EP0839436B1 - Method for operating a lighting system and suitable lighting system therefor - Google Patents
Method for operating a lighting system and suitable lighting system therefor Download PDFInfo
- Publication number
- EP0839436B1 EP0839436B1 EP96924752A EP96924752A EP0839436B1 EP 0839436 B1 EP0839436 B1 EP 0839436B1 EP 96924752 A EP96924752 A EP 96924752A EP 96924752 A EP96924752 A EP 96924752A EP 0839436 B1 EP0839436 B1 EP 0839436B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- discharge
- electrodes
- discharge vessel
- wall
- voltage
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000000034 method Methods 0.000 title claims abstract description 19
- 230000005855 radiation Effects 0.000 claims abstract description 24
- 239000003989 dielectric material Substances 0.000 claims abstract description 4
- 239000000203 mixture Substances 0.000 claims description 6
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims description 3
- 239000012811 non-conductive material Substances 0.000 claims 2
- 239000011248 coating agent Substances 0.000 claims 1
- 238000000576 coating method Methods 0.000 claims 1
- 239000007789 gas Substances 0.000 description 8
- 239000010410 layer Substances 0.000 description 7
- 238000011017 operating method Methods 0.000 description 5
- 238000009826 distribution Methods 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- 229910052724 xenon Inorganic materials 0.000 description 3
- FHNFHKCVQCLJFQ-UHFFFAOYSA-N xenon atom Chemical compound [Xe] FHNFHKCVQCLJFQ-UHFFFAOYSA-N 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- 230000020169 heat generation Effects 0.000 description 2
- 238000005286 illumination Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 229910052756 noble gas Inorganic materials 0.000 description 2
- 150000002835 noble gases Chemical class 0.000 description 2
- 238000001208 nuclear magnetic resonance pulse sequence Methods 0.000 description 2
- 239000003973 paint Substances 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 238000001311 chemical methods and process Methods 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 239000000110 cooling liquid Substances 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 150000004820 halides Chemical class 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 229910052743 krypton Inorganic materials 0.000 description 1
- DNNSSWSSYDEUBZ-UHFFFAOYSA-N krypton atom Chemical compound [Kr] DNNSSWSSYDEUBZ-UHFFFAOYSA-N 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 1
- 229910052753 mercury Inorganic materials 0.000 description 1
- QLNWXBAGRTUKKI-UHFFFAOYSA-N metacetamol Chemical compound CC(=O)NC1=CC=CC(O)=C1 QLNWXBAGRTUKKI-UHFFFAOYSA-N 0.000 description 1
- 229910052754 neon Inorganic materials 0.000 description 1
- GKAOGPIIYCISHV-UHFFFAOYSA-N neon atom Chemical compound [Ne] GKAOGPIIYCISHV-UHFFFAOYSA-N 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- 239000011241 protective layer Substances 0.000 description 1
- 230000003252 repetitive effect Effects 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 238000004659 sterilization and disinfection Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J65/00—Lamps without any electrode inside the vessel; Lamps with at least one main electrode outside the vessel
- H01J65/04—Lamps in which a gas filling is excited to luminesce by an external electromagnetic field or by external corpuscular radiation, e.g. for indicating plasma display panels
- H01J65/042—Lamps in which a gas filling is excited to luminesce by an external electromagnetic field or by external corpuscular radiation, e.g. for indicating plasma display panels by an external electromagnetic field
- H01J65/046—Lamps in which a gas filling is excited to luminesce by an external electromagnetic field or by external corpuscular radiation, e.g. for indicating plasma display panels by an external electromagnetic field the field being produced by using capacitive means around the vessel
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J61/00—Gas-discharge or vapour-discharge lamps
- H01J61/02—Details
- H01J61/30—Vessels; Containers
- H01J61/305—Flat vessels or containers
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B41/00—Circuit arrangements or apparatus for igniting or operating discharge lamps
- H05B41/14—Circuit arrangements
- H05B41/24—Circuit arrangements in which the lamp is fed by high frequency ac, or with separate oscillator frequency
Definitions
- the invention relates to a method for operating a lighting system with an incoherently emitting radiation source, in particular Discharge lamp, by means of dielectric barrier discharge according to the Preamble of claim 1. Furthermore, the invention relates to one for this Operating method suitable lighting system according to the preamble of claim 12.
- UV (U ltra v Iolet) - and IR (I nfra r ot) emitters as well as discharge lamps which emit visible light in particular, to understand.
- Such radiation sources are suitable, depending on the spectrum of the emitted radiation, for general and auxiliary lighting, such as home and office illumination or backlighting of displays, such as LCDs (L iquid C rystal D isplays), for the transport and signal lighting, for UV radiation, for example disinfection or photolytics, and for IR radiation, for example for drying paints.
- general and auxiliary lighting such as home and office illumination or backlighting of displays, such as LCDs (L iquid C rystal D isplays)
- UV radiation for example disinfection or photolytics
- IR radiation for example for drying paints.
- WO 94/23442 describes a method for operating an incoherently emitting Radiation source, in particular discharge lamp, by means of dielectric disabled discharge disclosed.
- the operating procedure sees one Sequence of voltage pulses before, the individual voltage pulses through Dead times are separated.
- the advantage of this pulsed mode of operation is a high efficiency of radiation generation.
- EP 0 363 832 describes a UV high-power lamp with pairs of electrodes connected to both poles of a high voltage source.
- the electrodes are from each other and from the discharge space of the Radiator separated by dielectric material. Such electrodes are hereinafter referred to as "dielectric electrodes".
- the electrodes are arranged side by side, whereby area-like discharge configurations with relatively flat discharge vessels let it be realized.
- An AC voltage is applied to the dielectric electrodes in the order of magnitude of several 100 V to 20000 V. Frequencies in the range of technical alternating current up to a few kHz placed such that there is essentially only a sliding electrical discharge in the area of the dielectric surface.
- the main disadvantage is that sliding discharges in particular place a thermal load on the surface, which is why cooling channels for dissipating the heat from the dielectric are also proposed. Due to the unavoidable, substantial heat generation of this discharge type, the efficiency for generating radiation, in particular in the UV and VUV (V acuum U ltra v Iolet) range is limited. In addition, sliding discharge causes chemical processes on the surface, thereby shortening the life of the lamp.
- the object of the invention is to eliminate these disadvantages and a method to operate a lighting system, which both through a flat discharge vessel as well as through efficient production characterized by radiation.
- Another object of the invention is to provide a lighting system which is suitable for the operating method. This object is achieved according to the invention by the characterizing features of claim 12 solved.
- the basic idea of the invention is in the interior of the discharge vessel with dielectric electrodes arranged next to one another generate spatial discharge in the areas between electrodes opposite polarity a distance from the surface of the inner wall of the discharge vessel. While in the prior art one Variety of sliding discharges along the surface of the dielectric Serve generation of UV radiation, the invention proposes the use one that separates from the dielectric surface, spatially within extended discharge before the discharge vessel.
- the advantages achieved thereby are firstly a higher efficiency of generation of UV or VUV (V acuum U ltra v iolet) radiation and hence a lower heat generation.
- no cooling liquid is required for heat dissipation.
- the discharge type according to the invention results in a significantly lower thermal and chemical wall load than is the case with surface sliding discharges. An extension of the life of the discharge vessel is consequently achieved.
- a more uniform, area-like, spatially diffuse luminance distribution can be realized between the electrodes.
- the latter offers considerable advantages over optically imaging lighting or radiation tasks, such as, for example, in photolithographic applications, in comparison to the channel-shaped sliding discharges.
- diffuse luminance distributions directly improve process efficiency. In this regard, lighting patterns such as the conventional channel-shaped lighting structures are undesirable.
- the method according to the invention now provides for those arranged side by side dielectric electrodes with a series of voltage pulses supplying voltage source to connect.
- the individual voltage pulses are separated from each other by break times.
- this procedure does not only involve radiation is generated with high efficiency, but that completely beyond that Unexpectedly, a spatial discharge is generated inside the discharge vessel that is in the areas between electrodes of different polarity a distance from the surface of the inner wall of the discharge vessel having.
- pulse width becomes and pause time selected so that the spatial, discharge occurs partially from the dielectric surface.
- Typical pulse widths and pause times are between 0.1 ⁇ s and 5 ⁇ s or in the range between 5 ⁇ s and 100 ⁇ s, corresponding to one Pulse repetition frequency in the range between 200 kHz and 10 kHz.
- the optimal values for the pulse width and the pause time are in individual cases depends on the specific discharge configuration, i.e. of type and Pressure of the gas filling and the electrode configuration.
- the electrode configuration results from the type and thickness of the dielectric, the area and shape of the electrodes and the electrode spacing.
- the voltage signal to be applied is such a discharge configuration choose that a discharge separates from the dielectric surface that sets a maximum radiation yield at the desired electrical Power density.
- those disclosed in WO 94/23442 are also Sequences of voltage pulses are suitable.
- the amount of voltage pulses is typically between approx. 100 V and 10 kV.
- the shape of the current pulse is determined by the voltage pulse shape and the discharge configuration.
- Electrodes made of electrically conductive material, e.g. metallic wires or Strips also applied to the outside of the vessel wall, for example evaporated, narrow layers.
- the electrodes are preferred arranged parallel and equidistant to each other. This is important to everyone Discharges between the neighboring electrodes have the same conditions to ensure. This makes a large-scale and homogeneous Illumination ensured. It will also be more appropriate in this way Pulse sequence achieves optimal radiation efficiency.
- the lateral dimensions - i.e. the diameter of the wires or widths of the strips - from anode or cathode can be different.
- the operating method according to the invention is suitable for a large number of possible ones Discharge vessel geometries, especially for all those in the EP 0 363 832 A1. It does not matter whether the discharge vessel contains a gas filling and is sealed gastight, e.g. with discharge lamps, or whether the discharge vessel is open on both sides and is flowed through by a gas or gas mixture, e.g. in photolytic Reactors.
- the only decisive factor for the mode of operation is that the dielectric Electrodes are arranged side by side. Side by side means here that neighboring electrodes of different polarity as it were lie on one side of the discharge zone.
- the electrodes can be arranged in a common plane, e.g. on an outside of a wall of the discharge vessel -vtl. additionally covered with a dielectric protective layer - or directly into the Wall embedded. It is also possible to use different electrodes preferably parallel planes on one side of the discharge zone to arrange. For example, the are consecutive Electrodes of changing polarity depending on the polarity in one of two against each other staggered levels, such as disclosed in DE 40 36122 A1.
- the wall serves to arrange the Electrodes advantageously the base or top surface.
- Level discharge arrangements are particularly suitable for large, flat lighting purposes, e.g. for backlighting of display boards or LCD screens, or for radiation purposes, e.g. Photolithography or curing of paints.
- curved discharge vessels are also suitable, for example tubular.
- Tubular open on both sides and by one Arrangements through which gas or gas mixture flow are particularly suitable as photolytic reactors.
- one tubular arrangement through a dielectric tube e.g. with circular Cross section formed.
- the electrodes are at least on or arranged in a part of the outside or the wall of the tube.
- the discharge builds up inside the tube during operation out.
- the inner wall of the tube is in the area of the Electrodes with a dielectric layer serving as an optical reflector Mistake.
- a continuation of the tubular arrangement consists of two concentric ones Pipes with different diameters and from on or in arranged the inner wall of the tube with the smaller diameter Electrodes.
- the discharge forms in the room during operation between the two pipes.
- the inner wall of the discharge vessel can be covered with a layer of fluorescent material be provided, which converts the UV or VUV radiation of the discharge into light.
- a layer of fluorescent material be provided, which converts the UV or VUV radiation of the discharge into light.
- a variant with a white light-emitting fluorescent layer is particularly suitable for general lighting.
- ionizable filling and possibly the phosphor layer depends on the application.
- Noble gases are particularly suitable, e.g. Neon, argon, krypton and xenon as well as mixtures of noble gases.
- other fillers can also be used, e.g. all those who are usually used in light production, in particular Mercury (Hg) and rare gas-Hg mixtures as well as rare earths and their halides.
- the lighting system is completed by a voltage source, whose output poles are connected to the electrodes of the discharge vessel are and which delivers the specified sequence of voltage pulses during operation.
- FIGS 1a and 1b show a schematic representation of the transverse or Longitudinal section of a discharge arrangement 1.
- the discharge arrangement 1 consists of a cuboid-like, transparent discharge vessel 2 and two parallel strip-shaped electrodes 3, 4 on the outer wall of the discharge vessel 2 are arranged.
- the discharge vessel 2 is made of glass.
- the lid 5 consists of a lid 5 and a bottom 6, both of which are trough-shaped are formed and face each other in mirror image, two the longitudinal axis of the discharge vessel 2 defining side walls 7, 8 and two End walls 9,10.
- Xenon is located inside the discharge vessel 2 with a filling pressure of approx. 8 kPa.
- the two electrodes 3, 4 are off Made of aluminum foil. They are centric and parallel on the outside of the lid 5 glued on.
- the lid 5 is made of 1 mm thick glass and also acts as a dielectric layer between the two electrodes and the discharge 11, shown here only roughly schematically, which forms during operation in the interior of the discharge vessel 2.
- the discharge 11 in the area between the two electrodes 3,4 through a dark zone 12 (in longitudinal section, Figure 1b, not recognizable) separated from the inner wall of the lid 5. I.e. the discharge 11 has a distance from the surface of the inner wall in the area mentioned on.
- FIGS. 2 and 4 show photographic recordings of the discharge arrangement from Figures la and 1b. To explain the recordings the corresponding reference numbers already introduced above are used. The two recordings were each made with a view of the front wall 9 in Direction of the longitudinal axis. They differ only in the electrode geometry. The width of the strip-shaped electrodes 3, 4 and their mutual distance is 3 mm or 4 mm in the first case and 1 mm or 10 mm in the second case. Especially in the first case ( Figure 2, above) the electrodes 3, 4 can be clearly seen. You stand out as dark areas from the wall of the lid 5, the same as the opposite Wall of the floor 6 due to reflected and scattered Fluorescent light from the glass appears bright. The length of the electrodes is 35 mm each.
- the continuous, trough-shaped breaks Discharge structure in individual structures, which however as shown in Figure la, lift off the dielectric surface.
- the individual structures have a delta-like shape ( ⁇ ), which are each in Widen direction (current) anode.
- ⁇ delta-like shape
- the voltage pulses of a bilaterally dielectric discharge there is a visual overlay of two delta-shaped structures.
- FIGS. 3 and 5 each show a section of the time profile of voltage U (t) and current I (t) measured on the electrodes during operation according to FIGS. 2 and 4.
- a comparison of both figures shows the influence of the electrode geometry on voltage and current.
- the most important electrical quantities are summarized in the following table.
- U p , T U , f U , w and P mean the height of the voltage pulses (based on the voltage during the break), the width of the voltage pulses (full width at half the height), the pulse repetition frequency, the electrical energy per pulse or the average electrical power coupled in over time.
- FIGS. 6a and 6b schematically show the cross section or the top view (viewing direction on the bottom side) of a lighting system 14 suitable for the operation according to the invention.
- the lighting system 14 consists of a flat discharge vessel 15 with a rectangular base area and five strip-shaped electrodes 16-20 and a voltage source 27, which supplies a sequence of voltage pulses during operation.
- the discharge vessel 15 in turn consists of a rectangular base plate 21 and a trough-like cover 22.
- the base plate 21 and the cover 22 are connected in a gas-tight manner in the region of their peripheral edges and thus enclose the gas filling of the discharge lamp 14.
- the gas filling consists of xenon with a filling pressure of 10 kPa.
- the electrodes 16-20 have the same widths and are applied to the outer wall of the base plate 21 parallel to one another and equidistantly. This is important in order to ensure the same conditions for all discharges between the neighboring electrodes. With a suitable pulse sequence, an optimal radiation efficiency or uniformity of the luminance distribution is thereby achieved.
- the electrodes 16-20 are alternately connected to the two poles 23, 24 of a voltage source. Ie the electrode 16 and the two electrodes 18 and 20 next to the predecessor are connected to a first pole 23 of the voltage source. In contrast, the two electrodes 17 and 19 located between them are connected to the other pole of the voltage source.
- a phosphor layer 25 is sprayed onto the inner wall of the lid 22 and the bottom 21, which the VUV (V acuum U ltra v iolet) - or UV (U ltra v iolet) radiation of the discharge, only very schematically shown 26 in ( visible) light.
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Engineering & Computer Science (AREA)
- Plasma & Fusion (AREA)
- Vessels And Coating Films For Discharge Lamps (AREA)
- Circuit Arrangements For Discharge Lamps (AREA)
- Discharge-Lamp Control Circuits And Pulse- Feed Circuits (AREA)
- Physical Or Chemical Processes And Apparatus (AREA)
Abstract
Description
Die Erfindung betrifft ein Verfahren zum Betreiben eines Beleuchtungssystems
mit einer inkohärent emittierendenden Strahlungsquelle, insbesondere
Entladungslampe, mittels dielektrisch behinderter Entladung gemäß dem
Oberbegriff des Anspruchs 1. Desweiteren betrifft die Erfindung ein für dieses
Betriebsverfahren geeignetes Beleuchtungssystem gemäß dem Oberbegriff
des Anspruchs 12.The invention relates to a method for operating a lighting system
with an incoherently emitting radiation source, in particular
Discharge lamp, by means of dielectric barrier discharge according to the
Preamble of
Unter inkohärent emittierenden Strahlungsquellen sind UV(Ultraviolet)- und IR(Infrarot)-Strahler sowie Entladungslampen, die insbesondere sichtbares Licht abstrahlen, zu verstehen.Under incoherently emitting radiation sources are UV (U ltra v Iolet) - and IR (I nfra r ot) emitters as well as discharge lamps which emit visible light in particular, to understand.
Derartige Strahlungsquellen eignen sich, je nach dem Spektrum der emittierten Strahlung, für die Allgemein- und Hilfsbeleuchtung, z.B. Wohn- und Bürobeleuchtung bzw. Hintergrundbeleuchtung von Anzeigen, beispielsweise LCD's (Liquid Crystal Displays), für die Verkehrs- und Signalbeleuchtung, für die UV-Bestrahlung, z.B. Entkeimung oder Photolytik, sowie für die IR-Bestrahlung, z.B. Trocknung von Lacken.Such radiation sources are suitable, depending on the spectrum of the emitted radiation, for general and auxiliary lighting, such as home and office illumination or backlighting of displays, such as LCDs (L iquid C rystal D isplays), for the transport and signal lighting, for UV radiation, for example disinfection or photolytics, and for IR radiation, for example for drying paints.
In der WO 94/23442 ist ein Verfahren zum Betreiben einer inkohärent emittierendenden Strahlungsquelle, insbesondere Entladungslampe, mittels dielektrisch behinderter Entladung offenbart. Das Betriebsverfahren sieht eine Folge von Spannungspulsen vor, wobei die einzelnen Spannungspulse durch Totzeiten voneinander getrennt sind. Der Vorteil dieser gepulsten Betriebsweise ist eine hohe Effizienz der Strahlungserzeugung. WO 94/23442 describes a method for operating an incoherently emitting Radiation source, in particular discharge lamp, by means of dielectric disabled discharge disclosed. The operating procedure sees one Sequence of voltage pulses before, the individual voltage pulses through Dead times are separated. The advantage of this pulsed mode of operation is a high efficiency of radiation generation.
In der EP 0 363 832 ist ein UV-Hochleistungsstrahler mit paarweise an die
beiden Pole einer Hochspannungsquelle angeschlossenen Elektroden offenbart.
Dabei sind die Elektroden, voneinander und vom Entladungsraum des
Strahlers durch dielektrisches Material getrennt. Derartige Elektroden werden
im folgenden verkürzend als "dielektrische Elektroden" bezeichnet.
Außerdem sind die Elektroden nebeneinander angeordnet, wodurch sich
flächenartige Entladungskonfigurationen mit relativ flachen Entladungsgefäßen
realisieren lassen. An die dielektrischen Elektroden wird eine Wechselspannung
in der Größenordnung von mehreren 100 V bis 20000 V bei
Frequenzen im Bereich des technischen Wechselstroms bis zu einigen kHz
gelegt derart, daß sich eine elektrische Gleitentladung im wesentlichen nur
im Bereich der Dielektrikumsoberfläche ausbildet.
Der wesentliche Nachteil ist, daß Gleitentladungen die Oberfläche insbesondere thermisch belasten, weshalb auch Kühlkanäle zur Abfuhr der Wärme aus dem Dielektrikum vorgeschlagen sind. Durch die unvermeidliche, erhebliche Wärmeerzeugung dieses Entladungstyps ist der Wirkungsgrad für die Erzeugung von Strahlung insbesondere im UV- und VUV(Vakuum Ultraviolet)-Bereich eingeschränkt. Außerdem verursacht eine Gleitentladung chemische Prozesse auf der Oberfläche und verkürzt dadurch die Lebensdauer des Strahlers.The main disadvantage is that sliding discharges in particular place a thermal load on the surface, which is why cooling channels for dissipating the heat from the dielectric are also proposed. Due to the unavoidable, substantial heat generation of this discharge type, the efficiency for generating radiation, in particular in the UV and VUV (V acuum U ltra v Iolet) range is limited. In addition, sliding discharge causes chemical processes on the surface, thereby shortening the life of the lamp.
Aufgabe der Erfindung ist es, diese Nachteile zu beseitigen und ein Verfahren zum Betreiben eines Beleuchtungssystems anzugeben, welches sich sowohl durch ein flaches Entladungsgefäß als auch durch eine effiziente Erzeugung von Strahlung auszeichnet.The object of the invention is to eliminate these disadvantages and a method to operate a lighting system, which both through a flat discharge vessel as well as through efficient production characterized by radiation.
Diese Aufgabe wird erfindungsgemäß durch die kennzeichnenden Merkmale
des Anspruchs 1 gelöst. Weitere vorteilhafte Merkmale sind in den
Unteransprüchen erläutert.This object is achieved by the characterizing features
of
Eine weitere Aufgabe der Erfindung ist es, ein Beleuchtungssystem anzugeben,
welches für das Betriebsverfahren geeignet ist. Diese Aufgabe wird erfindungsgemäß
durch die kennzeichnenden Merkmale des Anspruchs 12
gelöst.Another object of the invention is to provide a lighting system
which is suitable for the operating method. This object is achieved according to the invention
by the characterizing features of
Der Grundgedanke der Erfindung besteht darin, im Innern des Entladungsgefäßes mit nebeneinander angeordneten dielektrischen Elektroden eine räumliche Entladung zu erzeugen, die in den Bereichen zwischen Elektroden gegensätzlicher Polarität einen Abstand zur Oberfläche der Innenwandung des Entladungsgefäßes aufweist. Während im Stand der Technik eine Vielzahl von Gleitentladungen längs der Oberfläche des Dielektrikums zur Erzeugung von UV-Strahlung dienen, schlägt die Erfindung die Verwendung einer sich von der Dielektrikumsoberfläche ablösende, räumlich innerhalb des Entladungsgefäßes ausgedehnten Entladung vor.The basic idea of the invention is in the interior of the discharge vessel with dielectric electrodes arranged next to one another generate spatial discharge in the areas between electrodes opposite polarity a distance from the surface of the inner wall of the discharge vessel. While in the prior art one Variety of sliding discharges along the surface of the dielectric Serve generation of UV radiation, the invention proposes the use one that separates from the dielectric surface, spatially within extended discharge before the discharge vessel.
Die dadurch erzielten Vorteile sind zum einen eine höhere Effizienz der Erzeugung von UV- bzw. VUV(Vakuum Ultraviolett)-Strahlung und folglich eine geringere Wärmeentwicklung. Im Unterschied zum Stand der Technik ist keine Kühlflüssigkeit für die Wärmeabfuhr erforderlich. Zum anderen resultiert aus dem erfindungsgemäßen Entladungtyp eine deutlich geringere thermische und chemische Wandbelastung als dies bei Oberflächengleitentladungen der Fall ist. Folglich wird eine Verlängerung der Lebensdauer des Entladungsgefäßes erreicht. Darüber hinaus ist zwischen den Elektroden erfindungsgemäß eine gegenüber dem Stand der Technik gleichförmigere, flächenartige, räumlich diffuse Leuchtdichteverteilung realisierbar. Letzteres bietet im Vergleich zu den kanalförmigen Gleitentladungen erhebliche Vorteile bei optisch abbildenden Beleuchtungs- bzw. Bestrahlungsaufgaben, wie z.B. bei photolithographischen Anwendungen. Hier verbessern diffuse Leuchtdichteverteilungen unmittelbar die Prozeßeffizienz. In dieser Hinsicht sind Leuchtmuster, wie die herkömmlichen kanalförmigen Leuchtstrukturen unerwünscht.The advantages achieved thereby are firstly a higher efficiency of generation of UV or VUV (V acuum U ltra v iolet) radiation and hence a lower heat generation. In contrast to the prior art, no cooling liquid is required for heat dissipation. On the other hand, the discharge type according to the invention results in a significantly lower thermal and chemical wall load than is the case with surface sliding discharges. An extension of the life of the discharge vessel is consequently achieved. In addition, according to the invention, a more uniform, area-like, spatially diffuse luminance distribution can be realized between the electrodes. The latter offers considerable advantages over optically imaging lighting or radiation tasks, such as, for example, in photolithographic applications, in comparison to the channel-shaped sliding discharges. Here, diffuse luminance distributions directly improve process efficiency. In this regard, lighting patterns such as the conventional channel-shaped lighting structures are undesirable.
Das erfindungsgemäße Verfahrens sieht nun vor, die nebeneinander angeordneten dielektrischen Elektroden mit einer eine Folge von Spannungspulsen liefernden Spannungsquelle zu verbinden. Die einzelnen Spannungspulse sind jeweils durch Pausenzeiten voneinander getrennt. Überraschend hat es sich nämlich gezeigt, daß durch diese Vorgehensweise nicht nur Strahlung mit hoher Effizienz erzeugt wird, sondern daß darüber hinaus völlig unerwartet im Innern des Entladungsgefäßes eine räumliche Entladung erzeugt wird, die in den Bereichen zwischen Elektroden unterschiedlicher Polarität einen Abstand zur Oberfläche der Innenwandung des Entladungsgefäßes aufweist.The method according to the invention now provides for those arranged side by side dielectric electrodes with a series of voltage pulses supplying voltage source to connect. The individual voltage pulses are separated from each other by break times. Surprisingly it has been shown that this procedure does not only involve radiation is generated with high efficiency, but that completely beyond that Unexpectedly, a spatial discharge is generated inside the discharge vessel that is in the areas between electrodes of different polarity a distance from the surface of the inner wall of the discharge vessel having.
Ausgehend von einem sich wiederholenden Spannungspuls, werden Pulsbreite und Pausenzeit so gewählt, daß sich die erfindungsgemäße räumliche, sich teilweise von der Dielektrikumsoberfläche ablösende Entladung einstellt. Typische Pulsbreiten sowie Pausenzeiten liegen im Bereich zwischen 0,1 µs und 5 µs bzw. im Bereich zwischen 5 µs und 100 µs, entsprechend einer Pulswiederholfrequenz im Bereich zwischen 200 kHz und 10 kHz.Starting from a repetitive voltage pulse, pulse width becomes and pause time selected so that the spatial, discharge occurs partially from the dielectric surface. Typical pulse widths and pause times are between 0.1 µs and 5 µs or in the range between 5 µs and 100 µs, corresponding to one Pulse repetition frequency in the range between 200 kHz and 10 kHz.
Die optimalen Werte für die Pulsbreite und die Pausenzeit sind im Einzelfall von der konkreten Entladungskonfiguration abhängig, d.h. von Art und Druck der Gasfüllung sowie der Elektrodenkonfiguration. Die Elektrodenkonfiguration ergibt sich aus Art und Dicke des Dielektrikums, der Fläche und Form der Elektroden sowie dem Elektrodenabstand. Entsprechend der Entladungskonfiguration ist das anzulegende Spannungssignal derart zu wählen, daß sich eine von der Dielektrikumsoberfläche ablösende Entladung einstellt, die eine maximale Strahlungsausbeute bei gewünschter elektrischer Leistungsdichte besitzt. Prinzipiell sind auch die in der WO 94/23442 offenbarten Folgen von Spannungspulsen geeignet. Die Höhe der Spannungspulse beträgt typisch zwischen ca. 100 V und 10 kV. Die Form der Strompulse wird durch die Spannungspulsform und die Entladungskonfiguration bestimmt.The optimal values for the pulse width and the pause time are in individual cases depends on the specific discharge configuration, i.e. of type and Pressure of the gas filling and the electrode configuration. The electrode configuration results from the type and thickness of the dielectric, the area and shape of the electrodes and the electrode spacing. According to the The voltage signal to be applied is such a discharge configuration choose that a discharge separates from the dielectric surface that sets a maximum radiation yield at the desired electrical Power density. In principle, those disclosed in WO 94/23442 are also Sequences of voltage pulses are suitable. The amount of voltage pulses is typically between approx. 100 V and 10 kV. The shape of the current pulse is determined by the voltage pulse shape and the discharge configuration.
Für die Elektrodenkonfiguration eignen sich zwei oder mehrere längliche Elektroden aus elektrisch leitfähigem Material, z.B. metallische Drähte oder Streifen aber auch auf die Außenseite der Gefäßwand aufgebrachte, beispielsweise aufgedampfte, schmale Schichten. Bevorzugt sind die Elektroden zueinander parallel und äquidistant angeordnet. Dies ist wichtig, um für alle Entladungen zwischen den jeweils benachbarten Elektroden gleiche Bedingungen zu gewährleisten. Dadurch wird eine großflächige und homogene Ausleuchtung sichergestellt. Außerdem wird auf diese Weise bei geeigneter Pulsfolge eine optimale Strahlungseffizienz erzielt. Die Lateralabmessungen - d.h. die Durchmesser der Drähte bzw. Breiten der Streifen - von Anode bzw. Kathode können verschieden sein.Two or more elongated ones are suitable for the electrode configuration Electrodes made of electrically conductive material, e.g. metallic wires or Strips also applied to the outside of the vessel wall, for example evaporated, narrow layers. The electrodes are preferred arranged parallel and equidistant to each other. This is important to everyone Discharges between the neighboring electrodes have the same conditions to ensure. This makes a large-scale and homogeneous Illumination ensured. It will also be more appropriate in this way Pulse sequence achieves optimal radiation efficiency. The lateral dimensions - i.e. the diameter of the wires or widths of the strips - from anode or cathode can be different.
Das erfindungsgemäße Betriebsverfahren eignet sich für eine Vielzahl möglicher
Entladungsgefäßgeometrien, insbesondere auch für all jene, die in der
EP 0 363 832 A1 offenbart sind. Dabei spielt es keine Rolle, ob das Entladungsgefäß
eine Gasfüllung enthält und gasdicht verschlossen ist, wie z.B.
bei Entladungslampen, oder ob das Entladungsgefäß beidseitig offen und
von einem Gas oder Gasgemisch durchströmt ist, wie z.B. bei photolytischen
Reaktoren. Entscheidend für die Betriebsweise ist lediglich, daß die dielektrischen
Elektroden nebeneinander angeordnet sind. Nebeneinander bedeutet
hier, daß benachbarte Elektroden unterschiedlicher Polarität gleichsam
auf einer Seite der Entladungszone liegen.The operating method according to the invention is suitable for a large number of possible ones
Discharge vessel geometries, especially for all those in the
Die Elektroden können in einer gemeinsamen Ebene angeordnet sein, z.B. auf einer Außenseite einer Wandung des Entladungsgefäßes -evtl. zusätzlich mit einer dielektrischen Schutzschicht bedeckt - oder aber direkt in die Wandung eingebettet. Außerdem ist es möglich die Elektroden in verschiedenen, bevorzugt zueinander parallelen Ebenen auf einer Seite der Entladungszone anzuordnen. Beispielsweise sind die aufeinander folgenden Elektroden wechselnder Polarität je nach Polarität in einer von zwei gegeneinander versetzten Ebenen angeordnet, wie z.B. in der DE 40 36122 A1 offenbart.The electrodes can be arranged in a common plane, e.g. on an outside of a wall of the discharge vessel -vtl. additionally covered with a dielectric protective layer - or directly into the Wall embedded. It is also possible to use different electrodes preferably parallel planes on one side of the discharge zone to arrange. For example, the are consecutive Electrodes of changing polarity depending on the polarity in one of two against each other staggered levels, such as disclosed in DE 40 36122 A1.
Bei ebenen Entladungsgefäßen dient als Wandung zur Anordnung der Elektroden vorteilhaft die Grund- oder Deckfläche. Ebene Entladungsanordnungen eignen sich insbesondere für großflächige, ebene Beleuchtungszwecke, z.B. für die Hintergrundbeleuchtung von Anzeigetafeln oder LCD-Bildschirmen, bzw. für Bestrahlungszwecke, z.B. Photolithografie oder Aushärtung von Lacken.In the case of flat discharge vessels, the wall serves to arrange the Electrodes advantageously the base or top surface. Level discharge arrangements are particularly suitable for large, flat lighting purposes, e.g. for backlighting of display boards or LCD screens, or for radiation purposes, e.g. Photolithography or curing of paints.
Außer ebenen Anordnung sind auch gekrümmte Entladungsgefäße geeignet, beispielsweise rohrförmige. Rohrförmige beidseitig offene und von einem Gas oder Gasgemisch durchströmte Anordnungen eignen sich insbesondere als photolytische Reaktoren. In ihrer einfachsten Ausführung ist eine rohrförmige Anordnung durch ein dielektrisches Rohr, z.B. mit kreisförmigem Querschnitt gebildet. Die Elektroden sind dabei mindestens auf oder in einem Teil der Außenseite bzw. der Wandung des Rohres angeordnet. Die Entladung bildet sich während des Betriebs im Innern des Rohres aus. In einer Variante ist die Innenwandung des Rohres im Bereich der Elektroden mit einer als optischer Reflektor dienenden dielektrischen Schicht versehen.In addition to a flat arrangement, curved discharge vessels are also suitable, for example tubular. Tubular open on both sides and by one Arrangements through which gas or gas mixture flow are particularly suitable as photolytic reactors. In its simplest execution is one tubular arrangement through a dielectric tube, e.g. with circular Cross section formed. The electrodes are at least on or arranged in a part of the outside or the wall of the tube. The discharge builds up inside the tube during operation out. In a variant, the inner wall of the tube is in the area of the Electrodes with a dielectric layer serving as an optical reflector Mistake.
Eine Weiterführung der rohrförmigen Anordnung besteht aus zwei konzentrischen Rohren mit unterschiedlichen Durchmessern und aus auf bzw. in der Innenwandung des Rohres mit dem kleineren Durchmesser angeordneten Elektroden. Die Entladung bildet sich während des Betriebs im Raum zwischen den beiden Rohren aus.A continuation of the tubular arrangement consists of two concentric ones Pipes with different diameters and from on or in arranged the inner wall of the tube with the smaller diameter Electrodes. The discharge forms in the room during operation between the two pipes.
Die Innenwandung des Entladungsgefäßes kann mit einer Leuchtstoffschicht versehen sein, die die UV- bzw. VUV-Strahlung der Entladung in Licht konvertiert. Eine Variante mit einer weißes Licht abstrahlenden Leuchtstoffschicht eignet sich insbesondere für die Allgemeinbeleuchtung.The inner wall of the discharge vessel can be covered with a layer of fluorescent material be provided, which converts the UV or VUV radiation of the discharge into light. A variant with a white light-emitting fluorescent layer is particularly suitable for general lighting.
Die Auswahl der ionisierbaren Füllung und ggf. der Leuchtstoffschicht richtet sich nach dem Anwendungszweck. Geeignet sind insbesondere Edelgase, z.B. Neon, Argon, Krypton und Xenon sowie Mischungen von Edelgasen. Allerdings lassen sich auch andere Füllsubstanzen verwenden, so z.B. all jene, die üblicherweise in der Lichterzeugung Einsatz finden, insbesondere Quecksilber(Hg)- und Edelgas-Hg-Gemische sowie Seltene Erden und deren Halogenide.The selection of the ionizable filling and possibly the phosphor layer depends on the application. Noble gases are particularly suitable, e.g. Neon, argon, krypton and xenon as well as mixtures of noble gases. However, other fillers can also be used, e.g. all those who are usually used in light production, in particular Mercury (Hg) and rare gas-Hg mixtures as well as rare earths and their halides.
Das Beleuchtungssystem wird durch eine Spannungsquelle komplettiert, deren Ausgangspole mit den Elektroden des Entladungsgefäßes verbunden sind und die im Betrieb die genannte Folge von Spannungspulsen liefert.The lighting system is completed by a voltage source, whose output poles are connected to the electrodes of the discharge vessel are and which delivers the specified sequence of voltage pulses during operation.
Die Erfindung wird im folgenden anhand einiger Ausführungsbeispiele näher erläutert. Es zeigen
- Fig. 1a
- den Querschnitt einer Entladungsanordnung mit zwei nebeneinander angeordneten dielektrischen Elektroden,
- Fig. 1b
- den Längsschnitt der Entladungsanordnung aus Figur 1a,
- Fig. 2
- die Stirnansicht der Entladungsanordnung aus Figur 1a im erfindungsgemäßen Betrieb,
- Fig. 3
- einen Ausschnitt aus dem während des Betriebs gemäß Figur 2 an den Elektroden gemessenen zeitlichen Verlauf von Strom I(t) und Spannung U(t),
- Fig. 4
wie Figur 2, aber mit geänderter Elektrodengeometrie,- Fig. 5
- einen Ausschnitt aus dem während des Betriebs gemäß Figur 4 an den Elektroden gemessenen zeitlichen Verlauf von Strom I(t) und Spannung U(t),
- Fig. 6a
- den Querschnitt eines für den erfindungsgemäßen Betrieb geeigneten Beleuchtungssystems,
- Fig. 6b
- die Draufsicht des Beleuchtungssystems aus Figur 6a.
- Fig. 1a
- 3 shows the cross section of a discharge arrangement with two dielectric electrodes arranged next to one another,
- Fig. 1b
- the longitudinal section of the discharge arrangement of Figure 1a,
- Fig. 2
- the front view of the discharge assembly of Figure 1a in operation according to the invention,
- Fig. 3
- 2 shows a section of the time profile of current I (t) and voltage U (t) measured on the electrodes during operation according to FIG. 2,
- Fig. 4
- as in FIG. 2, but with a modified electrode geometry,
- Fig. 5
- 4 shows a section of the time profile of current I (t) and voltage U (t) measured on the electrodes during operation according to FIG. 4,
- Fig. 6a
- the cross section of a lighting system suitable for the operation according to the invention,
- Fig. 6b
- the top view of the lighting system of Figure 6a.
Die Figuren 1a und 1b zeigen in schematischer Darstellung den Quer- bzw.
Längsschnitt einer Entladungsanordnung 1. Um den Kern der Erfindung
besser erläutern zu können und um die Übersichtlichkeit zu fördern, ist die
Darstellung bewußt auf das wesentliche reduziert. Die Entladungsanordnung
1 besteht aus einem quaderähnlichen, transparenten Entladungsgefäß 2
und zwei parallelen streifenförmigen Elektroden 3,4, die auf der Außenwandung
des Entladungsgefäßes 2 angeordnet sind. An dieser Stelle sei
nochmals darauf hingewiesen, daß für das erfindungsgemäße Betriebsverfahren
selbstverständlich auch ähnliche Entladungsanordnungen mit mehr
als zwei nebeneinander angeordneten dielektrischen Elektroden gegensätzlicher
Polarität geeignet sind. Das Entladungsgefäß 2 ist aus Glas gefertigt. Es
besteht aus einem Deckel 5 und einem Boden 6, die beide wannenförmig
ausgebildet sind und sich spiegelbildlich gegenüberstehen, zwei die Längsachse
des Entladungsgefäßes 2 definierenden Seitenwänden 7,8 und zwei
Stirnwänden 9,10. Im Innern des Entladungsgefäßes 2 befindet sich Xenon
mit einem Fülldruck von ca. 8 kPa. Die beiden Elektroden 3,4 sind aus
Aluminiumfolie gefertigt. Sie sind zentrisch und parallel auf der Außenseite
des Deckels 5 aufgeklebt. Der Deckel 5 ist aus 1 mm dickem Glas gefertigt
und wirkt zusätzlich als dielektrische Schicht zwischen beiden Elektroden
und der, hier nur grob schematisch dargestellten Entladung 11, die sich
während des Betriebes im Innern des Entladungsgefäßes 2 ausbildet. Erfindungsgemäß
ist die Entladung 11 im Bereich zwischen den beiden Elektroden
3,4 durch eine dunkle Zone 12 (im Längsschnitt, Figur 1b, nicht erkennbar)
von der Innenwandung des Deckels 5 getrennt. D.h. die Entladung 11
weist im genannten Bereich einen Abstand zur Oberfläche der Innenwandung
auf.Figures 1a and 1b show a schematic representation of the transverse or
Longitudinal section of a
Die Figuren 2 und 4 zeigen fotografische Aufnahmen der Entladungsanordnung
aus den Figuren la und 1b. Zur Erläuterung der Aufnahmen werden
die korrespondierenden, bereits oben eingeführten Bezugsziffern benutzt.
Die beiden Aufnahmen erfolgten jeweils mit Blick auf die Stirnwand 9 in
Richtung der Längsachse. Sie unterscheiden sich lediglich durch die Elektrodengeometrie.
Die Breite der streifenförmigen Elektroden 3,4 sowie ihr
gegenseitiger Abstand betragen jeweils 3 mm bzw. 4 mm im ersten Fall und
je 1 mm bzw. 10 mm im zweiten Fall. Insbesondere im ersten Fall (Figur 2,
oben) sind die Elektroden 3,4 deutlich zu erkennen. Sie heben sich als
dunkle Bereiche von der Wandung des Deckels 5 ab, der ebenso wie die gegenüberliegende
Wandung des Bodens 6 aufgrund reflektierten und gestreuten
Fluoreszenzlichtes des Glases hell erscheint. Die Länge der Elektroden
beträgt jeweils 35 mm. In beiden Fällen, ganz besonders deutlich im
zweiten Fall (Figur 4), ist zu erkennen, daß das Eigenleuchten der Entladung
im Bereich zwischen den beiden Elektroden 3,4 durch eine dunkle Zone 12
von der Innenwandung des Deckels 5 getrennt ist. D.h. die Entladung 11
weist im genannten Bereich einen Abstand zur Oberfläche der Innenwandung
auf. In Richtung der Längsachse der Entladungsanordnung 1 betrachtet,
hat die Entladung 11 eine rinnen- oder trogähnliche Erscheinungsform
(in den Figuren 2 und 4 aufgrund der Blickrichtung nicht erkennbar, vgl.
Figuren 1a und 1b). FIGS. 2 and 4 show photographic recordings of the discharge arrangement
from Figures la and 1b. To explain the recordings
the corresponding reference numbers already introduced above are used.
The two recordings were each made with a view of the
Wird in die Entladungsanordnung weniger Leistung eingekoppelt -z.B. durch Vermindern der Spannungsamplitude -, reißt die durchgehende, rinnenförmige Entladungsstruktur in Einzelstrukturen auf, die sich jedoch ebenso wie in Figur la gezeigt, von der Dielektrikumsoberfläche abheben. Die Einzelstrukturen haben eine delta-ähnliche Form (Δ), die sich jeweils in Richtung (momentaner) Anode verbreitern. Im Fall wechselnder Polarität der Spannungspulse einer zweiseitig dielektrisch behinderten Entladung erscheint visuell eine Überlagerung zweier deltaförmiger Strukturen.If less power is coupled into the discharge arrangement - e.g. by reducing the voltage amplitude -, the continuous, trough-shaped breaks Discharge structure in individual structures, which however as shown in Figure la, lift off the dielectric surface. The individual structures have a delta-like shape (Δ), which are each in Widen direction (current) anode. In the case of changing polarity the voltage pulses of a bilaterally dielectric discharge there is a visual overlay of two delta-shaped structures.
Die Figuren 3 und 5 zeigen jeweils einen Ausschnitt aus dem während des Betriebs gemäß den Figuren 2 bzw. 4 an den Elektroden gemessenen zeitlichen Verlauf von Spannung U(t) und Strom I(t). Ein Vergleich beider Figuren belegt den eingangs geschilderten Einfluß der Elektrodengeometrie auf Spannung und Strom. In der folgenden Tabelle sind die wichtigsten elektrischen Größen zusammengestellt. FIGS. 3 and 5 each show a section of the time profile of voltage U (t) and current I (t) measured on the electrodes during operation according to FIGS. 2 and 4. A comparison of both figures shows the influence of the electrode geometry on voltage and current. The most important electrical quantities are summarized in the following table.
Darin bedeuten Up, TU, fU, w und P die Höhe der Spannungspulse (bezogen auf die Spannung während der Pausenzeit), die Breite der Spannungspulse (volle Breite bei halber Höhe), die Pulswiederholfrequenz, die elektrische Energie pro Puls bzw. die im zeitlichen Mittel eingekoppelte elektrische Leistung.U p , T U , f U , w and P mean the height of the voltage pulses (based on the voltage during the break), the width of the voltage pulses (full width at half the height), the pulse repetition frequency, the electrical energy per pulse or the average electrical power coupled in over time.
In den Figuren 6a und 6b sind der Querschnitt bzw. die Draufsicht
(Blickrichtung auf Bodenseite) eines für den erfindungsgemäßen Betrieb geeigneten
Beleuchtungssystems 14 schematisch dargestellt. Das Beleuchtungssystem
14 besteht aus einem flachen Entladungsgefäß 15 mit rechteckiger
Grundfläche und fünf streifenförmigen Elektroden 16-20 sowie einer Spannungsquelle
27, die im Betrieb eine Folge von Spannungspulsen liefert. Das
Entladungsgefäß 15 besteht seinerseits aus einer rechteckigen Bodenplatte 21
und einem wannenartigen Deckel 22. Die Bodenplatte 21 und der Deckel 22
sind im Bereich ihrer umlaufenden Kanten gasdicht miteinander verbunden
und umschließen so die Gasfüllung der Entladungslampe 14. Die Gasfüllung
besteht aus Xenon mit einem Fülldruck von 10 kPa. Die Elektroden 16-20
haben gleiche Breiten und sind auf der Außenwandung der Bodenplatte 21
parallel zueinander sowie äquidistant aufgebracht. Dies ist wichtig, um für
alle Entladungen zwischen den jeweils benachbarten Elektroden gleiche
Bedingungen zu gewährleisten. Dadurch wird bei geeigneter Pulsfolge eine
optimale Strahlungseffizienz bzw. Gleichförmigkeit der Leuchtdichteverteilung
erzielt. Dazu sind die Elektroden 16-20 wechselweise an die beiden
Pole 23, 24 einer Spannungsquelle angeschlossen. D.h. die Elektrode 16 und
die beiden jeweils zum Vorgänger übernächsten Elektroden 18 und 20 sind
mit einem ersten Pol 23 der Spannungsquelle verbunden. Die beiden jeweils
dazwischen liegenden Elektroden 17 und 19 sind hingegen mit dem anderen
Pol der Spannungsquelle verbunden. Auf die Innenwandung des Deckels 22
und des Bodens 21 ist eine Leuchtstoffschicht 25 aufgespritzt, welche die
VUV(Vakuum Ultraviolett)- bzw. UV(Ultraviolett)-Strahlung der, hier nur
grob schematisch dargestellten Entladung 26 in (sichtbares) Licht umwandelt.FIGS. 6a and 6b schematically show the cross section or the top view (viewing direction on the bottom side) of a
Claims (12)
- Method for operating an incoherently emitting radiating source (1; 14), in particular a discharge lamp (14), by means of dielectrically obstructed discharge, having an at least partially transparent discharge vessel which is closed (2; 15) and filled with a gas filling or open and through which a gas or gas mixture flows and which is made from electrically nonconductive material and has electrodes (3, 4; 16-20) which are separated from one another and from the interior of the discharge vessel (2; 15) by dielectric material (5; 21), characterized in that the electrodes are arranged next to one another and are connected in an alternating fashion to the two poles (23, 24) of a voltage source supplying a sequence of voltage pulses, and in that the individual voltage pulses are respectively separated from one another by off periods, so that as a result there is generated in the interior of the discharge vessel (2; 15) a spatial discharge (11; 26) which has a spacing from the surface of the inner wall of the discharge vessel in the regions between electrodes of different polarity (3, 4; 16, 17; 17, 18; 18, 19; 19, 20).
- Method according to Claim 1, characterized in that the pulse width is in the range between 0.1 µs and 10 µs.
- Method according to Claim 2, characterized in that the pulse width is preferably in the range between 0.5 µs and 5 µs.
- Method according to Claim 1, characterized in that the pulse repetition frequency is in the range between 1 kHz and 1 MHz.
- Method according to Claim 4, characterized in that the pulse repetition frequency is preferably in the range between 10 kHz and 100 kHz.
- Method according to Claim 1, characterized in that the voltage pulses have a semi-sinusoidal shape.
- Method according to Claim 1, characterized in that the pulse height is in the range between approximately 100 V and 10 kV.
- Method according to one or more of the preceding claims, characterized in that the wall (5; 21) of the discharge vessel (2; 15) itself serves as dielectric between the electrodes (3, 4; 16-20) and the discharge (11; 26).
- Method according to Claim 8, characterized in that the electrodes comprise electrically conductive strips (3, 4; 16-20) which are arranged next to one another on the outside of the wall (5; 21).
- Method according to Claim 9, characterized in that if the number of the strips (16-20) is greater than two, the arrangement of the strips on the outside of the wall (21) is equidistant.
- Method according to Claim 1, characterized in that the inside of the wall (21) of the discharge vessel (15) is provided at least partially with a phosphor coating (25) .
- Lighting system having a radiating source, in particular a discharge lamp (14), and a voltage source (27) which supplies a voltage to the radiating source, the radiation being emitted incoherently by the radiating source (14), which radiating source (14) is suitable for a dielectrically obstructed discharge, having an at least partially transparent discharge vessel which is closed (15) and filled with a gas filling or open and through which a gas or gas mixture flows and which is made from electrically nonconductive material and has electrodes (16-20) which are separated from one another and from the interior of the discharge vessel (15) by dielectric material (21) and are connected to the voltage source (27), characterized in that the electrodes are arranged next to one another and are connected in an alternating fashion to the two poles (23, 24) of the voltage source (27), which voltage source (27) is capable of supplying a sequence of voltage pulses, the individual voltage pulses being respectively separated from one another by off periods, so that as a result there is generated in the interior of the discharge vessel (15) a spatial discharge (26) which has a spacing from the surface of the inner wall of the discharge vessel in the regions between electrodes of different polarity (16, 17; 17, 18; 18, 19; 19, 20).
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19526211A DE19526211A1 (en) | 1995-07-18 | 1995-07-18 | Process for operating discharge lamps or emitters |
DE19526211 | 1995-07-18 | ||
PCT/DE1996/001317 WO1997004625A1 (en) | 1995-07-18 | 1996-07-18 | Method for operating a lighting system and suitable lighting system therefor |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0839436A1 EP0839436A1 (en) | 1998-05-06 |
EP0839436B1 true EP0839436B1 (en) | 2000-09-20 |
Family
ID=7767155
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP96924752A Expired - Lifetime EP0839436B1 (en) | 1995-07-18 | 1996-07-18 | Method for operating a lighting system and suitable lighting system therefor |
Country Status (11)
Country | Link |
---|---|
US (1) | US5994849A (en) |
EP (1) | EP0839436B1 (en) |
JP (1) | JP3856473B2 (en) |
KR (1) | KR100363751B1 (en) |
CN (1) | CN1113582C (en) |
CA (1) | CA2224362C (en) |
DE (2) | DE19526211A1 (en) |
HK (1) | HK1015114A1 (en) |
HU (1) | HU223365B1 (en) |
IN (1) | IN190521B (en) |
WO (1) | WO1997004625A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1256972A2 (en) | 2001-05-08 | 2002-11-13 | Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH | Flat lighting device with a mirror surface |
DE102004039902B3 (en) * | 2004-08-17 | 2006-04-06 | Berger Gmbh | Flat gas discharge lamp, has flat plates forming dielectric layers with dielectrically restricted discharge |
Families Citing this family (46)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19711893A1 (en) | 1997-03-21 | 1998-09-24 | Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh | Flat radiator |
DE19729175A1 (en) * | 1997-03-21 | 1999-01-14 | Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh | Flat radiator |
DE19711892A1 (en) * | 1997-03-21 | 1998-09-24 | Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh | Flat radiator |
CN1267967C (en) * | 1997-03-21 | 2006-08-02 | 电灯专利信托有限公司 | Flat fluorescent light for background lighting and liquid crystal display device fitted with said flat fluorescent light |
ES2201499T3 (en) * | 1997-03-21 | 2004-03-16 | Patent-Treuhand-Gesellschaft Fur Elektrische Gluhlampen Mbh | GASEOUS DISCHARGE LAMP WITH DIELECTRICALLY INHIBITED ELECTRODES. |
DE19734885C1 (en) * | 1997-08-12 | 1999-03-11 | Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh | Method for generating pulse voltage sequences for the operation of discharge lamps and associated circuit arrangement |
EP0926705A1 (en) * | 1997-12-23 | 1999-06-30 | Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH | Flat radiator with locally modulated surface illumination density |
EP0932185A1 (en) | 1997-12-23 | 1999-07-28 | Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH | Signal lamp and phosphor |
EP0926704A1 (en) * | 1997-12-23 | 1999-06-30 | Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH | Flat signalling lamp with dielectric barrier discharge |
DE19817480B4 (en) * | 1998-03-20 | 2004-03-25 | Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH | Flat lamp for dielectrically disabled discharges with spacers |
DE19817477A1 (en) * | 1998-04-20 | 1999-10-21 | Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh | Fluorescent lamp |
DE19817476B4 (en) | 1998-04-20 | 2004-03-25 | Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH | Fluorescent lamp with spacers and locally thinned fluorescent layer thickness |
DE19826809A1 (en) * | 1998-06-16 | 1999-12-23 | Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh | Dielectric layer for discharge lamps and associated manufacturing process |
DE19844725A1 (en) | 1998-09-29 | 2000-03-30 | Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh | Gas discharge lamp with controllable light length |
DE19845228A1 (en) * | 1998-10-01 | 2000-04-27 | Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh | Dimmable discharge lamp for dielectric barrier discharges |
WO2000058998A1 (en) * | 1999-03-25 | 2000-10-05 | Koninklijke Philips Electronics N.V. | Lighting arrangement |
JP3736201B2 (en) * | 1999-05-14 | 2006-01-18 | ウシオ電機株式会社 | Light source device |
DE10016982A1 (en) * | 2000-04-06 | 2001-10-25 | Wedeco Ag | Method for feeding a UV light low pressure lamp and ballast for feeding a UV light low pressure lamp |
US6541924B1 (en) * | 2000-04-14 | 2003-04-01 | Macquarie Research Ltd. | Methods and systems for providing emission of incoherent radiation and uses therefor |
JP3471782B2 (en) * | 2001-02-13 | 2003-12-02 | Nec液晶テクノロジー株式会社 | Flat fluorescent lamp unit and liquid crystal display device using the same |
US6762556B2 (en) | 2001-02-27 | 2004-07-13 | Winsor Corporation | Open chamber photoluminescent lamp |
DE10134965A1 (en) * | 2001-07-23 | 2003-02-06 | Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh | Flat discharge lamp has outer side of front plate at least partly provided with opaque coating and inner side of front plate at least partly provided with fluorescent coating |
DE10140355A1 (en) * | 2001-08-17 | 2003-02-27 | Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh | Discharge lamp with ignition aid |
DE10236420A1 (en) * | 2002-08-08 | 2004-02-19 | Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH | Dielectric barrier discharge lamp comprises a discharge vessel enclosing a discharge medium, an electrode set, and a luminous material applied on a part of the wall of the vessel |
US7541733B2 (en) * | 2002-08-08 | 2009-06-02 | Panasonic Corporation | Light-emitting element, method for producing the same and display device |
DE10324832A1 (en) * | 2003-06-02 | 2004-12-23 | Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH | Discharge lamp with fluorescent |
DE10326755A1 (en) * | 2003-06-13 | 2006-01-26 | Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH | Discharge lamp with dual band phosphor |
DE10347636A1 (en) * | 2003-10-09 | 2005-05-04 | Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh | Discharge lamp with at least one outer electrode and method for its production |
KR101002321B1 (en) * | 2003-12-16 | 2010-12-20 | 엘지디스플레이 주식회사 | Apparatus and method for driving lamp of liquid crystal display device |
DE102004020398A1 (en) * | 2004-04-23 | 2005-11-10 | Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH | Dielectric barrier discharge lamp with external electrodes and lighting system with this lamp |
US7196473B2 (en) * | 2004-05-12 | 2007-03-27 | General Electric Company | Dielectric barrier discharge lamp |
DE102004025266A1 (en) * | 2004-05-19 | 2005-12-08 | Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH | Lighting system with a housing and a flat lamp arranged therein |
US7446477B2 (en) * | 2004-07-06 | 2008-11-04 | General Electric Company | Dielectric barrier discharge lamp with electrodes in hexagonal arrangement |
US20060006804A1 (en) * | 2004-07-06 | 2006-01-12 | Lajos Reich | Dielectric barrier discharge lamp |
CN101238548B (en) * | 2005-01-07 | 2012-05-02 | 皇家飞利浦电子股份有限公司 | Segmented dielectric barrier discharge lamp |
TWI285519B (en) * | 2005-11-04 | 2007-08-11 | Delta Electronics Inc | Method adopting square voltage waveform for driving flat lamps |
DE102005034505A1 (en) | 2005-07-20 | 2007-02-01 | Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH | Circuit arrangement with transformerless converter with choke for the pulsed operation of dielectric barrier discharge lamps |
TW200721907A (en) * | 2005-11-18 | 2007-06-01 | Delta Optoelectronics Inc | An improved startup method for the mercury-free flat-fluorescent lamp |
US7495396B2 (en) * | 2005-12-14 | 2009-02-24 | General Electric Company | Dielectric barrier discharge lamp |
TW200740300A (en) * | 2006-04-04 | 2007-10-16 | Delta Optoelectronics Inc | Driving circuit and method for fluorescent lamp |
DE102006026332A1 (en) | 2006-06-02 | 2007-12-06 | Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH | Discharge lamp for dielectrically impeded discharges with rib-like support elements between base plate and ceiling plate |
DE102006026333A1 (en) * | 2006-06-02 | 2007-12-06 | Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH | Discharge lamp for dielectrically impeded discharges with flat discharge vessel |
DE102006050136B4 (en) * | 2006-10-25 | 2016-12-15 | Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V. | Method and device for generating positive and / or negative ionized gas analytes for gas analysis |
US20080174226A1 (en) | 2007-01-23 | 2008-07-24 | Nulight Technology Corporation | Mercury-free flat fluorescent lamps |
DE102007006861B3 (en) * | 2007-02-12 | 2008-05-29 | Universität Karlsruhe (Th) | Radiation source for producing electromagnetic radiation having a first wavelength region comprises electrodes connected to an alternating voltage source, a gas-filled transparent discharge vessel and a dielectric layer |
TWI362053B (en) * | 2008-04-30 | 2012-04-11 | Applied Green Light Taiwan Inc | Flat discharge lamp and the production method thereof |
Family Cites Families (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE6753632U (en) * | 1968-09-19 | 1969-05-29 | Philips Nv | LOW PRESSURE DISCHARGE LAMP WITH A WALL NOT CLOSING THE DISCHARGE SPACE, THAT U.A. CONSISTS OF A BEAM. |
US3648100A (en) * | 1969-03-24 | 1972-03-07 | Westinghouse Electric Corp | Electrodeless pulsed illuminator |
DE2600592A1 (en) * | 1976-01-09 | 1977-07-21 | Onoda Cement Co Ltd | Producing charged powder particles - using parallel linear electrodes embedded in single planar insulator layer |
US4427923A (en) * | 1981-10-01 | 1984-01-24 | Gte Laboratories Inc. | Electrodeless fluorescent light source |
US4427922A (en) * | 1981-10-01 | 1984-01-24 | Gte Laboratories Inc. | Electrodeless light source |
US4427924A (en) * | 1981-10-01 | 1984-01-24 | Gte Laboratories Inc. | Enhanced electrodeless light source |
FR2520951A1 (en) * | 1982-02-04 | 1983-08-05 | Commissariat Energie Atomique | ELECTROMAGNETIC PULSE GENERATOR OF HIGH VOLTAGE |
JPS60172135A (en) * | 1984-02-15 | 1985-09-05 | Mitsubishi Electric Corp | Flat plate light source |
AU607520B2 (en) * | 1987-08-06 | 1991-03-07 | Shing Cheung Chow | Discharge lamp type display device |
CH676168A5 (en) * | 1988-10-10 | 1990-12-14 | Asea Brown Boveri | |
US5118989A (en) * | 1989-12-11 | 1992-06-02 | Fusion Systems Corporation | Surface discharge radiation source |
EP0521553B1 (en) * | 1991-07-01 | 1996-04-24 | Koninklijke Philips Electronics N.V. | High-pressure glow discharge lamp |
US5561351A (en) * | 1992-10-14 | 1996-10-01 | Diablo Research Corporation | Dimmer for electrodeless discharge lamp |
JP3075041B2 (en) * | 1992-12-28 | 2000-08-07 | 三菱電機株式会社 | Gas discharge display |
DE4311197A1 (en) * | 1993-04-05 | 1994-10-06 | Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh | Method for operating an incoherently radiating light source |
TW324106B (en) * | 1993-09-08 | 1998-01-01 | Ushio Electric Inc | Dielectric barrier layer discharge lamp |
-
1995
- 1995-07-18 DE DE19526211A patent/DE19526211A1/en not_active Ceased
-
1996
- 1996-07-16 IN IN1293CA1996 patent/IN190521B/en unknown
- 1996-07-18 EP EP96924752A patent/EP0839436B1/en not_active Expired - Lifetime
- 1996-07-18 WO PCT/DE1996/001317 patent/WO1997004625A1/en active IP Right Grant
- 1996-07-18 DE DE59605924T patent/DE59605924D1/en not_active Expired - Lifetime
- 1996-07-18 US US08/983,113 patent/US5994849A/en not_active Expired - Lifetime
- 1996-07-18 CA CA002224362A patent/CA2224362C/en not_active Expired - Fee Related
- 1996-07-18 CN CN96195613A patent/CN1113582C/en not_active Expired - Fee Related
- 1996-07-18 KR KR1019970709970A patent/KR100363751B1/en not_active IP Right Cessation
- 1996-07-18 JP JP50616597A patent/JP3856473B2/en not_active Expired - Fee Related
- 1996-07-18 HU HU0004552A patent/HU223365B1/en not_active IP Right Cessation
-
1999
- 1999-01-06 HK HK99100023A patent/HK1015114A1/en not_active IP Right Cessation
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1256972A2 (en) | 2001-05-08 | 2002-11-13 | Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH | Flat lighting device with a mirror surface |
DE102004039902B3 (en) * | 2004-08-17 | 2006-04-06 | Berger Gmbh | Flat gas discharge lamp, has flat plates forming dielectric layers with dielectrically restricted discharge |
Also Published As
Publication number | Publication date |
---|---|
KR19990028648A (en) | 1999-04-15 |
HK1015114A1 (en) | 1999-10-08 |
CA2224362A1 (en) | 1997-02-06 |
CA2224362C (en) | 2004-04-13 |
DE59605924D1 (en) | 2000-10-26 |
US5994849A (en) | 1999-11-30 |
HUP0004552A3 (en) | 2003-07-28 |
JPH11509362A (en) | 1999-08-17 |
WO1997004625A1 (en) | 1997-02-06 |
JP3856473B2 (en) | 2006-12-13 |
HU223365B1 (en) | 2004-06-28 |
DE19526211A1 (en) | 1997-01-23 |
KR100363751B1 (en) | 2003-02-19 |
CN1191061A (en) | 1998-08-19 |
CN1113582C (en) | 2003-07-02 |
IN190521B (en) | 2003-08-09 |
EP0839436A1 (en) | 1998-05-06 |
HUP0004552A2 (en) | 2001-04-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0839436B1 (en) | Method for operating a lighting system and suitable lighting system therefor | |
EP0912990B1 (en) | Gas discharge lamp with dielectrically impeded electrodes | |
EP0895653B1 (en) | Electric radiation source and irradiation system with this radiation source | |
EP0912991B1 (en) | Flat fluorescent light for background lighting and liquid crystal display device fitted with said flat fluorescent light | |
EP0324953B1 (en) | High power radiation source | |
DE69210113T2 (en) | High pressure glow discharge lamp | |
EP0733266B1 (en) | Process for operating an incoherently emitting radiation source | |
DE19601138B4 (en) | display device | |
DE10205903B4 (en) | Fluorescence lamp unit and method for light emission | |
EP0371304B1 (en) | High-power radiation device | |
DE2334288A1 (en) | FLAT VISION DEVICE | |
EP0883897A1 (en) | Cold cathode for discharge lamps, discharge lamp fitted with said cold cathode, and principle of operation of said discharge lamp | |
EP0901687B1 (en) | Flat light emitter | |
EP0912992B1 (en) | Flat light emitter | |
DE102006026332A1 (en) | Discharge lamp for dielectrically impeded discharges with rib-like support elements between base plate and ceiling plate | |
EP0990262B1 (en) | Discharge lamp with dielectrically impeded electrodes | |
DE4036122A1 (en) | CORON DISCHARGE LIGHT SOURCE CELL | |
DE4203345A1 (en) | High performance emitter, esp. for UV light - comprises discharge chamber filled with gas, and metallic outer electrodes coated with UV-transparent layer | |
WO2007141181A2 (en) | Indicator device with a barrier discharge lamp for backlighting | |
WO2007141184A2 (en) | Discharge lamp for dielectrically impeded discharge using a flat discharge vessel | |
DE2447537A1 (en) | Flat D.C. discharge operated display - has two insulating plates sandwiching parallel cathodes in auxiliary discharge chambers | |
DE102004055328B3 (en) | Plasma light source has flat plate of insulating material with attached flat electrode and has electrode with roughened surface structure for formation of plasma space | |
WO2007141183A2 (en) | Discharge lamp for unipolar, dielectrically impeded discharge |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 19980107 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): BE CH DE FR GB IT LI NL SE |
|
17Q | First examination report despatched |
Effective date: 19980720 |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
RIC1 | Information provided on ipc code assigned before grant |
Free format text: 7H 05B 41/288 A, 7H 01J 65/04 B, 7H 05B 41/30 B |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): BE CH DE FR GB IT LI NL SE |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: NV Representative=s name: SIEMENS SCHWEIZ AG Ref country code: CH Ref legal event code: EP |
|
REF | Corresponds to: |
Ref document number: 59605924 Country of ref document: DE Date of ref document: 20001026 |
|
ITF | It: translation for a ep patent filed | ||
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 20001130 |
|
ET | Fr: translation filed | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
REG | Reference to a national code |
Ref country code: GB Ref legal event code: IF02 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PCAR Free format text: SIEMENS SCHWEIZ AG;INTELLECTUAL PROPERTY FREILAGERSTRASSE 40;8047 ZUERICH (CH) |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 20090709 Year of fee payment: 14 Ref country code: NL Payment date: 20090722 Year of fee payment: 14 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 20091015 Year of fee payment: 14 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 20090731 Year of fee payment: 14 |
|
BERE | Be: lapsed |
Owner name: *PATENT-TREUHAND-G.- FUR ELEKTRISCHE GLUHLAMPEN M. Effective date: 20100731 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: V1 Effective date: 20110201 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100731 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100731 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110201 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100731 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R081 Ref document number: 59605924 Country of ref document: DE Owner name: OSRAM GMBH, DE Free format text: FORMER OWNER: OSRAM GESELLSCHAFT MIT BESCHRAENKTER HAFTUNG, 81543 MUENCHEN, DE Effective date: 20111130 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100719 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R081 Ref document number: 59605924 Country of ref document: DE Owner name: OSRAM GMBH, DE Free format text: FORMER OWNER: OSRAM AG, 81543 MUENCHEN, DE Effective date: 20130205 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R081 Ref document number: 59605924 Country of ref document: DE Owner name: OSRAM GMBH, DE Free format text: FORMER OWNER: OSRAM GMBH, 81543 MUENCHEN, DE Effective date: 20130822 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20130722 Year of fee payment: 18 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20130722 Year of fee payment: 18 Ref country code: GB Payment date: 20130719 Year of fee payment: 18 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20130726 Year of fee payment: 18 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 59605924 Country of ref document: DE |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20140718 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20150331 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20150203 Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20140718 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 59605924 Country of ref document: DE Effective date: 20150203 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20140731 Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20140718 |