EP0393449A1 - Leuchtstofflampe - Google Patents

Leuchtstofflampe Download PDF

Info

Publication number
EP0393449A1
EP0393449A1 EP90106692A EP90106692A EP0393449A1 EP 0393449 A1 EP0393449 A1 EP 0393449A1 EP 90106692 A EP90106692 A EP 90106692A EP 90106692 A EP90106692 A EP 90106692A EP 0393449 A1 EP0393449 A1 EP 0393449A1
Authority
EP
European Patent Office
Prior art keywords
inner element
lamp
discharge
wall
fluorescent lamp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP90106692A
Other languages
English (en)
French (fr)
Other versions
EP0393449B1 (de
Inventor
Pavel Dr. Imris
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to AT90106692T priority Critical patent/ATE77712T1/de
Publication of EP0393449A1 publication Critical patent/EP0393449A1/de
Application granted granted Critical
Publication of EP0393449B1 publication Critical patent/EP0393449B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/70Lamps with low-pressure unconstricted discharge having a cold pressure < 400 Torr
    • H01J61/72Lamps with low-pressure unconstricted discharge having a cold pressure < 400 Torr having a main light-emitting filling of easily vaporisable metal vapour, e.g. mercury
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/56One or more circuit elements structurally associated with the lamp

Definitions

  • the invention relates to a fluorescent lamp according to the preamble of the main claim.
  • Such fluorescent lamps are known from DE-A-11 99 882. According to DE-A-27 25 412 and US-A-36 09 436, as well as according to US-A-20 01 501, GB-A-518 204 and DE-A 28 35 574, it is also known in the interior of fluorescent lamps to additionally arrange straight or U-shaped discharge tubes and to equip them with a plurality of discharge electrodes. According to DE-A-27 25 412 it is also known to provide the outer wall of the discharge tube with a phosphor layer over half of its circumference and its entire length.
  • the lamps according to these publications are small, have a threaded connection base, and the discharge takes place in the inner discharge tube and in the lamp bulb.
  • the electrical discharge in the discharge spaces initially generates UV radiation, which is converted into visible light in the phosphor layer.
  • the UV radiation that is generated in the inner discharge tube is only involved to a small extent in the generation of visible light, which is emitted into the surroundings by the surface of the lamp bulb.
  • the luminous efficacy or the efficiency of such lamps is relatively low.
  • the electrical energy that is required for the discharge in the inner discharge tube alone is approximately 50% of the total energy consumption, and in the end these 50% account for only approx. 10% of the total luminous efficiency of the lamp.
  • Another disadvantage of the previously known lamps is the homogeneity of the light distribution on the surface of the lamp, which is difficult to obtain.
  • the large number of discharge electrodes required for lamps of this type is a further economic disadvantage.
  • a complicated and therefore expensive electrical circuit is required to control the electrodes.
  • the prior art also includes lamps which are known in the literature under the name "compact lamps". From the technical-scientific treatise of the OSRAM Society, 1986, volume 12, pages 383 to 393, it is known that these "compact lamps” are equipped with built-in ballasts and with a threaded base and are operated at higher frequencies of the lamp current.
  • compact lamps compared to those in the above. Small lamps made of fonts are the even smaller dimensions, the improved lamp efficiency and the reduced flickering of light. Despite the advantages of these "compact lamps", they are expensive and their light output is still relatively low.
  • this is also a discharge lamp, an inner element serving as an electrically conductive component mainly as an auxiliary ignition electrode and at the same time the so-called recombination surface of the discharge space enlarged.
  • the invention is therefore based on the object of further improving the efficiency of such fluorescent lamps, with the proviso that the manufacturing costs of such lamps can be further reduced.
  • the principle of operation of the lamp designed in this way is based on two electrical fields, the first field being, in a known manner, between two, and this is essential to the invention Discharge electrodes in the discharge space, and wherein the second field extends from the interior of the inner element perpendicular to the first field.
  • the economic advantage of the fluorescent lamp according to the invention consists in the substantially greater luminous efficacy per unit of electrical energy supplied compared to the luminous efficacy of known fluorescent lamps.
  • the achievable efficiency of the fluorescent lamp according to the invention is approximately twice as high as the efficiency of known fluorescent lamps which are operated at 50 Hz.
  • the efficiency of the lamp is approximately 1.6 times greater than the efficiency of known so-called "compact lamps" which are operated at approximately 35 kHz.
  • ballasts required for the two electrical fields are easy to manufacture and cheaper than the ballasts of known fluorescent lamps with comparable luminous efficacy, apart from that, represent the total manufacturing costs of the invention Fluorescent lamp are significantly reduced compared to those of known lamps.
  • the discharge space 3 is filled with mercury vapor and with an inert gas or with an inert gas mixture.
  • discharge electrodes 7, 8 are arranged on the inner element, as shown, in the discharge space 3, between which the electrical discharge takes place in the discharge space 3.
  • the outer surface of the inner element 2 is also covered over the entire length with a phosphor layer 9 or covered with a UV radiation reflector.
  • the inner element 2 is arranged concentrically to the longitudinal axis of the lamp bulb 1 so that its mouth 10 is connected gas-tight to the inner ends of the bulb 1 and in this way together with the Lamp bulb 1 are integrated into the base 5, 6.
  • the inner element 2 consists of a glass tube like the lamp bulb 1.
  • the electrode 8 is integrated gas-tight at the mouth 10 and by means of lines 17 ', 18' leading to connections 17, 18 'with the network with the interposition of ballasts (see Fig. 9).
  • the electrode 7 at the other end is integrated in the same way in the other base 5.
  • one or more elements 12 acting as a capacitor are arranged, which are connected by lines 15 and 16 to a voltage source which is arranged in the longer base 6, but is not shown.
  • the element (s) 12 (FIG. 3) are formed from a sheet metal, a sieve, a metal layer or the like. But they can also consist of fine metal shavings or "aluminum wool" 13 or a grid 14, with which the interior of the inner element 2 is simply filled.
  • These elements 12 are capacitors because they are in the charged state when the lamp is in operation.
  • the electrically conductive plasma in the discharge space 3 forms the second electrical conductor of the capacitor, the wall of the inner element 2 forming the dielectric.
  • the lamp bases 5, 6 are designed so that they fit into the known versions.
  • the length of the lamp according to FIG. 1 can be, for example, 450 mm to 2370 mm and the diameter of the lamp bulb 1 can be, for example, 30 to 55 mm.
  • the distance D between the inner wall of the lamp bulb 1 and the outer wall of the inner element 2 can be, for example, 5 to 13 mm.
  • the capacitor element 12 extends over the entire length of the interior 11 of the inner element 2 and is preferably formed from a metal grid which is simply inserted into the glass tube during the manufacture of the inner element 2.
  • a line 15 connects the element 12 to the voltage source, which is located in the base 6, but is not shown.
  • a discharge electrode 8 is provided on the inner element 2 at the mouth 10 and at the other end of the inner space a short capacitor element 12, from which a line 15 leads to the voltage source located in the base 6.
  • the second pole of the voltage source 21 is connected to the electrode 8 via a line 23.
  • the electrical circuit between the capacitor element 12 and the plasma in the discharge space 3 is closed by the wall of the inner element 2.
  • the length of this lamp can be, for example, 150 mm to 250 mm and the outer diameter of the lamp bulb 1 can be, for example, 30 mm to 60 mm.
  • the interior 11 of the inner element 2 is not sealed off from the atmosphere, which also applies to the interior 3 of the inner element 2 of the lamp according to FIG. 1. 1 to 5 are located in the interior 11 of the inner element 2.
  • a second parameter that improves the efficiency of the lamp is the frequency of the voltage applied to the capacitor elements 12.
  • a third important parameter for improving the efficiency of the lamp is the pulse duration of a so-called monopolar electrical pulse, which is fed to the capacitor elements mentioned. If the pulse duration is shorter, ie if the rise time of the pulse is shorter, the efficiency of the fluorescent lamp is greater.
  • the resistance of the plasma in the discharge space 3 is also dependent on the distance D.
  • the resistance of the plasma per centimeter of the discharge length can easily be calculated from the data in FIG. 6.
  • the voltage (V / cm) of the lamp length also called the potential gradient, is shown on the vertical axis in FIG. 6 and the current density (mA / mm 2) of the lamp current on the horizontal axis. All data in Fig. 6 are measured without vertical tension. Each curve in FIG. 6 shows the dependence of the voltage on the current density at a different distance D.
  • a small high-frequency pulse generator according to DE-OS 37 06 385 was arranged in the base 6.
  • the frequency of the monopolar pulses generated by this method can be set in a wide range.
  • the polarity of the pulses is the same as that of the carrier half period of the mains voltage.
  • Fig. 7 shows schematically the curve of an oscillograph, which has a monopolar pulse P in every half period of a mains voltage of 50 Hz.
  • the pulse voltage (V) is shown on the vertical axis and the time in milliseconds (ms) on the horizontal axis. These pulses P are applied to the capacitor elements 12.
  • Fig. 8 shows schematically another graphical representation of the oscillation of the lamp voltage in the discharge space 3, which oscillates simultaneously with the pulse P under the effect of the pulse P between the voltage V1 and V2.
  • a higher frequency of the pulses P than the frequency shown in FIG. 7 naturally produces a higher oscillation of the lamp voltage in the discharge space 3.
  • the oscillating vertical voltage P on the capacitor plates produces an oscillation of the plasma in the discharge space 3, which is of the frequency of the discharge current which flows between the electrodes 7 and 8 is independent.
  • Each known high-frequency generator 20, which is connected to the capacitor elements 12, leads to an oscillation of the plasma in the discharge space 3 and thus significantly improves the luminous efficacy of such lamps.
  • the example according to column 1 of the table illustrates the luminous efficacy of a lamp without a high-frequency generator, only a voltage of 50 Hz being applied to the capacitor elements 12.
  • the light output with such a simple electrical circuit of the lamp in FIG. 1 is 93 lumens per watt.
  • the data in the table make it clear that expensive high-frequency generators are saved because the electrical energy of the high frequency is only slightly involved in the total electrical energy. With a lamp power of 30 W, for example, only about 8 W of the electrical energy at 35 kHz and about 22 W at 50 Hz are involved. Such a lamp shines with approximately 4,600 lumens.
  • the light output of the compact lamp according to FIG. 4 is approximately 1.6 times greater than the light output of the known compact lamp of this type.
  • a high-frequency generator 20 which has a frequency of approximately 35 kHz, can be used for the compact lamp according to FIG. Even greater economy can be achieved if the compact lamp according to FIG. 4 is operated with a small high-frequency pulse generator according to DE-OS 37 06 385.
  • the manufacturing costs of the compact lamp according to FIG. 4 are considerably lower than the known compact lamps which emit a comparable amount of light.

Abstract

Die Leuchtstofflampe besteht aus einem von einem Lampenkolben (1) nach außen begrenzten Entladungsraum (3), den Entladungselektroden (7, 8) sowie aus einem langgestrecktes, den Entladungsraum (3) nach innen begrenzendem Innenelement (2). Die gesamte Innenwand des Lampenkolbens (1) und die Außenwand des Innenelementes (2) sind mit einer Leuchtstoffschicht (4) bedeckt und innerhalb des Innenelementes (2) ist mindestens über einen Teil seiner Gesamtlänge elektrisch leitfähiges Material angeordnet, das mit einer Entladungselektrode elektrisch verbunden ist. Das Innenelement (2) der Lampe ist als Träger für die in dessen Innenraum angeordnete, sich mindestens über einen Teil der Gesamtlänge erstreckenden Kondensatorelemente ausgebildet, an welche eine zur Entladungsstrecke senkrecht orientierte elektrische Spannung angelegt ist, wobei die Kondensatorelemente durch Leitungen (15, 16) mit einem Hochfrequenzgenerator (20) und Vorschaltgeräten verbunden sind. Ferner ist der gegen die Atmosphäre offene Innenraum (11) des Innenelementes (2) gegen den Entladungsraum (3) gasdicht abgeschlossen.

Description

  • Die Erfindung betrifft eine Leuchtstofflampe gemäß Oberbe­griff des Hauptanspruches.
  • Derartige Leuchtstofflampen sind nach der DE-A-11 99 882 be­kannt. Nach der DE-A-27 25 412 und der US-A-36 09 436, sowie nach US-A-20 01 501, GB-A-518 204 und der DE-A 28 35 574 ist es ferner bekannt, im Innenraum von Leuchtstofflampen zusätz­lich gerade oder U-förmige Entladungsröhren anzuordnen und diese mit mehreren Entladungselektroden auszustatten. Nach der DE-A-27 25 412 ist es außerdem bekannt, die Außenwand des Entladungsrohres über die Hälfte ihres Umfanges und ihrer ganzen Länge mit einer Leuchtstoffschicht zu versehen. Die Lampen nach diesen Druckschriften sind klein, haben einen Ge­windeanschlußsockel, und die Entladung findet jeweils im in­neren Entladungsrohr und im Lampenkolben statt. Die elektri­sche Entladung in den Entladungsräumen erzeugt dabei zunächst eine UV-Strahlung, die in der Leuchtstoffschicht in sichtba­res Licht umgewandet wird. Die UV-Strahlung, die im inneren Entladungsrohr erzeugt wird, ist dabei allerdings nur im ge­ringen Maße an der Erzeugung von sichtbarem Licht beteiligt, das von der Oberfläche des Lampenkolbens in die Umgebung aus­gestrahlt wird. Aus diesem Grunde ist die Lichtausbeute oder der Wirkungsgrad derartiger Lampen relativ niedrig. Die elek­trische Energie, die allein schon für die Entladung im inne­ren Entladungsrohr erforderlich ist, beträgt ca. 50 % der ge­samten Energieaufnahme, und im Endeffekt sind diese 50 % mit nur ca. 10 % an der gesamten Lichtausbeute der Lampe betei­ligt. Ein weiterer Nachteil der vorbekannten Lampen besteht in der nur schwer zu erhaltenen Homogenität der Lichtvertei­lung auf der Oberfläche der Lampe. Ferner ist die Vielzahl der Entladungselektroden, die bei Lampen dieser Art erforder­lich sind, ein weiterer wirtschaftlicher Nachteil. Außerdem ist für die Steuerung der Elektroden eine komplizierte und damit teure elektrische Schaltung erforderlich.
  • Zum Stand der Technik gehören auch Lampen, die in der Litera­tur unter der Bezeichnung "Kompaktlampen" bekannt sind. Aus der Technisch-Wissenschaftlichen Abhandlung der OSRAM-Gesell­schaft, 1986, Band 12, Seiten 383 bis 393, ist es bekannt, daß diese "Kompaktlampen" mit eingebauten Vorschaltgeräten und mit einem Gewindesockel ausgerüstet sind und deren Be­trieb sich mit höheren Frequenzen des Lampenstroms vollzieht. Die Vorteile der Kompaktlampen, im Vergleich zu den in den o. a. Schriften ausgeführten kleinen Lampen, sind die noch klei­neren Abmessungen, der verbesserte Lampenwirkungsgrad und das verringerte Lichtflimmern. Trotz der Vorteile dieser "Kompaktlampen" sind dieser teuer und ihre Lichtausbeute ist immer noch relativ gering. Was die eingangs erwähnte Leucht­stofflampe nach der DE-A-11 99 882 betrifft, von der hier ausgegangen wird, so handelt es sich hierbei auch um eine Entladungslampe, wobei ein Innenelement als elektrisch lei­tendes Bauteil hauptsächlich als Hilfszündelektrode dient und gleichzeitig die sogenannte Rekombinationsfläche des Entla­dungsraumes vergrößert.
  • Der Erfindung liegt demgemäß die Aufgabe zugrunde, den Wir­kungsgrad derartiger Leuchtstofflampen weiter zu verbessern, und zwar mit der Maßgabe, dabei die Herstellungskosten derar­tiger Lampen weiter reduzieren zu können.
  • Diese Aufgabe ist mit einer Leuchtstofflampe der eingangs ge­nannten Art nach der Erfindung durch die im Kennzeichen des Hauptanspruches angeführten Merkmale gelöst. Vorteilhafte Weiterbildungen und praktische Ausführungsformen ergeben sich nach den Unteransprüchen.
  • Dem Funktionsprinzip der derart ausgebildeten Lampe liegen im Gegensatz zu allen anderen vorgenannten Lampen zwei elektri­sche Felder zugrunde, wobei - und das ist erfindungswesent­lich - sich das erste Feld in bekannter Weise zwischen zwei Entladungselektroden im Entladungsraum erstreckt, und wobei sich das zweite Feld vom Innenraum des Innenelementes senk­recht gegen das erste Feld erstreckt.
  • Der wirtschaftliche Vorteil der erfindungsgemäßen Leucht­stofflampe besteht in der wesentlich größeren Lichtausbeute pro Einheit der zugeführten elektrischen Energie im Vergleich zur Lichtausbeutebekannter Leuchtstofflampen. Der erreichbare Wirkungsgrad der erfindungsgemäßen Leuchtstofflampe ist etwa doppelt so groß wie der Wirkungsgrad bekannter Leucht­stofflampen, die mit 50 Hz betrieben werden. Ferner ist gemäß der Erfindung der Wirkungsgrad der Lampe ca. 1,6 x größer als der Wirkungsgrad bekannter sog. "Kompaktlampen" die mit ca. 35 kHz betrieben werden. Ein weiterer Vorteil besteht in der homogenen Lichtverteilung, die sich an der Oberfläche des Lampenkolbens ergibt, und ferner sind für die beiden elektri­schen Felder notwendigen Vorschaltgeräte leicht herstellbar und billiger als die Vorschaltgeräte bekannter Leucht­stofflampen mit vergleichbarer Lichtausbeute, abgesehen da­von, dar die gesamten Herstellungskosten der erfindungsgemä­ßen Leuchtstofflampe im Vergleich zu denen bekannter Lampen wesentlich reduziert sind.
  • Die erfindungsgemäße Leuchtstofflampe wird nachfolgend anhand der zeichnerischen Darstellung von Ausführungsbeispielen nä­her erläutert.
  • Es zeigt schematisch
    • Fig. 1 teilweise im Schnitt und Ansicht die erfindungsgemä­ße Leuchtstofflampe in Röhrenform;
    • Fig. 2 einen vergrößerten Schnitt durch die Lampe längs Linie II-II in Fig. 1;
    • Fig. 3 im Schnitt das eine Ende des Innenelementes der Leuchtstofflampe gemäß Fig. 1;
    • Fig. 4 teilweise in Schnitt und Ansicht die Leuchtstofflam­pe in Kolbenform;
    • Fig. 5 im Schnitt eine besondere Ausführungsform des Innen­elementes;
    • Fig. 6 die graphische Darstellung der Potentialgradienten in Abhängigkeit von der Lampenstromdichte;
    • Fig. 7 die graphische Darstellung der Impulsspannung an der Kondensatorplatte in Abhängigkeit von der Zeit
    • Fig. 8 die graphische Darstellung der Entladungsspannung in Abhängigkeit von der Zeit und
    • Fig. 9 das Funktionsprinzip der erfindungsgemäßen Lampe.
  • Die Leuchtstofflampe nach Fig. 1 bis 3 besteht aus einem rohrförmigen Lampenkolben 1 und aus einem von diesem und vom Innenelement 2 begrenzten Entladungsraum 3, wobei die Innen­wand des Lampenkolbens 1 mit einer Leuchtstoffschicht 4 be­deckt ist. Der Entladungsraum 3 ist mit Quecksilberdampf so­wie mit einem Edelgas oder mit einem Edelgasgemisch gefüllt. Im Bereich der beiden inneren Enden des Lampenkolbens 1 sind im Entladungsraum 3 Entladungselektroden 7, 8 am Innenele­ment, wie dargestellt, angeordnet, zwischen denen die elek­trische Entladung im Entladungsraum 3 erfolgt. Die Außenflä­che des Innenelements 2 ist auf der ganzen Länge ebenfalls mit einer Leuchtstoffschicht 9 bedeckt oder mit einem UV-­Strahlungsreflektor überzogen. Das Innenelement 2 ist kon­zentrisch zur Längsachse des Lampenkolbens 1 so angeordnet, daß dessen Ausmündung 10 an die inneren Enden des Kolbens 1 gasdicht angeschlossen und auf diese Weise zusammen mit dem Lampenkolben 1 in die Sockel 5, 6 eingebunden sind. Das In­nenelement 2 besteht aus einem Glasrohr wie der Lampenkolben 1.
  • Gemäß Fig. 3 steht die Elektrode 8 an der Ausmündung 10 gas­dicht eingebunden und mittels zu Anschlüssen 17, 18 führenden Leitungen 17′, 18′ mit dem Netz unter Zwischenschaltung von Vorschaltgerätem (siehe Fig. 9) in Verbindung. Die Elektrode 7 am anderem Ende ist in gleicher Weise im anderen Sockel 5 eingebunden. Im Innenraum 11 des Innenelementes 2, sind eine oder mehrere als Kondensator wirkende Elemente 12 angeordnet, die durch Leitungen 15 bzw. 16 mit einer Spannungsquelle ver­bunden sind, die im längeren Sockel 6 angeordnet, aber nicht dargestellt ist. Das bzw. die Element(e) 12 (Fig. 3) sind aus einem Blech, einem Sieb, einer Metallschicht od. dgl. gebil­det. Sie können aber auch aus feinen Metallspänen oder aus "Aluminiumwolle" 13 oder aus einem Gitter 14 bestehen, mit denen der Innenraum des Innenelemented 2 einfach ausgefüllt ist. Diese Element 12 sind deshalb Kondensatoren, weil sie sich beim Betrieb der Lampe im geladenen Zustand befinden. Das elektrisch leitende Plasma im Entladungsraum 3 bildet da­bei den zweiten elektrischen Leiter des Kondensators, wobei die Wand des Innenelementes 2 das Dielektrikum bildet. Von der im Sockel angeordneten Spannungsquelle bewirkt, oszilliert in diesem Kondensator ein elektrisches Feld. Durch die Lei­tungen 17, 18 fließt Strom der Elektrode 8 zu, der gleichzei­tig auch zwischen den Elektroden 7 und 8 den Lampen- bzw. Entladungsstrom bewirkt.
  • Die Lampensockel 5, 6 sind so ausgebildet, daß sie in die be­kannten Fassungen passen. Die Länge der Lampe gemäß Fig. 1 kann nach Bedarf bspw. 450 mm bis 2370 mm und der Durchmesser des Lampenkolbens1 kann bspw. 30 bis 55 mm betragen. Der Ab­stand D zwischen der Innenwand des Lampenkolbens 1 und der Außenwand des Innenelements 2 kann bspw. 5 bis 13 mm betra­gen.
  • Die Fig. 4, 5, bei denen entsprechende Bezugszeichen benutzt sind, zeigen eine sog. Kompaktlampe, die mit im Sockel 6 ein­gebauten Vorschaltgeräten (Hochfrequenzgenerator 20/Filterdros­sel24)ausgestattet und mit einem Gewindesockel 19 versehen ist und somit in übliche Glühlampenfassungen eingesetzt werden kann. Das Kondensatorelement 12 erstreckt sich über die ge­samte Länge des Innenraumes 11 des Innenelements 2 und ist bevorzugt aus einem Metallgitter gebildet, das einfach bei der Herstellung des Innenelements 2 in das Glasrohr einge­schoben wird. Eine Leitung 15 verbindet das Element 12 mit der Spannungsquelle, die sich im Sockel 6 befindet, aber nicht dargestellt ist.
  • Bei der Ausführungsform nach Fig. 5 ist am Innenelement 2 le­diglich eine Entladungselektrode 8 an der Ausmündung 10 und am anderen Ende des Innenraumes ein kurzes Kondensatorelement 12 vorgesehen, von der bzw. dem eine Leitung 15 zu der im Sockel 6 befindlichen Spannungsquelle führt. Der zweite Pol­der Spannungsquelle21steht über eine Leitung 23 mit der Elek­trode 8 in Verbindung. Der elektrische Kreis zwischen dem Kondensatorelement 12 und dem Plasma im Entladungsraum 3 ist durch die Wand des Innenelements 2 geschlossen. Die Länge dieser Lampe kann bspw. 150 mm bis 250 mm und der Außendurch­messer des Lampenkolbens 1 bspw. 30 mm bis 60 mm betragen.
  • Der Innenraum 11 des Innenelements 2 ist nicht gegen At­mosphäre abgeschlossen, was auch für den Innenraum 3 des In­nenelements 2 der Lampe gemäß Fig. 1 gilt. Alle Leitungen der Lampe gemäß Fig. 1 bis 5 befinden sich im Innenraum 11 des Innenelements 2.
  • Je nach geforderter Lampenleistung und nach den gesamten geo­metrischen und elektrotechnischen Parametern der Lampen ist zu entscheiden, ob nur ein Kondensatorelement 12 (Fig. 5) oder zwei getrennte Kondensatorelemente 12 (Fig. 3) vorzusehen sind. Dies ist abhängig von der Frequenz der Spannung, die an die Kondensa­torelemente 12 angelegt ist, sowie auch davon, welchen Ab­stand D das Innenelement 2 vom Lampenkolben 1 hat. Wenn der Abstand D klein ist, dann muß die Frequenz der elektrischen Spannung an den Kondensatorplatten höher sein als bei einem größeren Abstand D. Die Lichtausbeute der Leuchtstofflampe ist umgekehrt proportional zum Abstand D zwischen Innenele­ment 2 und Lampenkolben 1, d.h. bei Verringerung des Abstands D steigt die Lichtausbeute der Lampe und umgekehrt. Ein zwei­ter Parameter, der den Wirkungsgrad der Lampe verbessert, ist die Frequenz der Spannung, die an den Kondensatorelementen 12 anliegt. Ein dritter wichtiger Parameter zur Verbesserung des Wirkungsgrades der Lampe ist die Impulsdauer eines sog. mono­polaren elektrischen Impulses, der an die genannten Kondensa­torelemente geführt wird. Wenn die Impulsdauer kürzer ist, d.h. wenn die Anstiegszeit des Impulses kürzer ist, dann ist der Wirkungsgrad der Leuchtstofflampe größer.
  • Die Lampe gemäß Fig. 1 ist in bekannter Weise an die übliche Netzspannung von 50 Hz angeschlossen. Nach Zündung fließt der Lampenstrom zwischen den Elektroden 7 und 8, und gleichzeitig wirkt die Spannung des Kondensatorelements 12 senkrecht auf den Lampenstrom (siehe Fig.9 ). Diese senkrecht orientierte Spannung erhöht den elektrischen Widerstand des sich im Ent­ladungsraum 3 befindlichen Plasmas, wobei der Widerstand des Plasmas proportional mit dieser senkrecht orientierten Span­nung steigt und zwar hauptsächlich dann, wenn die Stromdichte des Lampenstromes im Plasma größer ist. Dieses physikalische Phänomen steuert die Homogenität des elektrischen Stromes im gesamten Entladungsraum 3. Wenn bspw. die Stromdichte in ei­nem lokal begrenzten kleinen Raum schneller steigt als in ei­nem benachbarten Raum, dann steigt der elektrische Widerstand in dem Raum mit schnell steigender Stromdichte unter der Wir­kung der senkrechten Spannung schneller, wodurch die Steige­rung der Stromdichte (mA/mm²) in diesen begrenzten Raum ge­ bremst wird. Im Endeffekt wird dadurch im gesamten Entladungsraum 3 eine homogene Stromdichte erzielt, die eine homogene Lichtverteilung des sichtbaren Lichtes an der Ober­fläche des Lampenkolbens 1 garantiert.
  • Gemäß Fig. 6, und wie vorerwähnt, ist der Widerstand des Plasmas im Entladungsraum 3 ferner vom Abstand D abhängig. Wenn der Abstand D zwischen der Innenwand des Kolbens 1 und der Außenwand des Innenelements 2 kleiner wird, steigt der Widerstand des Plasmas. Der Widerstand des Plasmas pro Zenti­meter der Entladungslänge ist aus den Daten in Fig. 6 leicht errechenbar. Die Spannung (V/cm) der Lampenlänge, auch Poten­tialgradient genannt, ist auf der vertikalen Achse in Fig. 6 aufgeführt und die Stromdichte (mA/mm²) des Lampenstromes auf der horizontalen Achse. Alle Daten in Fig. 6 sind ohne senk­rechte Spannung gemessen. Jede Kurve in Fig. 6 zeigt die Ab­hängigkeit der Spannung von der Stromdichte bei unterschied­lichem Abstand D. Für die Kurve I beträgt der Abstand D = 13 mm, für Kurve II ist D = 10 mm, für Kurve III ist D = 8 mm und für Kurve IV ist D = 5 mm. Den größten Potentialgradien­ten weist eine Lampe mit einem Abstand D = 5 mm auf, während eine Lampe mit Abstand D = 13 mm den kleinsten Potentialgra­dienten hat. Die Daten in Fig. 6 ändern sich beträchtlich, wenn an die Kondensatorelemente pulsierende Spannung mit kur­zer Impulsdauer angelegt wird. Dabei ist es vorteilhaft, wenn die senkrechte Spannung aus kurzandauernden Impulsen besteht, und wenn die Frequenz der Impulse hoch ist. Dafür sind alle bekannten Hochfrequenzgeneratoren für die Erzeugung der senk­rechten Spannung verwendbar, wobei Generatoren am besten ge­eignet sind, die Impulse erzeugen, deren Anstiegszeit im Be­reich von Nanosekunden (1.10⁻⁹ sek.) liegt. So wurde im Sockel 6 bspw. ein kleiner Hochfrequenzimpulsgenerator gemäß der DE-OS 37 06 385 angeordnet. Die Frequenz der nach diesem Verfahren erzeugten monopolaren Impulse ist in einem breiten Spektrum einstellbar. Die Polarität der Impulse ist die glei­che wie die der Trägerhalbperiode der Netzspannung.
  • Fig. 7 zeigt schematisch die Kurve eines Oszillographen, die in jeder halben Periode einer Netzspannung von 50 Hz einen monopolaren Impuls P aufweist. Auf der vertikalen Achse ist die Impulsspannung (V) angegeben und auf der horizontalen Achse die Zeit in Millisekunden (ms). Diese Impulse P werden auf die Kondensatorelemente 12 gegeben. Fig. 8 zeigt schema­tisch eine weitere graphische Darstellung der Oszillation der Lampenspannung im Entladungsraum 3, die unter der Wirkung des Impulses P zwischen der Spannung V₁ und V₂ simultan mit dem Impuls P oszilliert. Eine höhere Frequenz der Impulse P als die Frequenz, die in Fig. 7 dargestellt ist, erzeugt selbst­verständlich eine höhere Oszillation der Lampenspannung im Entladungsraum 3. Die oszillierende senkrechte Spannung P an den Kondensatorplatten erzeugt eine Oszillation des Plasmas im Entladungsraum 3, die von der Frequenz des Entladungsstro­mes unabhängig ist, der zwischen den Elektroden 7 und 8 fließt. Jeder bekannte Hochfrequenzgenerator 20, der an die Kondensatorelemente 12 angeschlossen wird, führt zu einer Os­zillation dem Plasmas im Entladungsraum 3 und verbessert da­mit wesentlich die Lichtausbeute derartiger Lampen.
  • Die beigefügte Tabelle enthält die Lichtausbeute in Lumen pro Watt (1m/W) für Lampen mit einem Abstad D von 5 mm und D = 8 min bei unterschiedlicher elektrischer Energie, die bei 50 Hz durch die Elektroden 7, 8 in den Entladungsraum einge­leitet wird und ferner der Energie, die bei ca. 35 kHz durch die Kondensatorelemente in die Lampe geleitet wird. Gemäß Spalte 2 der Tabelle beträgt die elektrische Energie bei 50 Hz 88 % und die elektrische Energie bei 35 kHz 12 %.
  • Die Lichtausbeute der Lampe gemäß Fig. 1 mit einem Ab­stand von D = 5 mm beträgt danach 157 1m/W und bei einem Ab­stand von D = 8 mm 128 1m/W. Die Daten in den Spalten 3 und 4 der Tabelle geben den Wirkungsgrad der Lampe bei anderen Energieverhältnissen an.
  • Das Beispiel gemäß Spalte 1 der Tabelle verdeutlicht die Lichtausbeute einer Lampe ohne Hochfrequenzgenerator, wobei lediglich eine Spannung von 50 Hz an die Kondensatorelemente 12 angelegt wurde. Die Lichtausbeute bei einer derartigen einfachen elektrischen Schaltung der Lampe in Fig. 1 beträgt 93 Lumen pro Watt.
    Die Daten der Tabelle machen deutlich, daß man an teueren Hochfrequenzgeneratoren spart, weil die elektrische Energie der Hochfrequenz nur geringfügig an der gesamten elektrischen Energie beteiligt ist. Bei bspw. einer Lampenleistung von 30 W sind nur ungefähr 8 W der elektrischen Energie bei 35 kHz und ca. 22 W bei 50 Hz beteiligt. Eine solche Lampe strahlt mit ca. 4.600 Lumen. Die Lichtausbeute der Kompakt­lampe gemäß Fig. 4 ist ungefähr 1,6 x größer als die Lichtausbeute der bekannten Kompaktlampe dieser Art. Für die Kompaktlampe nach Fig. 4 ist ein Hochfrequenzgenerator 20, der eine Frequenz von ca. 35 kHz hat, einsetzbar. Noch grö­ßere Wirtschaftlichkeit ist zu erzielen, wenn die Kompakt­lampe nach Fig. 4 mit einem kleinen Hochfrequenz-Impulsgene­rator gemäß DE-OS 37 06 385 betrieben wird. Die Herstellungs­kosten der Kompaktlampe gemäß Fig. 4 sind wesentlich niedri­ger als die bekannter Kompaktlampen, die eine vergleichbare Lichtmenge ausstrahlen. TABELLE 1
    1 2 3 4
    Betriebsfrequenz 50 Hz 50 Hz 50 Hz 35 kHz 50 Hz 35 kHz 50 Hz 35 kHz
    zugeführte elektrische Energie 99% ∼1% 88% 12% 75% 25% 60% 40%
    D = 5 mm 93 lm/W 157 lm/W 170 lm/W
    D = 8 mm 72 lm/W 128 lm/W 153 lm/W 160 lm/W

Claims (6)

1. Leuchtstofflampe mit einem von einem Lampenkolben (1) nach außen begrenzten Entladungsraum (3), der Entla­dungselektroden (7, 8) sowie ein Langgestrecktes, den Entladungsraum (3) nach innen begrenzendes Innenelement (2) enthält, wobei die gesamte Innenwand des Lampenkol­bens (1) und die Außenwand des Innenelementes (2) mit einer Leuchtstoffschicht (4) bedeckt sind und innerhalb des Innenelementes (2) mindestens über einen Teil seiner Gesamtlänge elektrisch leitfähiges Material angeordnet ist, das mit einer Entladungselektrode elektrisch ver­bunden ist,
dadurch gekennzeichnet,
daß das Innenelement (2) als Träger für in dessen Innen­raum (11) angeordnete, sich mindestens über einen Teil seiner Gesamtlänge erstreckende, eine zur Entladungs­strecke senkrechte elektrische Spannung orientierende Kondensatorelemente (12) ausgebildet ist, die durch Lei­tungen (15, 16) mit einem Hochfrequenzgenerator (20) und Vorschaltgeräten verbunden sind und wobei ferner der ge­gen die Atmosphäre offene Innenraum (11) des Innenele­mentes (2) gegen den Entladungsraum (3) gasdicht abge­schlossen ist.
2. Leuchtstofflampe nach Anspruch 1,
dadurch gekennzeichnet,
daß an beiden Enden der Außenwand des Innenelements (2) in der Nähe der Ausmündung (10) die Entladungselektroden (7, 8) gasdicht angeordnet sind, die durch Leitungen (17, 18, 23) mit Spannungsquellen und Vorschaltgeräten verbunden sind.
3. Leuchtstofflampe nach Anspruch 1,
dadurch gekennzeichnet,
daß an einem Ende der Außenwand des Innenelementes (2) in der Nähe der Ausmündung (10) eine Entladungselektrode (8) gasdicht angeordnet ist und am anderen Ende der In­nenwand des Innenelementes (2) ein Kondensatorelement (12), das durch eine Leitung (22) mit einem Hochfre­quenzgenerator (20) verbunden ist (Fig. 5).
4. Leuchtstofflampe nach einem der Ansprüche 1 bis 3,
dadurch gekennzeichnet,
daß der Innenraum (11) des Innenelements (2) mindestens über einen Teil seiner gesamten Länge mit elektrisch leitendem Material (13), wie Aluminiumwolle, feinen Me­tallspänen, Metallpulver, gefüllt ist und durch eine Leitung (15, 16) mit einer Spannungsquelle und Vor­schaltgeräten verbunden ist (Fig. 1)
5. Leuchtstofflampe nach einem der Ansprüche 1 bis 3,
dadurch gekennzeichnet,
daß an der Innenwand des Innenelements (2) mindestens über einen Teil seiner gesamten Länge ein Gitter (14, 20) angeordnet und dieses durch eine Leitung (22) mit einer Spannungsquelle und Vorschaltgeräten verbunden ist (Fig. 1).
6. Leuchtstofflampe nach einem der Ansprüche 1 bis 5,
dadurch gekennzeichnet,
daß die elektrischen Leitungen (15, 16, 17, 18, 22, 23) im Innenraum (11) des Innenelementes (2) angeordnet sind.
EP90106692A 1989-04-17 1990-04-06 Leuchtstofflampe Expired - Lifetime EP0393449B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT90106692T ATE77712T1 (de) 1989-04-17 1990-04-06 Leuchtstofflampe.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3912514A DE3912514A1 (de) 1989-04-17 1989-04-17 Leuchtstofflampe
DE3912514 1989-04-17

Publications (2)

Publication Number Publication Date
EP0393449A1 true EP0393449A1 (de) 1990-10-24
EP0393449B1 EP0393449B1 (de) 1992-06-24

Family

ID=6378811

Family Applications (1)

Application Number Title Priority Date Filing Date
EP90106692A Expired - Lifetime EP0393449B1 (de) 1989-04-17 1990-04-06 Leuchtstofflampe

Country Status (9)

Country Link
US (1) US5053933A (de)
EP (1) EP0393449B1 (de)
AT (1) ATE77712T1 (de)
CZ (1) CZ278979B6 (de)
DD (1) DD293687A5 (de)
DE (2) DE3912514A1 (de)
ES (1) ES2034792T3 (de)
HU (1) HU202673B (de)
SK (1) SK278345B6 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19520646A1 (de) * 1995-06-09 1996-12-12 Walter Holzer Gasentladungsgefäß für Leuchtstofflampen

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5909086A (en) * 1996-09-24 1999-06-01 Jump Technologies Limited Plasma generator for generating unipolar plasma
DE19900870A1 (de) * 1999-01-12 2000-08-03 Walter Holzer Gerade Leuchtstofflampe mit Vorschaltgerät
DE19900888C5 (de) * 1999-01-12 2007-09-06 Suresh Hiralal Shah Beidseitig gesockelte gerade Leuchtstoffröhre
WO2001087019A1 (en) * 2000-05-11 2001-11-15 General Electric Company Starting aid for fluorescent lamps
US7053553B1 (en) 2000-05-11 2006-05-30 General Electric Company Starting aid for fluorescent lamp
US6650042B2 (en) 2001-04-26 2003-11-18 General Electric Company Low-wattage fluorescent lamp
RO119397B1 (ro) * 2001-09-07 2004-08-30 Doru Cornel Sava Tub fluorescent
US7530715B2 (en) * 2006-05-31 2009-05-12 Jenn-Wei Mii Luminescent assembly with shortwave and visible light source
US7661839B2 (en) * 2007-05-01 2010-02-16 Hua-Hsin Tsai Light structure

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE598325C (de) * 1933-03-08 1934-06-08 Patra Patent Treuhand Elektrische Quecksilberdampflampe oder -roehre mit aus Borosilikatglas bestehendem Roehrengefaess
US2001501A (en) * 1933-03-10 1935-05-14 Gen Electric Gaseous electric discharge device
GB518204A (en) * 1938-09-23 1940-02-20 Gen Electric Co Ltd Improvements in electric discharge lamps
NL278794A (de) * 1961-05-23
US3609436A (en) * 1969-04-21 1971-09-28 Gen Electric Fluorescent light source with a plurality of sequentially energized electrodes
NL179771C (nl) * 1976-06-17 1986-11-03 Philips Nv Lagedrukgasontladingslamp.
NL179854C (nl) * 1977-08-23 1986-11-17 Philips Nv Lagedrukkwikdampontladingslamp.
NL7906202A (nl) * 1979-08-15 1981-02-17 Philips Nv Lagedrukontladingslamp.
NL8205026A (nl) * 1982-12-29 1984-07-16 Philips Nv Inrichting voorzien van een met tenminste twee inwendige elektroden uitgeruste metaaldampontladingsbuis.

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN, unexamined applications, E Field, Band 11, Nr. 77, 7. MÛrz 1987 THE PATENT OFFICE JAPANESE GOVERNMENT Seite 76 E 487 & JP - A- 61 - 232 554 ( TOSHIBA ) *
PATENT ABSTRACTS OF JAPAN, unexamined applications, E Field, Band 6, Nr. 155, 17. August 1982 THE PATENT OFFICE JAPANESE GOVERNMENT Seite 26 E 125 & JP - A - 57 76 740 ( MATSUSHITA DENKO ) *
PATENT ABSTRACTS OF JAPAN, unexamined applications, E field, Band 7, Nr. 21, 27. Januar 1983 THE PATENT OFFICE JAPANESE GOVERNMENT Seite 116 E 155 & JP - A - 57 - 180 062 ( MATSUSHITA DENKO ) *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19520646A1 (de) * 1995-06-09 1996-12-12 Walter Holzer Gasentladungsgefäß für Leuchtstofflampen

Also Published As

Publication number Publication date
DD293687A5 (de) 1991-09-05
US5053933A (en) 1991-10-01
ES2034792T3 (es) 1993-04-01
ATE77712T1 (de) 1992-07-15
HUT53731A (en) 1990-11-28
HU902439D0 (en) 1990-08-28
DE3912514A1 (de) 1990-10-18
CS9001819A2 (en) 1991-09-15
DE59000175D1 (de) 1992-07-30
SK278345B6 (en) 1996-12-04
CZ278979B6 (en) 1994-11-16
HU202673B (en) 1991-03-28
EP0393449B1 (de) 1992-06-24

Similar Documents

Publication Publication Date Title
DE3718216C2 (de)
DE19636965B4 (de) Elektrische Strahlungsquelle und Bestrahlungssystem mit dieser Strahlungsquelle
DE3106892A1 (de) Leuchtstofflampenanordnung und verfahren zum herstellen derselben
DE69820992T2 (de) Hochdruckentladungslampe
EP0578953B1 (de) Hochleistungsstrahler
DE19718395C1 (de) Leuchtstofflampe und Verfahren zu ihrem Betrieb
EP0824761A1 (de) Entladungslampe und verfahren zum betreiben derartiger entladungslampen
EP0782871A2 (de) Verfahren und Strahlungsanordnung zur Erzeugung von UV-Strahlen zur Körperbestrahlung sowie Verwendung
DE602004010629T2 (de) Gasentladungslampe
EP0474065A1 (de) Gasentladungsgefäss für Kompaktlampen
EP0393449B1 (de) Leuchtstofflampe
DE102006007218A1 (de) Hochdruckentladungslampe
EP0517929B1 (de) Bestrahlungseinrichtung mit einem Hochleistungsstrahler
DE102005061832A1 (de) Hochdruckentladungslampe mit verbesserter Zündfähigkeit sowie Hochspannungspulsgenerator
EP1276137B1 (de) Dielektrische Barrieren-Entladungslampe mit Zündhilfe
DE60033299T2 (de) Hochdruckentladungslampe
DE4035561A1 (de) Lampe mit hochintensitaets-entladungsroehre
DE3920511C2 (de) Elektronenstromlampe
DE3119223C2 (de) Entladungslampenvorrichtung
EP0118100B1 (de) Einseitig gesockelte Niederdruckentladungslampe
EP0118834B1 (de) Einseitig gesockelte Niederdruckentladungslampe und Verfahren zur Herstellung
DE19945758A1 (de) Gasentladungslampe
DE2433332A1 (de) Arbeitsverfahren einer hochleistungsbogenentladungslampe
EP1647165A1 (de) Betriebsverfahren für eine hochdruckentladungslampe
DE102013100520B4 (de) Blitzlampenanordnung und Verfahren zum Zünden derselben

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE ES FR GB IT LI NL

17P Request for examination filed

Effective date: 19901129

17Q First examination report despatched

Effective date: 19910820

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE ES FR GB IT LI NL

REF Corresponds to:

Ref document number: 77712

Country of ref document: AT

Date of ref document: 19920715

Kind code of ref document: T

ET Fr: translation filed
REF Corresponds to:

Ref document number: 59000175

Country of ref document: DE

Date of ref document: 19920730

ITF It: translation for a ep patent filed

Owner name: MODIANO & ASSOCIATI S.R

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2034792

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 19970430

Year of fee payment: 8

Ref country code: AT

Payment date: 19970430

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19970521

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19970523

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19980403

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980406

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980407

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19980424

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19980428

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980430

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980430

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980430

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19980430

Year of fee payment: 9

BERE Be: lapsed

Owner name: IMRIS PAVEL

Effective date: 19980430

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990406

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19991101

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19990406

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19991231

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 19991101

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000201

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20000503

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050406