EP0839436B1 - Method for operating a lighting system and suitable lighting system therefor - Google Patents

Method for operating a lighting system and suitable lighting system therefor Download PDF

Info

Publication number
EP0839436B1
EP0839436B1 EP96924752A EP96924752A EP0839436B1 EP 0839436 B1 EP0839436 B1 EP 0839436B1 EP 96924752 A EP96924752 A EP 96924752A EP 96924752 A EP96924752 A EP 96924752A EP 0839436 B1 EP0839436 B1 EP 0839436B1
Authority
EP
European Patent Office
Prior art keywords
discharge
electrodes
discharge vessel
wall
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP96924752A
Other languages
German (de)
French (fr)
Other versions
EP0839436A1 (en
Inventor
Frank Dr. Vollkommer
Lothar Dr. Hitzschke
Klaus Dr. Stockwald
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osram GmbH
Original Assignee
Patent Treuhand Gesellschaft fuer Elektrische Gluehlampen mbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Patent Treuhand Gesellschaft fuer Elektrische Gluehlampen mbH filed Critical Patent Treuhand Gesellschaft fuer Elektrische Gluehlampen mbH
Publication of EP0839436A1 publication Critical patent/EP0839436A1/en
Application granted granted Critical
Publication of EP0839436B1 publication Critical patent/EP0839436B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J65/00Lamps without any electrode inside the vessel; Lamps with at least one main electrode outside the vessel
    • H01J65/04Lamps in which a gas filling is excited to luminesce by an external electromagnetic field or by external corpuscular radiation, e.g. for indicating plasma display panels
    • H01J65/042Lamps in which a gas filling is excited to luminesce by an external electromagnetic field or by external corpuscular radiation, e.g. for indicating plasma display panels by an external electromagnetic field
    • H01J65/046Lamps in which a gas filling is excited to luminesce by an external electromagnetic field or by external corpuscular radiation, e.g. for indicating plasma display panels by an external electromagnetic field the field being produced by using capacitive means around the vessel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/30Vessels; Containers
    • H01J61/305Flat vessels or containers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B41/00Circuit arrangements or apparatus for igniting or operating discharge lamps
    • H05B41/14Circuit arrangements
    • H05B41/24Circuit arrangements in which the lamp is fed by high frequency ac, or with separate oscillator frequency

Definitions

  • the invention relates to a method for operating a lighting system with an incoherently emitting radiation source, in particular Discharge lamp, by means of dielectric barrier discharge according to the Preamble of claim 1. Furthermore, the invention relates to one for this Operating method suitable lighting system according to the preamble of claim 12.
  • UV (U ltra v Iolet) - and IR (I nfra r ot) emitters as well as discharge lamps which emit visible light in particular, to understand.
  • Such radiation sources are suitable, depending on the spectrum of the emitted radiation, for general and auxiliary lighting, such as home and office illumination or backlighting of displays, such as LCDs (L iquid C rystal D isplays), for the transport and signal lighting, for UV radiation, for example disinfection or photolytics, and for IR radiation, for example for drying paints.
  • general and auxiliary lighting such as home and office illumination or backlighting of displays, such as LCDs (L iquid C rystal D isplays)
  • UV radiation for example disinfection or photolytics
  • IR radiation for example for drying paints.
  • WO 94/23442 describes a method for operating an incoherently emitting Radiation source, in particular discharge lamp, by means of dielectric disabled discharge disclosed.
  • the operating procedure sees one Sequence of voltage pulses before, the individual voltage pulses through Dead times are separated.
  • the advantage of this pulsed mode of operation is a high efficiency of radiation generation.
  • EP 0 363 832 describes a UV high-power lamp with pairs of electrodes connected to both poles of a high voltage source.
  • the electrodes are from each other and from the discharge space of the Radiator separated by dielectric material. Such electrodes are hereinafter referred to as "dielectric electrodes".
  • the electrodes are arranged side by side, whereby area-like discharge configurations with relatively flat discharge vessels let it be realized.
  • An AC voltage is applied to the dielectric electrodes in the order of magnitude of several 100 V to 20000 V. Frequencies in the range of technical alternating current up to a few kHz placed such that there is essentially only a sliding electrical discharge in the area of the dielectric surface.
  • the main disadvantage is that sliding discharges in particular place a thermal load on the surface, which is why cooling channels for dissipating the heat from the dielectric are also proposed. Due to the unavoidable, substantial heat generation of this discharge type, the efficiency for generating radiation, in particular in the UV and VUV (V acuum U ltra v Iolet) range is limited. In addition, sliding discharge causes chemical processes on the surface, thereby shortening the life of the lamp.
  • the object of the invention is to eliminate these disadvantages and a method to operate a lighting system, which both through a flat discharge vessel as well as through efficient production characterized by radiation.
  • Another object of the invention is to provide a lighting system which is suitable for the operating method. This object is achieved according to the invention by the characterizing features of claim 12 solved.
  • the basic idea of the invention is in the interior of the discharge vessel with dielectric electrodes arranged next to one another generate spatial discharge in the areas between electrodes opposite polarity a distance from the surface of the inner wall of the discharge vessel. While in the prior art one Variety of sliding discharges along the surface of the dielectric Serve generation of UV radiation, the invention proposes the use one that separates from the dielectric surface, spatially within extended discharge before the discharge vessel.
  • the advantages achieved thereby are firstly a higher efficiency of generation of UV or VUV (V acuum U ltra v iolet) radiation and hence a lower heat generation.
  • no cooling liquid is required for heat dissipation.
  • the discharge type according to the invention results in a significantly lower thermal and chemical wall load than is the case with surface sliding discharges. An extension of the life of the discharge vessel is consequently achieved.
  • a more uniform, area-like, spatially diffuse luminance distribution can be realized between the electrodes.
  • the latter offers considerable advantages over optically imaging lighting or radiation tasks, such as, for example, in photolithographic applications, in comparison to the channel-shaped sliding discharges.
  • diffuse luminance distributions directly improve process efficiency. In this regard, lighting patterns such as the conventional channel-shaped lighting structures are undesirable.
  • the method according to the invention now provides for those arranged side by side dielectric electrodes with a series of voltage pulses supplying voltage source to connect.
  • the individual voltage pulses are separated from each other by break times.
  • this procedure does not only involve radiation is generated with high efficiency, but that completely beyond that Unexpectedly, a spatial discharge is generated inside the discharge vessel that is in the areas between electrodes of different polarity a distance from the surface of the inner wall of the discharge vessel having.
  • pulse width becomes and pause time selected so that the spatial, discharge occurs partially from the dielectric surface.
  • Typical pulse widths and pause times are between 0.1 ⁇ s and 5 ⁇ s or in the range between 5 ⁇ s and 100 ⁇ s, corresponding to one Pulse repetition frequency in the range between 200 kHz and 10 kHz.
  • the optimal values for the pulse width and the pause time are in individual cases depends on the specific discharge configuration, i.e. of type and Pressure of the gas filling and the electrode configuration.
  • the electrode configuration results from the type and thickness of the dielectric, the area and shape of the electrodes and the electrode spacing.
  • the voltage signal to be applied is such a discharge configuration choose that a discharge separates from the dielectric surface that sets a maximum radiation yield at the desired electrical Power density.
  • those disclosed in WO 94/23442 are also Sequences of voltage pulses are suitable.
  • the amount of voltage pulses is typically between approx. 100 V and 10 kV.
  • the shape of the current pulse is determined by the voltage pulse shape and the discharge configuration.
  • Electrodes made of electrically conductive material, e.g. metallic wires or Strips also applied to the outside of the vessel wall, for example evaporated, narrow layers.
  • the electrodes are preferred arranged parallel and equidistant to each other. This is important to everyone Discharges between the neighboring electrodes have the same conditions to ensure. This makes a large-scale and homogeneous Illumination ensured. It will also be more appropriate in this way Pulse sequence achieves optimal radiation efficiency.
  • the lateral dimensions - i.e. the diameter of the wires or widths of the strips - from anode or cathode can be different.
  • the operating method according to the invention is suitable for a large number of possible ones Discharge vessel geometries, especially for all those in the EP 0 363 832 A1. It does not matter whether the discharge vessel contains a gas filling and is sealed gastight, e.g. with discharge lamps, or whether the discharge vessel is open on both sides and is flowed through by a gas or gas mixture, e.g. in photolytic Reactors.
  • the only decisive factor for the mode of operation is that the dielectric Electrodes are arranged side by side. Side by side means here that neighboring electrodes of different polarity as it were lie on one side of the discharge zone.
  • the electrodes can be arranged in a common plane, e.g. on an outside of a wall of the discharge vessel -vtl. additionally covered with a dielectric protective layer - or directly into the Wall embedded. It is also possible to use different electrodes preferably parallel planes on one side of the discharge zone to arrange. For example, the are consecutive Electrodes of changing polarity depending on the polarity in one of two against each other staggered levels, such as disclosed in DE 40 36122 A1.
  • the wall serves to arrange the Electrodes advantageously the base or top surface.
  • Level discharge arrangements are particularly suitable for large, flat lighting purposes, e.g. for backlighting of display boards or LCD screens, or for radiation purposes, e.g. Photolithography or curing of paints.
  • curved discharge vessels are also suitable, for example tubular.
  • Tubular open on both sides and by one Arrangements through which gas or gas mixture flow are particularly suitable as photolytic reactors.
  • one tubular arrangement through a dielectric tube e.g. with circular Cross section formed.
  • the electrodes are at least on or arranged in a part of the outside or the wall of the tube.
  • the discharge builds up inside the tube during operation out.
  • the inner wall of the tube is in the area of the Electrodes with a dielectric layer serving as an optical reflector Mistake.
  • a continuation of the tubular arrangement consists of two concentric ones Pipes with different diameters and from on or in arranged the inner wall of the tube with the smaller diameter Electrodes.
  • the discharge forms in the room during operation between the two pipes.
  • the inner wall of the discharge vessel can be covered with a layer of fluorescent material be provided, which converts the UV or VUV radiation of the discharge into light.
  • a layer of fluorescent material be provided, which converts the UV or VUV radiation of the discharge into light.
  • a variant with a white light-emitting fluorescent layer is particularly suitable for general lighting.
  • ionizable filling and possibly the phosphor layer depends on the application.
  • Noble gases are particularly suitable, e.g. Neon, argon, krypton and xenon as well as mixtures of noble gases.
  • other fillers can also be used, e.g. all those who are usually used in light production, in particular Mercury (Hg) and rare gas-Hg mixtures as well as rare earths and their halides.
  • the lighting system is completed by a voltage source, whose output poles are connected to the electrodes of the discharge vessel are and which delivers the specified sequence of voltage pulses during operation.
  • FIGS 1a and 1b show a schematic representation of the transverse or Longitudinal section of a discharge arrangement 1.
  • the discharge arrangement 1 consists of a cuboid-like, transparent discharge vessel 2 and two parallel strip-shaped electrodes 3, 4 on the outer wall of the discharge vessel 2 are arranged.
  • the discharge vessel 2 is made of glass.
  • the lid 5 consists of a lid 5 and a bottom 6, both of which are trough-shaped are formed and face each other in mirror image, two the longitudinal axis of the discharge vessel 2 defining side walls 7, 8 and two End walls 9,10.
  • Xenon is located inside the discharge vessel 2 with a filling pressure of approx. 8 kPa.
  • the two electrodes 3, 4 are off Made of aluminum foil. They are centric and parallel on the outside of the lid 5 glued on.
  • the lid 5 is made of 1 mm thick glass and also acts as a dielectric layer between the two electrodes and the discharge 11, shown here only roughly schematically, which forms during operation in the interior of the discharge vessel 2.
  • the discharge 11 in the area between the two electrodes 3,4 through a dark zone 12 (in longitudinal section, Figure 1b, not recognizable) separated from the inner wall of the lid 5. I.e. the discharge 11 has a distance from the surface of the inner wall in the area mentioned on.
  • FIGS. 2 and 4 show photographic recordings of the discharge arrangement from Figures la and 1b. To explain the recordings the corresponding reference numbers already introduced above are used. The two recordings were each made with a view of the front wall 9 in Direction of the longitudinal axis. They differ only in the electrode geometry. The width of the strip-shaped electrodes 3, 4 and their mutual distance is 3 mm or 4 mm in the first case and 1 mm or 10 mm in the second case. Especially in the first case ( Figure 2, above) the electrodes 3, 4 can be clearly seen. You stand out as dark areas from the wall of the lid 5, the same as the opposite Wall of the floor 6 due to reflected and scattered Fluorescent light from the glass appears bright. The length of the electrodes is 35 mm each.
  • the continuous, trough-shaped breaks Discharge structure in individual structures, which however as shown in Figure la, lift off the dielectric surface.
  • the individual structures have a delta-like shape ( ⁇ ), which are each in Widen direction (current) anode.
  • delta-like shape
  • the voltage pulses of a bilaterally dielectric discharge there is a visual overlay of two delta-shaped structures.
  • FIGS. 3 and 5 each show a section of the time profile of voltage U (t) and current I (t) measured on the electrodes during operation according to FIGS. 2 and 4.
  • a comparison of both figures shows the influence of the electrode geometry on voltage and current.
  • the most important electrical quantities are summarized in the following table.
  • U p , T U , f U , w and P mean the height of the voltage pulses (based on the voltage during the break), the width of the voltage pulses (full width at half the height), the pulse repetition frequency, the electrical energy per pulse or the average electrical power coupled in over time.
  • FIGS. 6a and 6b schematically show the cross section or the top view (viewing direction on the bottom side) of a lighting system 14 suitable for the operation according to the invention.
  • the lighting system 14 consists of a flat discharge vessel 15 with a rectangular base area and five strip-shaped electrodes 16-20 and a voltage source 27, which supplies a sequence of voltage pulses during operation.
  • the discharge vessel 15 in turn consists of a rectangular base plate 21 and a trough-like cover 22.
  • the base plate 21 and the cover 22 are connected in a gas-tight manner in the region of their peripheral edges and thus enclose the gas filling of the discharge lamp 14.
  • the gas filling consists of xenon with a filling pressure of 10 kPa.
  • the electrodes 16-20 have the same widths and are applied to the outer wall of the base plate 21 parallel to one another and equidistantly. This is important in order to ensure the same conditions for all discharges between the neighboring electrodes. With a suitable pulse sequence, an optimal radiation efficiency or uniformity of the luminance distribution is thereby achieved.
  • the electrodes 16-20 are alternately connected to the two poles 23, 24 of a voltage source. Ie the electrode 16 and the two electrodes 18 and 20 next to the predecessor are connected to a first pole 23 of the voltage source. In contrast, the two electrodes 17 and 19 located between them are connected to the other pole of the voltage source.
  • a phosphor layer 25 is sprayed onto the inner wall of the lid 22 and the bottom 21, which the VUV (V acuum U ltra v iolet) - or UV (U ltra v iolet) radiation of the discharge, only very schematically shown 26 in ( visible) light.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Vessels And Coating Films For Discharge Lamps (AREA)
  • Circuit Arrangements For Discharge Lamps (AREA)
  • Discharge-Lamp Control Circuits And Pulse- Feed Circuits (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

The invention pertains to a method for operating a lighting system with an incoherently-emitting radiation source, in particular a discharge lamp (14) that emits UV, IR or visible-range radiation, by means of dielectrically inhibited discharge, and to a lighting system suitable therefor. The electrodes (16-20), which are arranged side by side and separated from each other and the interior of the discharge vessel (15) by dielectric material (21), are alternatingly connected to the two poles (23, 24) of a voltage source (27). In operation the voltage source (27) supplies a series of voltage pulses separated by quiescent periods. According to the invention, this produces inside the discharge vessel (15) a spatial discharge (26) which in the regions between electrodes of different polarity (16, 17; 17, 18; 18, 19; 19, 20) is at a distance from the surface of the inside wall of the discharge vessel (15). Substantial advantages are less stress on the wall of the discharge vessel and greater efficiency in generating radiation.

Description

Die Erfindung betrifft ein Verfahren zum Betreiben eines Beleuchtungssystems mit einer inkohärent emittierendenden Strahlungsquelle, insbesondere Entladungslampe, mittels dielektrisch behinderter Entladung gemäß dem Oberbegriff des Anspruchs 1. Desweiteren betrifft die Erfindung ein für dieses Betriebsverfahren geeignetes Beleuchtungssystem gemäß dem Oberbegriff des Anspruchs 12.The invention relates to a method for operating a lighting system with an incoherently emitting radiation source, in particular Discharge lamp, by means of dielectric barrier discharge according to the Preamble of claim 1. Furthermore, the invention relates to one for this Operating method suitable lighting system according to the preamble of claim 12.

Unter inkohärent emittierenden Strahlungsquellen sind UV(Ultraviolet)- und IR(Infrarot)-Strahler sowie Entladungslampen, die insbesondere sichtbares Licht abstrahlen, zu verstehen.Under incoherently emitting radiation sources are UV (U ltra v Iolet) - and IR (I nfra r ot) emitters as well as discharge lamps which emit visible light in particular, to understand.

Gewerbliche AnwendbarkeitIndustrial applicability

Derartige Strahlungsquellen eignen sich, je nach dem Spektrum der emittierten Strahlung, für die Allgemein- und Hilfsbeleuchtung, z.B. Wohn- und Bürobeleuchtung bzw. Hintergrundbeleuchtung von Anzeigen, beispielsweise LCD's (Liquid Crystal Displays), für die Verkehrs- und Signalbeleuchtung, für die UV-Bestrahlung, z.B. Entkeimung oder Photolytik, sowie für die IR-Bestrahlung, z.B. Trocknung von Lacken.Such radiation sources are suitable, depending on the spectrum of the emitted radiation, for general and auxiliary lighting, such as home and office illumination or backlighting of displays, such as LCDs (L iquid C rystal D isplays), for the transport and signal lighting, for UV radiation, for example disinfection or photolytics, and for IR radiation, for example for drying paints.

Stand der TechnikState of the art

In der WO 94/23442 ist ein Verfahren zum Betreiben einer inkohärent emittierendenden Strahlungsquelle, insbesondere Entladungslampe, mittels dielektrisch behinderter Entladung offenbart. Das Betriebsverfahren sieht eine Folge von Spannungspulsen vor, wobei die einzelnen Spannungspulse durch Totzeiten voneinander getrennt sind. Der Vorteil dieser gepulsten Betriebsweise ist eine hohe Effizienz der Strahlungserzeugung. WO 94/23442 describes a method for operating an incoherently emitting Radiation source, in particular discharge lamp, by means of dielectric disabled discharge disclosed. The operating procedure sees one Sequence of voltage pulses before, the individual voltage pulses through Dead times are separated. The advantage of this pulsed mode of operation is a high efficiency of radiation generation.

In der EP 0 363 832 ist ein UV-Hochleistungsstrahler mit paarweise an die beiden Pole einer Hochspannungsquelle angeschlossenen Elektroden offenbart. Dabei sind die Elektroden, voneinander und vom Entladungsraum des Strahlers durch dielektrisches Material getrennt. Derartige Elektroden werden im folgenden verkürzend als "dielektrische Elektroden" bezeichnet. Außerdem sind die Elektroden nebeneinander angeordnet, wodurch sich flächenartige Entladungskonfigurationen mit relativ flachen Entladungsgefäßen realisieren lassen. An die dielektrischen Elektroden wird eine Wechselspannung in der Größenordnung von mehreren 100 V bis 20000 V bei Frequenzen im Bereich des technischen Wechselstroms bis zu einigen kHz gelegt derart, daß sich eine elektrische Gleitentladung im wesentlichen nur im Bereich der Dielektrikumsoberfläche ausbildet.EP 0 363 832 describes a UV high-power lamp with pairs of electrodes connected to both poles of a high voltage source. The electrodes are from each other and from the discharge space of the Radiator separated by dielectric material. Such electrodes are hereinafter referred to as "dielectric electrodes". In addition, the electrodes are arranged side by side, whereby area-like discharge configurations with relatively flat discharge vessels let it be realized. An AC voltage is applied to the dielectric electrodes in the order of magnitude of several 100 V to 20000 V. Frequencies in the range of technical alternating current up to a few kHz placed such that there is essentially only a sliding electrical discharge in the area of the dielectric surface.

Der wesentliche Nachteil ist, daß Gleitentladungen die Oberfläche insbesondere thermisch belasten, weshalb auch Kühlkanäle zur Abfuhr der Wärme aus dem Dielektrikum vorgeschlagen sind. Durch die unvermeidliche, erhebliche Wärmeerzeugung dieses Entladungstyps ist der Wirkungsgrad für die Erzeugung von Strahlung insbesondere im UV- und VUV(Vakuum Ultraviolet)-Bereich eingeschränkt. Außerdem verursacht eine Gleitentladung chemische Prozesse auf der Oberfläche und verkürzt dadurch die Lebensdauer des Strahlers.The main disadvantage is that sliding discharges in particular place a thermal load on the surface, which is why cooling channels for dissipating the heat from the dielectric are also proposed. Due to the unavoidable, substantial heat generation of this discharge type, the efficiency for generating radiation, in particular in the UV and VUV (V acuum U ltra v Iolet) range is limited. In addition, sliding discharge causes chemical processes on the surface, thereby shortening the life of the lamp.

Darstellung der ErfindungPresentation of the invention

Aufgabe der Erfindung ist es, diese Nachteile zu beseitigen und ein Verfahren zum Betreiben eines Beleuchtungssystems anzugeben, welches sich sowohl durch ein flaches Entladungsgefäß als auch durch eine effiziente Erzeugung von Strahlung auszeichnet.The object of the invention is to eliminate these disadvantages and a method to operate a lighting system, which both through a flat discharge vessel as well as through efficient production characterized by radiation.

Diese Aufgabe wird erfindungsgemäß durch die kennzeichnenden Merkmale des Anspruchs 1 gelöst. Weitere vorteilhafte Merkmale sind in den Unteransprüchen erläutert.This object is achieved by the characterizing features of claim 1 solved. Further advantageous features are in the Sub-claims explained.

Eine weitere Aufgabe der Erfindung ist es, ein Beleuchtungssystem anzugeben, welches für das Betriebsverfahren geeignet ist. Diese Aufgabe wird erfindungsgemäß durch die kennzeichnenden Merkmale des Anspruchs 12 gelöst.Another object of the invention is to provide a lighting system which is suitable for the operating method. This object is achieved according to the invention by the characterizing features of claim 12 solved.

Der Grundgedanke der Erfindung besteht darin, im Innern des Entladungsgefäßes mit nebeneinander angeordneten dielektrischen Elektroden eine räumliche Entladung zu erzeugen, die in den Bereichen zwischen Elektroden gegensätzlicher Polarität einen Abstand zur Oberfläche der Innenwandung des Entladungsgefäßes aufweist. Während im Stand der Technik eine Vielzahl von Gleitentladungen längs der Oberfläche des Dielektrikums zur Erzeugung von UV-Strahlung dienen, schlägt die Erfindung die Verwendung einer sich von der Dielektrikumsoberfläche ablösende, räumlich innerhalb des Entladungsgefäßes ausgedehnten Entladung vor.The basic idea of the invention is in the interior of the discharge vessel with dielectric electrodes arranged next to one another generate spatial discharge in the areas between electrodes opposite polarity a distance from the surface of the inner wall of the discharge vessel. While in the prior art one Variety of sliding discharges along the surface of the dielectric Serve generation of UV radiation, the invention proposes the use one that separates from the dielectric surface, spatially within extended discharge before the discharge vessel.

Die dadurch erzielten Vorteile sind zum einen eine höhere Effizienz der Erzeugung von UV- bzw. VUV(Vakuum Ultraviolett)-Strahlung und folglich eine geringere Wärmeentwicklung. Im Unterschied zum Stand der Technik ist keine Kühlflüssigkeit für die Wärmeabfuhr erforderlich. Zum anderen resultiert aus dem erfindungsgemäßen Entladungtyp eine deutlich geringere thermische und chemische Wandbelastung als dies bei Oberflächengleitentladungen der Fall ist. Folglich wird eine Verlängerung der Lebensdauer des Entladungsgefäßes erreicht. Darüber hinaus ist zwischen den Elektroden erfindungsgemäß eine gegenüber dem Stand der Technik gleichförmigere, flächenartige, räumlich diffuse Leuchtdichteverteilung realisierbar. Letzteres bietet im Vergleich zu den kanalförmigen Gleitentladungen erhebliche Vorteile bei optisch abbildenden Beleuchtungs- bzw. Bestrahlungsaufgaben, wie z.B. bei photolithographischen Anwendungen. Hier verbessern diffuse Leuchtdichteverteilungen unmittelbar die Prozeßeffizienz. In dieser Hinsicht sind Leuchtmuster, wie die herkömmlichen kanalförmigen Leuchtstrukturen unerwünscht.The advantages achieved thereby are firstly a higher efficiency of generation of UV or VUV (V acuum U ltra v iolet) radiation and hence a lower heat generation. In contrast to the prior art, no cooling liquid is required for heat dissipation. On the other hand, the discharge type according to the invention results in a significantly lower thermal and chemical wall load than is the case with surface sliding discharges. An extension of the life of the discharge vessel is consequently achieved. In addition, according to the invention, a more uniform, area-like, spatially diffuse luminance distribution can be realized between the electrodes. The latter offers considerable advantages over optically imaging lighting or radiation tasks, such as, for example, in photolithographic applications, in comparison to the channel-shaped sliding discharges. Here, diffuse luminance distributions directly improve process efficiency. In this regard, lighting patterns such as the conventional channel-shaped lighting structures are undesirable.

Das erfindungsgemäße Verfahrens sieht nun vor, die nebeneinander angeordneten dielektrischen Elektroden mit einer eine Folge von Spannungspulsen liefernden Spannungsquelle zu verbinden. Die einzelnen Spannungspulse sind jeweils durch Pausenzeiten voneinander getrennt. Überraschend hat es sich nämlich gezeigt, daß durch diese Vorgehensweise nicht nur Strahlung mit hoher Effizienz erzeugt wird, sondern daß darüber hinaus völlig unerwartet im Innern des Entladungsgefäßes eine räumliche Entladung erzeugt wird, die in den Bereichen zwischen Elektroden unterschiedlicher Polarität einen Abstand zur Oberfläche der Innenwandung des Entladungsgefäßes aufweist.The method according to the invention now provides for those arranged side by side dielectric electrodes with a series of voltage pulses supplying voltage source to connect. The individual voltage pulses are separated from each other by break times. Surprisingly it has been shown that this procedure does not only involve radiation is generated with high efficiency, but that completely beyond that Unexpectedly, a spatial discharge is generated inside the discharge vessel that is in the areas between electrodes of different polarity a distance from the surface of the inner wall of the discharge vessel having.

Ausgehend von einem sich wiederholenden Spannungspuls, werden Pulsbreite und Pausenzeit so gewählt, daß sich die erfindungsgemäße räumliche, sich teilweise von der Dielektrikumsoberfläche ablösende Entladung einstellt. Typische Pulsbreiten sowie Pausenzeiten liegen im Bereich zwischen 0,1 µs und 5 µs bzw. im Bereich zwischen 5 µs und 100 µs, entsprechend einer Pulswiederholfrequenz im Bereich zwischen 200 kHz und 10 kHz.Starting from a repetitive voltage pulse, pulse width becomes and pause time selected so that the spatial, discharge occurs partially from the dielectric surface. Typical pulse widths and pause times are between 0.1 µs and 5 µs or in the range between 5 µs and 100 µs, corresponding to one Pulse repetition frequency in the range between 200 kHz and 10 kHz.

Die optimalen Werte für die Pulsbreite und die Pausenzeit sind im Einzelfall von der konkreten Entladungskonfiguration abhängig, d.h. von Art und Druck der Gasfüllung sowie der Elektrodenkonfiguration. Die Elektrodenkonfiguration ergibt sich aus Art und Dicke des Dielektrikums, der Fläche und Form der Elektroden sowie dem Elektrodenabstand. Entsprechend der Entladungskonfiguration ist das anzulegende Spannungssignal derart zu wählen, daß sich eine von der Dielektrikumsoberfläche ablösende Entladung einstellt, die eine maximale Strahlungsausbeute bei gewünschter elektrischer Leistungsdichte besitzt. Prinzipiell sind auch die in der WO 94/23442 offenbarten Folgen von Spannungspulsen geeignet. Die Höhe der Spannungspulse beträgt typisch zwischen ca. 100 V und 10 kV. Die Form der Strompulse wird durch die Spannungspulsform und die Entladungskonfiguration bestimmt.The optimal values for the pulse width and the pause time are in individual cases depends on the specific discharge configuration, i.e. of type and Pressure of the gas filling and the electrode configuration. The electrode configuration results from the type and thickness of the dielectric, the area and shape of the electrodes and the electrode spacing. According to the The voltage signal to be applied is such a discharge configuration choose that a discharge separates from the dielectric surface that sets a maximum radiation yield at the desired electrical Power density. In principle, those disclosed in WO 94/23442 are also Sequences of voltage pulses are suitable. The amount of voltage pulses is typically between approx. 100 V and 10 kV. The shape of the current pulse is determined by the voltage pulse shape and the discharge configuration.

Für die Elektrodenkonfiguration eignen sich zwei oder mehrere längliche Elektroden aus elektrisch leitfähigem Material, z.B. metallische Drähte oder Streifen aber auch auf die Außenseite der Gefäßwand aufgebrachte, beispielsweise aufgedampfte, schmale Schichten. Bevorzugt sind die Elektroden zueinander parallel und äquidistant angeordnet. Dies ist wichtig, um für alle Entladungen zwischen den jeweils benachbarten Elektroden gleiche Bedingungen zu gewährleisten. Dadurch wird eine großflächige und homogene Ausleuchtung sichergestellt. Außerdem wird auf diese Weise bei geeigneter Pulsfolge eine optimale Strahlungseffizienz erzielt. Die Lateralabmessungen - d.h. die Durchmesser der Drähte bzw. Breiten der Streifen - von Anode bzw. Kathode können verschieden sein.Two or more elongated ones are suitable for the electrode configuration Electrodes made of electrically conductive material, e.g. metallic wires or Strips also applied to the outside of the vessel wall, for example evaporated, narrow layers. The electrodes are preferred arranged parallel and equidistant to each other. This is important to everyone Discharges between the neighboring electrodes have the same conditions to ensure. This makes a large-scale and homogeneous Illumination ensured. It will also be more appropriate in this way Pulse sequence achieves optimal radiation efficiency. The lateral dimensions - i.e. the diameter of the wires or widths of the strips - from anode or cathode can be different.

Das erfindungsgemäße Betriebsverfahren eignet sich für eine Vielzahl möglicher Entladungsgefäßgeometrien, insbesondere auch für all jene, die in der EP 0 363 832 A1 offenbart sind. Dabei spielt es keine Rolle, ob das Entladungsgefäß eine Gasfüllung enthält und gasdicht verschlossen ist, wie z.B. bei Entladungslampen, oder ob das Entladungsgefäß beidseitig offen und von einem Gas oder Gasgemisch durchströmt ist, wie z.B. bei photolytischen Reaktoren. Entscheidend für die Betriebsweise ist lediglich, daß die dielektrischen Elektroden nebeneinander angeordnet sind. Nebeneinander bedeutet hier, daß benachbarte Elektroden unterschiedlicher Polarität gleichsam auf einer Seite der Entladungszone liegen.The operating method according to the invention is suitable for a large number of possible ones Discharge vessel geometries, especially for all those in the EP 0 363 832 A1. It does not matter whether the discharge vessel contains a gas filling and is sealed gastight, e.g. with discharge lamps, or whether the discharge vessel is open on both sides and is flowed through by a gas or gas mixture, e.g. in photolytic Reactors. The only decisive factor for the mode of operation is that the dielectric Electrodes are arranged side by side. Side by side means here that neighboring electrodes of different polarity as it were lie on one side of the discharge zone.

Die Elektroden können in einer gemeinsamen Ebene angeordnet sein, z.B. auf einer Außenseite einer Wandung des Entladungsgefäßes -evtl. zusätzlich mit einer dielektrischen Schutzschicht bedeckt - oder aber direkt in die Wandung eingebettet. Außerdem ist es möglich die Elektroden in verschiedenen, bevorzugt zueinander parallelen Ebenen auf einer Seite der Entladungszone anzuordnen. Beispielsweise sind die aufeinander folgenden Elektroden wechselnder Polarität je nach Polarität in einer von zwei gegeneinander versetzten Ebenen angeordnet, wie z.B. in der DE 40 36122 A1 offenbart.The electrodes can be arranged in a common plane, e.g. on an outside of a wall of the discharge vessel -vtl. additionally covered with a dielectric protective layer - or directly into the Wall embedded. It is also possible to use different electrodes preferably parallel planes on one side of the discharge zone to arrange. For example, the are consecutive Electrodes of changing polarity depending on the polarity in one of two against each other staggered levels, such as disclosed in DE 40 36122 A1.

Bei ebenen Entladungsgefäßen dient als Wandung zur Anordnung der Elektroden vorteilhaft die Grund- oder Deckfläche. Ebene Entladungsanordnungen eignen sich insbesondere für großflächige, ebene Beleuchtungszwecke, z.B. für die Hintergrundbeleuchtung von Anzeigetafeln oder LCD-Bildschirmen, bzw. für Bestrahlungszwecke, z.B. Photolithografie oder Aushärtung von Lacken.In the case of flat discharge vessels, the wall serves to arrange the Electrodes advantageously the base or top surface. Level discharge arrangements are particularly suitable for large, flat lighting purposes, e.g. for backlighting of display boards or LCD screens, or for radiation purposes, e.g. Photolithography or curing of paints.

Außer ebenen Anordnung sind auch gekrümmte Entladungsgefäße geeignet, beispielsweise rohrförmige. Rohrförmige beidseitig offene und von einem Gas oder Gasgemisch durchströmte Anordnungen eignen sich insbesondere als photolytische Reaktoren. In ihrer einfachsten Ausführung ist eine rohrförmige Anordnung durch ein dielektrisches Rohr, z.B. mit kreisförmigem Querschnitt gebildet. Die Elektroden sind dabei mindestens auf oder in einem Teil der Außenseite bzw. der Wandung des Rohres angeordnet. Die Entladung bildet sich während des Betriebs im Innern des Rohres aus. In einer Variante ist die Innenwandung des Rohres im Bereich der Elektroden mit einer als optischer Reflektor dienenden dielektrischen Schicht versehen.In addition to a flat arrangement, curved discharge vessels are also suitable, for example tubular. Tubular open on both sides and by one Arrangements through which gas or gas mixture flow are particularly suitable as photolytic reactors. In its simplest execution is one tubular arrangement through a dielectric tube, e.g. with circular Cross section formed. The electrodes are at least on or arranged in a part of the outside or the wall of the tube. The discharge builds up inside the tube during operation out. In a variant, the inner wall of the tube is in the area of the Electrodes with a dielectric layer serving as an optical reflector Mistake.

Eine Weiterführung der rohrförmigen Anordnung besteht aus zwei konzentrischen Rohren mit unterschiedlichen Durchmessern und aus auf bzw. in der Innenwandung des Rohres mit dem kleineren Durchmesser angeordneten Elektroden. Die Entladung bildet sich während des Betriebs im Raum zwischen den beiden Rohren aus.A continuation of the tubular arrangement consists of two concentric ones Pipes with different diameters and from on or in arranged the inner wall of the tube with the smaller diameter Electrodes. The discharge forms in the room during operation between the two pipes.

Die Innenwandung des Entladungsgefäßes kann mit einer Leuchtstoffschicht versehen sein, die die UV- bzw. VUV-Strahlung der Entladung in Licht konvertiert. Eine Variante mit einer weißes Licht abstrahlenden Leuchtstoffschicht eignet sich insbesondere für die Allgemeinbeleuchtung.The inner wall of the discharge vessel can be covered with a layer of fluorescent material be provided, which converts the UV or VUV radiation of the discharge into light. A variant with a white light-emitting fluorescent layer is particularly suitable for general lighting.

Die Auswahl der ionisierbaren Füllung und ggf. der Leuchtstoffschicht richtet sich nach dem Anwendungszweck. Geeignet sind insbesondere Edelgase, z.B. Neon, Argon, Krypton und Xenon sowie Mischungen von Edelgasen. Allerdings lassen sich auch andere Füllsubstanzen verwenden, so z.B. all jene, die üblicherweise in der Lichterzeugung Einsatz finden, insbesondere Quecksilber(Hg)- und Edelgas-Hg-Gemische sowie Seltene Erden und deren Halogenide.The selection of the ionizable filling and possibly the phosphor layer depends on the application. Noble gases are particularly suitable, e.g. Neon, argon, krypton and xenon as well as mixtures of noble gases. However, other fillers can also be used, e.g. all those who are usually used in light production, in particular Mercury (Hg) and rare gas-Hg mixtures as well as rare earths and their halides.

Das Beleuchtungssystem wird durch eine Spannungsquelle komplettiert, deren Ausgangspole mit den Elektroden des Entladungsgefäßes verbunden sind und die im Betrieb die genannte Folge von Spannungspulsen liefert.The lighting system is completed by a voltage source, whose output poles are connected to the electrodes of the discharge vessel are and which delivers the specified sequence of voltage pulses during operation.

Beschreibung der ZeichnungenDescription of the drawings

Die Erfindung wird im folgenden anhand einiger Ausführungsbeispiele näher erläutert. Es zeigen

Fig. 1a
den Querschnitt einer Entladungsanordnung mit zwei nebeneinander angeordneten dielektrischen Elektroden,
Fig. 1b
den Längsschnitt der Entladungsanordnung aus Figur 1a,
Fig. 2
die Stirnansicht der Entladungsanordnung aus Figur 1a im erfindungsgemäßen Betrieb,
Fig. 3
einen Ausschnitt aus dem während des Betriebs gemäß Figur 2 an den Elektroden gemessenen zeitlichen Verlauf von Strom I(t) und Spannung U(t),
Fig. 4
wie Figur 2, aber mit geänderter Elektrodengeometrie,
Fig. 5
einen Ausschnitt aus dem während des Betriebs gemäß Figur 4 an den Elektroden gemessenen zeitlichen Verlauf von Strom I(t) und Spannung U(t),
Fig. 6a
den Querschnitt eines für den erfindungsgemäßen Betrieb geeigneten Beleuchtungssystems,
Fig. 6b
die Draufsicht des Beleuchtungssystems aus Figur 6a.
The invention is explained in more detail below with the aid of some exemplary embodiments. Show it
Fig. 1a
3 shows the cross section of a discharge arrangement with two dielectric electrodes arranged next to one another,
Fig. 1b
the longitudinal section of the discharge arrangement of Figure 1a,
Fig. 2
the front view of the discharge assembly of Figure 1a in operation according to the invention,
Fig. 3
2 shows a section of the time profile of current I (t) and voltage U (t) measured on the electrodes during operation according to FIG. 2,
Fig. 4
as in FIG. 2, but with a modified electrode geometry,
Fig. 5
4 shows a section of the time profile of current I (t) and voltage U (t) measured on the electrodes during operation according to FIG. 4,
Fig. 6a
the cross section of a lighting system suitable for the operation according to the invention,
Fig. 6b
the top view of the lighting system of Figure 6a.

Die Figuren 1a und 1b zeigen in schematischer Darstellung den Quer- bzw. Längsschnitt einer Entladungsanordnung 1. Um den Kern der Erfindung besser erläutern zu können und um die Übersichtlichkeit zu fördern, ist die Darstellung bewußt auf das wesentliche reduziert. Die Entladungsanordnung 1 besteht aus einem quaderähnlichen, transparenten Entladungsgefäß 2 und zwei parallelen streifenförmigen Elektroden 3,4, die auf der Außenwandung des Entladungsgefäßes 2 angeordnet sind. An dieser Stelle sei nochmals darauf hingewiesen, daß für das erfindungsgemäße Betriebsverfahren selbstverständlich auch ähnliche Entladungsanordnungen mit mehr als zwei nebeneinander angeordneten dielektrischen Elektroden gegensätzlicher Polarität geeignet sind. Das Entladungsgefäß 2 ist aus Glas gefertigt. Es besteht aus einem Deckel 5 und einem Boden 6, die beide wannenförmig ausgebildet sind und sich spiegelbildlich gegenüberstehen, zwei die Längsachse des Entladungsgefäßes 2 definierenden Seitenwänden 7,8 und zwei Stirnwänden 9,10. Im Innern des Entladungsgefäßes 2 befindet sich Xenon mit einem Fülldruck von ca. 8 kPa. Die beiden Elektroden 3,4 sind aus Aluminiumfolie gefertigt. Sie sind zentrisch und parallel auf der Außenseite des Deckels 5 aufgeklebt. Der Deckel 5 ist aus 1 mm dickem Glas gefertigt und wirkt zusätzlich als dielektrische Schicht zwischen beiden Elektroden und der, hier nur grob schematisch dargestellten Entladung 11, die sich während des Betriebes im Innern des Entladungsgefäßes 2 ausbildet. Erfindungsgemäß ist die Entladung 11 im Bereich zwischen den beiden Elektroden 3,4 durch eine dunkle Zone 12 (im Längsschnitt, Figur 1b, nicht erkennbar) von der Innenwandung des Deckels 5 getrennt. D.h. die Entladung 11 weist im genannten Bereich einen Abstand zur Oberfläche der Innenwandung auf.Figures 1a and 1b show a schematic representation of the transverse or Longitudinal section of a discharge arrangement 1. Around the essence of the invention To be able to explain better and to promote clarity is the Presentation deliberately reduced to the essential. The discharge arrangement 1 consists of a cuboid-like, transparent discharge vessel 2 and two parallel strip-shaped electrodes 3, 4 on the outer wall of the discharge vessel 2 are arranged. At this point again pointed out that for the operating method according to the invention of course, similar discharge arrangements with more than two dielectric electrodes arranged next to each other Polarity are suitable. The discharge vessel 2 is made of glass. It consists of a lid 5 and a bottom 6, both of which are trough-shaped are formed and face each other in mirror image, two the longitudinal axis of the discharge vessel 2 defining side walls 7, 8 and two End walls 9,10. Xenon is located inside the discharge vessel 2 with a filling pressure of approx. 8 kPa. The two electrodes 3, 4 are off Made of aluminum foil. They are centric and parallel on the outside of the lid 5 glued on. The lid 5 is made of 1 mm thick glass and also acts as a dielectric layer between the two electrodes and the discharge 11, shown here only roughly schematically, which forms during operation in the interior of the discharge vessel 2. According to the invention is the discharge 11 in the area between the two electrodes 3,4 through a dark zone 12 (in longitudinal section, Figure 1b, not recognizable) separated from the inner wall of the lid 5. I.e. the discharge 11 has a distance from the surface of the inner wall in the area mentioned on.

Die Figuren 2 und 4 zeigen fotografische Aufnahmen der Entladungsanordnung aus den Figuren la und 1b. Zur Erläuterung der Aufnahmen werden die korrespondierenden, bereits oben eingeführten Bezugsziffern benutzt. Die beiden Aufnahmen erfolgten jeweils mit Blick auf die Stirnwand 9 in Richtung der Längsachse. Sie unterscheiden sich lediglich durch die Elektrodengeometrie. Die Breite der streifenförmigen Elektroden 3,4 sowie ihr gegenseitiger Abstand betragen jeweils 3 mm bzw. 4 mm im ersten Fall und je 1 mm bzw. 10 mm im zweiten Fall. Insbesondere im ersten Fall (Figur 2, oben) sind die Elektroden 3,4 deutlich zu erkennen. Sie heben sich als dunkle Bereiche von der Wandung des Deckels 5 ab, der ebenso wie die gegenüberliegende Wandung des Bodens 6 aufgrund reflektierten und gestreuten Fluoreszenzlichtes des Glases hell erscheint. Die Länge der Elektroden beträgt jeweils 35 mm. In beiden Fällen, ganz besonders deutlich im zweiten Fall (Figur 4), ist zu erkennen, daß das Eigenleuchten der Entladung im Bereich zwischen den beiden Elektroden 3,4 durch eine dunkle Zone 12 von der Innenwandung des Deckels 5 getrennt ist. D.h. die Entladung 11 weist im genannten Bereich einen Abstand zur Oberfläche der Innenwandung auf. In Richtung der Längsachse der Entladungsanordnung 1 betrachtet, hat die Entladung 11 eine rinnen- oder trogähnliche Erscheinungsform (in den Figuren 2 und 4 aufgrund der Blickrichtung nicht erkennbar, vgl. Figuren 1a und 1b). FIGS. 2 and 4 show photographic recordings of the discharge arrangement from Figures la and 1b. To explain the recordings the corresponding reference numbers already introduced above are used. The two recordings were each made with a view of the front wall 9 in Direction of the longitudinal axis. They differ only in the electrode geometry. The width of the strip-shaped electrodes 3, 4 and their mutual distance is 3 mm or 4 mm in the first case and 1 mm or 10 mm in the second case. Especially in the first case (Figure 2, above) the electrodes 3, 4 can be clearly seen. You stand out as dark areas from the wall of the lid 5, the same as the opposite Wall of the floor 6 due to reflected and scattered Fluorescent light from the glass appears bright. The length of the electrodes is 35 mm each. In both cases, particularly clearly in the second case (Figure 4), it can be seen that the self-lighting of the discharge in the area between the two electrodes 3, 4 through a dark zone 12 is separated from the inner wall of the cover 5. I.e. the discharge 11 has a distance from the surface of the inner wall in the area mentioned on. Viewed in the direction of the longitudinal axis of the discharge arrangement 1, the discharge 11 has a channel-like or trough-like appearance (Not recognizable in Figures 2 and 4 due to the viewing direction, cf. Figures 1a and 1b).

Wird in die Entladungsanordnung weniger Leistung eingekoppelt -z.B. durch Vermindern der Spannungsamplitude -, reißt die durchgehende, rinnenförmige Entladungsstruktur in Einzelstrukturen auf, die sich jedoch ebenso wie in Figur la gezeigt, von der Dielektrikumsoberfläche abheben. Die Einzelstrukturen haben eine delta-ähnliche Form (Δ), die sich jeweils in Richtung (momentaner) Anode verbreitern. Im Fall wechselnder Polarität der Spannungspulse einer zweiseitig dielektrisch behinderten Entladung erscheint visuell eine Überlagerung zweier deltaförmiger Strukturen.If less power is coupled into the discharge arrangement - e.g. by reducing the voltage amplitude -, the continuous, trough-shaped breaks Discharge structure in individual structures, which however as shown in Figure la, lift off the dielectric surface. The individual structures have a delta-like shape (Δ), which are each in Widen direction (current) anode. In the case of changing polarity the voltage pulses of a bilaterally dielectric discharge there is a visual overlay of two delta-shaped structures.

Die Figuren 3 und 5 zeigen jeweils einen Ausschnitt aus dem während des Betriebs gemäß den Figuren 2 bzw. 4 an den Elektroden gemessenen zeitlichen Verlauf von Spannung U(t) und Strom I(t). Ein Vergleich beider Figuren belegt den eingangs geschilderten Einfluß der Elektrodengeometrie auf Spannung und Strom. In der folgenden Tabelle sind die wichtigsten elektrischen Größen zusammengestellt.

Figure 00090001
FIGS. 3 and 5 each show a section of the time profile of voltage U (t) and current I (t) measured on the electrodes during operation according to FIGS. 2 and 4. A comparison of both figures shows the influence of the electrode geometry on voltage and current. The most important electrical quantities are summarized in the following table.
Figure 00090001

Darin bedeuten Up, TU, fU, w und P die Höhe der Spannungspulse (bezogen auf die Spannung während der Pausenzeit), die Breite der Spannungspulse (volle Breite bei halber Höhe), die Pulswiederholfrequenz, die elektrische Energie pro Puls bzw. die im zeitlichen Mittel eingekoppelte elektrische Leistung.U p , T U , f U , w and P mean the height of the voltage pulses (based on the voltage during the break), the width of the voltage pulses (full width at half the height), the pulse repetition frequency, the electrical energy per pulse or the average electrical power coupled in over time.

In den Figuren 6a und 6b sind der Querschnitt bzw. die Draufsicht (Blickrichtung auf Bodenseite) eines für den erfindungsgemäßen Betrieb geeigneten Beleuchtungssystems 14 schematisch dargestellt. Das Beleuchtungssystem 14 besteht aus einem flachen Entladungsgefäß 15 mit rechteckiger Grundfläche und fünf streifenförmigen Elektroden 16-20 sowie einer Spannungsquelle 27, die im Betrieb eine Folge von Spannungspulsen liefert. Das Entladungsgefäß 15 besteht seinerseits aus einer rechteckigen Bodenplatte 21 und einem wannenartigen Deckel 22. Die Bodenplatte 21 und der Deckel 22 sind im Bereich ihrer umlaufenden Kanten gasdicht miteinander verbunden und umschließen so die Gasfüllung der Entladungslampe 14. Die Gasfüllung besteht aus Xenon mit einem Fülldruck von 10 kPa. Die Elektroden 16-20 haben gleiche Breiten und sind auf der Außenwandung der Bodenplatte 21 parallel zueinander sowie äquidistant aufgebracht. Dies ist wichtig, um für alle Entladungen zwischen den jeweils benachbarten Elektroden gleiche Bedingungen zu gewährleisten. Dadurch wird bei geeigneter Pulsfolge eine optimale Strahlungseffizienz bzw. Gleichförmigkeit der Leuchtdichteverteilung erzielt. Dazu sind die Elektroden 16-20 wechselweise an die beiden Pole 23, 24 einer Spannungsquelle angeschlossen. D.h. die Elektrode 16 und die beiden jeweils zum Vorgänger übernächsten Elektroden 18 und 20 sind mit einem ersten Pol 23 der Spannungsquelle verbunden. Die beiden jeweils dazwischen liegenden Elektroden 17 und 19 sind hingegen mit dem anderen Pol der Spannungsquelle verbunden. Auf die Innenwandung des Deckels 22 und des Bodens 21 ist eine Leuchtstoffschicht 25 aufgespritzt, welche die VUV(Vakuum Ultraviolett)- bzw. UV(Ultraviolett)-Strahlung der, hier nur grob schematisch dargestellten Entladung 26 in (sichtbares) Licht umwandelt.FIGS. 6a and 6b schematically show the cross section or the top view (viewing direction on the bottom side) of a lighting system 14 suitable for the operation according to the invention. The lighting system 14 consists of a flat discharge vessel 15 with a rectangular base area and five strip-shaped electrodes 16-20 and a voltage source 27, which supplies a sequence of voltage pulses during operation. The discharge vessel 15 in turn consists of a rectangular base plate 21 and a trough-like cover 22. The base plate 21 and the cover 22 are connected in a gas-tight manner in the region of their peripheral edges and thus enclose the gas filling of the discharge lamp 14. The gas filling consists of xenon with a filling pressure of 10 kPa. The electrodes 16-20 have the same widths and are applied to the outer wall of the base plate 21 parallel to one another and equidistantly. This is important in order to ensure the same conditions for all discharges between the neighboring electrodes. With a suitable pulse sequence, an optimal radiation efficiency or uniformity of the luminance distribution is thereby achieved. For this purpose, the electrodes 16-20 are alternately connected to the two poles 23, 24 of a voltage source. Ie the electrode 16 and the two electrodes 18 and 20 next to the predecessor are connected to a first pole 23 of the voltage source. In contrast, the two electrodes 17 and 19 located between them are connected to the other pole of the voltage source. A phosphor layer 25 is sprayed onto the inner wall of the lid 22 and the bottom 21, which the VUV (V acuum U ltra v iolet) - or UV (U ltra v iolet) radiation of the discharge, only very schematically shown 26 in ( visible) light.

Claims (12)

  1. Method for operating an incoherently emitting radiating source (1; 14), in particular a discharge lamp (14), by means of dielectrically obstructed discharge, having an at least partially transparent discharge vessel which is closed (2; 15) and filled with a gas filling or open and through which a gas or gas mixture flows and which is made from electrically nonconductive material and has electrodes (3, 4; 16-20) which are separated from one another and from the interior of the discharge vessel (2; 15) by dielectric material (5; 21), characterized in that the electrodes are arranged next to one another and are connected in an alternating fashion to the two poles (23, 24) of a voltage source supplying a sequence of voltage pulses, and in that the individual voltage pulses are respectively separated from one another by off periods, so that as a result there is generated in the interior of the discharge vessel (2; 15) a spatial discharge (11; 26) which has a spacing from the surface of the inner wall of the discharge vessel in the regions between electrodes of different polarity (3, 4; 16, 17; 17, 18; 18, 19; 19, 20).
  2. Method according to Claim 1, characterized in that the pulse width is in the range between 0.1 µs and 10 µs.
  3. Method according to Claim 2, characterized in that the pulse width is preferably in the range between 0.5 µs and 5 µs.
  4. Method according to Claim 1, characterized in that the pulse repetition frequency is in the range between 1 kHz and 1 MHz.
  5. Method according to Claim 4, characterized in that the pulse repetition frequency is preferably in the range between 10 kHz and 100 kHz.
  6. Method according to Claim 1, characterized in that the voltage pulses have a semi-sinusoidal shape.
  7. Method according to Claim 1, characterized in that the pulse height is in the range between approximately 100 V and 10 kV.
  8. Method according to one or more of the preceding claims, characterized in that the wall (5; 21) of the discharge vessel (2; 15) itself serves as dielectric between the electrodes (3, 4; 16-20) and the discharge (11; 26).
  9. Method according to Claim 8, characterized in that the electrodes comprise electrically conductive strips (3, 4; 16-20) which are arranged next to one another on the outside of the wall (5; 21).
  10. Method according to Claim 9, characterized in that if the number of the strips (16-20) is greater than two, the arrangement of the strips on the outside of the wall (21) is equidistant.
  11. Method according to Claim 1, characterized in that the inside of the wall (21) of the discharge vessel (15) is provided at least partially with a phosphor coating (25) .
  12. Lighting system having a radiating source, in particular a discharge lamp (14), and a voltage source (27) which supplies a voltage to the radiating source, the radiation being emitted incoherently by the radiating source (14), which radiating source (14) is suitable for a dielectrically obstructed discharge, having an at least partially transparent discharge vessel which is closed (15) and filled with a gas filling or open and through which a gas or gas mixture flows and which is made from electrically nonconductive material and has electrodes (16-20) which are separated from one another and from the interior of the discharge vessel (15) by dielectric material (21) and are connected to the voltage source (27), characterized in that the electrodes are arranged next to one another and are connected in an alternating fashion to the two poles (23, 24) of the voltage source (27), which voltage source (27) is capable of supplying a sequence of voltage pulses, the individual voltage pulses being respectively separated from one another by off periods, so that as a result there is generated in the interior of the discharge vessel (15) a spatial discharge (26) which has a spacing from the surface of the inner wall of the discharge vessel in the regions between electrodes of different polarity (16, 17; 17, 18; 18, 19; 19, 20).
EP96924752A 1995-07-18 1996-07-18 Method for operating a lighting system and suitable lighting system therefor Expired - Lifetime EP0839436B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19526211A DE19526211A1 (en) 1995-07-18 1995-07-18 Process for operating discharge lamps or emitters
DE19526211 1995-07-18
PCT/DE1996/001317 WO1997004625A1 (en) 1995-07-18 1996-07-18 Method for operating a lighting system and suitable lighting system therefor

Publications (2)

Publication Number Publication Date
EP0839436A1 EP0839436A1 (en) 1998-05-06
EP0839436B1 true EP0839436B1 (en) 2000-09-20

Family

ID=7767155

Family Applications (1)

Application Number Title Priority Date Filing Date
EP96924752A Expired - Lifetime EP0839436B1 (en) 1995-07-18 1996-07-18 Method for operating a lighting system and suitable lighting system therefor

Country Status (11)

Country Link
US (1) US5994849A (en)
EP (1) EP0839436B1 (en)
JP (1) JP3856473B2 (en)
KR (1) KR100363751B1 (en)
CN (1) CN1113582C (en)
CA (1) CA2224362C (en)
DE (2) DE19526211A1 (en)
HK (1) HK1015114A1 (en)
HU (1) HU223365B1 (en)
IN (1) IN190521B (en)
WO (1) WO1997004625A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1256972A2 (en) 2001-05-08 2002-11-13 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Flat lighting device with a mirror surface
DE102004039902B3 (en) * 2004-08-17 2006-04-06 Berger Gmbh Flat gas discharge lamp, has flat plates forming dielectric layers with dielectrically restricted discharge

Families Citing this family (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19711893A1 (en) 1997-03-21 1998-09-24 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Flat radiator
DE19729175A1 (en) * 1997-03-21 1999-01-14 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Flat radiator
DE19711892A1 (en) * 1997-03-21 1998-09-24 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Flat radiator
CN1267967C (en) * 1997-03-21 2006-08-02 电灯专利信托有限公司 Flat fluorescent light for background lighting and liquid crystal display device fitted with said flat fluorescent light
ES2201499T3 (en) * 1997-03-21 2004-03-16 Patent-Treuhand-Gesellschaft Fur Elektrische Gluhlampen Mbh GASEOUS DISCHARGE LAMP WITH DIELECTRICALLY INHIBITED ELECTRODES.
DE19734885C1 (en) * 1997-08-12 1999-03-11 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Method for generating pulse voltage sequences for the operation of discharge lamps and associated circuit arrangement
EP0926705A1 (en) * 1997-12-23 1999-06-30 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Flat radiator with locally modulated surface illumination density
EP0932185A1 (en) 1997-12-23 1999-07-28 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Signal lamp and phosphor
EP0926704A1 (en) * 1997-12-23 1999-06-30 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Flat signalling lamp with dielectric barrier discharge
DE19817480B4 (en) * 1998-03-20 2004-03-25 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Flat lamp for dielectrically disabled discharges with spacers
DE19817477A1 (en) * 1998-04-20 1999-10-21 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Fluorescent lamp
DE19817476B4 (en) 1998-04-20 2004-03-25 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Fluorescent lamp with spacers and locally thinned fluorescent layer thickness
DE19826809A1 (en) * 1998-06-16 1999-12-23 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Dielectric layer for discharge lamps and associated manufacturing process
DE19844725A1 (en) 1998-09-29 2000-03-30 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Gas discharge lamp with controllable light length
DE19845228A1 (en) * 1998-10-01 2000-04-27 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Dimmable discharge lamp for dielectric barrier discharges
WO2000058998A1 (en) * 1999-03-25 2000-10-05 Koninklijke Philips Electronics N.V. Lighting arrangement
JP3736201B2 (en) * 1999-05-14 2006-01-18 ウシオ電機株式会社 Light source device
DE10016982A1 (en) * 2000-04-06 2001-10-25 Wedeco Ag Method for feeding a UV light low pressure lamp and ballast for feeding a UV light low pressure lamp
US6541924B1 (en) * 2000-04-14 2003-04-01 Macquarie Research Ltd. Methods and systems for providing emission of incoherent radiation and uses therefor
JP3471782B2 (en) * 2001-02-13 2003-12-02 Nec液晶テクノロジー株式会社 Flat fluorescent lamp unit and liquid crystal display device using the same
US6762556B2 (en) 2001-02-27 2004-07-13 Winsor Corporation Open chamber photoluminescent lamp
DE10134965A1 (en) * 2001-07-23 2003-02-06 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Flat discharge lamp has outer side of front plate at least partly provided with opaque coating and inner side of front plate at least partly provided with fluorescent coating
DE10140355A1 (en) * 2001-08-17 2003-02-27 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Discharge lamp with ignition aid
DE10236420A1 (en) * 2002-08-08 2004-02-19 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Dielectric barrier discharge lamp comprises a discharge vessel enclosing a discharge medium, an electrode set, and a luminous material applied on a part of the wall of the vessel
US7541733B2 (en) * 2002-08-08 2009-06-02 Panasonic Corporation Light-emitting element, method for producing the same and display device
DE10324832A1 (en) * 2003-06-02 2004-12-23 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Discharge lamp with fluorescent
DE10326755A1 (en) * 2003-06-13 2006-01-26 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Discharge lamp with dual band phosphor
DE10347636A1 (en) * 2003-10-09 2005-05-04 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Discharge lamp with at least one outer electrode and method for its production
KR101002321B1 (en) * 2003-12-16 2010-12-20 엘지디스플레이 주식회사 Apparatus and method for driving lamp of liquid crystal display device
DE102004020398A1 (en) * 2004-04-23 2005-11-10 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Dielectric barrier discharge lamp with external electrodes and lighting system with this lamp
US7196473B2 (en) * 2004-05-12 2007-03-27 General Electric Company Dielectric barrier discharge lamp
DE102004025266A1 (en) * 2004-05-19 2005-12-08 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Lighting system with a housing and a flat lamp arranged therein
US7446477B2 (en) * 2004-07-06 2008-11-04 General Electric Company Dielectric barrier discharge lamp with electrodes in hexagonal arrangement
US20060006804A1 (en) * 2004-07-06 2006-01-12 Lajos Reich Dielectric barrier discharge lamp
CN101238548B (en) * 2005-01-07 2012-05-02 皇家飞利浦电子股份有限公司 Segmented dielectric barrier discharge lamp
TWI285519B (en) * 2005-11-04 2007-08-11 Delta Electronics Inc Method adopting square voltage waveform for driving flat lamps
DE102005034505A1 (en) 2005-07-20 2007-02-01 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Circuit arrangement with transformerless converter with choke for the pulsed operation of dielectric barrier discharge lamps
TW200721907A (en) * 2005-11-18 2007-06-01 Delta Optoelectronics Inc An improved startup method for the mercury-free flat-fluorescent lamp
US7495396B2 (en) * 2005-12-14 2009-02-24 General Electric Company Dielectric barrier discharge lamp
TW200740300A (en) * 2006-04-04 2007-10-16 Delta Optoelectronics Inc Driving circuit and method for fluorescent lamp
DE102006026332A1 (en) 2006-06-02 2007-12-06 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Discharge lamp for dielectrically impeded discharges with rib-like support elements between base plate and ceiling plate
DE102006026333A1 (en) * 2006-06-02 2007-12-06 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Discharge lamp for dielectrically impeded discharges with flat discharge vessel
DE102006050136B4 (en) * 2006-10-25 2016-12-15 Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V. Method and device for generating positive and / or negative ionized gas analytes for gas analysis
US20080174226A1 (en) 2007-01-23 2008-07-24 Nulight Technology Corporation Mercury-free flat fluorescent lamps
DE102007006861B3 (en) * 2007-02-12 2008-05-29 Universität Karlsruhe (Th) Radiation source for producing electromagnetic radiation having a first wavelength region comprises electrodes connected to an alternating voltage source, a gas-filled transparent discharge vessel and a dielectric layer
TWI362053B (en) * 2008-04-30 2012-04-11 Applied Green Light Taiwan Inc Flat discharge lamp and the production method thereof

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE6753632U (en) * 1968-09-19 1969-05-29 Philips Nv LOW PRESSURE DISCHARGE LAMP WITH A WALL NOT CLOSING THE DISCHARGE SPACE, THAT U.A. CONSISTS OF A BEAM.
US3648100A (en) * 1969-03-24 1972-03-07 Westinghouse Electric Corp Electrodeless pulsed illuminator
DE2600592A1 (en) * 1976-01-09 1977-07-21 Onoda Cement Co Ltd Producing charged powder particles - using parallel linear electrodes embedded in single planar insulator layer
US4427923A (en) * 1981-10-01 1984-01-24 Gte Laboratories Inc. Electrodeless fluorescent light source
US4427922A (en) * 1981-10-01 1984-01-24 Gte Laboratories Inc. Electrodeless light source
US4427924A (en) * 1981-10-01 1984-01-24 Gte Laboratories Inc. Enhanced electrodeless light source
FR2520951A1 (en) * 1982-02-04 1983-08-05 Commissariat Energie Atomique ELECTROMAGNETIC PULSE GENERATOR OF HIGH VOLTAGE
JPS60172135A (en) * 1984-02-15 1985-09-05 Mitsubishi Electric Corp Flat plate light source
AU607520B2 (en) * 1987-08-06 1991-03-07 Shing Cheung Chow Discharge lamp type display device
CH676168A5 (en) * 1988-10-10 1990-12-14 Asea Brown Boveri
US5118989A (en) * 1989-12-11 1992-06-02 Fusion Systems Corporation Surface discharge radiation source
EP0521553B1 (en) * 1991-07-01 1996-04-24 Koninklijke Philips Electronics N.V. High-pressure glow discharge lamp
US5561351A (en) * 1992-10-14 1996-10-01 Diablo Research Corporation Dimmer for electrodeless discharge lamp
JP3075041B2 (en) * 1992-12-28 2000-08-07 三菱電機株式会社 Gas discharge display
DE4311197A1 (en) * 1993-04-05 1994-10-06 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Method for operating an incoherently radiating light source
TW324106B (en) * 1993-09-08 1998-01-01 Ushio Electric Inc Dielectric barrier layer discharge lamp

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1256972A2 (en) 2001-05-08 2002-11-13 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Flat lighting device with a mirror surface
DE102004039902B3 (en) * 2004-08-17 2006-04-06 Berger Gmbh Flat gas discharge lamp, has flat plates forming dielectric layers with dielectrically restricted discharge

Also Published As

Publication number Publication date
KR19990028648A (en) 1999-04-15
HK1015114A1 (en) 1999-10-08
CA2224362A1 (en) 1997-02-06
CA2224362C (en) 2004-04-13
DE59605924D1 (en) 2000-10-26
US5994849A (en) 1999-11-30
HUP0004552A3 (en) 2003-07-28
JPH11509362A (en) 1999-08-17
WO1997004625A1 (en) 1997-02-06
JP3856473B2 (en) 2006-12-13
HU223365B1 (en) 2004-06-28
DE19526211A1 (en) 1997-01-23
KR100363751B1 (en) 2003-02-19
CN1191061A (en) 1998-08-19
CN1113582C (en) 2003-07-02
IN190521B (en) 2003-08-09
EP0839436A1 (en) 1998-05-06
HUP0004552A2 (en) 2001-04-28

Similar Documents

Publication Publication Date Title
EP0839436B1 (en) Method for operating a lighting system and suitable lighting system therefor
EP0912990B1 (en) Gas discharge lamp with dielectrically impeded electrodes
EP0895653B1 (en) Electric radiation source and irradiation system with this radiation source
EP0912991B1 (en) Flat fluorescent light for background lighting and liquid crystal display device fitted with said flat fluorescent light
EP0324953B1 (en) High power radiation source
DE69210113T2 (en) High pressure glow discharge lamp
EP0733266B1 (en) Process for operating an incoherently emitting radiation source
DE19601138B4 (en) display device
DE10205903B4 (en) Fluorescence lamp unit and method for light emission
EP0371304B1 (en) High-power radiation device
DE2334288A1 (en) FLAT VISION DEVICE
EP0883897A1 (en) Cold cathode for discharge lamps, discharge lamp fitted with said cold cathode, and principle of operation of said discharge lamp
EP0901687B1 (en) Flat light emitter
EP0912992B1 (en) Flat light emitter
DE102006026332A1 (en) Discharge lamp for dielectrically impeded discharges with rib-like support elements between base plate and ceiling plate
EP0990262B1 (en) Discharge lamp with dielectrically impeded electrodes
DE4036122A1 (en) CORON DISCHARGE LIGHT SOURCE CELL
DE4203345A1 (en) High performance emitter, esp. for UV light - comprises discharge chamber filled with gas, and metallic outer electrodes coated with UV-transparent layer
WO2007141181A2 (en) Indicator device with a barrier discharge lamp for backlighting
WO2007141184A2 (en) Discharge lamp for dielectrically impeded discharge using a flat discharge vessel
DE2447537A1 (en) Flat D.C. discharge operated display - has two insulating plates sandwiching parallel cathodes in auxiliary discharge chambers
DE102004055328B3 (en) Plasma light source has flat plate of insulating material with attached flat electrode and has electrode with roughened surface structure for formation of plasma space
WO2007141183A2 (en) Discharge lamp for unipolar, dielectrically impeded discharge

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19980107

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): BE CH DE FR GB IT LI NL SE

17Q First examination report despatched

Effective date: 19980720

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

RIC1 Information provided on ipc code assigned before grant

Free format text: 7H 05B 41/288 A, 7H 01J 65/04 B, 7H 05B 41/30 B

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE CH DE FR GB IT LI NL SE

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: SIEMENS SCHWEIZ AG

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 59605924

Country of ref document: DE

Date of ref document: 20001026

ITF It: translation for a ep patent filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20001130

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

REG Reference to a national code

Ref country code: CH

Ref legal event code: PCAR

Free format text: SIEMENS SCHWEIZ AG;INTELLECTUAL PROPERTY FREILAGERSTRASSE 40;8047 ZUERICH (CH)

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20090709

Year of fee payment: 14

Ref country code: NL

Payment date: 20090722

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20091015

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20090731

Year of fee payment: 14

BERE Be: lapsed

Owner name: *PATENT-TREUHAND-G.- FUR ELEKTRISCHE GLUHLAMPEN M.

Effective date: 20100731

REG Reference to a national code

Ref country code: NL

Ref legal event code: V1

Effective date: 20110201

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100731

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100731

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 59605924

Country of ref document: DE

Owner name: OSRAM GMBH, DE

Free format text: FORMER OWNER: OSRAM GESELLSCHAFT MIT BESCHRAENKTER HAFTUNG, 81543 MUENCHEN, DE

Effective date: 20111130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100719

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 59605924

Country of ref document: DE

Owner name: OSRAM GMBH, DE

Free format text: FORMER OWNER: OSRAM AG, 81543 MUENCHEN, DE

Effective date: 20130205

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 59605924

Country of ref document: DE

Owner name: OSRAM GMBH, DE

Free format text: FORMER OWNER: OSRAM GMBH, 81543 MUENCHEN, DE

Effective date: 20130822

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20130722

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20130722

Year of fee payment: 18

Ref country code: GB

Payment date: 20130719

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20130726

Year of fee payment: 18

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59605924

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20140718

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20150331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150203

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140718

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59605924

Country of ref document: DE

Effective date: 20150203

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140731

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140718