EP0363832A1 - Hochleistungsstrahler - Google Patents

Hochleistungsstrahler Download PDF

Info

Publication number
EP0363832A1
EP0363832A1 EP89118546A EP89118546A EP0363832A1 EP 0363832 A1 EP0363832 A1 EP 0363832A1 EP 89118546 A EP89118546 A EP 89118546A EP 89118546 A EP89118546 A EP 89118546A EP 0363832 A1 EP0363832 A1 EP 0363832A1
Authority
EP
European Patent Office
Prior art keywords
electrodes
dielectric
radiator according
discharge
power radiator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP89118546A
Other languages
English (en)
French (fr)
Other versions
EP0363832B1 (de
Inventor
Bernd Dr. Gellert
Ulrich Dr. Kogelschatz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Heraeus Noblelight GmbH
Original Assignee
ABB Asea Brown Boveri Ltd
Heraeus Noblelight GmbH
Asea Brown Boveri AB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ABB Asea Brown Boveri Ltd, Heraeus Noblelight GmbH, Asea Brown Boveri AB filed Critical ABB Asea Brown Boveri Ltd
Publication of EP0363832A1 publication Critical patent/EP0363832A1/de
Application granted granted Critical
Publication of EP0363832B1 publication Critical patent/EP0363832B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J65/00Lamps without any electrode inside the vessel; Lamps with at least one main electrode outside the vessel

Definitions

  • the invention relates to a high-power radiator, in particular for ultraviolet light, with a discharge space filled with filling gas emitting radiation under discharge conditions, with pairs of electrodes which are connected in pairs to the two poles of a high-voltage source, with at least one dielectric material lying between two electrodes at different potentials that is adjacent to the discharge space.
  • the invention relates to a state of the art, such as results from EP application 87109674.9 or US application 07/076926.
  • UV sources The industrial use of photochemical processes depends heavily on the availability of suitable UV sources.
  • the classic UV lamps deliver low to medium UV intensities at some discrete wavelengths, such as the low-pressure mercury lamps at 185 nm and especially at 254 nm.
  • Really high UV powers can only be obtained from high-pressure lamps (Xe, Hg), which then but distribute their radiation over a larger wavelength range.
  • the new excimer lasers have some new wavelengths for basic photochemical experiments are provided. currently for cost reasons for an industrial process probably only suitable in exceptional cases.
  • the invention has for its object to provide a high-performance radiator, in particular for UV or VUV light, which is characterized in particular by higher efficiency, is economical to manufacture and also enables the construction of very large area radiators.
  • the electrode pairs mentioned, separated by dielectric material are arranged directly next to one another in such a way that the silent electrical discharge is formed in the discharge space in the region of the dielectric surface.
  • the manufacture of the high-power radiator according to the invention is simplified and less expensive than in the known radiators. You can use materials that are easy to cast so that the electrodes can be cast in. This reduces problems when complying with tolerances (eg thickness of the dielectric or the distances). Also for the limiting glass / quartz material there are no very high demands, since the limiting walls only have to be transparent and are not stressed by the discharge. This leads to a longer lamp life.
  • the gap width and its tolerances are also far less critical. In particular, because of the lower requirements with regard to tolerances, very large area radiators can be realized, which can be made very thin.
  • the UV yield is very high. There are no transmission losses from an electrode grid or a partially permeable layer.
  • the high-power radiator according to the invention permits radiator geometries of almost any shape.
  • cylindrical or elliptical emitters can be created.
  • the emitters do not necessarily have to be flat or elongated, but have to be curved or curved in one or more dimensions.
  • the invention allows the applicant to provide the walls delimiting the discharge space with a luminescent layer either on the discharge space facing or on the outer wall in order to convert the UV -Light in visible light.
  • the wall no longer has to be UV-permeable because it only has to let visible light through.
  • Dielectrics which are not necessarily transparent to UV light can be used in the arrangement according to the invention, which means that particularly high efficiencies can be expected for special applications.
  • UV light can be used directly for some applications without having to leave the discharge space. This applies in particular to those applications that can be carried out in the discharge space.
  • Such applications with growing economic importance include, for example, use as a strong UV lamp for pre-ionization purposes of other discharges, for example lasers, and treatment of surfaces with UV exposure, chemical processes such as the preparation of new chemicals or surfaces and coating processes such as plasma CVD (Chemical Vapor Deposition), Photo-CVD, in which a substrate to be treated is brought as close as possible to the UV light source with a suitable filling gas.
  • plasma CVD Chemical Vapor Deposition
  • Photo-CVD Photo-CVD
  • 1 and 2 consists of two spaced UV-transparent plates 1, 2 made of quartz glass, between which a further plate 3 made of dielectric material, e.g. Glass or ceramic or a plastic dielectric is arranged. Spacers 4, 5 distributed over the surface secure the spacing of the plates 1, 2 and 3 and at the same time serve to hold them together.
  • metal electrodes, 6 ', 6' are embedded at regular intervals and spaced apart. As can be seen in Fig.2, the electrodes 6'6 ⁇ are alternately connected to one and the other pole of an alternating current source 7.
  • the alternating current source 7 basically corresponds to those used for supplying ozone generators.
  • an adjustable AC voltage in the order of magnitude of several 100 volts to 20,000 volts at frequencies in the range of technical alternating current up to a few kHz - depending on the electrode geometry, pressure in the discharge space and composition of the filling gas.
  • the discharge spaces 8 and 9 between the plates 1 and 3 or 3 and 2 are filled with a filling gas which emits radiation under discharge conditions, for example mercury, noble gas, noble gas-metal vapor mixture, noble gas-halogen mixture, optionally using an additional further noble gas , preferably Ar, He, Ne, as a buffer gas.
  • a filling gas which emits radiation under discharge conditions, for example mercury, noble gas, noble gas-metal vapor mixture, noble gas-halogen mixture, optionally using an additional further noble gas , preferably Ar, He, Ne, as a buffer gas.
  • a substance / substance mixture according to the following table can be used: Filling gas radiation helium 60-100 nm neon 80 - 90 nm argon 107 - 165 nm Argon + fluorine 180-200 nm Argon + chlorine 165-190 nm Argon + krypton + chlorine 165-190, 200-240 nm xenon 160-190 nm nitrogen 337 - 415 nm krypton 124, 140-160 nm Krypton + fluorine 240 - 255 nm Krypton + chlorine 200-240 nm mercury 185.254, 320-360, 390-420 nm selenium 196, 204, 206 nm deuterium 150-250 nm Xenon + fluorine 400 - 550 nm Xenon + chlorine 300-320 nm
  • an inert gas Ar, He, Kr, Ne, Xe
  • Hg An inert gas or Hg with a gas or vapor from F2, J2, Br2, Cl2 or a compound that splits off one or more atoms F, J, Br or Cl in the discharge
  • - A noble gas Ar, He, Kr, Ne, Xe
  • Hg with O2 or a compound that releases one or more O atoms in the discharge
  • an inert gas Ar, He, Kr, Ne, Xe
  • the electron energy distribution can be optimally adjusted by the thickness of the dielectric plate 3 and its properties, distance between the electrodes 6 ', 6 ⁇ , pressure and / or temperature.
  • a plurality of discharge channels 10 form from one electrode 6' through the dielectric 3 along the surface of the dielectric 3 and back into the dielectric 3 into the adjacent electrode 6 ⁇ .
  • These sliding discharges 10 running along the surface emit the UV light, which then penetrates through the transparent plates 1, 2 in the example. If different filling gases are used in rooms 8 and 9, two different radiations can be generated with one and the same radiator if the electrode arrangement and distribution are selected accordingly.
  • a coating 11, 12 to the two surfaces of the dielectric 3, lower ignition voltages for the discharge can be achieved, so that the costs for the supply can be reduced.
  • the primary coating materials are the oxides of magnesium, ytterbium, lanthanum and cerium (MgO, Yb2O3, La2O3, CeO2).
  • the UV light can also be used directly for some applications without it having to penetrate through the cover plates 1, 2. This applies to those applications that can be carried out in the discharge spaces 8, 9 themselves.
  • Such applications with growing economic importance include, for example, the treatment of surfaces with UV exposure, chemical processes such as the preparation of new chemicals or surface coating such as plasma CVD, photo CVD, that is to say processes in which a treatment is carried out
  • the substrate With a suitable filling gas, the substrate is brought as close as possible to the dielectric surface, i.e. where the radiation is generated.
  • the production of the dielectric 3 together with the electrodes 6 ', 6' embedded in it is simplified compared to the known high-power radiators and thus less expensive. You can use materials that can be cast relatively easily, so that the electrodes 6 ', 6 ⁇ can be cast in at the same time. This eliminates problems with compliance with tolerances, e.g. the thickness of the dielectric 3 or the distances between the plates 1 and 3 or 3 and 2 is reduced. Also for the material of the UV-permeable plates - if they have to be UV-permeable at all - there are no very high demands, since they are not stressed by the discharge. This in turn leads to an increase in the total life of the lamp.
  • the electrodes 6, 6 ⁇ embedded in the dielectric 3 For an inexpensive production of the electrodes 6, 6 ⁇ embedded in the dielectric 3, techniques can also be used which are used in the production of plasma display cells (cf. "AC Plasma Display” by TNCriscimagna & P.Pleshko in “Display Devices”", JIPamkove (Ed.), Springer-Verlag Berlin, Heidelberg, New York 1980, pp. 92-150).
  • the electrodes according to FIG. 3 are applied as discrete conductor tracks 6a, 6b to a substrate 13 made of glass, quartz or ceramic using thin-film or thick-film techniques.
  • vaporization and sputtering processes are used for metallization on the one hand, and conductive pastes on the other.
  • Fine conductor tracks can be produced by photo-lithographic processes, wider ones (> 25 micrometers) can be created by metal deposition through a mask.
  • the conductor tracks (electrodes) thus applied are then covered by a dielectric layer 14.
  • layers of lead oxide glass can be applied as a spray or paste and then heated, forming a continuous layer of glass.
  • Layers of borosilicate glass can be made using evaporation techniques. It is also possible to deposit other dielectric layers using methods that are common in semiconductor technology, for example by means of plasma CVD or photo CVD.
  • electrodes with an almost constant cross section can also be used.
  • the electrodes also do not have to run in a straight line, but can also be arranged, for example, in a meandering shape or in a zigzag pattern next to one another.
  • the electrodes 6 ′, 6 ⁇ as hollow electrodes, or in the dielectric 3 in FIG. 1 or in the substrate 13 in FIG. 3, additional channels running in the longitudinal direction of the electrode (item 15 in FIG. 3) to provide through which channels a liquid or gaseous coolant is passed.
  • FIG. 6 a tube 21 made of dielectric material is arranged coaxially between two quartz tubes 19, 20. Spacers, not shown, secure the mutual position of the three tubes.
  • metal electrodes 22 ′, 22 ⁇ are embedded in the dielectric tube 21, which are alternately connected to one and the other pole of an AC power source (not shown) analogously to FIG.
  • the cylinder emitter according to FIG. 6 emits both inwards (into the interior of the tube 20) and outwards. If different filling gases are used in rooms 8 and 9, two different radiations can be generated with the same radiator if the electrode arrangement and distribution are selected accordingly. Of course, this also applies to a radiator according to Fig. 4.
  • the desired reactions can also take place in the discharge space (s) 8 or 9 itself in the case of cylindrical radiators according to FIG. 6.

Abstract

Bei einem UV-Hochliestungsstrahler bestehen die Elektroden (6',6") aus Drähten, welche in ein Glasdielektrikum (3) eingebettet sind. Das Dielektrikum ist zwischen zwei UV-transparenten Platten (1,2) distanziert angeordnet. Die Entladungsräume (8,9) sind mit einem unter Entladungsbedingungen Strahlung aussendenden Füllgas gefüllt. Die Gleitentladungen (10) bilden sich an der Dielektrikumsobberfläche je zwischen zwei benachbbarten Elektrodendrähten (6',6") aus. Ein derart aufgebauter Hochleistungsstrahler zeichnet sich durch einfachen und wirtschaftlichen Aufbau und hohe UV-Ausbeute aus.

Description

    Technisches Gebiet
  • Die Erfindung bezieht sich auf einen Hochleistungsstrahler, insbesondere für ultraviolettes Licht, mit einem unter Ent­ladungsbedingungen Strahlung aussendendem Füllgas gefüllten Entladungsraum, mit Elektrodenpaaren, die paarweise an die beiden Pole einer Hochspannungsquelle angeschlossen sind, wobei zwischen zwei auf unterschiedlichem Potential liegen­den Elektroden mindestens ein dielektrisches Material liegt, das an den Entladungsraum angrenzt.
    Die Erfindung nimmt dabei Bezug auf einen Stand der Tech­nik, wie er sich etwa aus der EP-Anmeldung 87109674.9 oder der US-Anmeldung 07/076926 ergibt.
  • Technologischer Hintergrund und Stand der Technik
  • Der industrielle Einsatz photochemischer Verfahren hängt stark von der der Verfügbarkeit geeigneter UV-Quellen ab. Die klassischen UV-Strahler liefern niedrige bis mittlere UV-Intensitäten bei einigen diskreten Wellenlängen, wie z.B. die Quecksilber-Niederdrucklampen bei 185 nm und ins­besondere bei 254 nm. Wirklich hohe UV-Leistungen erhält man nur aus Hochdrucklampen (Xe, Hg), die dann aber ihre Strahlung über einen grösseren Wellenlängenbereich verteilen. Die neuen Excimer-Laser haben einige neue Wellenlängen für photchemische Grundlagenexperimente bereitgestellt, sind. z.Zt. aus Kostengründen für einen in­dustriellen Prozess wohl nur in Ausnahmefällen geeignet.
  • In der eingangs genannten EP-Patentanmeldung oder auch in dem Konferenzdruck "Neue UV- und VUV-Excimerstrahler¨ von U.Kogelschatz und B.Eliasson, verteilt an der 10.Vortragstagung der Gesellschaft Deutscher Chemiker, Fachgruppe Photochemie, in Würzburg (BRD) 18.- 20.November 1987, wird ein neuer Excimerstrahler beschrieben. Dieser neue Strahlertyp basiert auf der Grundlage, dass man Ex­cimerstrahlung auch in stillen elektrischen Entladungen erzeugen kann, einem Entladungstyp, der in der Ozonerzeu­gung grosstechnisch eingesetzt wird. In den nur kurzzeitig (< 1 Mikrosekunde) vorhandenen Stromfilamenten dieser Ent­ladung werden durch Elektronenstoss Edelgasatome angeregt, die zu angeregten Molekülkomplexen (Excimeren) wei­tereagieren. Diese Excimere leben nur einigen 100 Nanosekunden und geben beim Zerfall ihre Bindungsenergie in Form von UV-Strahlung ab.
    Der Aufbau eines derartigen Excimerstrahlers entspricht bis hin zur Stromversorgung weitgehend dem eines klassischen Ozonerzeugers, mit dem wesentlichen Unterschied, dass min­destens eine der den Entladungraum begrenzenden Elektroden und/oder Dielektrikumsschichten für die erzeugte Strahlung durchlässig ist.
  • Darstellung der Erfindung
  • Ausgehend vom Stand der Technik liegt der Erfindung die Aufgabe zugrunde, einen Hochleistungsstrahler, insbesondere für UV- oder VUV-Licht, zu schaffen, der sich insbesondere durch höhere Effizienz auszeichnet, wirtschaftlich zu fer­tigen ist und auch den Aufbau sehr grosser Flächenstrahler ermöglicht.
  • Zur Lösung dieser Aufgabe bei einem Hochliestungsstrahler der eingangs genannten Gattung ist erfindungsgemäss vorge­sehen, dass die genannten Elektrodenpaare, getrennt durch dielektrisches Material, unmittelbar nebeneinander angeord­net sind, derart, dass sich die stille elektrische Ent­ladung im Entladungsraum im Bereich der Dielektrikumsober­fläche ausbildet.
  • Bei Anliegen der Spannung bildet sich eine Vielzahl von Gleitentladungen von einer Elektrode durch das Dielektrikum im wesentlichen längs der Oberfläche des Dielektrikums und wieder in das Dielektrikum hinein zur benachbarten Elek­trode. Diese Entladungen strahlen das verwendbare UV-Licht ab, das dann z.B. durch die den Entladungsraum begrenzende Wand dringt. Im Gegensatz zu den bekannten Konfigurationen wird hier die gesamte Ausdehnung der Entladungskanäle zur Strahlungserzeugung ausgenutzt.
  • Die Herstellung des erfindungsgemässen Hochlei­stungsstrahlers ist vereinfacht und kostengünstiger als bei den bekannten Strahlern. Man kann Materialien verwenden, die man leicht giessen kann, sodass die Elektroden eingegossen werden können. Dadurch werden Probleme beim Einhalten von Toleranzen (Z.B. Dicke des Dielektrikums oder der Abstände) verkleinert. Auch für das begrenzende Glas/Quarz-Material sind keine sehr hohen Ansprüche zu stellen, da die begrenzenden Wände lediglich transparent sein müssen und nicht durch die Entladung beansprucht wer­den. Dies führt zu einer höheren Lebensdauer des Strahlers. Auch ist die Spaltweite und deren Toleranzen weit weniger kritisch.Insbesondere lassen sich nunmehr wegen der gerin­geren Anforderungen bezüglich Toleranzen sehr grosse Flächenstrahler realisieren, die sehr dünn ausgeführt wer­den können.
  • Weil praktisch die gesamte Länge des Entladungsraum zu Emission beiträgt, ist die UV-Ausbeute sehr hoch. Transmis­sionsverluste eines Elektrodengitters oder einer teildurch­lässigen Schicht liegen nicht vor.
  • Der erfindungsgemässe Hochleistungsstrahler erlaubt Strahler-Goemetrien nahezu beliebiger Gestalt. Neben Flächenstrahlern, die nach einer oder nach beiden Flach­seiten strahlen, können zylindrische oder elliptische Strahler geschaffen werden. Auch müssen die Strahler nicht notwendig eben oder langestreckt sein, sondern in einer oder mehreren Dimensionen gekrümmt oder gebogen sein.
  • Selbstverständlich erlaubt es die Erfindung in Analogie zur schweizerischen Patentanmeldung Nr.152/88-7 vom 15.1.1988 der Anmelderin, die den Entladungsraum begrenzenden Wände entweder auf der dem Entladungsraum zugewandten oder der äusseren Wand mit einer Lumineszenz-Schicht zu versehen zur Umwandlung des UV-Lichts in sichtbares Licht. Bei der er­sten Alternative muss dann die Wand nicht mehr UV-durchläs­sig sein, weil sie nur noch sichtbares Licht durchlassen muss.
  • Bei der erfindungsgemässen Anordnung können Dielektrika verwendet werden, die nicht notwendigerweise transparent für das UV-Licht sind, was für besondere Anwendungen beson­ders hohe Wirkungsgrade erwarten lässt. So kann insbeson­dere das UV-Licht für manche Anwendungen direkt verwendet werden, ohne dass es den Entladungsraum verlassen muss. Dies gilt insbesondere für solche Anwendungen, die sich im Entladungsraum durchführen lassen. Zu solchen Anwendungen mit wachsender wirtschaftlicher Bedeutung zählen z.B. der Einsatz als starker UV-Strahler für Vorionisierungszwecke anderer Entladungen, z.B. Laser, Behandlung von Oberflächen mit UV-Belichtung, chemische Prozesse wie Präparation neuer Chemikalien oder Oberflächen und Beschichtungsverfahren wie Plasma-CVD (Chemical Vapor Deposition), Photo-CVD, bei de­nen ein zu behandelndes Substrat bei geeignetem Füllgas möglichst dicht an UV-Lichtquelle gebracht wird. Die beson­deren Vorteile einer solchen ¨Innen"-Anordnung liegen u.a. in der Vermeidung von Absorptionsverlusten durch Fenster und in der Ausnutzung zusätzlicher Effekte durch die Ent­ladung selbst.
  • Kurze Beschreibung der Zeichnungen
  • In der Zeichnung sind Ausführungsbeispiele der Erfindung schematisch dargestellt; darin zeigt
    • Fig. 1 Ein erstes Ausführungsbeispiel eines Flächen­strahlers mit beidseitiger Abstrahlung im Quer­schnitt;
    • Fig. 2 der Flächenstrahler nach Fig.1 im Längsschnitt mit einer schematischen Darstellung der elek­trischen Anspeisung;
    • Fig. 3 eine eines erste Abwandlung des Flächenstrahlers nach Fig.1 und 2 mit einseitiger Abstrahlung und Elektroden, die auf ein Substrat aufgebracht und mit einer dielektrischen Schicht überzogen sind;
    • Fig. 4 eine zweite Abwandlung des Flächenstrahlers nach Fig.1 und 2 mit inhomogenem Dielektrikum;
    • Fig. 5 eine dritte Abwandlung des Flächenstrahlers nach Fig.1 und 2 mit von dielektrische nMaterial ummantelten Einzelelektroden;
    • Fig. 6 ein Ausführungsbeispiel der Erfindung in Form eines Zylinderstrahlers im Querschnitt;
    Detaillierte Beschreibung der Erfindung
  • Der Flächenstrahler nach Fig.1 und 2 besteht aus zwei beab­standeten UV-durchlässigen Platten 1, 2 aus Quarzglas, zwischen denen eine weitere Platte 3 aus dielektrischen Ma­terial, z.B. Glas oder Keramik oder ein Kunststoff-Dielek­trikum angeordnet ist. Ueber die Fläche verteilte Abstands­halter 4, 5 sichern die Distanzierung der Platten 1, 2 und 3 und dienen gleichzeitig deren Zusammenhalt. In die Platte 3 sind in regelmässigen Abständen und voneinander beab­standet Metallelektroden ,6′,6˝ eingebettet. Wie in Fig.2 zu erkennen ist, sind die Elektroden 6′6˝, abwechselnd mit dem einen und dem anderen Pol einer Wechselstromquelle 7 verbunden.Die Wechselstromquelle 7 entspricht grundsätzlich jenen, wie sie zur Anspeisung von Ozonerzeugern verwendet werden. Typisch liefert sie eine einstellbare Wech­selspannung in der Grössenordnung von mehreren 100 Volt bis 20000 Volt bei Frequenzen im Bereich des technischen Wechselstroms bis hin zu einigen kHz - abhängig von der Elektrodengeometrie, Druck im Entladungsraum und Zusam­mensetzung des Füllgases.
  • Die Entladungsräume 8 und 9 zwischen den Platten 1 und 3 bzw. 3 und 2 sind mit einem unter Entladungsbedingungen Strahlung aussendenden Füllgas gefüllt, z.B. Quecksilber, Edelgas, Edelgas-Metalldampf-Gemisch, Edelgas-Halogen-­Gemisch, gegebenenfalls unter Verwendung eines zusätzlichen weiteren Edelgases, vorzugsweise Ar, He, Ne, als Puffergas.
  • Je nach gewünschter spektraler Zusammensetzung der Strahlung kann dabei eine Substanz/Substanzgemisch gemäss nachfolgender Tabelle Vernwendung finden:
    Füllgas Strahlung
    Helium 60 - 100 nm
    Neon 80 - 90 nm
    Argon 107 - 165 nm
    Argon + Fluor 180 - 200 nm
    Argon + Chlor 165 - 190 nm
    Argon+Krypton+Chlor 165 - 190, 200 - 240 nm
    Xenon 160 - 190 nm
    Stickstoff 337 - 415 nm
    Krypton 124, 140 - 160 nm
    Krypton + Fluor 240 - 255 nm
    Krypton + Chlor 200 - 240 nm
    Quecksilber 185,254, 320-360, 390-420 nm
    Selen 196, 204, 206 nm
    Deuterium 150 - 250 nm
    Xenon + Fluor 400 - 550 nm
    Xenon + Chlor 300 - 320 nm
  • Daneben kommen eine ganze Reihe weiterer Füllgase in Frage:
    - Ein Edelgas (Ar, He, Kr, Ne, Xe) oder Hg mit einem Gas bzw. Dampf aus F₂, J₂, Br₂, Cl₂ oder eine Verbindung, die in der Entladung ein oder mehrere Atome F, J, Br oder Cl abspaltet;
    - ein Edelgas (Ar, He, Kr, Ne, Xe) oder Hg mit O₂ oder einer Verbindung, die in der Entladung ein oder mehrere O-Atome abspaltet;
    - ein Edelgas (Ar, He, Kr, Ne, Xe) mit Hg.
  • In der sich bildenden elektrischen Gleitentladung (surface discharge) kann die Elektronenenergieverteilung durch Dicke der dielektrischen Platte 3 und deren Eigenschaften, Ab­stand zwischen den Elektroden 6′,6˝, Druck und/oder Tempe­ratur optimal eingestellt werden.
  • Bei Anliegen einer Spannung zwischen je zwei benachbarten Elektroden 6′,6˝ bildet sich eine Vielzahl von Ent­ladungskanälen 10 von einer Elektrode 6′ durch das Dielek­trikum 3 längs der Oberfläche des Dielektrikums 3 und wieder in das Dielektrikum 3 hinein zur benachbarten Elek­trode 6˝. Diese längs der Oberfläche verlaufenden Gleitent­ladungen 10 strahlen das UV-Licht ab, das dann durch die im Beispielsfall transparenten Platten 1, 2 dringt. Verwendet man in den Räumen 8 und 9 unterschiedliche Füll­gase, so lassen sich bei entsprechender Wahl der Elektrode­nanordnung und -verteilung mit einunddemselben Strahler zwei unterschiedliche Strahlungen erzeugen. Durch Aufbringen einer Beschichtung 11, 12 auf die beiden Oberflächen des Dielektrikums 3 lassen sich niedrigere Zündspannungen für die Entladung erzielen, so dass die Kosten für die Speisung reduziert werden können. Als Beschichtungsmaterial kommen in erster Linie die Oxide von Magnesium, Ytterbium, Lanthan und Cer (MgO, Yb₂O₃, La₂O₃, CeO₂) in Frage.
  • Das UV-Licht kann für manchen Anwendungen auch direkt ver­wendet werden, ohne dass es durch die Abdeckplatten 1, 2 dringen muss. Dies gilt für solche Anwendungen, die sich in den Entladungsräumen 8, 9 selbst durchführen lassen. Zu solchen Applikationen mit wachsender wirtschaftlicher Be­deutung zählen z.B. die Behandlung von Oberflächen mit UV-­Belichtung, chemische Prozesse wie Präparation neuer Chemikalien oder Oberflächen-Beschichtung wie Plasma-CVD, Photo-CVD, also Verfahren, bei denen ein zu behandelndes
  • Substrat bei geeignetem Füllgas möglichst dicht an die Dielektrikumsoberfläche, also dort wo die Strahlung entsteht, herangebracht wird.
    Die besonderen Vorteile einer solchen "Innen"-Anordnung liegen u.a. in der Vermeidung von Absorptionsverlusten (durch die Platten 1,2) und in der Ausnutzung zusätzlicher Effekte durch die Entladung selbst, wobei die elektrischen Eigenschaften des zu behandelnden Substrats relativ unerheblich sind.
  • Die Herstellung des Dielektrikums 3 samt der in ihm eingebetteten Elektroden 6′, 6˝ ist gegenüber den bekannten Hochleistungsstrahlern vereinfacht und damit kostengün­stiger. Man kann Materialien verwenden, die man relativ einfach giessen kann, so dass die Elektroden 6′, 6˝ gleich miteingegossen werden können. Dadurch werden Probleme beim Einhalten von Toleranzen, z.B. die Dicke des Dielektrikums 3 oder der Abstände zwischen den Platten 1 und 3 bzw. 3 und 2 verkleinert. Auch für das Material der UV-durchlässigen Platten - sofern sie überhaupt UV-durchlässig sein müssen - sind keine sehr hohen Ansprüche zu stellen, da sie nicht durch die Entladung beansprucht sind. Dies führt wiederum zu einer Erhöhung der Gesamtlebensdauer des Strahlers.
  • Für eine kostengünstige Herstellung der in das Dielektrikum 3 eingebetteten Elektroden 6, 6˝ kann auch auf Techniken zurückgegriffen werden, die bei der Herstellung von Plas­madisplay-Zellen Anwendung finden (vgl. "AC Plasma Display" von T.N.Criscimagna & P.Pleshko in "Display Devices", J.I.Pamkove (Ed.), Springer-Verlag Berlin, Heidelberg, New York 1980, S. 92 - 150).
    Anstelle von metallischen Drähten 6′, 6˝ nach Fig.1 sind die Elektroden gemäss Fig.3 als diskrete Leiterbahnen 6a, 6b mittels Dünnfilm- oder Dickfilm-Techniken auf ein Sub­strat 13 aus Glas, Quarz oder Keramik aufgebracht. Dabei werden einerseits Bedampfungs- und Sputter-Prozesse zur Metallisierung verwendet, andererseits leitfähige Pa­sten.Feine Leiterbahnen können durch photo-lithographische Verfahren, breitere (> 25 Mikrometer) können durch Metal­labscheidung durch eine Maske hindurch erzeugt werden. Die so aufgebrachten Leiterbahnen (Elektroden) werden danach durch eine dielektrische Schicht 14 abgedeckt. So kann man z.B. Schichten aus Bleioxydglas als Spray oder Paste auf­tragen und anschliessend erhitzen, wobei sich eine durchge­hende Glasschicht bildet. Schichten aus Borsilikatglas kann man durch Verdampfungstechniken herstellen. Es ist auch möglich, dass man andere dielektrische Schichten abscheidet mit Methoden, die in der Halbleitertechnik üblich sind, z.B. mittels Plasma-CVD oder Photo-CVD.
  • Ohne den durch die Erfindung gesteckten Rahmen zu ver­lassen, sind eine Fülle von Modifikationen des vorstehend beschriebenen UV-Hochleistungsstrahlers möglich, auf die nachstehend eingegangen werden soll.
  • So können statt zweier Entladungsräume 8,9 auch nur ein Entladungsraum vorgesehen sein. Dazu ist durch eine entsprechende Isolation, z.B.Schwefelhexafluorid oder Wasser, in dem einen Raum oder eine andere Geometrie des Dielektrikums und/oder der Elektroden, z.B. eine solche nach Fig.3, sicherzustellen, dass sich die Gleitentladungen nur in dem anderen Raum ausbilden.
  • Statt runder Elektroden 6′,6˝ nach Fig.1 können auch Elek­troden mit nahezu bliebigem Querschnitt verwendet werden. Auch müssen die Elektroden nicht geradlinig verlaufen, son­dern können auch z.B. mäanderförmig oder im Zickzack nebeneinander angeordnet sein.
  • Zur Verbesserung der Wärmeabfuhr aus dem Dielektrikum ist es möglich, die Elektroden 6′,6˝ als Hohlelektroden auszuführen, oder im Dielektrikum 3 in Fig.1 oder im Sub­strat 13 in Fig.3 zusätzlich in Elektrodenlängsrichtung verlaufende Kanäle (Pos. 15 in Fig.3) vorzusehen, durch welche Kanäle ein flüssiges oder gasförmiges Kühlmittel geleitet wird.
  • Neben einzelnen in ein flächiges Dielektrikum 3 bzw. 14 eingebetteten Elektroden ist es darüber hinaus möglich, gemäss Fig.4 und 5 einzelne Drähte 16′,16˝ mit je einer dielektrischen Umhüllung 17 zu verwenden, die entweder dicht an dicht (Fig.5), locker nebeneinander oder durch Zwischenlagen 18 oder Abstandsstücke voneinander di­stanziert, zwischen den beiden Platten 1 und 2 angeordnet sind.
  • Anstelle von Flächenstrahlern nach den Figuren 1 bis 5 sind auch Zylinderstrahler möglich, wie es in Fig.6 veran­schaulicht ist. Dort ist zwischen zwei Quarzrohren 19, 20 ein Rohr 21 aus dielektrischen Material koaxial angeordnet. Nicht dargestellte Abstandhalter sichern die gegenseitige Lage der drei Rohre. Analog Fig.1 sind in das dielektrische Rohr 21 Metallelektroden 22′, 22˝ eingebettet, die analog Fig.2 abwechselnd mit dem einen und dem anderen Pol einer (nicht dargestellten) Wechselstromquelle verbunden sind.
  • Der Zylinderstrahler nach Fig.6 strahlt im Beispielsfall sowohl nach innen (in den Innenraum des Rohres 20) als auch nach aussen ab. Verwendet man in den Räumen 8 und 9 unter­schiedliche Füllgase, so lassen sich bei entsprechender Wahl der Elektrodenanordnung und -verteilung mit einunddem­selben Strahler zwei unterschiedliche Strahlungen erzeugen. Dies gilt selbstverständlich auch für einen Strahler nach Fig.4.
  • Wie bereits im Zusammenhang mit Fig.1 beschrieben, können auch bei Zylinderstrahlern nach Fig.6 die gewünschten Reak­tionen in dem bzw. den Entladungsräumen 8 bzw. 9 selbst stattfinden.
  • Die vorstehende Beschreibung von Ausführungsbeispielen der Erfindung konzentrierte sich auf die Erzeugung von UV- bzw. VUV-Strahlung. Durch Beschichtung der Platten 1, 2 bzw. der Rohre 19, 20 mit einer Lumineszenzschicht 23, 24 (Fig.1) lässt sich in Anlehung an die bei den Lumineszenzröhren für Beleuchtungszwecke bekannte Technik auch sichtbares Licht hoher Leistung erzeugen. Derartige Schichten sind bekannt und können auch auf die den Entladungsraum 8 bzw. 9 angren­zenden inneren Oberflächen der Platten 1, 2 bzw. der Rohre 19, 20 aufgeracht werden. Im letztren Fall brauchen diese Platten bzw. Rohre nicht mehr UV-durchlässig sondern nur für das sichtbare Licht transparent sein.

Claims (10)

1. Hochleistungsstrahler, insbesondere für ultraviolettes Licht, mit einem unter Entladungsbedingungen Strahlung aussendendem Füllgas gefüllten, von Wänden (1,2) begrenzten Entladungsraum (8,9), mit Elektrodenpaaren, die paarweise an die beiden Pole einer Hochspan­nungsquelle (7) angeschlossen sind, wobei zwischen zwei auf unterschiedlichem Potential liegenden Elek­troden mindestens ein dielektrisches Material liegt, das an den Entladungsraum angrenzt,dadurch gekenn­zeichnet, dass die genannten Elektrodenpaare (6′,6˝;6a,6b;16′,16˝;22′,22˝) räumlich getrennt von besagten Wänden (1,2) und voneinander getrennt durch dielektrisches Material (3;14;21) nebeneinander angeordnet sind, derart, dass sich die elektrische Entladung im Entladungsraum (8,9) im wesentlichen nur im Bereich der Dielektrikumsoberfläche ausbildet.
2. Hochleistungstrahler nach Anspruch 1, dadurch gekennzeichnet, dass die Elektroden (6′,6˝;6a,6b;16′,16˝;22′,22˝) in das dielektrische Ma­terial (3;14;21) eingebettet sind und benachbarte Elektroden (6′,6˝;6a,6b;16′,16˝;22′,22˝) jeweils an unterschiedliche Pole der Hochspannungsquelle (7) angeschlossen sind.
3. Hochleistungstrahler nach Anspruch 2, dadurch gekennzeichnet, dass alle Elektroden (6′,6˝;22′,22˝) in einen gemeinsamen Träger aus dielektrischem Mate­rial eingebettet sind.
4. Hochleistungstrahler nach Anspruch 2, dadurch gekennzeichnet, dass die Elektroden (16′,16˝) einzeln je von einer dielektrischen Umhüllung (17) umgeben sind.
5. Hochleistungstrahler nach Anspruch 1, dadurch gekennzeichnet, dass die Elektroden (6a,6b) auf einem Substrat (13) aus Isoliermaterial angeordnet und mit einer dielektrischen Schicht (14) abgedeckt sind.
6. Hochleistungstrahler nach einem der Ansprüch 1 bis 5, dadurch gekennzeichnet, dass in den Elektroden oder in dem Material, in dem diese eingebettet bzw. darauf an­geordnet sind, in Elektrodenlängsrichtung verlaufende Kühlkanäle (15) vorgesehen sind.
7. Hochleistungstrahler nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass auf der dem Ent­ladungsraum (8,9) zugewandten Oberfläche des Dielek­trikums eine zusätzliche Schicht (11,12) zur Herabset­zung der Zündspannung der elektrischen Gleitentladung, vorzugsweise eine Schicht aus Magnsium-, Ytterbium-, Lanthan- oder Ceroxid, vorgesehen ist.
8. Hochleistungstrahler nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass zur Erzeugung von Strahlungen mit mehreren unterschiedlichen Wellenlän­gen in einem Entladungsraum (8;9) ein Füllgas mit min­destens zwei Edelgasen und mindestens einem Nicht-­Edelgas vorgesehen ist.
9. Hochleistungstrahler nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass in den beiden Entladungsräumen (8,9) Füllgase unterschiedlicher Zusammensetzung vorgesehen sind.
10. Hochleistungstrahler nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass die den Entladungsraum (8,9) begrenzenden Platten (1,2) bzw. Rohre (19,20) mit einer Lumineszenzschicht (24,25) versehen sind.
EP89118546A 1988-10-10 1989-10-06 Hochleistungsstrahler Expired - Lifetime EP0363832B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH3778/88A CH676168A5 (de) 1988-10-10 1988-10-10
CH3778/88 1988-10-10

Publications (2)

Publication Number Publication Date
EP0363832A1 true EP0363832A1 (de) 1990-04-18
EP0363832B1 EP0363832B1 (de) 1993-06-16

Family

ID=4263286

Family Applications (1)

Application Number Title Priority Date Filing Date
EP89118546A Expired - Lifetime EP0363832B1 (de) 1988-10-10 1989-10-06 Hochleistungsstrahler

Country Status (5)

Country Link
US (1) US5006758A (de)
EP (1) EP0363832B1 (de)
JP (1) JP2812736B2 (de)
CH (1) CH676168A5 (de)
DE (1) DE58904712D1 (de)

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0482230A1 (de) * 1990-10-22 1992-04-29 Heraeus Noblelight GmbH Hochleistungsstrahler
EP0515711A1 (de) * 1991-05-27 1992-12-02 Heraeus Noblelight GmbH Hochleistungsstrahler
US5198717A (en) * 1990-12-03 1993-03-30 Asea Brown Boveri Ltd. High-power radiator
EP0661110A1 (de) * 1993-11-26 1995-07-05 Ushiodenki Kabushiki Kaisha Verfahren zur Oxidation der Oberflächen eines Gegenstandes
DE19526211A1 (de) * 1995-07-18 1997-01-23 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Verfahren zum Betreiben von Entladungslampen bzw. -strahler
EP0607960B1 (de) * 1993-01-20 1998-04-22 Ushiodenki Kabushiki Kaisha Entladungslampe mit dielektrischer Sperrschicht
WO1998043276A2 (de) * 1997-03-21 1998-10-01 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Gasentladungslampe mit dielektrisch behinderten elektroden
WO1998043280A1 (de) * 1997-03-21 1998-10-01 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Flachstrahler mit dielektrisch behinderter entladung und anordnung zur durchführung der elektroden in den entladungsraum
DE19811520C1 (de) * 1998-03-17 1999-08-12 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Entladungslampe mit dielektrisch behinderten Entladungen
WO1999054916A2 (de) * 1998-04-20 1999-10-28 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Flachstrahlerlampe für dielektrisch behinderte entladungen mit abstandshaltern
DE19817478A1 (de) * 1998-04-20 1999-11-04 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Flache Entladungslampe und Verfahren zu ihrer Herstellung
DE19817476A1 (de) * 1998-04-20 1999-11-04 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Leuchtstofflampe mit Abstandshaltern und lokal verdünnter Leuchtstoffschichtdicke
DE19826808A1 (de) * 1998-06-16 1999-12-23 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Entladungslampe mit dielektrisch behinderten Elektroden
DE19826809A1 (de) * 1998-06-16 1999-12-23 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Dielektrische Schicht für Entladungslampen und zugehöriges Herstellungsverfahren
US6034470A (en) * 1997-03-21 2000-03-07 Patent-Treuhand-Gesellschaft Fuer Elektrische Gluehlampen Mbh Flat fluorescent lamp with specific electrode structuring
US6060828A (en) * 1996-09-11 2000-05-09 Patent-Treuhand-Gesellschaft Fuer Elektrische Gluehlampen Mbh Electric radiation source and irradiation system with this radiation source
DE19919363A1 (de) * 1999-04-28 2000-11-09 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Entladungslampe mit Abstandshalter
US6222317B1 (en) 1997-03-21 2001-04-24 Patent-Treuhand-Gesellschaft Fuer Elektrische Gluehlampen Mbh Flat light emitter
US6252352B1 (en) 1997-03-21 2001-06-26 Patent-Treuhand-Gesellschaft Fuer Elektrische Gluehlampen Mbh Flat light emitter
DE10026781C1 (de) * 2000-05-31 2002-01-24 Heraeus Noblelight Gmbh Entladungslampe für dielektrisch behinderte Entladung
DE10048187A1 (de) * 2000-09-28 2002-04-11 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Entladungslampe für dielektrisch behinderte Entladungen mit Stützelementen zwischen einer Bodenplatte und einer Deckenplatte
US6984930B2 (en) 2001-08-17 2006-01-10 Patent-Treuhand-Gesellschaft Fuer Elektrische Gluehlampen Mbh Discharge lamp with ignition aid of a UV/VIS material having high secondary electron emission coefficient
DE102007048234A1 (de) 2007-01-23 2008-09-25 Chi-Mei Corp. Quecksilberfreie flache Fluoreszenzlampe
US7573201B2 (en) 2004-09-29 2009-08-11 Osram Gesellschaft Mit Beschraenkter Haftung Dielectric barrier discharge lamp having pluggable electrodes
WO2009103337A1 (de) * 2008-02-21 2009-08-27 Osram Gesellschaft mit beschränkter Haftung Dielektrische barriere-entladungslampe mit haltescheibe
FR2936093A1 (fr) * 2008-09-12 2010-03-19 Saint Gobain Lampe uv tubulaire a decharge et utilisations
EP1839703B1 (de) * 2006-03-31 2011-05-25 Ushiodenki Kabushiki Kaisha Phototherapievorrichtung
WO2014166934A1 (de) * 2013-04-11 2014-10-16 Dritte Patentportfolio Beteiligungsgesellschaft Mbh & Co. Kg Hf-lampe mit dielektrischem wellenleiter

Families Citing this family (71)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0521553B1 (de) * 1991-07-01 1996-04-24 Koninklijke Philips Electronics N.V. Hochdrucksglimmentladungslampe
US5384515A (en) * 1992-11-02 1995-01-24 Hughes Aircraft Company Shrouded pin electrode structure for RF excited gas discharge light sources
US5643356A (en) 1993-08-05 1997-07-01 Kimberly-Clark Corporation Ink for ink jet printers
US6211383B1 (en) 1993-08-05 2001-04-03 Kimberly-Clark Worldwide, Inc. Nohr-McDonald elimination reaction
US5865471A (en) 1993-08-05 1999-02-02 Kimberly-Clark Worldwide, Inc. Photo-erasable data processing forms
US5733693A (en) 1993-08-05 1998-03-31 Kimberly-Clark Worldwide, Inc. Method for improving the readability of data processing forms
US5721287A (en) 1993-08-05 1998-02-24 Kimberly-Clark Worldwide, Inc. Method of mutating a colorant by irradiation
US6017661A (en) 1994-11-09 2000-01-25 Kimberly-Clark Corporation Temporary marking using photoerasable colorants
US5773182A (en) 1993-08-05 1998-06-30 Kimberly-Clark Worldwide, Inc. Method of light stabilizing a colorant
US5645964A (en) 1993-08-05 1997-07-08 Kimberly-Clark Corporation Digital information recording media and method of using same
US6017471A (en) 1993-08-05 2000-01-25 Kimberly-Clark Worldwide, Inc. Colorants and colorant modifiers
CA2120838A1 (en) 1993-08-05 1995-02-06 Ronald Sinclair Nohr Solid colored composition mutable by ultraviolet radiation
US5681380A (en) 1995-06-05 1997-10-28 Kimberly-Clark Worldwide, Inc. Ink for ink jet printers
TW348262B (en) * 1993-09-08 1998-12-21 Ushio Electric Inc Dielectric barrier discharge lamp
WO1995033500A1 (en) * 1994-06-02 1995-12-14 Monagan Gerald C Air purifier
US6071979A (en) 1994-06-30 2000-06-06 Kimberly-Clark Worldwide, Inc. Photoreactor composition method of generating a reactive species and applications therefor
US5739175A (en) 1995-06-05 1998-04-14 Kimberly-Clark Worldwide, Inc. Photoreactor composition containing an arylketoalkene wavelength-specific sensitizer
US6242057B1 (en) 1994-06-30 2001-06-05 Kimberly-Clark Worldwide, Inc. Photoreactor composition and applications therefor
US5685754A (en) 1994-06-30 1997-11-11 Kimberly-Clark Corporation Method of generating a reactive species and polymer coating applications therefor
US6008268A (en) 1994-10-21 1999-12-28 Kimberly-Clark Worldwide, Inc. Photoreactor composition, method of generating a reactive species, and applications therefor
US5747550A (en) 1995-06-05 1998-05-05 Kimberly-Clark Worldwide, Inc. Method of generating a reactive species and polymerizing an unsaturated polymerizable material
US5849411A (en) 1995-06-05 1998-12-15 Kimberly-Clark Worldwide, Inc. Polymer film, nonwoven web and fibers containing a photoreactor composition
US5786132A (en) 1995-06-05 1998-07-28 Kimberly-Clark Corporation Pre-dyes, mutable dye compositions, and methods of developing a color
US5798015A (en) 1995-06-05 1998-08-25 Kimberly-Clark Worldwide, Inc. Method of laminating a structure with adhesive containing a photoreactor composition
US5811199A (en) 1995-06-05 1998-09-22 Kimberly-Clark Worldwide, Inc. Adhesive compositions containing a photoreactor composition
ATE195815T1 (de) 1995-06-05 2000-09-15 Kimberly Clark Co Farbstoffvorläufer und diese enthaltende zusammensetzungen
ES2161357T3 (es) 1995-06-28 2001-12-01 Kimberly Clark Co Composicion estabilizante de colorantes.
BR9606811A (pt) 1995-11-28 2000-10-31 Kimberly Clark Co Estabilizadores de corante aperfeiçoados
US6099628A (en) 1996-03-29 2000-08-08 Kimberly-Clark Worldwide, Inc. Colorant stabilizers
US5782963A (en) 1996-03-29 1998-07-21 Kimberly-Clark Worldwide, Inc. Colorant stabilizers
US5855655A (en) 1996-03-29 1999-01-05 Kimberly-Clark Worldwide, Inc. Colorant stabilizers
US5891229A (en) 1996-03-29 1999-04-06 Kimberly-Clark Worldwide, Inc. Colorant stabilizers
DE19613502C2 (de) * 1996-04-04 1998-07-09 Heraeus Noblelight Gmbh Langlebiger Excimerstrahler und Verfahren zu seiner Herstellung
JPH09283092A (ja) * 1996-04-19 1997-10-31 Stanley Electric Co Ltd 蛍光ランプ
US6524379B2 (en) 1997-08-15 2003-02-25 Kimberly-Clark Worldwide, Inc. Colorants, colorant stabilizers, ink compositions, and improved methods of making the same
US20020098109A1 (en) * 1997-09-17 2002-07-25 Jerry Nelson Method and apparatus for producing purified or ozone enriched air to remove contaminants from fluids
US5945790A (en) * 1997-11-17 1999-08-31 Schaefer; Raymond B. Surface discharge lamp
US6015759A (en) * 1997-12-08 2000-01-18 Quester Technology, Inc. Surface modification of semiconductors using electromagnetic radiation
US6049086A (en) * 1998-02-12 2000-04-11 Quester Technology, Inc. Large area silent discharge excitation radiator
JP2002517523A (ja) 1998-06-03 2002-06-18 キンバリー クラーク ワールドワイド インコーポレイテッド 新規な光開始剤およびその利用
JP2002517540A (ja) 1998-06-03 2002-06-18 キンバリー クラーク ワールドワイド インコーポレイテッド インク及びインクジェット印刷用のネオナノプラスト及びマイクロエマルション技術
WO2000004104A1 (en) 1998-07-20 2000-01-27 Kimberly-Clark Worldwide, Inc. Improved ink jet ink compositions
JP3346291B2 (ja) * 1998-07-31 2002-11-18 ウシオ電機株式会社 誘電体バリア放電ランプ、および照射装置
GB9819504D0 (en) * 1998-09-07 1998-10-28 Ardavan Houshang Apparatus for generating focused electromagnetic radiation
DE69930948T2 (de) 1998-09-28 2006-09-07 Kimberly-Clark Worldwide, Inc., Neenah Chelate mit chinoiden gruppen als photoinitiatoren
DE19922566B4 (de) * 1998-12-16 2004-11-04 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren zur Erzeugung von Ultraviolettstrahlung
ATE238393T1 (de) 1999-01-19 2003-05-15 Kimberly Clark Co Farbstoffe, farbstoffstabilisatoren, tintenzusammensetzungen und verfahren zu deren herstellung
US6331056B1 (en) 1999-02-25 2001-12-18 Kimberly-Clark Worldwide, Inc. Printing apparatus and applications therefor
US6294698B1 (en) 1999-04-16 2001-09-25 Kimberly-Clark Worldwide, Inc. Photoinitiators and applications therefor
DE19920693C1 (de) * 1999-05-05 2001-04-26 Inst Oberflaechenmodifizierung Offener UV/VUV-Excimerstrahler und Verfahren zur Oberflächenmodifizierung von Polymeren
US6133694A (en) * 1999-05-07 2000-10-17 Fusion Uv Systems, Inc. High-pressure lamp bulb having fill containing multiple excimer combinations
US6368395B1 (en) 1999-05-24 2002-04-09 Kimberly-Clark Worldwide, Inc. Subphthalocyanine colorants, ink compositions, and method of making the same
US6613277B1 (en) 1999-06-18 2003-09-02 Gerald C. Monagan Air purifier
US6762556B2 (en) 2001-02-27 2004-07-13 Winsor Corporation Open chamber photoluminescent lamp
DE10134965A1 (de) * 2001-07-23 2003-02-06 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Flache Entladungslampe
JP3929265B2 (ja) * 2001-07-31 2007-06-13 富士通株式会社 ガス放電管内への電子放出膜形成方法
DE10147961A1 (de) * 2001-09-28 2003-04-10 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Dielektrische Barriere-Entladungslampe und Verfahren sowie Schaltunggsanordnung zum Zünden und Betreiben dieser Lampe
DE10213327C1 (de) * 2002-03-25 2003-06-18 Heraeus Noblelight Gmbh Langgestrecktes Entladungsgefäß, Verfahren zu dessen Herstellung sowie Entladungslampe
FR2843483B1 (fr) * 2002-08-06 2005-07-08 Saint Gobain Lampe plane, procede de fabrication et application
US7029637B2 (en) * 2003-01-09 2006-04-18 H203, Inc. Apparatus for ozone production, employing line and grooved electrodes
US20040136885A1 (en) * 2003-01-09 2004-07-15 Hogarth Derek J. Apparatus and method for generating ozone
US6939397B2 (en) * 2003-05-08 2005-09-06 Eco-Rx, Inc. System for purifying and removing contaminants from gaseous fluids
DE102004047373A1 (de) * 2004-09-29 2006-04-06 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Beleuchtungssystem mit dielektrisch behinderter Entladungslampe und zugehörigem Vorschaltgerät
DE102004047375A1 (de) * 2004-09-29 2006-04-06 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Dielektrische behinderte Entladungslampe mit Manschette
DE102005007370B3 (de) * 2005-02-17 2006-09-21 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Kompakte UV-Lichtquelle
EP1905057B1 (de) * 2005-07-15 2016-03-09 The Board Of Trustees Of The University Of Illinois Arrays von mikrokavitäts-plasmageräten mit gekapselten dielektrischen elektroden
TWM283310U (en) * 2005-08-09 2005-12-11 Hung Mian Light Source Co Ltd Slab-lamp structure with electrode-less
DE102007020655A1 (de) 2007-04-30 2008-11-06 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren zum Herstellen dünner Schichten und entsprechende Schicht
JP4424394B2 (ja) * 2007-08-31 2010-03-03 ウシオ電機株式会社 エキシマランプ
DE102012017779A1 (de) * 2012-09-07 2014-03-13 Karlsruher Institut für Technologie Dielektrisch behinderte Entladungs-Lampe
DE102021108009B4 (de) 2021-03-30 2023-02-09 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung eingetragener Verein Multi-Wellenlängen UV-Strahlungsquelle sowie UV-Sonde, insbesondere für die Fluoreszenzanalyse

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0254111B1 (de) * 1986-07-22 1992-01-02 BBC Brown Boveri AG UV-Strahler

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH152887A (de) * 1930-02-04 1932-02-29 Ig Farbenindustrie Ag Verfahren zur Herstellung eines stickstoffhaltigen Küpenfarbstoffes.
JPS599849A (ja) * 1982-07-09 1984-01-19 Okaya Denki Sangyo Kk 高周波放電ランプ
JPS60172135A (ja) * 1984-02-15 1985-09-05 Mitsubishi Electric Corp 平板状光源
CH675178A5 (de) * 1987-10-23 1990-08-31 Bbc Brown Boveri & Cie

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0254111B1 (de) * 1986-07-22 1992-01-02 BBC Brown Boveri AG UV-Strahler

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
DISPLAY DEVICES, 1980, Seiten 91-150, Springer-Verlag, Berlin, DE; T.N. CRISCIMAGNA et al.: "AC plasma display" *
PATENT ABSTRACTS OF JAPAN, Band 10, Nr. 8 (E-373)[2065], 14. Januar 1986; & JP-A-60 172 135 (MITSUBISHI DENKI K.K.) 05-09-1985 *

Cited By (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5283498A (en) * 1990-10-22 1994-02-01 Heraeus Noblelight Gmbh High-power radiator
EP0482230A1 (de) * 1990-10-22 1992-04-29 Heraeus Noblelight GmbH Hochleistungsstrahler
US5198717A (en) * 1990-12-03 1993-03-30 Asea Brown Boveri Ltd. High-power radiator
EP0515711A1 (de) * 1991-05-27 1992-12-02 Heraeus Noblelight GmbH Hochleistungsstrahler
EP0607960B1 (de) * 1993-01-20 1998-04-22 Ushiodenki Kabushiki Kaisha Entladungslampe mit dielektrischer Sperrschicht
EP0661110A1 (de) * 1993-11-26 1995-07-05 Ushiodenki Kabushiki Kaisha Verfahren zur Oxidation der Oberflächen eines Gegenstandes
US5994849A (en) * 1995-07-18 1999-11-30 Patent-Treuhand-Gesellschaft Fuer Electrische Gluehlampen Mbh Method for operating a lighting system and suitable lighting system therefor
DE19526211A1 (de) * 1995-07-18 1997-01-23 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Verfahren zum Betreiben von Entladungslampen bzw. -strahler
WO1997004625A1 (de) * 1995-07-18 1997-02-06 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Verfahren zum betreiben eines beleuchtungssystems und dafür geeignetes beleuchtungssystem
CN1113582C (zh) * 1995-07-18 2003-07-02 电灯专利信托有限公司 一种照明系统的工作方法以及适用于该方法的照明系统
US6060828A (en) * 1996-09-11 2000-05-09 Patent-Treuhand-Gesellschaft Fuer Elektrische Gluehlampen Mbh Electric radiation source and irradiation system with this radiation source
DE19636965B4 (de) * 1996-09-11 2004-07-01 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Elektrische Strahlungsquelle und Bestrahlungssystem mit dieser Strahlungsquelle
US6222317B1 (en) 1997-03-21 2001-04-24 Patent-Treuhand-Gesellschaft Fuer Elektrische Gluehlampen Mbh Flat light emitter
WO1998043276A2 (de) * 1997-03-21 1998-10-01 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Gasentladungslampe mit dielektrisch behinderten elektroden
KR100417438B1 (ko) * 1997-03-21 2004-02-05 파텐트-트로이한트-게젤샤프트 퓌어 엘렉트리쉐 글뤼람펜 엠베하 플랫 라디에이터
WO1998043280A1 (de) * 1997-03-21 1998-10-01 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Flachstrahler mit dielektrisch behinderter entladung und anordnung zur durchführung der elektroden in den entladungsraum
WO1998043276A3 (de) * 1997-03-21 1998-12-17 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Gasentladungslampe mit dielektrisch behinderten elektroden
US6853124B1 (en) 1997-03-21 2005-02-08 Patent-Treuhand-Gesellschaft Fuer Elektrische Gluehlampen Mbh Flat fluorescent lamp with specific electrode structuring
US6034470A (en) * 1997-03-21 2000-03-07 Patent-Treuhand-Gesellschaft Fuer Elektrische Gluehlampen Mbh Flat fluorescent lamp with specific electrode structuring
US6252352B1 (en) 1997-03-21 2001-06-26 Patent-Treuhand-Gesellschaft Fuer Elektrische Gluehlampen Mbh Flat light emitter
WO1999048134A1 (de) * 1998-03-17 1999-09-23 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Entladungslampe mit dielektrisch behinderten elektroden
US6304028B1 (en) 1998-03-17 2001-10-16 Patent-Treuhand-Gesellschaft Fuer Elektrishe Gluehlampen Mbh Discharge lamp with dielectrically impeded electrodes
DE19811520C1 (de) * 1998-03-17 1999-08-12 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Entladungslampe mit dielektrisch behinderten Entladungen
US6659828B1 (en) 1998-04-20 2003-12-09 Patent-Treuhand-Gesellshaft Fuer Elektrische Gluehlampen Mbh Flat discharge lamp and method for the production thereof
DE19817476B4 (de) * 1998-04-20 2004-03-25 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Leuchtstofflampe mit Abstandshaltern und lokal verdünnter Leuchtstoffschichtdicke
WO1999054916A3 (de) * 1998-04-20 1999-12-02 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Flachstrahlerlampe für dielektrisch behinderte entladungen mit abstandshaltern
DE19817478B4 (de) * 1998-04-20 2004-03-18 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Flache Entladungslampe und Verfahren zu ihrer Herstellung
DE19817476A1 (de) * 1998-04-20 1999-11-04 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Leuchtstofflampe mit Abstandshaltern und lokal verdünnter Leuchtstoffschichtdicke
US6531822B1 (en) 1998-04-20 2003-03-11 Patent-Treuhand-Gesellschaft Fuer Elektrische Gluehlampen Mbh Flat reflector lamp for dielectrically inhibited discharges with spacers
DE19817478A1 (de) * 1998-04-20 1999-11-04 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Flache Entladungslampe und Verfahren zu ihrer Herstellung
WO1999054916A2 (de) * 1998-04-20 1999-10-28 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Flachstrahlerlampe für dielektrisch behinderte entladungen mit abstandshaltern
US6693377B1 (en) 1998-06-16 2004-02-17 Patent-Treuhand-Gesellschaft Fuer Elektrische Gluehlampen Mbh Dielectric layer for discharge lamps and corresponding production method
DE19826809A1 (de) * 1998-06-16 1999-12-23 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Dielektrische Schicht für Entladungslampen und zugehöriges Herstellungsverfahren
DE19826808C2 (de) * 1998-06-16 2003-04-17 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Entladungslampe mit dielektrisch behinderten Elektroden
DE19826808A1 (de) * 1998-06-16 1999-12-23 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Entladungslampe mit dielektrisch behinderten Elektroden
US6879108B1 (en) 1999-04-28 2005-04-12 Patent-Treuhand-Gesellschaft Fuer Elektrische Gluehlampen Mbh Dielectrically impeded discharge lamp with a spacer
DE19919363A1 (de) * 1999-04-28 2000-11-09 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Entladungslampe mit Abstandshalter
DE10026781C1 (de) * 2000-05-31 2002-01-24 Heraeus Noblelight Gmbh Entladungslampe für dielektrisch behinderte Entladung
DE10048187A1 (de) * 2000-09-28 2002-04-11 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Entladungslampe für dielektrisch behinderte Entladungen mit Stützelementen zwischen einer Bodenplatte und einer Deckenplatte
US6984930B2 (en) 2001-08-17 2006-01-10 Patent-Treuhand-Gesellschaft Fuer Elektrische Gluehlampen Mbh Discharge lamp with ignition aid of a UV/VIS material having high secondary electron emission coefficient
US7573201B2 (en) 2004-09-29 2009-08-11 Osram Gesellschaft Mit Beschraenkter Haftung Dielectric barrier discharge lamp having pluggable electrodes
EP1839703B1 (de) * 2006-03-31 2011-05-25 Ushiodenki Kabushiki Kaisha Phototherapievorrichtung
DE102007048234A1 (de) 2007-01-23 2008-09-25 Chi-Mei Corp. Quecksilberfreie flache Fluoreszenzlampe
WO2009103337A1 (de) * 2008-02-21 2009-08-27 Osram Gesellschaft mit beschränkter Haftung Dielektrische barriere-entladungslampe mit haltescheibe
US8314538B2 (en) 2008-02-21 2012-11-20 Osram Ag Dielectric barrier discharge lamp with a retaining disc
FR2936093A1 (fr) * 2008-09-12 2010-03-19 Saint Gobain Lampe uv tubulaire a decharge et utilisations
WO2014166934A1 (de) * 2013-04-11 2014-10-16 Dritte Patentportfolio Beteiligungsgesellschaft Mbh & Co. Kg Hf-lampe mit dielektrischem wellenleiter

Also Published As

Publication number Publication date
JPH02158049A (ja) 1990-06-18
DE58904712D1 (de) 1993-07-22
CH676168A5 (de) 1990-12-14
JP2812736B2 (ja) 1998-10-22
US5006758A (en) 1991-04-09
EP0363832B1 (de) 1993-06-16

Similar Documents

Publication Publication Date Title
EP0363832B1 (de) Hochleistungsstrahler
EP0389980B1 (de) Hochleistungsstrahler
EP0482230B1 (de) Hochleistungsstrahler
DE19636965B4 (de) Elektrische Strahlungsquelle und Bestrahlungssystem mit dieser Strahlungsquelle
EP0385205B1 (de) Hochleistungsstrahler
EP0458140B1 (de) Hochleistungsstrahler
EP0324953B1 (de) Hochleistungsstrahler
EP0371304A1 (de) Hochleistungsstrahler
EP0254111B1 (de) UV-Strahler
EP0509110B1 (de) Bestrahlungseinrichtung
EP0839436B1 (de) Verfahren zum betreiben eines beleuchtungssystems und dafür geeignetes beleuchtungssystem
EP0578953B1 (de) Hochleistungsstrahler
EP0449018A2 (de) Bestrahlungseinrichtung
EP0517929B1 (de) Bestrahlungseinrichtung mit einem Hochleistungsstrahler
DE4010809A1 (de) Hochleistungsstrahler
EP1118100B1 (de) Dimmbare entladungslampe für dielektrisch behinderte entladungen
EP0489184A1 (de) Hochleistungsstrahler
DE2529005B2 (de) Niederdruck-Gasentladungslampe
DE4022279A1 (de) Bestrahlungseinrichtung
DE2502649A1 (de) Verbesserte elektrodenstruktur fuer hochstrom-niederdruck-entladungsvorrichtungen
DE4203345A1 (de) Hochleistungsstrahler
DE102005007370B3 (de) Kompakte UV-Lichtquelle
DE4235743A1 (de) Hochleistungsstrahler
DE2354341C3 (de) Gaslaser
EP0515711A1 (de) Hochleistungsstrahler

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE FR GB IT LI NL

17P Request for examination filed

Effective date: 19901004

17Q First examination report despatched

Effective date: 19921130

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE FR GB IT LI NL

REF Corresponds to:

Ref document number: 58904712

Country of ref document: DE

Date of ref document: 19930722

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: HERAEUS NOBLELIGHT GMBH

REG Reference to a national code

Ref country code: CH

Ref legal event code: PUE

Owner name: HERAEUS NOBLELIGHT GMBH

ITF It: translation for a ep patent filed

Owner name: DE DOMINICIS & MAYER S.

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19930823

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20020918

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20020925

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20020930

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20021009

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20021017

Year of fee payment: 14

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031006

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031031

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040501

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040501

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20031006

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040630

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20040501

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20051006