EP0363832A1 - Radiating device having a high output - Google Patents

Radiating device having a high output Download PDF

Info

Publication number
EP0363832A1
EP0363832A1 EP89118546A EP89118546A EP0363832A1 EP 0363832 A1 EP0363832 A1 EP 0363832A1 EP 89118546 A EP89118546 A EP 89118546A EP 89118546 A EP89118546 A EP 89118546A EP 0363832 A1 EP0363832 A1 EP 0363832A1
Authority
EP
European Patent Office
Prior art keywords
electrodes
dielectric
radiator according
discharge
power radiator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP89118546A
Other languages
German (de)
French (fr)
Other versions
EP0363832B1 (en
Inventor
Bernd Dr. Gellert
Ulrich Dr. Kogelschatz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Heraeus Noblelight GmbH
Original Assignee
ABB Asea Brown Boveri Ltd
Heraeus Noblelight GmbH
Asea Brown Boveri AB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ABB Asea Brown Boveri Ltd, Heraeus Noblelight GmbH, Asea Brown Boveri AB filed Critical ABB Asea Brown Boveri Ltd
Publication of EP0363832A1 publication Critical patent/EP0363832A1/en
Application granted granted Critical
Publication of EP0363832B1 publication Critical patent/EP0363832B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J65/00Lamps without any electrode inside the vessel; Lamps with at least one main electrode outside the vessel

Definitions

  • the invention relates to a high-power radiator, in particular for ultraviolet light, with a discharge space filled with filling gas emitting radiation under discharge conditions, with pairs of electrodes which are connected in pairs to the two poles of a high-voltage source, with at least one dielectric material lying between two electrodes at different potentials that is adjacent to the discharge space.
  • the invention relates to a state of the art, such as results from EP application 87109674.9 or US application 07/076926.
  • UV sources The industrial use of photochemical processes depends heavily on the availability of suitable UV sources.
  • the classic UV lamps deliver low to medium UV intensities at some discrete wavelengths, such as the low-pressure mercury lamps at 185 nm and especially at 254 nm.
  • Really high UV powers can only be obtained from high-pressure lamps (Xe, Hg), which then but distribute their radiation over a larger wavelength range.
  • the new excimer lasers have some new wavelengths for basic photochemical experiments are provided. currently for cost reasons for an industrial process probably only suitable in exceptional cases.
  • the invention has for its object to provide a high-performance radiator, in particular for UV or VUV light, which is characterized in particular by higher efficiency, is economical to manufacture and also enables the construction of very large area radiators.
  • the electrode pairs mentioned, separated by dielectric material are arranged directly next to one another in such a way that the silent electrical discharge is formed in the discharge space in the region of the dielectric surface.
  • the manufacture of the high-power radiator according to the invention is simplified and less expensive than in the known radiators. You can use materials that are easy to cast so that the electrodes can be cast in. This reduces problems when complying with tolerances (eg thickness of the dielectric or the distances). Also for the limiting glass / quartz material there are no very high demands, since the limiting walls only have to be transparent and are not stressed by the discharge. This leads to a longer lamp life.
  • the gap width and its tolerances are also far less critical. In particular, because of the lower requirements with regard to tolerances, very large area radiators can be realized, which can be made very thin.
  • the UV yield is very high. There are no transmission losses from an electrode grid or a partially permeable layer.
  • the high-power radiator according to the invention permits radiator geometries of almost any shape.
  • cylindrical or elliptical emitters can be created.
  • the emitters do not necessarily have to be flat or elongated, but have to be curved or curved in one or more dimensions.
  • the invention allows the applicant to provide the walls delimiting the discharge space with a luminescent layer either on the discharge space facing or on the outer wall in order to convert the UV -Light in visible light.
  • the wall no longer has to be UV-permeable because it only has to let visible light through.
  • Dielectrics which are not necessarily transparent to UV light can be used in the arrangement according to the invention, which means that particularly high efficiencies can be expected for special applications.
  • UV light can be used directly for some applications without having to leave the discharge space. This applies in particular to those applications that can be carried out in the discharge space.
  • Such applications with growing economic importance include, for example, use as a strong UV lamp for pre-ionization purposes of other discharges, for example lasers, and treatment of surfaces with UV exposure, chemical processes such as the preparation of new chemicals or surfaces and coating processes such as plasma CVD (Chemical Vapor Deposition), Photo-CVD, in which a substrate to be treated is brought as close as possible to the UV light source with a suitable filling gas.
  • plasma CVD Chemical Vapor Deposition
  • Photo-CVD Photo-CVD
  • 1 and 2 consists of two spaced UV-transparent plates 1, 2 made of quartz glass, between which a further plate 3 made of dielectric material, e.g. Glass or ceramic or a plastic dielectric is arranged. Spacers 4, 5 distributed over the surface secure the spacing of the plates 1, 2 and 3 and at the same time serve to hold them together.
  • metal electrodes, 6 ', 6' are embedded at regular intervals and spaced apart. As can be seen in Fig.2, the electrodes 6'6 ⁇ are alternately connected to one and the other pole of an alternating current source 7.
  • the alternating current source 7 basically corresponds to those used for supplying ozone generators.
  • an adjustable AC voltage in the order of magnitude of several 100 volts to 20,000 volts at frequencies in the range of technical alternating current up to a few kHz - depending on the electrode geometry, pressure in the discharge space and composition of the filling gas.
  • the discharge spaces 8 and 9 between the plates 1 and 3 or 3 and 2 are filled with a filling gas which emits radiation under discharge conditions, for example mercury, noble gas, noble gas-metal vapor mixture, noble gas-halogen mixture, optionally using an additional further noble gas , preferably Ar, He, Ne, as a buffer gas.
  • a filling gas which emits radiation under discharge conditions, for example mercury, noble gas, noble gas-metal vapor mixture, noble gas-halogen mixture, optionally using an additional further noble gas , preferably Ar, He, Ne, as a buffer gas.
  • a substance / substance mixture according to the following table can be used: Filling gas radiation helium 60-100 nm neon 80 - 90 nm argon 107 - 165 nm Argon + fluorine 180-200 nm Argon + chlorine 165-190 nm Argon + krypton + chlorine 165-190, 200-240 nm xenon 160-190 nm nitrogen 337 - 415 nm krypton 124, 140-160 nm Krypton + fluorine 240 - 255 nm Krypton + chlorine 200-240 nm mercury 185.254, 320-360, 390-420 nm selenium 196, 204, 206 nm deuterium 150-250 nm Xenon + fluorine 400 - 550 nm Xenon + chlorine 300-320 nm
  • an inert gas Ar, He, Kr, Ne, Xe
  • Hg An inert gas or Hg with a gas or vapor from F2, J2, Br2, Cl2 or a compound that splits off one or more atoms F, J, Br or Cl in the discharge
  • - A noble gas Ar, He, Kr, Ne, Xe
  • Hg with O2 or a compound that releases one or more O atoms in the discharge
  • an inert gas Ar, He, Kr, Ne, Xe
  • the electron energy distribution can be optimally adjusted by the thickness of the dielectric plate 3 and its properties, distance between the electrodes 6 ', 6 ⁇ , pressure and / or temperature.
  • a plurality of discharge channels 10 form from one electrode 6' through the dielectric 3 along the surface of the dielectric 3 and back into the dielectric 3 into the adjacent electrode 6 ⁇ .
  • These sliding discharges 10 running along the surface emit the UV light, which then penetrates through the transparent plates 1, 2 in the example. If different filling gases are used in rooms 8 and 9, two different radiations can be generated with one and the same radiator if the electrode arrangement and distribution are selected accordingly.
  • a coating 11, 12 to the two surfaces of the dielectric 3, lower ignition voltages for the discharge can be achieved, so that the costs for the supply can be reduced.
  • the primary coating materials are the oxides of magnesium, ytterbium, lanthanum and cerium (MgO, Yb2O3, La2O3, CeO2).
  • the UV light can also be used directly for some applications without it having to penetrate through the cover plates 1, 2. This applies to those applications that can be carried out in the discharge spaces 8, 9 themselves.
  • Such applications with growing economic importance include, for example, the treatment of surfaces with UV exposure, chemical processes such as the preparation of new chemicals or surface coating such as plasma CVD, photo CVD, that is to say processes in which a treatment is carried out
  • the substrate With a suitable filling gas, the substrate is brought as close as possible to the dielectric surface, i.e. where the radiation is generated.
  • the production of the dielectric 3 together with the electrodes 6 ', 6' embedded in it is simplified compared to the known high-power radiators and thus less expensive. You can use materials that can be cast relatively easily, so that the electrodes 6 ', 6 ⁇ can be cast in at the same time. This eliminates problems with compliance with tolerances, e.g. the thickness of the dielectric 3 or the distances between the plates 1 and 3 or 3 and 2 is reduced. Also for the material of the UV-permeable plates - if they have to be UV-permeable at all - there are no very high demands, since they are not stressed by the discharge. This in turn leads to an increase in the total life of the lamp.
  • the electrodes 6, 6 ⁇ embedded in the dielectric 3 For an inexpensive production of the electrodes 6, 6 ⁇ embedded in the dielectric 3, techniques can also be used which are used in the production of plasma display cells (cf. "AC Plasma Display” by TNCriscimagna & P.Pleshko in “Display Devices”", JIPamkove (Ed.), Springer-Verlag Berlin, Heidelberg, New York 1980, pp. 92-150).
  • the electrodes according to FIG. 3 are applied as discrete conductor tracks 6a, 6b to a substrate 13 made of glass, quartz or ceramic using thin-film or thick-film techniques.
  • vaporization and sputtering processes are used for metallization on the one hand, and conductive pastes on the other.
  • Fine conductor tracks can be produced by photo-lithographic processes, wider ones (> 25 micrometers) can be created by metal deposition through a mask.
  • the conductor tracks (electrodes) thus applied are then covered by a dielectric layer 14.
  • layers of lead oxide glass can be applied as a spray or paste and then heated, forming a continuous layer of glass.
  • Layers of borosilicate glass can be made using evaporation techniques. It is also possible to deposit other dielectric layers using methods that are common in semiconductor technology, for example by means of plasma CVD or photo CVD.
  • electrodes with an almost constant cross section can also be used.
  • the electrodes also do not have to run in a straight line, but can also be arranged, for example, in a meandering shape or in a zigzag pattern next to one another.
  • the electrodes 6 ′, 6 ⁇ as hollow electrodes, or in the dielectric 3 in FIG. 1 or in the substrate 13 in FIG. 3, additional channels running in the longitudinal direction of the electrode (item 15 in FIG. 3) to provide through which channels a liquid or gaseous coolant is passed.
  • FIG. 6 a tube 21 made of dielectric material is arranged coaxially between two quartz tubes 19, 20. Spacers, not shown, secure the mutual position of the three tubes.
  • metal electrodes 22 ′, 22 ⁇ are embedded in the dielectric tube 21, which are alternately connected to one and the other pole of an AC power source (not shown) analogously to FIG.
  • the cylinder emitter according to FIG. 6 emits both inwards (into the interior of the tube 20) and outwards. If different filling gases are used in rooms 8 and 9, two different radiations can be generated with the same radiator if the electrode arrangement and distribution are selected accordingly. Of course, this also applies to a radiator according to Fig. 4.
  • the desired reactions can also take place in the discharge space (s) 8 or 9 itself in the case of cylindrical radiators according to FIG. 6.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Discharge Lamps And Accessories Thereof (AREA)
  • Vessels And Coating Films For Discharge Lamps (AREA)

Abstract

In a UV radiating device having a high output, the electrodes (6', 6") consist of wires, which are embedded in a glass dielectric (3). The dielectric is arranged spaced between two UV transparent plates (1, 2). The discharge chambers (8, 9) are filled with a fill-gas emitting radiation under discharge conditions. The creeping discharges (10) form on the dielectric surface between two adjacent electrode wires (6', 6") in each case. …<??>A radiating device having a high output that is constructed in this way is distinguished by a simple and economical construction and by high UV yields. …<IMAGE>…

Description

Technisches GebietTechnical field

Die Erfindung bezieht sich auf einen Hochleistungsstrahler, insbesondere für ultraviolettes Licht, mit einem unter Ent­ladungsbedingungen Strahlung aussendendem Füllgas gefüllten Entladungsraum, mit Elektrodenpaaren, die paarweise an die beiden Pole einer Hochspannungsquelle angeschlossen sind, wobei zwischen zwei auf unterschiedlichem Potential liegen­den Elektroden mindestens ein dielektrisches Material liegt, das an den Entladungsraum angrenzt.
Die Erfindung nimmt dabei Bezug auf einen Stand der Tech­nik, wie er sich etwa aus der EP-Anmeldung 87109674.9 oder der US-Anmeldung 07/076926 ergibt.
The invention relates to a high-power radiator, in particular for ultraviolet light, with a discharge space filled with filling gas emitting radiation under discharge conditions, with pairs of electrodes which are connected in pairs to the two poles of a high-voltage source, with at least one dielectric material lying between two electrodes at different potentials that is adjacent to the discharge space.
The invention relates to a state of the art, such as results from EP application 87109674.9 or US application 07/076926.

Technologischer Hintergrund und Stand der TechnikTechnological background and state of the art

Der industrielle Einsatz photochemischer Verfahren hängt stark von der der Verfügbarkeit geeigneter UV-Quellen ab. Die klassischen UV-Strahler liefern niedrige bis mittlere UV-Intensitäten bei einigen diskreten Wellenlängen, wie z.B. die Quecksilber-Niederdrucklampen bei 185 nm und ins­besondere bei 254 nm. Wirklich hohe UV-Leistungen erhält man nur aus Hochdrucklampen (Xe, Hg), die dann aber ihre Strahlung über einen grösseren Wellenlängenbereich verteilen. Die neuen Excimer-Laser haben einige neue Wellenlängen für photchemische Grundlagenexperimente bereitgestellt, sind. z.Zt. aus Kostengründen für einen in­dustriellen Prozess wohl nur in Ausnahmefällen geeignet.The industrial use of photochemical processes depends heavily on the availability of suitable UV sources. The classic UV lamps deliver low to medium UV intensities at some discrete wavelengths, such as the low-pressure mercury lamps at 185 nm and especially at 254 nm. Really high UV powers can only be obtained from high-pressure lamps (Xe, Hg), which then but distribute their radiation over a larger wavelength range. The new excimer lasers have some new wavelengths for basic photochemical experiments are provided. currently for cost reasons for an industrial process probably only suitable in exceptional cases.

In der eingangs genannten EP-Patentanmeldung oder auch in dem Konferenzdruck "Neue UV- und VUV-Excimerstrahler¨ von U.Kogelschatz und B.Eliasson, verteilt an der 10.Vortragstagung der Gesellschaft Deutscher Chemiker, Fachgruppe Photochemie, in Würzburg (BRD) 18.- 20.November 1987, wird ein neuer Excimerstrahler beschrieben. Dieser neue Strahlertyp basiert auf der Grundlage, dass man Ex­cimerstrahlung auch in stillen elektrischen Entladungen erzeugen kann, einem Entladungstyp, der in der Ozonerzeu­gung grosstechnisch eingesetzt wird. In den nur kurzzeitig (< 1 Mikrosekunde) vorhandenen Stromfilamenten dieser Ent­ladung werden durch Elektronenstoss Edelgasatome angeregt, die zu angeregten Molekülkomplexen (Excimeren) wei­tereagieren. Diese Excimere leben nur einigen 100 Nanosekunden und geben beim Zerfall ihre Bindungsenergie in Form von UV-Strahlung ab.
Der Aufbau eines derartigen Excimerstrahlers entspricht bis hin zur Stromversorgung weitgehend dem eines klassischen Ozonerzeugers, mit dem wesentlichen Unterschied, dass min­destens eine der den Entladungraum begrenzenden Elektroden und/oder Dielektrikumsschichten für die erzeugte Strahlung durchlässig ist.
In the EP patent application mentioned at the beginning or in the conference paper "New UV and VUV excimer emitters" by U.Kogelschatz and B.Eliasson, distributed at the 10th lecture conference of the Society of German Chemists, Photochemistry Group, in Würzburg (FRG) 18 - November 20, 1987, a new excimer emitter is described, this new type of emitter is based on the fact that excimer radiation can also be generated in silent electrical discharges, a type of discharge that is used on a large scale in ozone generation Existing current filaments of this discharge are excited by electron impact, noble gas atoms, which further react to excited molecular complexes (excimers), which only live for a few 100 nanoseconds and release their binding energy in the form of UV radiation when they decay.
The construction of such an excimer radiator, up to the power supply, largely corresponds to that of a conventional ozone generator, with the essential difference that at least one of the electrodes and / or dielectric layers delimiting the discharge space is transparent to the radiation generated.

Darstellung der ErfindungPresentation of the invention

Ausgehend vom Stand der Technik liegt der Erfindung die Aufgabe zugrunde, einen Hochleistungsstrahler, insbesondere für UV- oder VUV-Licht, zu schaffen, der sich insbesondere durch höhere Effizienz auszeichnet, wirtschaftlich zu fer­tigen ist und auch den Aufbau sehr grosser Flächenstrahler ermöglicht.Starting from the prior art, the invention has for its object to provide a high-performance radiator, in particular for UV or VUV light, which is characterized in particular by higher efficiency, is economical to manufacture and also enables the construction of very large area radiators.

Zur Lösung dieser Aufgabe bei einem Hochliestungsstrahler der eingangs genannten Gattung ist erfindungsgemäss vorge­sehen, dass die genannten Elektrodenpaare, getrennt durch dielektrisches Material, unmittelbar nebeneinander angeord­net sind, derart, dass sich die stille elektrische Ent­ladung im Entladungsraum im Bereich der Dielektrikumsober­fläche ausbildet.To solve this problem in a high-power radiator of the type mentioned at the outset, it is provided according to the invention that the electrode pairs mentioned, separated by dielectric material, are arranged directly next to one another in such a way that the silent electrical discharge is formed in the discharge space in the region of the dielectric surface.

Bei Anliegen der Spannung bildet sich eine Vielzahl von Gleitentladungen von einer Elektrode durch das Dielektrikum im wesentlichen längs der Oberfläche des Dielektrikums und wieder in das Dielektrikum hinein zur benachbarten Elek­trode. Diese Entladungen strahlen das verwendbare UV-Licht ab, das dann z.B. durch die den Entladungsraum begrenzende Wand dringt. Im Gegensatz zu den bekannten Konfigurationen wird hier die gesamte Ausdehnung der Entladungskanäle zur Strahlungserzeugung ausgenutzt.When the voltage is applied, a large number of sliding discharges form from one electrode through the dielectric essentially along the surface of the dielectric and back into the dielectric to the adjacent electrode. These discharges emit the usable UV light, which then e.g. penetrates through the wall delimiting the discharge space. In contrast to the known configurations, the entire expansion of the discharge channels is used here to generate radiation.

Die Herstellung des erfindungsgemässen Hochlei­stungsstrahlers ist vereinfacht und kostengünstiger als bei den bekannten Strahlern. Man kann Materialien verwenden, die man leicht giessen kann, sodass die Elektroden eingegossen werden können. Dadurch werden Probleme beim Einhalten von Toleranzen (Z.B. Dicke des Dielektrikums oder der Abstände) verkleinert. Auch für das begrenzende Glas/Quarz-Material sind keine sehr hohen Ansprüche zu stellen, da die begrenzenden Wände lediglich transparent sein müssen und nicht durch die Entladung beansprucht wer­den. Dies führt zu einer höheren Lebensdauer des Strahlers. Auch ist die Spaltweite und deren Toleranzen weit weniger kritisch.Insbesondere lassen sich nunmehr wegen der gerin­geren Anforderungen bezüglich Toleranzen sehr grosse Flächenstrahler realisieren, die sehr dünn ausgeführt wer­den können.The manufacture of the high-power radiator according to the invention is simplified and less expensive than in the known radiators. You can use materials that are easy to cast so that the electrodes can be cast in. This reduces problems when complying with tolerances (eg thickness of the dielectric or the distances). Also for the limiting glass / quartz material there are no very high demands, since the limiting walls only have to be transparent and are not stressed by the discharge. This leads to a longer lamp life. The gap width and its tolerances are also far less critical. In particular, because of the lower requirements with regard to tolerances, very large area radiators can be realized, which can be made very thin.

Weil praktisch die gesamte Länge des Entladungsraum zu Emission beiträgt, ist die UV-Ausbeute sehr hoch. Transmis­sionsverluste eines Elektrodengitters oder einer teildurch­lässigen Schicht liegen nicht vor.Because practically the entire length of the discharge space contributes to emission, the UV yield is very high. There are no transmission losses from an electrode grid or a partially permeable layer.

Der erfindungsgemässe Hochleistungsstrahler erlaubt Strahler-Goemetrien nahezu beliebiger Gestalt. Neben Flächenstrahlern, die nach einer oder nach beiden Flach­seiten strahlen, können zylindrische oder elliptische Strahler geschaffen werden. Auch müssen die Strahler nicht notwendig eben oder langestreckt sein, sondern in einer oder mehreren Dimensionen gekrümmt oder gebogen sein.The high-power radiator according to the invention permits radiator geometries of almost any shape. In addition to surface emitters that emit on one or both flat sides, cylindrical or elliptical emitters can be created. Also, the emitters do not necessarily have to be flat or elongated, but have to be curved or curved in one or more dimensions.

Selbstverständlich erlaubt es die Erfindung in Analogie zur schweizerischen Patentanmeldung Nr.152/88-7 vom 15.1.1988 der Anmelderin, die den Entladungsraum begrenzenden Wände entweder auf der dem Entladungsraum zugewandten oder der äusseren Wand mit einer Lumineszenz-Schicht zu versehen zur Umwandlung des UV-Lichts in sichtbares Licht. Bei der er­sten Alternative muss dann die Wand nicht mehr UV-durchläs­sig sein, weil sie nur noch sichtbares Licht durchlassen muss.Of course, in analogy to the Swiss patent application No. 152 / 88-7 dated January 15, 1988, the invention allows the applicant to provide the walls delimiting the discharge space with a luminescent layer either on the discharge space facing or on the outer wall in order to convert the UV -Light in visible light. In the first alternative, the wall no longer has to be UV-permeable because it only has to let visible light through.

Bei der erfindungsgemässen Anordnung können Dielektrika verwendet werden, die nicht notwendigerweise transparent für das UV-Licht sind, was für besondere Anwendungen beson­ders hohe Wirkungsgrade erwarten lässt. So kann insbeson­dere das UV-Licht für manche Anwendungen direkt verwendet werden, ohne dass es den Entladungsraum verlassen muss. Dies gilt insbesondere für solche Anwendungen, die sich im Entladungsraum durchführen lassen. Zu solchen Anwendungen mit wachsender wirtschaftlicher Bedeutung zählen z.B. der Einsatz als starker UV-Strahler für Vorionisierungszwecke anderer Entladungen, z.B. Laser, Behandlung von Oberflächen mit UV-Belichtung, chemische Prozesse wie Präparation neuer Chemikalien oder Oberflächen und Beschichtungsverfahren wie Plasma-CVD (Chemical Vapor Deposition), Photo-CVD, bei de­nen ein zu behandelndes Substrat bei geeignetem Füllgas möglichst dicht an UV-Lichtquelle gebracht wird. Die beson­deren Vorteile einer solchen ¨Innen"-Anordnung liegen u.a. in der Vermeidung von Absorptionsverlusten durch Fenster und in der Ausnutzung zusätzlicher Effekte durch die Ent­ladung selbst.Dielectrics which are not necessarily transparent to UV light can be used in the arrangement according to the invention, which means that particularly high efficiencies can be expected for special applications. In particular, UV light can be used directly for some applications without having to leave the discharge space. This applies in particular to those applications that can be carried out in the discharge space. Such applications with growing economic importance include, for example, use as a strong UV lamp for pre-ionization purposes of other discharges, for example lasers, and treatment of surfaces with UV exposure, chemical processes such as the preparation of new chemicals or surfaces and coating processes such as plasma CVD (Chemical Vapor Deposition), Photo-CVD, in which a substrate to be treated is brought as close as possible to the UV light source with a suitable filling gas. The particular advantages of such an "inner" arrangement are, among other things, the avoidance of absorption losses through windows and the exploitation of additional effects through the discharge itself.

Kurze Beschreibung der ZeichnungenBrief description of the drawings

In der Zeichnung sind Ausführungsbeispiele der Erfindung schematisch dargestellt; darin zeigt

  • Fig. 1 Ein erstes Ausführungsbeispiel eines Flächen­strahlers mit beidseitiger Abstrahlung im Quer­schnitt;
  • Fig. 2 der Flächenstrahler nach Fig.1 im Längsschnitt mit einer schematischen Darstellung der elek­trischen Anspeisung;
  • Fig. 3 eine eines erste Abwandlung des Flächenstrahlers nach Fig.1 und 2 mit einseitiger Abstrahlung und Elektroden, die auf ein Substrat aufgebracht und mit einer dielektrischen Schicht überzogen sind;
  • Fig. 4 eine zweite Abwandlung des Flächenstrahlers nach Fig.1 und 2 mit inhomogenem Dielektrikum;
  • Fig. 5 eine dritte Abwandlung des Flächenstrahlers nach Fig.1 und 2 mit von dielektrische nMaterial ummantelten Einzelelektroden;
  • Fig. 6 ein Ausführungsbeispiel der Erfindung in Form eines Zylinderstrahlers im Querschnitt;
In the drawing, embodiments of the invention are shown schematically; in it shows
  • Fig. 1 A first embodiment of a panel radiator with radiation on both sides in cross section;
  • 2 shows the surface radiator according to FIG. 1 in longitudinal section with a schematic illustration of the electrical feed;
  • 3 shows a first modification of the surface radiator according to FIGS. 1 and 2 with one-sided radiation and electrodes which are applied to a substrate and are coated with a dielectric layer;
  • 4 shows a second modification of the surface radiator according to FIGS. 1 and 2 with an inhomogeneous dielectric;
  • 5 shows a third modification of the surface radiator according to FIGS. 1 and 2 with individual electrodes coated with dielectric material;
  • Fig. 6 shows an embodiment of the invention in the form of a cylinder radiator in cross section;

Detaillierte Beschreibung der ErfindungDetailed description of the invention

Der Flächenstrahler nach Fig.1 und 2 besteht aus zwei beab­standeten UV-durchlässigen Platten 1, 2 aus Quarzglas, zwischen denen eine weitere Platte 3 aus dielektrischen Ma­terial, z.B. Glas oder Keramik oder ein Kunststoff-Dielek­trikum angeordnet ist. Ueber die Fläche verteilte Abstands­halter 4, 5 sichern die Distanzierung der Platten 1, 2 und 3 und dienen gleichzeitig deren Zusammenhalt. In die Platte 3 sind in regelmässigen Abständen und voneinander beab­standet Metallelektroden ,6′,6˝ eingebettet. Wie in Fig.2 zu erkennen ist, sind die Elektroden 6′6˝, abwechselnd mit dem einen und dem anderen Pol einer Wechselstromquelle 7 verbunden.Die Wechselstromquelle 7 entspricht grundsätzlich jenen, wie sie zur Anspeisung von Ozonerzeugern verwendet werden. Typisch liefert sie eine einstellbare Wech­selspannung in der Grössenordnung von mehreren 100 Volt bis 20000 Volt bei Frequenzen im Bereich des technischen Wechselstroms bis hin zu einigen kHz - abhängig von der Elektrodengeometrie, Druck im Entladungsraum und Zusam­mensetzung des Füllgases.1 and 2 consists of two spaced UV-transparent plates 1, 2 made of quartz glass, between which a further plate 3 made of dielectric material, e.g. Glass or ceramic or a plastic dielectric is arranged. Spacers 4, 5 distributed over the surface secure the spacing of the plates 1, 2 and 3 and at the same time serve to hold them together. In the plate 3 metal electrodes, 6 ', 6' are embedded at regular intervals and spaced apart. As can be seen in Fig.2, the electrodes 6'6˝ are alternately connected to one and the other pole of an alternating current source 7. The alternating current source 7 basically corresponds to those used for supplying ozone generators. Typically, it supplies an adjustable AC voltage in the order of magnitude of several 100 volts to 20,000 volts at frequencies in the range of technical alternating current up to a few kHz - depending on the electrode geometry, pressure in the discharge space and composition of the filling gas.

Die Entladungsräume 8 und 9 zwischen den Platten 1 und 3 bzw. 3 und 2 sind mit einem unter Entladungsbedingungen Strahlung aussendenden Füllgas gefüllt, z.B. Quecksilber, Edelgas, Edelgas-Metalldampf-Gemisch, Edelgas-Halogen-­Gemisch, gegebenenfalls unter Verwendung eines zusätzlichen weiteren Edelgases, vorzugsweise Ar, He, Ne, als Puffergas.The discharge spaces 8 and 9 between the plates 1 and 3 or 3 and 2 are filled with a filling gas which emits radiation under discharge conditions, for example mercury, noble gas, noble gas-metal vapor mixture, noble gas-halogen mixture, optionally using an additional further noble gas , preferably Ar, He, Ne, as a buffer gas.

Je nach gewünschter spektraler Zusammensetzung der Strahlung kann dabei eine Substanz/Substanzgemisch gemäss nachfolgender Tabelle Vernwendung finden: Füllgas Strahlung Helium 60 - 100 nm Neon 80 - 90 nm Argon 107 - 165 nm Argon + Fluor 180 - 200 nm Argon + Chlor 165 - 190 nm Argon+Krypton+Chlor 165 - 190, 200 - 240 nm Xenon 160 - 190 nm Stickstoff 337 - 415 nm Krypton 124, 140 - 160 nm Krypton + Fluor 240 - 255 nm Krypton + Chlor 200 - 240 nm Quecksilber 185,254, 320-360, 390-420 nm Selen 196, 204, 206 nm Deuterium 150 - 250 nm Xenon + Fluor 400 - 550 nm Xenon + Chlor 300 - 320 nm Depending on the desired spectral composition of the radiation, a substance / substance mixture according to the following table can be used: Filling gas radiation helium 60-100 nm neon 80 - 90 nm argon 107 - 165 nm Argon + fluorine 180-200 nm Argon + chlorine 165-190 nm Argon + krypton + chlorine 165-190, 200-240 nm xenon 160-190 nm nitrogen 337 - 415 nm krypton 124, 140-160 nm Krypton + fluorine 240 - 255 nm Krypton + chlorine 200-240 nm mercury 185.254, 320-360, 390-420 nm selenium 196, 204, 206 nm deuterium 150-250 nm Xenon + fluorine 400 - 550 nm Xenon + chlorine 300-320 nm

Daneben kommen eine ganze Reihe weiterer Füllgase in Frage:
- Ein Edelgas (Ar, He, Kr, Ne, Xe) oder Hg mit einem Gas bzw. Dampf aus F₂, J₂, Br₂, Cl₂ oder eine Verbindung, die in der Entladung ein oder mehrere Atome F, J, Br oder Cl abspaltet;
- ein Edelgas (Ar, He, Kr, Ne, Xe) oder Hg mit O₂ oder einer Verbindung, die in der Entladung ein oder mehrere O-Atome abspaltet;
- ein Edelgas (Ar, He, Kr, Ne, Xe) mit Hg.
In addition, a whole series of other filling gases are possible:
- An inert gas (Ar, He, Kr, Ne, Xe) or Hg with a gas or vapor from F₂, J₂, Br₂, Cl₂ or a compound that splits off one or more atoms F, J, Br or Cl in the discharge ;
- A noble gas (Ar, He, Kr, Ne, Xe) or Hg with O₂ or a compound that releases one or more O atoms in the discharge;
- an inert gas (Ar, He, Kr, Ne, Xe) with Hg.

In der sich bildenden elektrischen Gleitentladung (surface discharge) kann die Elektronenenergieverteilung durch Dicke der dielektrischen Platte 3 und deren Eigenschaften, Ab­stand zwischen den Elektroden 6′,6˝, Druck und/oder Tempe­ratur optimal eingestellt werden.In the forming electrical discharge (surface discharge) the electron energy distribution can be optimally adjusted by the thickness of the dielectric plate 3 and its properties, distance between the electrodes 6 ', 6˝, pressure and / or temperature.

Bei Anliegen einer Spannung zwischen je zwei benachbarten Elektroden 6′,6˝ bildet sich eine Vielzahl von Ent­ladungskanälen 10 von einer Elektrode 6′ durch das Dielek­trikum 3 längs der Oberfläche des Dielektrikums 3 und wieder in das Dielektrikum 3 hinein zur benachbarten Elek­trode 6˝. Diese längs der Oberfläche verlaufenden Gleitent­ladungen 10 strahlen das UV-Licht ab, das dann durch die im Beispielsfall transparenten Platten 1, 2 dringt. Verwendet man in den Räumen 8 und 9 unterschiedliche Füll­gase, so lassen sich bei entsprechender Wahl der Elektrode­nanordnung und -verteilung mit einunddemselben Strahler zwei unterschiedliche Strahlungen erzeugen. Durch Aufbringen einer Beschichtung 11, 12 auf die beiden Oberflächen des Dielektrikums 3 lassen sich niedrigere Zündspannungen für die Entladung erzielen, so dass die Kosten für die Speisung reduziert werden können. Als Beschichtungsmaterial kommen in erster Linie die Oxide von Magnesium, Ytterbium, Lanthan und Cer (MgO, Yb₂O₃, La₂O₃, CeO₂) in Frage.When a voltage is applied between two adjacent electrodes 6 ', 6˝, a plurality of discharge channels 10 form from one electrode 6' through the dielectric 3 along the surface of the dielectric 3 and back into the dielectric 3 into the adjacent electrode 6˝. These sliding discharges 10 running along the surface emit the UV light, which then penetrates through the transparent plates 1, 2 in the example. If different filling gases are used in rooms 8 and 9, two different radiations can be generated with one and the same radiator if the electrode arrangement and distribution are selected accordingly. By applying a coating 11, 12 to the two surfaces of the dielectric 3, lower ignition voltages for the discharge can be achieved, so that the costs for the supply can be reduced. The primary coating materials are the oxides of magnesium, ytterbium, lanthanum and cerium (MgO, Yb₂O₃, La₂O₃, CeO₂).

Das UV-Licht kann für manchen Anwendungen auch direkt ver­wendet werden, ohne dass es durch die Abdeckplatten 1, 2 dringen muss. Dies gilt für solche Anwendungen, die sich in den Entladungsräumen 8, 9 selbst durchführen lassen. Zu solchen Applikationen mit wachsender wirtschaftlicher Be­deutung zählen z.B. die Behandlung von Oberflächen mit UV-­Belichtung, chemische Prozesse wie Präparation neuer Chemikalien oder Oberflächen-Beschichtung wie Plasma-CVD, Photo-CVD, also Verfahren, bei denen ein zu behandelndesThe UV light can also be used directly for some applications without it having to penetrate through the cover plates 1, 2. This applies to those applications that can be carried out in the discharge spaces 8, 9 themselves. Such applications with growing economic importance include, for example, the treatment of surfaces with UV exposure, chemical processes such as the preparation of new chemicals or surface coating such as plasma CVD, photo CVD, that is to say processes in which a treatment is carried out

Substrat bei geeignetem Füllgas möglichst dicht an die Dielektrikumsoberfläche, also dort wo die Strahlung entsteht, herangebracht wird.
Die besonderen Vorteile einer solchen "Innen"-Anordnung liegen u.a. in der Vermeidung von Absorptionsverlusten (durch die Platten 1,2) und in der Ausnutzung zusätzlicher Effekte durch die Entladung selbst, wobei die elektrischen Eigenschaften des zu behandelnden Substrats relativ unerheblich sind.
With a suitable filling gas, the substrate is brought as close as possible to the dielectric surface, i.e. where the radiation is generated.
The particular advantages of such an “interior” arrangement include the avoidance of absorption losses (through the plates 1, 2) and the use of additional effects through the discharge itself, the electrical properties of the substrate to be treated being relatively insignificant.

Die Herstellung des Dielektrikums 3 samt der in ihm eingebetteten Elektroden 6′, 6˝ ist gegenüber den bekannten Hochleistungsstrahlern vereinfacht und damit kostengün­stiger. Man kann Materialien verwenden, die man relativ einfach giessen kann, so dass die Elektroden 6′, 6˝ gleich miteingegossen werden können. Dadurch werden Probleme beim Einhalten von Toleranzen, z.B. die Dicke des Dielektrikums 3 oder der Abstände zwischen den Platten 1 und 3 bzw. 3 und 2 verkleinert. Auch für das Material der UV-durchlässigen Platten - sofern sie überhaupt UV-durchlässig sein müssen - sind keine sehr hohen Ansprüche zu stellen, da sie nicht durch die Entladung beansprucht sind. Dies führt wiederum zu einer Erhöhung der Gesamtlebensdauer des Strahlers.The production of the dielectric 3 together with the electrodes 6 ', 6' embedded in it is simplified compared to the known high-power radiators and thus less expensive. You can use materials that can be cast relatively easily, so that the electrodes 6 ', 6˝ can be cast in at the same time. This eliminates problems with compliance with tolerances, e.g. the thickness of the dielectric 3 or the distances between the plates 1 and 3 or 3 and 2 is reduced. Also for the material of the UV-permeable plates - if they have to be UV-permeable at all - there are no very high demands, since they are not stressed by the discharge. This in turn leads to an increase in the total life of the lamp.

Für eine kostengünstige Herstellung der in das Dielektrikum 3 eingebetteten Elektroden 6, 6˝ kann auch auf Techniken zurückgegriffen werden, die bei der Herstellung von Plas­madisplay-Zellen Anwendung finden (vgl. "AC Plasma Display" von T.N.Criscimagna & P.Pleshko in "Display Devices", J.I.Pamkove (Ed.), Springer-Verlag Berlin, Heidelberg, New York 1980, S. 92 - 150).
Anstelle von metallischen Drähten 6′, 6˝ nach Fig.1 sind die Elektroden gemäss Fig.3 als diskrete Leiterbahnen 6a, 6b mittels Dünnfilm- oder Dickfilm-Techniken auf ein Sub­strat 13 aus Glas, Quarz oder Keramik aufgebracht. Dabei werden einerseits Bedampfungs- und Sputter-Prozesse zur Metallisierung verwendet, andererseits leitfähige Pa­sten.Feine Leiterbahnen können durch photo-lithographische Verfahren, breitere (> 25 Mikrometer) können durch Metal­labscheidung durch eine Maske hindurch erzeugt werden. Die so aufgebrachten Leiterbahnen (Elektroden) werden danach durch eine dielektrische Schicht 14 abgedeckt. So kann man z.B. Schichten aus Bleioxydglas als Spray oder Paste auf­tragen und anschliessend erhitzen, wobei sich eine durchge­hende Glasschicht bildet. Schichten aus Borsilikatglas kann man durch Verdampfungstechniken herstellen. Es ist auch möglich, dass man andere dielektrische Schichten abscheidet mit Methoden, die in der Halbleitertechnik üblich sind, z.B. mittels Plasma-CVD oder Photo-CVD.
For an inexpensive production of the electrodes 6, 6˝ embedded in the dielectric 3, techniques can also be used which are used in the production of plasma display cells (cf. "AC Plasma Display" by TNCriscimagna & P.Pleshko in "Display Devices"", JIPamkove (Ed.), Springer-Verlag Berlin, Heidelberg, New York 1980, pp. 92-150).
Instead of metallic wires 6 ′, 6˝ according to FIG. 1, the electrodes according to FIG. 3 are applied as discrete conductor tracks 6a, 6b to a substrate 13 made of glass, quartz or ceramic using thin-film or thick-film techniques. Here vaporization and sputtering processes are used for metallization on the one hand, and conductive pastes on the other. Fine conductor tracks can be produced by photo-lithographic processes, wider ones (> 25 micrometers) can be created by metal deposition through a mask. The conductor tracks (electrodes) thus applied are then covered by a dielectric layer 14. For example, layers of lead oxide glass can be applied as a spray or paste and then heated, forming a continuous layer of glass. Layers of borosilicate glass can be made using evaporation techniques. It is also possible to deposit other dielectric layers using methods that are common in semiconductor technology, for example by means of plasma CVD or photo CVD.

Ohne den durch die Erfindung gesteckten Rahmen zu ver­lassen, sind eine Fülle von Modifikationen des vorstehend beschriebenen UV-Hochleistungsstrahlers möglich, auf die nachstehend eingegangen werden soll.Without departing from the scope of the invention, a multitude of modifications of the UV high-power lamp described above are possible, which will be dealt with below.

So können statt zweier Entladungsräume 8,9 auch nur ein Entladungsraum vorgesehen sein. Dazu ist durch eine entsprechende Isolation, z.B.Schwefelhexafluorid oder Wasser, in dem einen Raum oder eine andere Geometrie des Dielektrikums und/oder der Elektroden, z.B. eine solche nach Fig.3, sicherzustellen, dass sich die Gleitentladungen nur in dem anderen Raum ausbilden.Instead of two discharge spaces 8, 9, only one discharge space can be provided. Appropriate insulation, e.g. sulfur hexafluoride or water, in which a space or another geometry of the dielectric and / or the electrodes, e.g. one according to FIG. 3, to ensure that the sliding discharges only form in the other room.

Statt runder Elektroden 6′,6˝ nach Fig.1 können auch Elek­troden mit nahezu bliebigem Querschnitt verwendet werden. Auch müssen die Elektroden nicht geradlinig verlaufen, son­dern können auch z.B. mäanderförmig oder im Zickzack nebeneinander angeordnet sein.Instead of round electrodes 6 ′, 6˝ according to FIG. 1, electrodes with an almost constant cross section can also be used. The electrodes also do not have to run in a straight line, but can also be arranged, for example, in a meandering shape or in a zigzag pattern next to one another.

Zur Verbesserung der Wärmeabfuhr aus dem Dielektrikum ist es möglich, die Elektroden 6′,6˝ als Hohlelektroden auszuführen, oder im Dielektrikum 3 in Fig.1 oder im Sub­strat 13 in Fig.3 zusätzlich in Elektrodenlängsrichtung verlaufende Kanäle (Pos. 15 in Fig.3) vorzusehen, durch welche Kanäle ein flüssiges oder gasförmiges Kühlmittel geleitet wird.To improve the heat dissipation from the dielectric, it is possible to design the electrodes 6 ′, 6˝ as hollow electrodes, or in the dielectric 3 in FIG. 1 or in the substrate 13 in FIG. 3, additional channels running in the longitudinal direction of the electrode (item 15 in FIG. 3) to provide through which channels a liquid or gaseous coolant is passed.

Neben einzelnen in ein flächiges Dielektrikum 3 bzw. 14 eingebetteten Elektroden ist es darüber hinaus möglich, gemäss Fig.4 und 5 einzelne Drähte 16′,16˝ mit je einer dielektrischen Umhüllung 17 zu verwenden, die entweder dicht an dicht (Fig.5), locker nebeneinander oder durch Zwischenlagen 18 oder Abstandsstücke voneinander di­stanziert, zwischen den beiden Platten 1 und 2 angeordnet sind.In addition to individual electrodes embedded in a flat dielectric 3 or 14, it is also possible, according to FIGS. 4 and 5, to use individual wires 16 ′, 16˝, each with a dielectric sheath 17, which are either close to close (FIG. 5) , loosely spaced apart or spaced from one another by intermediate layers 18 or spacers, are arranged between the two plates 1 and 2.

Anstelle von Flächenstrahlern nach den Figuren 1 bis 5 sind auch Zylinderstrahler möglich, wie es in Fig.6 veran­schaulicht ist. Dort ist zwischen zwei Quarzrohren 19, 20 ein Rohr 21 aus dielektrischen Material koaxial angeordnet. Nicht dargestellte Abstandhalter sichern die gegenseitige Lage der drei Rohre. Analog Fig.1 sind in das dielektrische Rohr 21 Metallelektroden 22′, 22˝ eingebettet, die analog Fig.2 abwechselnd mit dem einen und dem anderen Pol einer (nicht dargestellten) Wechselstromquelle verbunden sind.Instead of surface emitters according to FIGS. 1 to 5, cylindrical emitters are also possible, as is illustrated in FIG. 6. There, a tube 21 made of dielectric material is arranged coaxially between two quartz tubes 19, 20. Spacers, not shown, secure the mutual position of the three tubes. Analogously to FIG. 1, metal electrodes 22 ′, 22˝ are embedded in the dielectric tube 21, which are alternately connected to one and the other pole of an AC power source (not shown) analogously to FIG.

Der Zylinderstrahler nach Fig.6 strahlt im Beispielsfall sowohl nach innen (in den Innenraum des Rohres 20) als auch nach aussen ab. Verwendet man in den Räumen 8 und 9 unter­schiedliche Füllgase, so lassen sich bei entsprechender Wahl der Elektrodenanordnung und -verteilung mit einunddem­selben Strahler zwei unterschiedliche Strahlungen erzeugen. Dies gilt selbstverständlich auch für einen Strahler nach Fig.4.In the example, the cylinder emitter according to FIG. 6 emits both inwards (into the interior of the tube 20) and outwards. If different filling gases are used in rooms 8 and 9, two different radiations can be generated with the same radiator if the electrode arrangement and distribution are selected accordingly. Of course, this also applies to a radiator according to Fig. 4.

Wie bereits im Zusammenhang mit Fig.1 beschrieben, können auch bei Zylinderstrahlern nach Fig.6 die gewünschten Reak­tionen in dem bzw. den Entladungsräumen 8 bzw. 9 selbst stattfinden.As already described in connection with FIG. 1, the desired reactions can also take place in the discharge space (s) 8 or 9 itself in the case of cylindrical radiators according to FIG. 6.

Die vorstehende Beschreibung von Ausführungsbeispielen der Erfindung konzentrierte sich auf die Erzeugung von UV- bzw. VUV-Strahlung. Durch Beschichtung der Platten 1, 2 bzw. der Rohre 19, 20 mit einer Lumineszenzschicht 23, 24 (Fig.1) lässt sich in Anlehung an die bei den Lumineszenzröhren für Beleuchtungszwecke bekannte Technik auch sichtbares Licht hoher Leistung erzeugen. Derartige Schichten sind bekannt und können auch auf die den Entladungsraum 8 bzw. 9 angren­zenden inneren Oberflächen der Platten 1, 2 bzw. der Rohre 19, 20 aufgeracht werden. Im letztren Fall brauchen diese Platten bzw. Rohre nicht mehr UV-durchlässig sondern nur für das sichtbare Licht transparent sein.The above description of exemplary embodiments of the invention concentrated on the generation of UV or VUV radiation. By coating the plates 1, 2 or the tubes 19, 20 with a luminescent layer 23, 24 (FIG. 1), visible light of high power can also be generated based on the technology known for luminescent tubes for lighting purposes. Such layers are known and can also be applied to the inner surfaces of the plates 1, 2 or the tubes 19, 20 adjacent to the discharge space 8 or 9. In the latter case, these plates or tubes no longer need to be UV-transparent but only transparent to visible light.

Claims (10)

1. Hochleistungsstrahler, insbesondere für ultraviolettes Licht, mit einem unter Entladungsbedingungen Strahlung aussendendem Füllgas gefüllten, von Wänden (1,2) begrenzten Entladungsraum (8,9), mit Elektrodenpaaren, die paarweise an die beiden Pole einer Hochspan­nungsquelle (7) angeschlossen sind, wobei zwischen zwei auf unterschiedlichem Potential liegenden Elek­troden mindestens ein dielektrisches Material liegt, das an den Entladungsraum angrenzt,dadurch gekenn­zeichnet, dass die genannten Elektrodenpaare (6′,6˝;6a,6b;16′,16˝;22′,22˝) räumlich getrennt von besagten Wänden (1,2) und voneinander getrennt durch dielektrisches Material (3;14;21) nebeneinander angeordnet sind, derart, dass sich die elektrische Entladung im Entladungsraum (8,9) im wesentlichen nur im Bereich der Dielektrikumsoberfläche ausbildet.1. high-power radiator, in particular for ultraviolet light, with a filling gas (8, 9), which is filled with discharge gas and emits radiation emitting under discharge conditions, with pairs of electrodes which are connected in pairs to the two poles of a high-voltage source (7), wherein at least one dielectric material lies between two electrodes lying at different potential and adjoins the discharge space, characterized in that said electrode pairs (6 ′, 6˝; 6a, 6b; 16 ′, 16˝; 22 ′, 22˝) spatially separated from said walls (1, 2) and separated from one another by dielectric material (3; 14; 21), such that the electrical discharge in the discharge space (8, 9) essentially only develops in the region of the dielectric surface. 2. Hochleistungstrahler nach Anspruch 1, dadurch gekennzeichnet, dass die Elektroden (6′,6˝;6a,6b;16′,16˝;22′,22˝) in das dielektrische Ma­terial (3;14;21) eingebettet sind und benachbarte Elektroden (6′,6˝;6a,6b;16′,16˝;22′,22˝) jeweils an unterschiedliche Pole der Hochspannungsquelle (7) angeschlossen sind.2. High power radiator according to claim 1, characterized in that the electrodes (6 ', 6˝; 6a, 6b; 16', 16˝; 22 ', 22˝) are embedded in the dielectric material (3; 14; 21) and Adjacent electrodes (6 ', 6˝; 6a, 6b; 16', 16˝; 22 ', 22˝) are each connected to different poles of the high voltage source (7). 3. Hochleistungstrahler nach Anspruch 2, dadurch gekennzeichnet, dass alle Elektroden (6′,6˝;22′,22˝) in einen gemeinsamen Träger aus dielektrischem Mate­rial eingebettet sind.3. High-power radiator according to claim 2, characterized in that all electrodes (6 ', 6˝; 22', 22˝) are embedded in a common carrier made of dielectric material. 4. Hochleistungstrahler nach Anspruch 2, dadurch gekennzeichnet, dass die Elektroden (16′,16˝) einzeln je von einer dielektrischen Umhüllung (17) umgeben sind.4. High-power radiator according to claim 2, characterized in that the electrodes (16 ', 16˝) are each individually surrounded by a dielectric sheath (17). 5. Hochleistungstrahler nach Anspruch 1, dadurch gekennzeichnet, dass die Elektroden (6a,6b) auf einem Substrat (13) aus Isoliermaterial angeordnet und mit einer dielektrischen Schicht (14) abgedeckt sind.5. High-power radiator according to claim 1, characterized in that the electrodes (6a, 6b) are arranged on a substrate (13) made of insulating material and are covered with a dielectric layer (14). 6. Hochleistungstrahler nach einem der Ansprüch 1 bis 5, dadurch gekennzeichnet, dass in den Elektroden oder in dem Material, in dem diese eingebettet bzw. darauf an­geordnet sind, in Elektrodenlängsrichtung verlaufende Kühlkanäle (15) vorgesehen sind.6. High-power radiator according to one of claims 1 to 5, characterized in that cooling channels (15) extending in the longitudinal direction of the electrodes are provided in the electrodes or in the material in which they are embedded or arranged thereon. 7. Hochleistungstrahler nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass auf der dem Ent­ladungsraum (8,9) zugewandten Oberfläche des Dielek­trikums eine zusätzliche Schicht (11,12) zur Herabset­zung der Zündspannung der elektrischen Gleitentladung, vorzugsweise eine Schicht aus Magnsium-, Ytterbium-, Lanthan- oder Ceroxid, vorgesehen ist.7. High-power radiator according to one of claims 1 to 6, characterized in that on the discharge space (8,9) facing surface of the dielectric an additional layer (11,12) to reduce the ignition voltage of the electrical discharge, preferably a layer of magnesium , Ytterbium, lanthanum or cerium oxide is provided. 8. Hochleistungstrahler nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass zur Erzeugung von Strahlungen mit mehreren unterschiedlichen Wellenlän­gen in einem Entladungsraum (8;9) ein Füllgas mit min­destens zwei Edelgasen und mindestens einem Nicht-­Edelgas vorgesehen ist.8. High-power radiator according to one of claims 1 to 7, characterized in that a filling gas with at least two noble gases and at least one non-noble gas is provided for generating radiation with several different wavelengths in a discharge space (8; 9). 9. Hochleistungstrahler nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass in den beiden Entladungsräumen (8,9) Füllgase unterschiedlicher Zusammensetzung vorgesehen sind.9. High-power radiator according to one of claims 1 to 8, characterized in that filling gases of different compositions are provided in the two discharge spaces (8, 9). 10. Hochleistungstrahler nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass die den Entladungsraum (8,9) begrenzenden Platten (1,2) bzw. Rohre (19,20) mit einer Lumineszenzschicht (24,25) versehen sind.10. High-power radiator according to one of claims 1 to 9, characterized in that the plates (1, 2) or tubes (19, 20) delimiting the discharge space (8, 9) are provided with a luminescent layer (24, 25).
EP89118546A 1988-10-10 1989-10-06 Radiating device having a high output Expired - Lifetime EP0363832B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH3778/88A CH676168A5 (en) 1988-10-10 1988-10-10
CH3778/88 1988-10-10

Publications (2)

Publication Number Publication Date
EP0363832A1 true EP0363832A1 (en) 1990-04-18
EP0363832B1 EP0363832B1 (en) 1993-06-16

Family

ID=4263286

Family Applications (1)

Application Number Title Priority Date Filing Date
EP89118546A Expired - Lifetime EP0363832B1 (en) 1988-10-10 1989-10-06 Radiating device having a high output

Country Status (5)

Country Link
US (1) US5006758A (en)
EP (1) EP0363832B1 (en)
JP (1) JP2812736B2 (en)
CH (1) CH676168A5 (en)
DE (1) DE58904712D1 (en)

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0482230A1 (en) * 1990-10-22 1992-04-29 Heraeus Noblelight GmbH High power radiation device
EP0515711A1 (en) * 1991-05-27 1992-12-02 Heraeus Noblelight GmbH High power radiator
US5198717A (en) * 1990-12-03 1993-03-30 Asea Brown Boveri Ltd. High-power radiator
EP0661110A1 (en) * 1993-11-26 1995-07-05 Ushiodenki Kabushiki Kaisha Process for oxidation of an article surface
DE19526211A1 (en) * 1995-07-18 1997-01-23 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Process for operating discharge lamps or emitters
EP0607960B1 (en) * 1993-01-20 1998-04-22 Ushiodenki Kabushiki Kaisha Dielectric barrier discharge lamp
WO1998043280A1 (en) * 1997-03-21 1998-10-01 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Flat spotlight with discharge separated by a dielectric layer and device for the electrodes into the leading discharge area
WO1998043276A2 (en) * 1997-03-21 1998-10-01 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Gas discharge lamp with dielectrically impeded electrodes
DE19811520C1 (en) * 1998-03-17 1999-08-12 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Dielectrically hindered discharge lamp for direct or phosphor emission of visible, ultraviolet or vacuum ultraviolet light
WO1999054916A2 (en) * 1998-04-20 1999-10-28 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Flat reflector lamp for dielectrically inhibited discharges with spacers
DE19817476A1 (en) * 1998-04-20 1999-11-04 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Fluorescent lamp with spacers and locally thinned fluorescent layer thickness
DE19817478A1 (en) * 1998-04-20 1999-11-04 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Flat discharge lamp and process for its manufacture
DE19826808A1 (en) * 1998-06-16 1999-12-23 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Discharge lamp with dielectric barrier electrodes
DE19826809A1 (en) * 1998-06-16 1999-12-23 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Dielectric layer for discharge lamps and associated manufacturing process
US6034470A (en) * 1997-03-21 2000-03-07 Patent-Treuhand-Gesellschaft Fuer Elektrische Gluehlampen Mbh Flat fluorescent lamp with specific electrode structuring
US6060828A (en) * 1996-09-11 2000-05-09 Patent-Treuhand-Gesellschaft Fuer Elektrische Gluehlampen Mbh Electric radiation source and irradiation system with this radiation source
DE19919363A1 (en) * 1999-04-28 2000-11-09 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Discharge lamp with spacer
US6222317B1 (en) 1997-03-21 2001-04-24 Patent-Treuhand-Gesellschaft Fuer Elektrische Gluehlampen Mbh Flat light emitter
US6252352B1 (en) 1997-03-21 2001-06-26 Patent-Treuhand-Gesellschaft Fuer Elektrische Gluehlampen Mbh Flat light emitter
DE10026781C1 (en) * 2000-05-31 2002-01-24 Heraeus Noblelight Gmbh Discharge lamp for dielectric discharge
DE10048187A1 (en) * 2000-09-28 2002-04-11 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Discharge lamp for dielectrically impeded discharges with base plate and top plate for light outlet also discharge chamber between plates and electrode set and dielectric layer
US6984930B2 (en) 2001-08-17 2006-01-10 Patent-Treuhand-Gesellschaft Fuer Elektrische Gluehlampen Mbh Discharge lamp with ignition aid of a UV/VIS material having high secondary electron emission coefficient
DE102007048234A1 (en) 2007-01-23 2008-09-25 Chi-Mei Corp. Mercury-free flat fluorescent lamp
US7573201B2 (en) 2004-09-29 2009-08-11 Osram Gesellschaft Mit Beschraenkter Haftung Dielectric barrier discharge lamp having pluggable electrodes
WO2009103337A1 (en) * 2008-02-21 2009-08-27 Osram Gesellschaft mit beschränkter Haftung Dielectric barrier discharge lamp with a retaining disc
FR2936093A1 (en) * 2008-09-12 2010-03-19 Saint Gobain Tubular discharge UV lamp e.g. tanning lamp, for e.g. refrigerator, has two electrodes associated to main faces of one of dielectric tubes, where electrodes are in form of bands that partially occupy, in projection, interelectrode spaces
EP1839703B1 (en) * 2006-03-31 2011-05-25 Ushiodenki Kabushiki Kaisha Phototherapy device
WO2014166934A1 (en) * 2013-04-11 2014-10-16 Dritte Patentportfolio Beteiligungsgesellschaft Mbh & Co. Kg Hf lamp having a dielectric waveguide

Families Citing this family (71)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0521553B1 (en) * 1991-07-01 1996-04-24 Koninklijke Philips Electronics N.V. High-pressure glow discharge lamp
US5384515A (en) * 1992-11-02 1995-01-24 Hughes Aircraft Company Shrouded pin electrode structure for RF excited gas discharge light sources
US5681380A (en) 1995-06-05 1997-10-28 Kimberly-Clark Worldwide, Inc. Ink for ink jet printers
US5643356A (en) 1993-08-05 1997-07-01 Kimberly-Clark Corporation Ink for ink jet printers
US6017661A (en) 1994-11-09 2000-01-25 Kimberly-Clark Corporation Temporary marking using photoerasable colorants
US5865471A (en) 1993-08-05 1999-02-02 Kimberly-Clark Worldwide, Inc. Photo-erasable data processing forms
US5733693A (en) 1993-08-05 1998-03-31 Kimberly-Clark Worldwide, Inc. Method for improving the readability of data processing forms
US6211383B1 (en) 1993-08-05 2001-04-03 Kimberly-Clark Worldwide, Inc. Nohr-McDonald elimination reaction
CA2120838A1 (en) 1993-08-05 1995-02-06 Ronald Sinclair Nohr Solid colored composition mutable by ultraviolet radiation
US5773182A (en) 1993-08-05 1998-06-30 Kimberly-Clark Worldwide, Inc. Method of light stabilizing a colorant
US6017471A (en) 1993-08-05 2000-01-25 Kimberly-Clark Worldwide, Inc. Colorants and colorant modifiers
US5721287A (en) 1993-08-05 1998-02-24 Kimberly-Clark Worldwide, Inc. Method of mutating a colorant by irradiation
US5645964A (en) 1993-08-05 1997-07-08 Kimberly-Clark Corporation Digital information recording media and method of using same
TW324106B (en) * 1993-09-08 1998-01-01 Ushio Electric Inc Dielectric barrier layer discharge lamp
US5601786A (en) * 1994-06-02 1997-02-11 Monagan; Gerald C. Air purifier
US5685754A (en) 1994-06-30 1997-11-11 Kimberly-Clark Corporation Method of generating a reactive species and polymer coating applications therefor
US5739175A (en) 1995-06-05 1998-04-14 Kimberly-Clark Worldwide, Inc. Photoreactor composition containing an arylketoalkene wavelength-specific sensitizer
US6071979A (en) 1994-06-30 2000-06-06 Kimberly-Clark Worldwide, Inc. Photoreactor composition method of generating a reactive species and applications therefor
US6242057B1 (en) 1994-06-30 2001-06-05 Kimberly-Clark Worldwide, Inc. Photoreactor composition and applications therefor
US6008268A (en) 1994-10-21 1999-12-28 Kimberly-Clark Worldwide, Inc. Photoreactor composition, method of generating a reactive species, and applications therefor
US5849411A (en) 1995-06-05 1998-12-15 Kimberly-Clark Worldwide, Inc. Polymer film, nonwoven web and fibers containing a photoreactor composition
ES2148776T3 (en) 1995-06-05 2000-10-16 Kimberly Clark Co PRE-DYES AND COMPOUNDS THAT CONTAIN THEM.
US5798015A (en) 1995-06-05 1998-08-25 Kimberly-Clark Worldwide, Inc. Method of laminating a structure with adhesive containing a photoreactor composition
US5747550A (en) 1995-06-05 1998-05-05 Kimberly-Clark Worldwide, Inc. Method of generating a reactive species and polymerizing an unsaturated polymerizable material
US5811199A (en) 1995-06-05 1998-09-22 Kimberly-Clark Worldwide, Inc. Adhesive compositions containing a photoreactor composition
US5786132A (en) 1995-06-05 1998-07-28 Kimberly-Clark Corporation Pre-dyes, mutable dye compositions, and methods of developing a color
ATE206150T1 (en) 1995-06-28 2001-10-15 Kimberly Clark Co DYE-STABILIZED COMPOSITIONS
US6099628A (en) 1996-03-29 2000-08-08 Kimberly-Clark Worldwide, Inc. Colorant stabilizers
US5855655A (en) 1996-03-29 1999-01-05 Kimberly-Clark Worldwide, Inc. Colorant stabilizers
US5782963A (en) 1996-03-29 1998-07-21 Kimberly-Clark Worldwide, Inc. Colorant stabilizers
SK102397A3 (en) 1995-11-28 1998-02-04 Kimberly Clark Co Colorant stabilizers
US5891229A (en) 1996-03-29 1999-04-06 Kimberly-Clark Worldwide, Inc. Colorant stabilizers
DE19613502C2 (en) * 1996-04-04 1998-07-09 Heraeus Noblelight Gmbh Durable excimer emitter and process for its manufacture
JPH09283092A (en) * 1996-04-19 1997-10-31 Stanley Electric Co Ltd Fluorescent lamp
US6524379B2 (en) 1997-08-15 2003-02-25 Kimberly-Clark Worldwide, Inc. Colorants, colorant stabilizers, ink compositions, and improved methods of making the same
US20020098109A1 (en) * 1997-09-17 2002-07-25 Jerry Nelson Method and apparatus for producing purified or ozone enriched air to remove contaminants from fluids
US5945790A (en) * 1997-11-17 1999-08-31 Schaefer; Raymond B. Surface discharge lamp
US6015759A (en) * 1997-12-08 2000-01-18 Quester Technology, Inc. Surface modification of semiconductors using electromagnetic radiation
US6049086A (en) * 1998-02-12 2000-04-11 Quester Technology, Inc. Large area silent discharge excitation radiator
BR9906580A (en) 1998-06-03 2000-09-26 Kimberly Clark Co Neonanoplast and microemulsion technology for inks and inkjet printing
BR9906513A (en) 1998-06-03 2001-10-30 Kimberly Clark Co New photoinitiators and applications for the same
US6228157B1 (en) 1998-07-20 2001-05-08 Ronald S. Nohr Ink jet ink compositions
JP3346291B2 (en) * 1998-07-31 2002-11-18 ウシオ電機株式会社 Dielectric barrier discharge lamp and irradiation device
GB9819504D0 (en) * 1998-09-07 1998-10-28 Ardavan Houshang Apparatus for generating focused electromagnetic radiation
EP1117698B1 (en) 1998-09-28 2006-04-19 Kimberly-Clark Worldwide, Inc. Chelates comprising chinoid groups as photoinitiators
DE19922566B4 (en) * 1998-12-16 2004-11-04 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Process for the generation of ultraviolet radiation
ES2195869T3 (en) 1999-01-19 2003-12-16 Kimberly Clark Co NEW COLORS, COLOR STABILIZERS, INK COMPOUNDS AND IMPROVED METHODS FOR MANUFACTURING.
US6331056B1 (en) 1999-02-25 2001-12-18 Kimberly-Clark Worldwide, Inc. Printing apparatus and applications therefor
US6294698B1 (en) 1999-04-16 2001-09-25 Kimberly-Clark Worldwide, Inc. Photoinitiators and applications therefor
DE19920693C1 (en) * 1999-05-05 2001-04-26 Inst Oberflaechenmodifizierung Open UV / VUV excimer lamp and process for surface modification of polymers
US6133694A (en) * 1999-05-07 2000-10-17 Fusion Uv Systems, Inc. High-pressure lamp bulb having fill containing multiple excimer combinations
US6368395B1 (en) 1999-05-24 2002-04-09 Kimberly-Clark Worldwide, Inc. Subphthalocyanine colorants, ink compositions, and method of making the same
US6613277B1 (en) 1999-06-18 2003-09-02 Gerald C. Monagan Air purifier
US6762556B2 (en) 2001-02-27 2004-07-13 Winsor Corporation Open chamber photoluminescent lamp
DE10134965A1 (en) * 2001-07-23 2003-02-06 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Flat discharge lamp has outer side of front plate at least partly provided with opaque coating and inner side of front plate at least partly provided with fluorescent coating
JP3929265B2 (en) * 2001-07-31 2007-06-13 富士通株式会社 Method for forming electron emission film in gas discharge tube
DE10147961A1 (en) * 2001-09-28 2003-04-10 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Igniting, operating dielectric barrier discharge lamp involves applying ignition voltage between sub-electrodes to ignite auxiliary discharge at gap between sub-electrodes during ignition
DE10213327C1 (en) * 2002-03-25 2003-06-18 Heraeus Noblelight Gmbh Discharge vessel used for dielectric barrier discharge lamps made from silica glass has a protective device consisting of a self-supporting component which is made from a part of a material absorbing ultraviolet radiation
FR2843483B1 (en) * 2002-08-06 2005-07-08 Saint Gobain FLASHLIGHT, METHOD OF MANUFACTURE AND APPLICATION
US20040136885A1 (en) * 2003-01-09 2004-07-15 Hogarth Derek J. Apparatus and method for generating ozone
US7029637B2 (en) * 2003-01-09 2006-04-18 H203, Inc. Apparatus for ozone production, employing line and grooved electrodes
AU2004238324A1 (en) * 2003-05-08 2004-11-25 Eco-Rx, Inc. System for purifying and removing contaminants from gaseous fluids
DE102004047373A1 (en) * 2004-09-29 2006-04-06 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Lighting system with dielectrically impeded discharge lamp and associated ballast
DE102004047375A1 (en) * 2004-09-29 2006-04-06 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Dielectric handicapped discharge lamp with cuff
DE102005007370B3 (en) * 2005-02-17 2006-09-21 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Ultraviolet light source for e.g. ultraviolet microscopy, has dielectric arranged between two electrodes, where one electrode includes tip directed to another electrode, such that shortest distance is defined between electrodes
KR20080031957A (en) * 2005-07-15 2008-04-11 더 보드 오브 트러스티즈 오브 더 유니버시티 오브 일리노이 Arrays of microcavity plasma devices with dielectric encapsulated electrodes
TWM283310U (en) * 2005-08-09 2005-12-11 Hung Mian Light Source Co Ltd Slab-lamp structure with electrode-less
DE102007020655A1 (en) 2007-04-30 2008-11-06 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Method for producing thin layers and corresponding layer
JP4424394B2 (en) * 2007-08-31 2010-03-03 ウシオ電機株式会社 Excimer lamp
DE102012017779A1 (en) * 2012-09-07 2014-03-13 Karlsruher Institut für Technologie Dielectric barrier discharge lamp
DE102021108009B4 (en) 2021-03-30 2023-02-09 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung eingetragener Verein Multi-wavelength UV radiation source and UV probe, especially for fluorescence analysis

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0254111B1 (en) * 1986-07-22 1992-01-02 BBC Brown Boveri AG Ultraviolett radiation device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH152887A (en) * 1930-02-04 1932-02-29 Ig Farbenindustrie Ag Process for the production of a nitrogenous vat dye.
JPS599849A (en) * 1982-07-09 1984-01-19 Okaya Denki Sangyo Kk High frequency discharge lamp
JPS60172135A (en) * 1984-02-15 1985-09-05 Mitsubishi Electric Corp Flat plate light source
CH675178A5 (en) * 1987-10-23 1990-08-31 Bbc Brown Boveri & Cie

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0254111B1 (en) * 1986-07-22 1992-01-02 BBC Brown Boveri AG Ultraviolett radiation device

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
DISPLAY DEVICES, 1980, Seiten 91-150, Springer-Verlag, Berlin, DE; T.N. CRISCIMAGNA et al.: "AC plasma display" *
PATENT ABSTRACTS OF JAPAN, Band 10, Nr. 8 (E-373)[2065], 14. Januar 1986; & JP-A-60 172 135 (MITSUBISHI DENKI K.K.) 05-09-1985 *

Cited By (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5283498A (en) * 1990-10-22 1994-02-01 Heraeus Noblelight Gmbh High-power radiator
EP0482230A1 (en) * 1990-10-22 1992-04-29 Heraeus Noblelight GmbH High power radiation device
US5198717A (en) * 1990-12-03 1993-03-30 Asea Brown Boveri Ltd. High-power radiator
EP0515711A1 (en) * 1991-05-27 1992-12-02 Heraeus Noblelight GmbH High power radiator
EP0607960B1 (en) * 1993-01-20 1998-04-22 Ushiodenki Kabushiki Kaisha Dielectric barrier discharge lamp
EP0661110A1 (en) * 1993-11-26 1995-07-05 Ushiodenki Kabushiki Kaisha Process for oxidation of an article surface
US5994849A (en) * 1995-07-18 1999-11-30 Patent-Treuhand-Gesellschaft Fuer Electrische Gluehlampen Mbh Method for operating a lighting system and suitable lighting system therefor
DE19526211A1 (en) * 1995-07-18 1997-01-23 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Process for operating discharge lamps or emitters
WO1997004625A1 (en) * 1995-07-18 1997-02-06 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Method for operating a lighting system and suitable lighting system therefor
CN1113582C (en) * 1995-07-18 2003-07-02 电灯专利信托有限公司 Method for operating a lighting system and suitable lighting system therefor
US6060828A (en) * 1996-09-11 2000-05-09 Patent-Treuhand-Gesellschaft Fuer Elektrische Gluehlampen Mbh Electric radiation source and irradiation system with this radiation source
DE19636965B4 (en) * 1996-09-11 2004-07-01 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Electrical radiation source and radiation system with this radiation source
US6222317B1 (en) 1997-03-21 2001-04-24 Patent-Treuhand-Gesellschaft Fuer Elektrische Gluehlampen Mbh Flat light emitter
WO1998043280A1 (en) * 1997-03-21 1998-10-01 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Flat spotlight with discharge separated by a dielectric layer and device for the electrodes into the leading discharge area
KR100417438B1 (en) * 1997-03-21 2004-02-05 파텐트-트로이한트-게젤샤프트 퓌어 엘렉트리쉐 글뤼람펜 엠베하 Flat radiator
WO1998043276A2 (en) * 1997-03-21 1998-10-01 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Gas discharge lamp with dielectrically impeded electrodes
WO1998043276A3 (en) * 1997-03-21 1998-12-17 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Gas discharge lamp with dielectrically impeded electrodes
US6853124B1 (en) 1997-03-21 2005-02-08 Patent-Treuhand-Gesellschaft Fuer Elektrische Gluehlampen Mbh Flat fluorescent lamp with specific electrode structuring
US6034470A (en) * 1997-03-21 2000-03-07 Patent-Treuhand-Gesellschaft Fuer Elektrische Gluehlampen Mbh Flat fluorescent lamp with specific electrode structuring
US6252352B1 (en) 1997-03-21 2001-06-26 Patent-Treuhand-Gesellschaft Fuer Elektrische Gluehlampen Mbh Flat light emitter
WO1999048134A1 (en) * 1998-03-17 1999-09-23 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Discharge lamp with dielectrically impeded electrodes
US6304028B1 (en) 1998-03-17 2001-10-16 Patent-Treuhand-Gesellschaft Fuer Elektrishe Gluehlampen Mbh Discharge lamp with dielectrically impeded electrodes
DE19811520C1 (en) * 1998-03-17 1999-08-12 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Dielectrically hindered discharge lamp for direct or phosphor emission of visible, ultraviolet or vacuum ultraviolet light
US6659828B1 (en) 1998-04-20 2003-12-09 Patent-Treuhand-Gesellshaft Fuer Elektrische Gluehlampen Mbh Flat discharge lamp and method for the production thereof
DE19817476B4 (en) * 1998-04-20 2004-03-25 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Fluorescent lamp with spacers and locally thinned fluorescent layer thickness
WO1999054916A3 (en) * 1998-04-20 1999-12-02 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Flat reflector lamp for dielectrically inhibited discharges with spacers
DE19817478B4 (en) * 1998-04-20 2004-03-18 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Flat discharge lamp and process for its manufacture
DE19817478A1 (en) * 1998-04-20 1999-11-04 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Flat discharge lamp and process for its manufacture
US6531822B1 (en) 1998-04-20 2003-03-11 Patent-Treuhand-Gesellschaft Fuer Elektrische Gluehlampen Mbh Flat reflector lamp for dielectrically inhibited discharges with spacers
DE19817476A1 (en) * 1998-04-20 1999-11-04 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Fluorescent lamp with spacers and locally thinned fluorescent layer thickness
WO1999054916A2 (en) * 1998-04-20 1999-10-28 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Flat reflector lamp for dielectrically inhibited discharges with spacers
US6693377B1 (en) 1998-06-16 2004-02-17 Patent-Treuhand-Gesellschaft Fuer Elektrische Gluehlampen Mbh Dielectric layer for discharge lamps and corresponding production method
DE19826809A1 (en) * 1998-06-16 1999-12-23 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Dielectric layer for discharge lamps and associated manufacturing process
DE19826808C2 (en) * 1998-06-16 2003-04-17 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Discharge lamp with dielectric barrier electrodes
DE19826808A1 (en) * 1998-06-16 1999-12-23 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Discharge lamp with dielectric barrier electrodes
US6879108B1 (en) 1999-04-28 2005-04-12 Patent-Treuhand-Gesellschaft Fuer Elektrische Gluehlampen Mbh Dielectrically impeded discharge lamp with a spacer
DE19919363A1 (en) * 1999-04-28 2000-11-09 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Discharge lamp with spacer
DE10026781C1 (en) * 2000-05-31 2002-01-24 Heraeus Noblelight Gmbh Discharge lamp for dielectric discharge
DE10048187A1 (en) * 2000-09-28 2002-04-11 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Discharge lamp for dielectrically impeded discharges with base plate and top plate for light outlet also discharge chamber between plates and electrode set and dielectric layer
US6984930B2 (en) 2001-08-17 2006-01-10 Patent-Treuhand-Gesellschaft Fuer Elektrische Gluehlampen Mbh Discharge lamp with ignition aid of a UV/VIS material having high secondary electron emission coefficient
US7573201B2 (en) 2004-09-29 2009-08-11 Osram Gesellschaft Mit Beschraenkter Haftung Dielectric barrier discharge lamp having pluggable electrodes
EP1839703B1 (en) * 2006-03-31 2011-05-25 Ushiodenki Kabushiki Kaisha Phototherapy device
DE102007048234A1 (en) 2007-01-23 2008-09-25 Chi-Mei Corp. Mercury-free flat fluorescent lamp
WO2009103337A1 (en) * 2008-02-21 2009-08-27 Osram Gesellschaft mit beschränkter Haftung Dielectric barrier discharge lamp with a retaining disc
US8314538B2 (en) 2008-02-21 2012-11-20 Osram Ag Dielectric barrier discharge lamp with a retaining disc
FR2936093A1 (en) * 2008-09-12 2010-03-19 Saint Gobain Tubular discharge UV lamp e.g. tanning lamp, for e.g. refrigerator, has two electrodes associated to main faces of one of dielectric tubes, where electrodes are in form of bands that partially occupy, in projection, interelectrode spaces
WO2014166934A1 (en) * 2013-04-11 2014-10-16 Dritte Patentportfolio Beteiligungsgesellschaft Mbh & Co. Kg Hf lamp having a dielectric waveguide

Also Published As

Publication number Publication date
CH676168A5 (en) 1990-12-14
EP0363832B1 (en) 1993-06-16
US5006758A (en) 1991-04-09
JP2812736B2 (en) 1998-10-22
JPH02158049A (en) 1990-06-18
DE58904712D1 (en) 1993-07-22

Similar Documents

Publication Publication Date Title
EP0363832B1 (en) Radiating device having a high output
EP0389980B1 (en) High power radiation device
EP0371304B1 (en) High-power radiation device
EP0482230B1 (en) High power radiation device
DE19636965B4 (en) Electrical radiation source and radiation system with this radiation source
EP0385205B1 (en) High-power radiation device
EP0324953B1 (en) High power radiation source
EP0254111B1 (en) Ultraviolett radiation device
EP0509110B1 (en) Irradation device
EP0839436B1 (en) Method for operating a lighting system and suitable lighting system therefor
EP0578953B1 (en) High power emitting device
EP0458140A1 (en) High power radiator
EP0449018A2 (en) Irradiation device
DE4140497C2 (en) High-power radiation
EP0517929B1 (en) Irradiation device with a high power radiator
DE2718735C2 (en) High pressure mercury vapor discharge
EP0489184B1 (en) High power radiation device
DE4010809A1 (en) High power esp. ultraviolet emitter - with electrode arrangement providing high efficiency
EP1118100B1 (en) Dimmable discharge lamp for dielectrically impeded discharges
DE2529005B2 (en) Low pressure gas discharge lamp
DE4022279A1 (en) Irradiating non-electrolytes from gas - filled discharge chamber by applying high potential electric source to electrodes using cylindrical electrode connected by dielectric layer
DE2502649A1 (en) IMPROVED ELECTRODE STRUCTURE FOR HIGH CURRENT, LOW PRESSURE DISCHARGE DEVICES
DE4203345A1 (en) High performance emitter, esp. for UV light - comprises discharge chamber filled with gas, and metallic outer electrodes coated with UV-transparent layer
DE102005007370B3 (en) Ultraviolet light source for e.g. ultraviolet microscopy, has dielectric arranged between two electrodes, where one electrode includes tip directed to another electrode, such that shortest distance is defined between electrodes
DE4235743A1 (en) High power emitter esp. UV excimer laser with coated internal electrode - in transparent dielectric tube and external electrode grid, which has long life and can be made easily and economically

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE FR GB IT LI NL

17P Request for examination filed

Effective date: 19901004

17Q First examination report despatched

Effective date: 19921130

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE FR GB IT LI NL

REF Corresponds to:

Ref document number: 58904712

Country of ref document: DE

Date of ref document: 19930722

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: HERAEUS NOBLELIGHT GMBH

REG Reference to a national code

Ref country code: CH

Ref legal event code: PUE

Owner name: HERAEUS NOBLELIGHT GMBH

ITF It: translation for a ep patent filed

Owner name: DE DOMINICIS & MAYER S.

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19930823

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20020918

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20020925

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20020930

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20021009

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20021017

Year of fee payment: 14

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031006

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031031

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040501

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040501

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20031006

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040630

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20040501

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20051006