelle legt. Für spezielle Anwendungen kann man Röhren mit verschiedener Gasfüllung und damit verschie­dene (UV-)Wellenlängen kombinieren. Die beschriebenen Alu­blöcke müssen nicht unbedingt ebene Oberflächen haben. Man kann sich auch zylindrische Anordnungen vorstellen, bei denen die Aussparungen zur Aufnahme der Entladungsröhren entweder aussen oder innen angebracht sind.
  • Bei höheren Leistungen ist es möglich, die Aluminiumblöcke zu kühlen, z.B. indem man zusätzliche Kühlkanäle vorsieht. Auch die einzelnen Gasentladungsröhren kann man zusätzlich kühlen, wenn man z.B. die Innenelektrode als Kühlkanal ausbildet.
  • Bei der UV-Behandlung von Oberflächen und der Aushärtung von UV-Farben und UV-Lacken ist es in bestimmten Fällen von Vor­teil, nicht in Luft zu arbeiten. Es gibt mindestens zwei Gründe, die eine UV-Behandlung unter Ausschluss von Luft an­gezeigt erscheinen lassen. Der erste Grund liegt vor, wenn die Strahlung so kurzwellig ist, dass sie von Luft absorbiert und damit abgeschwächt wird (Wellenlängen < 190 nm). Diese Strahlung führt zur Sauerstoffspaltung und damit zur uner­ wünschten Ozonbildung. Der zweite Grund liegt vor, wenn die beabsichtigte photochemische Wirkung der UV-Strahlung durch die Anwesenheit von Sauerstoff behindert wird (oxygen inhibi­tion). Dieser Fall tritt z.B. bei der Photovernetzung (UV-Po­lymerisation, UV-Trockung) von Lacken und Farben auf. Diese Vorgänge sind an sich bekannt und beispielsweise im Buch "U.V.and E.B. Curing Formulation for Printing Ink, Coatings and Paints", herausgegeben 1988 von SITA-Technology, 203 Gar­diner House, Broomhill Road, London SW18, Seiten 89 - 91, be­schrieben. In diesen Fällen ist erfindungsgemäss vorgesehen, Mittel zur Spülung des Behandlungsraums mit einem inerten UV-­transparenten Gas wie z.B. Stickstoff oder Argon vorzusehen. Insbesondere bei Konfigurationen, bei denen die erste Elek­trode gemäss Anspruch 5 aus einem mit Rillen versehenen Me­tallblock ausgebildet ist, lässt sich eine derartige Spülung ohne grossen technischen Aufwand verwirklichen, z.B. durch zusätzliche von einer Inertgasquelle gespeiste und gegen den Entladungsraum offene Kanäle. Das durch besagte Kanäle gelei­tete Inertgas kann darüber hinaus zur Kühlung des Strahlers herangezogen werden, so dass bei manchen Anwendungen auf se­parate Kühlkanäle verzichtet werden kann.
  • Kurze Beschreibung der Zeichnungen
  • In der Zeichnung sind Ausführungsbeispiele der Erfindung schematisch dargestellt; darin zeigt
    • Fig.1 Ein erstes Ausführungsbeispiel eines Zylinderstrah­lers mit konzentrischer Anordnung des inneren Di­elektrikumsstabes im Querschnitt;
    • Fig.2 eine Abwandlung des Strahlers nach Fig.1 ,mit einer exzentrischen Anordnung des inneren Dielektrikums;
    • Fig. 3 eine Ausführungsform eines Zylinderstrahlers mit konzentrischer Anordnung des inneren Dielektrikums und einer Aussenelektrode in Form einer Beschich­tung, die sich nur über einen Teil des Umfangs des äusseren Dielektrikumsrohres erstreckt, wobei die Beschichtung gleichzeitig als Reflektor dient;
    • Fig.4 eine Ausführungsform eines Zylinderstrahlers analog Fig. 3 jedoch mit exzentrischer Anordnung des inne­ren Dielektrikums und einer Beschichtung, die sich nur über einen Teil des Umfanges des äusseren Di­elektrikumsrohres erstreckt, welche Beschichtung gleichzeitig als Aussenelektrode und als Reflektor dient;
    • Fig.5 die Zusammenfassung mehrerer Strahler nach Fig.3 zu einem Flächenstrahler;
    • Fig. 6 die Zusammenfassung mehrerer Strahler nach Fig.4 zu einem Flächenstrahler;
    • Fig.7 eine Abwandlung von Fig. 5 in Gestalt eines aus ei­ner Vielzahl Strahlern gemäss Fig.3 zusammengesetz­ten grossflächigen Zylinderstrahlers.
    • Fig. 8 eine Abwandlung von Fig. 6 in Gestalt eines aus ei­ner Vielzahl von Strahlern gemäss Fig.4 zusammen­gestzten grossflächigen Zylinderstrahlers;
    • Fig. 9 eine Weiterbildung des Strahlers nach Fig.5 mit Mitteln zur Zufuhr eines Inertagases in den Behand­lungsraum;
    • Fig.10 eine Weiterbildung des Strahlers nach Fig.6 mit Mitteln zur Zufuhr eines Inertgases in den Behand­lungsraum.
    Wege zur Ausführung der Erfindung
  • In Fig.1 ist ein Quarzrohr 1 mit einer Wandstärke von etwa 0,5 bis 1,5 mm und einem Aussendurchmesser von etwa 20 bis 30 mm mit einer Aussenelektrode 2 in Form eines Drahtnetzes ver­sehen. Konzentrisch im Quarzrohr 1 ist ein zweites Quarzrohr 3 angeordnet mit einem wesentlich kleineren Aussendurchmesser als der Innendurchmesser des Quarzrohres 1, typisch 3 bis 5 mm Aussendurchmesser.
    In das innere Quarzrohr 3 ist ein Draht 4 eingeschoben. Die­ser bildet die Innenelektrode des Strahlers, das Drahtnetz 2 die Aussenelektrode des Strahlers.
    Das äussere Quarzrohr 1 ist an beiden Enden verschlossen. Der Raum zwischen den beiden Rohren l und 3, der Entladungsraum 5, ist mit einem unter Entladungsbedingungen Strahlung aus­sendendem Gas/Gasgemisch gefüllt. Die beiden Elektroden 2,4 sind mit den beiden Polen einer Wechselstromquelle 6 verbun­den. Die Wechselstromquelle entspricht grundsätzlich jenen, wie sie zur Anspeisung von Ozonerzeugern verwendet werden. Typisch liefert sie eine einstellbare Wechselspannung in der Grössenordnung von mehreren 100 Volt bis 20000 Volt bei Fre­quenzen im Bereich des technischen Wechselstroms bis hin zu einigen 1000 kHz - abhängig von der Elektrodengeometrie, Druck im Entladungsraum und Zusammensetzung des Füllgases.
  • Das Füllgas ist, z.B. Quecksilber, Edelgas, Edelgas-Metall­dampf-Gemisch, Edelgas-Halogen-Gemisch, gegebenenfalls unter Verwendung eines zusätzlichen weiteren Edelgases, vorzugs­weise Ar, He, Ne, als Puffergas.
  • Je nach gewünschter spektraler Zusammensetzung der Strahlung kann dabei eine Substanz/Substanzgemisch gemäss nachfolgender Tabelle Verwendung finden:
    Füllgas Strahlung
    Helium 60 - 100 nm
    Neon 80 - 90 nm
    Argon 107 - 165 nm
    Argon + Fluor 180 - 200 nm
    Argon + Chlor 165 - 190 nm
    Argon + Krypton + Chlor 165 - 190, 200 - 240 nm
    Xenon 160 - 190 nm
    Stickstoff 337 - 415 nm
    Krypton 124, 140 - 160 nm
    Krypton + Fluor 240 - 255 nm
    Krypton + Chlor 200 - 240 nm
    Quecksilber 185, 254, 320-370, 390-420 nm
    Selen 196, 204, 206 nm
    Deuterium 150 - 250 nm
    Xenon + Fluor 340 - 360 nm, 400 - 550 nm
    Xenon + Chlor 300 - 320 nm
  • Daneben kommen eine ganze Reihe weiterer Füllgase in Frage:
    - Ein Edelgas (Ar, He, Kr, Ne, Xe) oder Hg mit einem Gas bzw. Dampf aus F₂, J₂, Br₂, Cl₂ oder eine Verbindung die in der Entladung ein oder mehrere Atome F, J, Br oder Cl abspaltet;
    - ein Edelgas (Ar, He, Kr, Ne, Xe) oder Hg mit O₂ oder ei­ner Verbindung, die in der Entladung ein oder mehrere 0-­Atome abspaltet;
    - ein Edelgas (Ar, He, Kr, Ne, Xe) mit Hg.
  • In der sich bildenden stillen elektrischen Entladung (silent discharge) kann die Elektronenenergieverteilung durch Dicke der Dielektrika und deren Eigenschaften Druck und/oder Tempe­ratur im Entladungsraum optimal eingestellt werden.
  • Bei Anliegen einer Wechselspannung zwischen den Elektroden 2, 4 bildet sich eine Vielzahl von Entladungskanälen (Teilentladungen) im Entladungsraum 5 aus. Diese treten mit den Atomen/Molekülen des Füllgases in Wechselwirkung, was schlussendlich zur UV oder VUV-Strahlung führt.
  • Anstelle von Quarzröhrchen 3 mit eingelegtem Draht können auch Quarzstäbe, in die ein Metalldraht eingeschmolzen ist, verwendet werden. Auch Metallstäbe, die mit einem Dielektri­kum überzogen sind, führen zum Erfolg.
  • Anstelle eines Drahtnetzes 2 kann auch eine perforierte Me­tallfolie oder ein UV-transparenter, elektrisch leitfähiger Belag benutzt werden.
  • Will man mit einfachen Mitteln eine Vorzugsrichtung der Ab­strahlung erzielen, verteilt man die Entladung ungleichmässig im Entladungsraum. Am einfachsten kann dies durch exzentri­sche Anordnung des inneren Dielektrikumsrohres 3 im äusseren Rohr 1 erfolgen, wie dies in Fig. 2 beispielsweise veran­schaulicht ist.
  • In Fig.2 ist das innere Quarzrohr 3 ausserhalb des Zentrums nahe der Innenwand des Rohres 1 angeordnet. Im Grenzfall kann sogar das Rohr 3 am Rohr 1 anliegen und dort linienförmig oder punktuell mit der Innenwand verklebt sein.
  • Die exzentrische Anordnung des inneren Quarzrohres und damit der inneren Elektrode 4 hat keinen entscheidenden Einfluss auf die Qualität der Entladung. Bei knapp eingestellter Spit­zenspannung zündet nur ein schmaler Bereich in unmittelbarer Nähe des Quarzrohres 3. Durch Erhöhung der Spannung kann man nach und nach die Entladungszone vergrössern, bis der ganze Entladungsraum 5 mit leuchtendem Plasma gefüllt ist.
  • Statt einer auf den gesamten Aussenumfang des äusseren Di­elektrikumsrohres 1 aufgebrachten Elektrode 2 (Fig. 2) genügt auch eine teilweise Beschichtung der äusseren Oberfläche des Rohres 1, wie es in Fig.3 veranschaulicht ist. Die sich über etwa die Hälfte des Aussenumfangs des Rohres 1 erstreckende Beschichtung 7 ist gleichzeitig Aussenelektrode und Reflek­tor. Entsprechend Fig.2 ist auch hier eine exzentrische An­ordnung des inneren Quarzrohres 3 möglich, wobei die Be­schichtung 7 sich nur symmetrisch über den dem inneren Quarz­rohr 3 zugewandten Aussenwandabschnitt erstreckt. Diese Schicht 7 ist gleichzeitig Aussenelektrode und Reflektor. Als Material, das sich sowohl gut aufdampfen lässt, als auch eine hohe UV-Reflexion besitzt, bietet sich insbesondere Aluminium an.
  • In Fig.5 ist veranschaulicht, auf welche Weise eine Vielzahl von konzentrischen Strahlern gemäss Fig.3 zu einem Flächen­strahler zusammengefasst werden können. Fig.6 zeigt eine ent­sprechende Anordnung mit exzentrisch angeordneten inneren Quarzrohren 3 nach Fig.4. Ein Aluminiumkörper 8 ist zu diesem Zweck mit einer Vielzahl paralleler Rillen 9 mit kreisrundem Querschnitt versehen, die um mehr als einen Aussenrohrdurch­messer voneinander beabstandet sind. Die Rillen 9 sind den äusseren Quarzrohren 1 angepasst und durch Polieren oder der­gleichen so behandelt, dass sie gut reflektieren. Zusätzli­chen Bohrungen 10, die in Richtung der Rohre 1 verlaufen, dienen der Kühlung der Strahler.
  • Die Wechselstromquelle 6 führt mit ihrem einen Pol an den Aluminiumkörper 8, die Innenelektroden 4 der Strahler sind parallelgeschaltet und mit dem anderen Pol der Quelle 6 ver­bunden.
  • Analog zu den Beschichtungen 7 der Fig.3 bzw. Fig.4 dienen im Fall der Fig.5 und 6 die Rillenwände sowohl als Aussen­elektrode als auch als Reflektoren.
  • Für spezielle Anwendungen kann man Einzelstrahler mit ver­schiedenen Gasfüllungen und damit verschiedenen (UV-)Wellen­längen kombinieren.
  • Die Aluminiumkörper 8 müssen nicht unbedingt ebene Oberflä­chen haben. Z.B. veranschaulichen Fig.7 und 8 eine Variante mit einem hohlzylindrischen Aluminiumkörper 8a mit regelmäs­sig über seinen Innenumfang verteilten achsparallelen Rillen 9 in die jeweils ein Strahlerelement nach Fig.3 bzw. Fig.4 eingelegt ist.
  • Der Strahler nach Fig.9 entspricht grundsätzlich demjenigen nach Fig.5. mit zusatzlichen in Längsrichtung des Metall­blocks 8 verlaufenden Kanälen 11. Diese Kanäle stehen mit dem Behandlungsraum 12 über eine Vielzahl von Bohrungen oder Schlitzen 13 im Metallblock 8 in Verbindung, und zwar über den vergleichweise schmalen, durch unvermeidliche Fertigungs­toleranzen der Quarzrohre 1 bedingten Spalt zwischen den äus­seren Quarzrohren 1 und den Rillen 9 im Metallblock 8 in Ver­bindung. Die Kanäle 11 sind an eine nicht dargestellte Inert­gasquelle, z.B. Stickstoff- oder Argonquelle angeschlossen. Von den Kanälen 11 gelangt das unter Druck stehende Inertgas auf dem beschriebenen Wege in den Behandlungsraum 12. Dieser Behandlungsraum wird einerseits durch Schenkel 14 am Metall­block 8 und durch das zu bestrahlende Substrat 15 begrenzt. Er füllt sich in kurzer Zeit mit Inertgas. Je nach Grösse des Spaltes 16 zwischen dem Substrat 15 und den Enden der Schen­kel 14 entweicht dabei eine gewisse Leckgasmenge, welche aber durch die Inertgasquelle nachgeliefert wirde. Auf diese Weise werden die eingangs beschriebenen Wechselwirkungen zwischen der in den Entladungsräumen 5 erzeugten UV-Strahlung und dem Luftsauerstoff zuverlässig vermieden.
  • In Fig.10 ist eine weitere Möglichkeit der Inertgaszufuhr zum Behandlungsraum 12 veranschaulicht. Der Strahler entspricht dabei weitgehend demjenigen nach Fig.6. Zusätzlich sind je­doch zwischen benachbarten Quarzrohren 5 in Längsrichtung des Metallblocks 8 verlaufende Kanäle 11 vorgesehen, welche über Bohrungen oder Schlitze 13 unmittelbar mit dem Behandlungs­raum 12 verbunden sind. Ansonsten entspricht Aufbau und Wir­kungsweise denjenigen nach Fig.9.
  • Es versteht sich von selbst, dass auch die Zylinderstrahler nach den Figuren 7 und 8 mit Mitteln zur Zufuhr von Inertgas in den Behandlungsraum (dort das Innere des Rohres 8a) verse­hen werden können, ohne den den die Erfindung gesteckten Rah­men zu verlassen.

Claims (10)

1. Hochleistungsstrahler, insbesondere für ultraviolettes Licht, mit einem mit unter Entladungsbedingungen Strah­lung aussendenden Füllgas gefüllten Entladungsraum (5), dessen Wandungen durch ein erstes rohrförmiges (1) und ein zweites Dielektrikum (3) gebildet sind, welches auf seinen dem Entladungsraum (5) abgewandten Oberflächen mit ersten (2, 7) und zweiten Elektroden (4) versehen ist, mit einer an die ersten und zweiten Elektroden an­geschlossenen Wechselstromquelle (6) zur Speisung der Entladung, dadurch gekennzeichnet, dass innerhalb des ersten rohrförmigen Dielektrikums (1) ein Stab (3) aus dielektrischem Material angeordnet ist, in dessen Inne­ren ein elektrischer Leiter (4) eingelegt oder eingebet­tet ist, welcher Leiter die zweite Elektrode bildet.
2. Hochleistungsstrahler nach Anspruch 1, dadurch gekenn­zeichnet, dass der Aussendurchmesser des Stabes (3) fünf bis zehn mal kleiner ist als der Innendurchmesser des ersten rohrförmigen Dielektrikums (1).
3. Hochleistungsstrahler nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass der Stab (3) aus dielektrischem Ma­terial exzentrisch im ersten rohrförmigen Dielektrikum (1) angeordnet ist.
4. Hochleistungsstrahler nach Anspruch 3, dadurch gekenn­zeichnet, dass die erste Elektrode (7) die Aussenwand des ersten Dielektrikums (1) nur in dem Abschnitt be­deckt, der dem zweiten Dielektrikum (3) zugeordnet und als Reflektor ausgebildet ist.
5. Hochleistungsstrahler nach Anspruch 4, dadurch gekenn­zeichnet, dass die erste Elektrode und der Reflektor als Materialausnehmungen, vorzugsweise Rillen (9), in einem Metallkörper (8) ausgebildet sind.
6. Hochleistungsstrahler nach Anspruch 5, dadurch gekenn­zeichnet, dass im Metallkörper (8) Kühlbohrungen (10) vorgesehen sind, welche die Materialausnehmungen (9) nicht anschneiden.
7. Hochleistungsstrahler nach Anspruch 5, dadurch gekenn­zeichnet, dass der Querschnitt der Materialausnehmungen (9) dem Aussendurchmesser des ersten Dielektrikums (1) angepasst ist und die Ausnehmungswandungen als UV-Re­flektoren ausgebildet sind.
8. Hochleistungsstrahler nach einem der Ansprüche 5 bis 7, dadurch gekennzeichnet, dass Mittel (11,13) zur Zufüh­rung von Inertgas in den Raum (12) ausserhalb des ersten rohrförmigen Dielektrikums (1) vorgesehen sind.
9. Hochleistungsstrahler nach Anspruch 8, dadurch gekenn­zeichnet, dass im Metallkörper (8,8a) Kanäle (11) vorge­sehen sind, welche unmittelbar oder mittelbar mit dem Behandlungsraum (12) in Verbindung stehen, durch welche Kanäle (11) ein Inertgas, vorzugsweise Stickstoff oder Argon, zuführbar ist.
10. Hochleistungsstrahler nach Anspruch 9, dadurch gekenn­zeichnet, dass die Kanäle (11) jeweils zwischen benach­barten Dielektrikumsrohren (1) angeordnet sind und über Bohrungen oder Schlitze (13) mit dem Behandlungsraum (12) in Verbindung stehen.
EP90103082A 1989-02-27 1990-02-17 Hochleistungsstrahler Expired - Lifetime EP0385205B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT90103082T ATE98050T1 (de) 1989-02-27 1990-02-17 Hochleistungsstrahler.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH720/89 1989-02-27
CH720/89A CH677292A5 (de) 1989-02-27 1989-02-27

Publications (2)

Publication Number Publication Date
EP0385205A1 true EP0385205A1 (de) 1990-09-05
EP0385205B1 EP0385205B1 (de) 1993-12-01

Family

ID=4193615

Family Applications (1)

Application Number Title Priority Date Filing Date
EP90103082A Expired - Lifetime EP0385205B1 (de) 1989-02-27 1990-02-17 Hochleistungsstrahler

Country Status (6)

Country Link
US (1) US5013959A (de)
EP (1) EP0385205B1 (de)
JP (1) JP2823637B2 (de)
AT (1) ATE98050T1 (de)
CH (1) CH677292A5 (de)
DE (1) DE59003641D1 (de)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0458140A1 (de) * 1990-05-22 1991-11-27 Heraeus Noblelight GmbH Hochleistungsstrahler
EP0482230A1 (de) * 1990-10-22 1992-04-29 Heraeus Noblelight GmbH Hochleistungsstrahler
EP0489184A1 (de) * 1990-12-03 1992-06-10 Heraeus Noblelight GmbH Hochleistungsstrahler
EP0497360A2 (de) * 1991-02-01 1992-08-05 Hughes Aircraft Company Hochfrequentes Röhrenlichtsystem
EP0517929A1 (de) * 1991-06-01 1992-12-16 Heraeus Noblelight GmbH Bestrahlungseinrichtung mit einem Hochleistungsstrahler
EP0521553A2 (de) * 1991-07-01 1993-01-07 Koninklijke Philips Electronics N.V. Hochdrucksglimmentladungslampe
DE4140497A1 (de) * 1991-12-09 1993-06-17 Asea Brown Boveri Hochleistungsstrahler
DE4235743A1 (de) * 1992-10-23 1994-04-28 Heraeus Noblelight Gmbh Hochleistungsstrahler
DE4430300C1 (de) * 1994-08-26 1995-12-21 Abb Research Ltd Excimerstrahler und dessen Verwendung
EP0754400A1 (de) * 1994-04-07 1997-01-22 The Regents Of The University Of California Radio frequenz betriebene schwefellampe
DE19844921A1 (de) * 1998-09-30 2000-04-13 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Flache Beleuchtungsvorrichtung
EP1519407A2 (de) * 2003-08-06 2005-03-30 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH UV-Strahler mit rohrförmigem Entladungsgefäss
WO2014060592A1 (de) * 2012-10-19 2014-04-24 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Uv-lichtquelle mit kombinierter ionisation und bildung von excimern

Families Citing this family (78)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4010190A1 (de) * 1990-03-30 1991-10-02 Asea Brown Boveri Bestrahlungseinrichtung
US5220236A (en) * 1991-02-01 1993-06-15 Hughes Aircraft Company Geometry enhanced optical output for rf excited fluorescent lights
EP0509110B1 (de) * 1991-04-15 1995-06-21 Heraeus Noblelight GmbH Bestrahlungseinrichtung
DE4222130C2 (de) * 1992-07-06 1995-12-14 Heraeus Noblelight Gmbh Hochleistungsstrahler
US5384515A (en) * 1992-11-02 1995-01-24 Hughes Aircraft Company Shrouded pin electrode structure for RF excited gas discharge light sources
US5334913A (en) * 1993-01-13 1994-08-02 Fusion Systems Corporation Microwave powered lamp having a non-conductive reflector within the microwave cavity
US5733693A (en) 1993-08-05 1998-03-31 Kimberly-Clark Worldwide, Inc. Method for improving the readability of data processing forms
US5645964A (en) 1993-08-05 1997-07-08 Kimberly-Clark Corporation Digital information recording media and method of using same
US5773182A (en) 1993-08-05 1998-06-30 Kimberly-Clark Worldwide, Inc. Method of light stabilizing a colorant
US6017661A (en) 1994-11-09 2000-01-25 Kimberly-Clark Corporation Temporary marking using photoerasable colorants
US6017471A (en) 1993-08-05 2000-01-25 Kimberly-Clark Worldwide, Inc. Colorants and colorant modifiers
US5681380A (en) 1995-06-05 1997-10-28 Kimberly-Clark Worldwide, Inc. Ink for ink jet printers
US5643356A (en) 1993-08-05 1997-07-01 Kimberly-Clark Corporation Ink for ink jet printers
CA2120838A1 (en) 1993-08-05 1995-02-06 Ronald Sinclair Nohr Solid colored composition mutable by ultraviolet radiation
US5721287A (en) 1993-08-05 1998-02-24 Kimberly-Clark Worldwide, Inc. Method of mutating a colorant by irradiation
US6211383B1 (en) 1993-08-05 2001-04-03 Kimberly-Clark Worldwide, Inc. Nohr-McDonald elimination reaction
US5865471A (en) 1993-08-05 1999-02-02 Kimberly-Clark Worldwide, Inc. Photo-erasable data processing forms
US6071979A (en) 1994-06-30 2000-06-06 Kimberly-Clark Worldwide, Inc. Photoreactor composition method of generating a reactive species and applications therefor
US5739175A (en) 1995-06-05 1998-04-14 Kimberly-Clark Worldwide, Inc. Photoreactor composition containing an arylketoalkene wavelength-specific sensitizer
US6242057B1 (en) 1994-06-30 2001-06-05 Kimberly-Clark Worldwide, Inc. Photoreactor composition and applications therefor
US5685754A (en) 1994-06-30 1997-11-11 Kimberly-Clark Corporation Method of generating a reactive species and polymer coating applications therefor
US6008268A (en) 1994-10-21 1999-12-28 Kimberly-Clark Worldwide, Inc. Photoreactor composition, method of generating a reactive species, and applications therefor
US5747550A (en) 1995-06-05 1998-05-05 Kimberly-Clark Worldwide, Inc. Method of generating a reactive species and polymerizing an unsaturated polymerizable material
US5786132A (en) 1995-06-05 1998-07-28 Kimberly-Clark Corporation Pre-dyes, mutable dye compositions, and methods of developing a color
US5811199A (en) 1995-06-05 1998-09-22 Kimberly-Clark Worldwide, Inc. Adhesive compositions containing a photoreactor composition
US5798015A (en) 1995-06-05 1998-08-25 Kimberly-Clark Worldwide, Inc. Method of laminating a structure with adhesive containing a photoreactor composition
US5849411A (en) 1995-06-05 1998-12-15 Kimberly-Clark Worldwide, Inc. Polymer film, nonwoven web and fibers containing a photoreactor composition
SK160497A3 (en) 1995-06-05 1998-06-03 Kimberly Clark Co Novel pre-dyes
AU5535296A (en) 1995-06-28 1997-01-30 Kimberly-Clark Worldwide, Inc. Novel colorants and colorant modifiers
US5855655A (en) 1996-03-29 1999-01-05 Kimberly-Clark Worldwide, Inc. Colorant stabilizers
US6099628A (en) 1996-03-29 2000-08-08 Kimberly-Clark Worldwide, Inc. Colorant stabilizers
KR19980701718A (ko) 1995-11-28 1998-06-25 바바라 에이취. 폴 개량된 착색제 안정화제
US5782963A (en) 1996-03-29 1998-07-21 Kimberly-Clark Worldwide, Inc. Colorant stabilizers
US5891229A (en) 1996-03-29 1999-04-06 Kimberly-Clark Worldwide, Inc. Colorant stabilizers
US5998921A (en) * 1997-03-21 1999-12-07 Stanley Electric Co., Ltd. Fluorescent lamp with coil shaped internal electrode
US5834784A (en) * 1997-05-02 1998-11-10 Triton Thalassic Technologies, Inc. Lamp for generating high power ultraviolet radiation
JPH1125921A (ja) * 1997-07-04 1999-01-29 Stanley Electric Co Ltd 蛍光ランプ
US6524379B2 (en) 1997-08-15 2003-02-25 Kimberly-Clark Worldwide, Inc. Colorants, colorant stabilizers, ink compositions, and improved methods of making the same
US5945790A (en) * 1997-11-17 1999-08-31 Schaefer; Raymond B. Surface discharge lamp
US6015759A (en) * 1997-12-08 2000-01-18 Quester Technology, Inc. Surface modification of semiconductors using electromagnetic radiation
CA2224699A1 (en) 1997-12-12 1999-06-12 Resonance Ltd. Hollow electrode electrodeless lamp
US6049086A (en) * 1998-02-12 2000-04-11 Quester Technology, Inc. Large area silent discharge excitation radiator
JP4278019B2 (ja) * 1998-03-24 2009-06-10 コーニング インコーポレイテッド 外部電極駆動放電ランプ
EP1000090A1 (de) 1998-06-03 2000-05-17 Kimberly-Clark Worldwide, Inc. Neue photoinitiatoren und deren anwendung
WO1999063006A2 (en) 1998-06-03 1999-12-09 Kimberly-Clark Worldwide, Inc. Neonanoplasts produced by microemulsion technology and inks for ink jet printing
JP2002520470A (ja) 1998-07-20 2002-07-09 キンバリー クラーク ワールドワイド インコーポレイテッド 改良されたインクジェットインク組成物
EP1117698B1 (de) 1998-09-28 2006-04-19 Kimberly-Clark Worldwide, Inc. Chelate mit chinoiden gruppen als photoinitiatoren
ES2195869T3 (es) 1999-01-19 2003-12-16 Kimberly Clark Co Nuevos colorantes, estabilizantes de colorantes, compuestos de tinta y metodos mejorados para su fabricacion.
US6331056B1 (en) 1999-02-25 2001-12-18 Kimberly-Clark Worldwide, Inc. Printing apparatus and applications therefor
US6294698B1 (en) 1999-04-16 2001-09-25 Kimberly-Clark Worldwide, Inc. Photoinitiators and applications therefor
US6368395B1 (en) 1999-05-24 2002-04-09 Kimberly-Clark Worldwide, Inc. Subphthalocyanine colorants, ink compositions, and method of making the same
US6201355B1 (en) 1999-11-08 2001-03-13 Triton Thalassic Technologies, Inc. Lamp for generating high power ultraviolet radiation
DE10145648B4 (de) * 2001-09-15 2006-08-24 Arccure Technologies Gmbh Bestrahlungsvorrichtung mit veränderlichem Spektrum
US6891334B2 (en) * 2001-09-19 2005-05-10 Matsushita Electric Industrial Co., Ltd. Light source device and liquid crystal display employing the same
TW558732B (en) 2001-09-19 2003-10-21 Matsushita Electric Ind Co Ltd Light source apparatus and liquid crystal display apparatus using the same
US6806648B2 (en) * 2001-11-22 2004-10-19 Matsushita Electric Industrial Co., Ltd. Light source device and liquid crystal display device
US6906461B2 (en) * 2001-12-28 2005-06-14 Matsushita Electric Industrial Co., Ltd. Light source device with inner and outer electrodes and liquid crystal display device
JP3889987B2 (ja) * 2002-04-19 2007-03-07 パナソニック フォト・ライティング 株式会社 放電灯装置及びバックライト
US7029637B2 (en) * 2003-01-09 2006-04-18 H203, Inc. Apparatus for ozone production, employing line and grooved electrodes
US20040136885A1 (en) * 2003-01-09 2004-07-15 Hogarth Derek J. Apparatus and method for generating ozone
US8154216B2 (en) * 2005-10-04 2012-04-10 Topanga Technologies, Inc. External resonator/cavity electrode-less plasma lamp and method of exciting with radio-frequency energy
US8102123B2 (en) 2005-10-04 2012-01-24 Topanga Technologies, Inc. External resonator electrode-less plasma lamp and method of exciting with radio-frequency energy
WO2007126899A2 (en) * 2006-03-28 2007-11-08 Topanga Technologies Coaxial waveguide electrodeless lamp
US8022377B2 (en) * 2008-04-22 2011-09-20 Applied Materials, Inc. Method and apparatus for excimer curing
WO2009146432A1 (en) * 2008-05-30 2009-12-03 Colorado State University Research Foundation Plasma-based chemical source device and method of use thereof
EP2303338A4 (de) * 2008-06-04 2011-08-03 Triton Thalassic Technologies Inc Verfahren, systeme und gerät zur monochromatischen uv-licht-sterilisation
JP5271762B2 (ja) * 2009-03-13 2013-08-21 株式会社オーク製作所 放電ランプ
TW201202008A (en) * 2010-07-12 2012-01-16 Hon Hai Prec Ind Co Ltd Device and method for making optical film
DE102010043215A1 (de) * 2010-11-02 2012-05-03 Osram Ag Strahler mit Sockel für die Bestrahlung von Oberflächen
CN103318203B (zh) * 2012-10-12 2015-09-23 北京航空航天大学 带有仿机翼的空气动力悬浮列车的轻质复合材料车厢结构
US9117636B2 (en) 2013-02-11 2015-08-25 Colorado State University Research Foundation Plasma catalyst chemical reaction apparatus
US9269544B2 (en) 2013-02-11 2016-02-23 Colorado State University Research Foundation System and method for treatment of biofilms
US9532826B2 (en) 2013-03-06 2017-01-03 Covidien Lp System and method for sinus surgery
US9555145B2 (en) 2013-03-13 2017-01-31 Covidien Lp System and method for biofilm remediation
US10237962B2 (en) 2014-02-26 2019-03-19 Covidien Lp Variable frequency excitation plasma device for thermal and non-thermal tissue effects
US9722550B2 (en) 2014-04-22 2017-08-01 Hoon Ahn Power amplifying radiator (PAR)
US10524849B2 (en) 2016-08-02 2020-01-07 Covidien Lp System and method for catheter-based plasma coagulation
US11962296B2 (en) * 2018-08-22 2024-04-16 Georgia Tech Research Corporation Flexible sensing interface systems and methods

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2109228A5 (de) * 1970-10-07 1972-05-26 Mcb
US4038577A (en) * 1969-04-28 1977-07-26 Owens-Illinois, Inc. Gas discharge display device having offset electrodes
EP0254111B1 (de) * 1986-07-22 1992-01-02 BBC Brown Boveri AG UV-Strahler

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3828277A (en) * 1971-12-27 1974-08-06 Us Army Integral capacitor lateral discharge laser
JPS5732564A (en) * 1980-08-04 1982-02-22 Toshiba Corp High-frequency flat electric-discharge lamp
JPS5763756A (en) * 1980-09-12 1982-04-17 Chow Shing Cheung Discharge lamp
JPS599849A (ja) * 1982-07-09 1984-01-19 Okaya Denki Sangyo Kk 高周波放電ランプ

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4038577A (en) * 1969-04-28 1977-07-26 Owens-Illinois, Inc. Gas discharge display device having offset electrodes
FR2109228A5 (de) * 1970-10-07 1972-05-26 Mcb
EP0254111B1 (de) * 1986-07-22 1992-01-02 BBC Brown Boveri AG UV-Strahler

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH680099A5 (de) * 1990-05-22 1992-06-15 Asea Brown Boveri
EP0458140A1 (de) * 1990-05-22 1991-11-27 Heraeus Noblelight GmbH Hochleistungsstrahler
US5214344A (en) * 1990-05-22 1993-05-25 Asea Brown Boveri Ltd. High-power radiator
US5283498A (en) * 1990-10-22 1994-02-01 Heraeus Noblelight Gmbh High-power radiator
EP0482230A1 (de) * 1990-10-22 1992-04-29 Heraeus Noblelight GmbH Hochleistungsstrahler
JPH081671U (ja) * 1990-10-22 1996-12-17 ヘレーウス ノーブルライト ゲゼルシャフト ミット ベシュレンクテル ハフツング 高出力ビーム発生装置
EP0489184A1 (de) * 1990-12-03 1992-06-10 Heraeus Noblelight GmbH Hochleistungsstrahler
US5198717A (en) * 1990-12-03 1993-03-30 Asea Brown Boveri Ltd. High-power radiator
EP0497360A2 (de) * 1991-02-01 1992-08-05 Hughes Aircraft Company Hochfrequentes Röhrenlichtsystem
EP0497360A3 (de) * 1991-02-01 1994-03-16 Hughes Aircraft Co
EP0517929A1 (de) * 1991-06-01 1992-12-16 Heraeus Noblelight GmbH Bestrahlungseinrichtung mit einem Hochleistungsstrahler
EP0521553A2 (de) * 1991-07-01 1993-01-07 Koninklijke Philips Electronics N.V. Hochdrucksglimmentladungslampe
EP0521553A3 (en) * 1991-07-01 1993-02-24 N.V. Philips' Gloeilampenfabrieken High-pressure glow discharge lamp
EP0547366A1 (de) * 1991-12-09 1993-06-23 Heraeus Noblelight GmbH Hochleistungsstrahler
DE4140497A1 (de) * 1991-12-09 1993-06-17 Asea Brown Boveri Hochleistungsstrahler
US5386170A (en) * 1991-12-09 1995-01-31 Heraeus Noblelight Gmbh High-power radiator
DE4235743A1 (de) * 1992-10-23 1994-04-28 Heraeus Noblelight Gmbh Hochleistungsstrahler
EP0754400A1 (de) * 1994-04-07 1997-01-22 The Regents Of The University Of California Radio frequenz betriebene schwefellampe
EP0754400A4 (de) * 1994-04-07 1997-05-28 Univ California Radio frequenz betriebene schwefellampe
DE4430300C1 (de) * 1994-08-26 1995-12-21 Abb Research Ltd Excimerstrahler und dessen Verwendung
DE19844921A1 (de) * 1998-09-30 2000-04-13 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Flache Beleuchtungsvorrichtung
EP1519407A2 (de) * 2003-08-06 2005-03-30 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH UV-Strahler mit rohrförmigem Entladungsgefäss
WO2014060592A1 (de) * 2012-10-19 2014-04-24 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Uv-lichtquelle mit kombinierter ionisation und bildung von excimern
US9718705B2 (en) 2012-10-19 2017-08-01 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. UV light source having combined ionization and formation of excimers

Also Published As

Publication number Publication date
CH677292A5 (de) 1991-04-30
ATE98050T1 (de) 1993-12-15
JP2823637B2 (ja) 1998-11-11
US5013959A (en) 1991-05-07
JPH03201358A (ja) 1991-09-03
EP0385205B1 (de) 1993-12-01
DE59003641D1 (de) 1994-01-13

Similar Documents

Publication Publication Date Title
EP0385205B1 (de) Hochleistungsstrahler
EP0458140B1 (de) Hochleistungsstrahler
EP0389980B1 (de) Hochleistungsstrahler
EP0578953B1 (de) Hochleistungsstrahler
DE4140497C2 (de) Hochleistungsstrahler
EP0371304B1 (de) Hochleistungsstrahler
DE19636965B4 (de) Elektrische Strahlungsquelle und Bestrahlungssystem mit dieser Strahlungsquelle
EP0449018A2 (de) Bestrahlungseinrichtung
EP0509110B1 (de) Bestrahlungseinrichtung
EP0363832B1 (de) Hochleistungsstrahler
EP0482230B1 (de) Hochleistungsstrahler
DE60103762T2 (de) Z-pinch-plasma-röntgenquelle mit oberflächenentladung-vorionisierung
CH670171A5 (de)
EP0517929B1 (de) Bestrahlungseinrichtung mit einem Hochleistungsstrahler
DE4010809A1 (de) Hochleistungsstrahler
EP0489184B1 (de) Hochleistungsstrahler
DE4302465C1 (de) Vorrichtung zum Erzeugen einer dielektrisch behinderten Entladung
DE2502649A1 (de) Verbesserte elektrodenstruktur fuer hochstrom-niederdruck-entladungsvorrichtungen
DE4022279A1 (de) Bestrahlungseinrichtung
DE102005007370B3 (de) Kompakte UV-Lichtquelle
EP0393449A1 (de) Leuchtstofflampe
DE2354341C3 (de) Gaslaser
DE4235743A1 (de) Hochleistungsstrahler
DE4203345A1 (de) Hochleistungsstrahler
DE3035702C2 (de)

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE FR GB IT LI NL

17P Request for examination filed

Effective date: 19910225

17Q First examination report despatched

Effective date: 19930514

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: HERAEUS NOBLELIGHT GMBH

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE FR GB IT LI NL

REF Corresponds to:

Ref document number: 98050

Country of ref document: AT

Date of ref document: 19931215

Kind code of ref document: T

ET Fr: translation filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19931215

REF Corresponds to:

Ref document number: 59003641

Country of ref document: DE

Date of ref document: 19940113

ITF It: translation for a ep patent filed

Owner name: SOCIETA' ITALIANA BREVETTI S.P.A.

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
ITTA It: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19951228

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19960205

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19960207

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19960208

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19960229

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19960304

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19960312

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19970217

Ref country code: AT

Effective date: 19970217

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19970228

Ref country code: CH

Effective date: 19970228

Ref country code: BE

Effective date: 19970228

BERE Be: lapsed

Owner name: HERAEUS NOBLELIGHT G.M.B.H.

Effective date: 19970228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19970901

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19970217

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19971030

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19971101

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 19970901

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050217