EP0912992B1 - Flat light emitter - Google Patents

Flat light emitter Download PDF

Info

Publication number
EP0912992B1
EP0912992B1 EP98925421A EP98925421A EP0912992B1 EP 0912992 B1 EP0912992 B1 EP 0912992B1 EP 98925421 A EP98925421 A EP 98925421A EP 98925421 A EP98925421 A EP 98925421A EP 0912992 B1 EP0912992 B1 EP 0912992B1
Authority
EP
European Patent Office
Prior art keywords
flat radiator
anode
strips
electrodes
flat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP98925421A
Other languages
German (de)
French (fr)
Other versions
EP0912992A2 (en
Inventor
Frank Vollkommer
Lothar Hitzschke
Simon Jerebic
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osram GmbH
Original Assignee
Patent Treuhand Gesellschaft fuer Elektrische Gluehlampen mbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Patent Treuhand Gesellschaft fuer Elektrische Gluehlampen mbH filed Critical Patent Treuhand Gesellschaft fuer Elektrische Gluehlampen mbH
Publication of EP0912992A2 publication Critical patent/EP0912992A2/en
Application granted granted Critical
Publication of EP0912992B1 publication Critical patent/EP0912992B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/30Vessels; Containers
    • H01J61/305Flat vessels or containers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/92Lamps with more than one main discharge path
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J65/00Lamps without any electrode inside the vessel; Lamps with at least one main electrode outside the vessel
    • H01J65/04Lamps in which a gas filling is excited to luminesce by an external electromagnetic field or by external corpuscular radiation, e.g. for indicating plasma display panels
    • H01J65/042Lamps in which a gas filling is excited to luminesce by an external electromagnetic field or by external corpuscular radiation, e.g. for indicating plasma display panels by an external electromagnetic field
    • H01J65/046Lamps in which a gas filling is excited to luminesce by an external electromagnetic field or by external corpuscular radiation, e.g. for indicating plasma display panels by an external electromagnetic field the field being produced by using capacitive means around the vessel

Definitions

  • the invention relates to a flat radiator according to the preamble of Claim 1.
  • the invention relates to a system from this Flat radiator and a voltage source according to the preamble of the claim 10th
  • radiators are radiators with a flat surface Geometry meant that emit light, i.e. visible electromagnetic Radiation, or also ultraviolet (UV) and vacuum ultraviolet (VUV) radiation.
  • visible electromagnetic Radiation or also ultraviolet (UV) and vacuum ultraviolet (VUV) radiation.
  • Such radiation sources are suitable, depending on the spectrum of the emitted radiation, for general and auxiliary lighting, such as home and office illumination or backlighting of displays, such as LCDs (L iquid C rystal D isplays), for the transport and signal lighting, for UV radiation, e.g. disinfection or photolytics.
  • general and auxiliary lighting such as home and office illumination or backlighting of displays, such as LCDs (L iquid C rystal D isplays), for the transport and signal lighting, for UV radiation, e.g. disinfection or photolytics.
  • the electrodes are of one polarity or all electrodes, i.e. both polarities, by means of a dielectric layer separated from the discharge (one-sided or two-sided dielectric barrier Discharge, see e.g. WO 94/23442 and EP 0 363 832).
  • Such electrodes are also shortened below as “dielectric electrodes" designated.
  • a flat radiator is known from DE-OS 195 26 211, in which the strip-shaped Electrodes arranged on the outer wall of the discharge vessel are.
  • the spotlight is switched with a sequence of pause times separate active power pulses operated.
  • Burn through it a plurality of similar, in each case between adjacent electrodes Top view, i.e. perpendicular to the plane in which the electrodes are arranged, delta-like ( ⁇ ) individual discharges.
  • delta-like individual discharges.
  • These individual discharges are side by side lined up along the electrodes, each in Widen the direction of the (current) anode.
  • the voltage pulses of a bilaterally dielectric discharge there is a visual overlay of two delta-shaped structures.
  • the number of individual discharge structures is partly due to the Coupled electrical power can be influenced.
  • the individual discharges correspond to the equidistantly arranged strips - Provided sufficient electrical input power - almost evenly within the flat discharge vessel of the lamp distributed.
  • a disadvantage of this solution is that the surface luminance drops significantly towards the edge.
  • One of the reasons for this is marginally no radiation contribution from the neighboring areas outside of the discharge vessel.
  • a uniform surface luminance is, however, for numerous applications such radiator is desirable.
  • backlighting LCDs demand a visual uniformity, their depth of modulation Does not exceed 15%.
  • the object of the present invention is to provide a flat radiator with stripe-like To provide electrodes according to the preamble of claim 1, whose surface luminance is almost uniform up to the edge.
  • strip-like electrode or shortening “Electrode strips” is intended to be an elongated one here and below, in comparison can be understood to be very thin along its length, capable of to be able to act as an electrode.
  • the edges of this structure must not necessarily be parallel to each other. In particular, too Substructures may be included along the long sides of the strips.
  • the basic idea of the invention is that typical for flat radiators Decrease in luminance from the center to the edges due to an adapted Compensate electrode structure.
  • the strip-like electrodes are next to one another arranged on a common wall of the discharge vessel (Type I).
  • the advantage is that shadowing through the electrodes be avoided on the opposite wall.
  • Between the cathode strips are two parallel anode strips, i.e. an anode pair, instead of a single anode strip previously arranged. This solves the problem described at the outset that when Prior art cited only from one of two neighboring ones Single discharges towards the intervening cathode strip burn individual anode strips.
  • the extensions 6 are in the direction to the narrow sides of the cathodes 4,4 ', i.e. towards the re the electrode strips 4.5 vertically oriented edges 1.3 towards denser arranged.
  • the mutual spacing of the extensions 6 on the is typical Margins 1.3 only half as large as in the middle.
  • the distance between the extensions 6 is near the corner points of the flat radiator finally reduced to about a third.
  • the edges 2 oriented parallel to the electrode strips 4, 5 (the corresponding opposite second edge of the flat radiator is in selected section of Figure 1 is not shown) is preferably one individual anode strips 5 'arranged.
  • the second basic realization of an electrode structure for one Type I flat spotlight aims to control the luminance of the individual discharges the closer they are to the edge, the more they increase. This is achieved (see the partial schematic diagram of the principle in Figure 2) that the two anode strips 9a, 9b of each anode pair 9 in the direction of the edges 10, 11 oriented perpendicular thereto of the flat radiator are widened. Typical broadening values amount to up to a factor of two for the edge areas of the flat radiator and approx. up to a factor of three for the corner areas.
  • the anode strips are in relation to their longitudinal axis asymmetrically in the direction of the respective anodic partner strip 9b or 9a widened.
  • the respective distance d to the neighboring cathode 12 despite widening of the anode strips 9a, 9b consistently constant. Consequently, the ignition conditions are also in operation for all single discharges (not shown) along the electrode strips 9.12 equal. This ensures that the individual discharges run along of the entire electrode length in a row (sufficient electrical input power provided).
  • the anode strips are in Widened direction to the respective neighboring cathode.
  • the broadening is only relatively weak. This will prevents the discharges from occurring only at the location of the largest Width of the anode strip, i.e. in the place of the shortest in this case Training distance.
  • the broadening is significantly smaller than that Stroke, typically about a tenth of the stroke.
  • both can Widening variants can also be combined, i.e. the broadening is both towards the respective anode partner strip and towards the Adjacent cathode formed.
  • the two principal realizations of the targeted Electrode shaping can also be combined with one another (cf. FIG. 3a).
  • the cathodes do not necessarily have to as shown only by way of example in FIG. 2, be provided with extensions. Rather, in the case of the widened anode strips, the cathodes can also be designed as a simple parallel strip.
  • the anode and cathode strips are open opposite walls of the discharge vessel arranged (Type II).
  • the discharges burn from the electrodes one wall through the discharge space to the electrodes the other wall.
  • this arrangement can be used achieve higher UV yields than when using anodes and cathodes only one common wall alternately arranged side by side are. According to the current state of knowledge, this becomes positive Effect attributed to reduced wall losses.
  • the advantage is the low shading of the ceiling tile emitted useful light because the anode strips are narrower than that Cathode strips are executed.
  • the luminance of the cathode strips as with the Type I flat spotlight, Processes that are increasingly densely arranged towards their narrow sides are. Additionally or alternatively, this is also already with the Type I flat radiator explained widening of the anode strips to the edge of the Flat lamp advantageous.
  • Figures 3a, 3b show a schematic representation of a top view or Side view of a flat fluorescent lamp, i.e. a flat radiator, the emits white light during operation.
  • This flat radiator is suitable for the General lighting or for backlighting displays, e.g. LCD (Liquid Crystal Display).
  • LCD Liquid Crystal Display
  • the flat radiator 13 consists of a flat discharge vessel 14 with a rectangular base area, four strip-like metallic cathodes 12, 15 (-) and dielectric anodes (+), three of which are designed as elongated double anodes 9 and two as individual strip-shaped anodes 8.
  • the discharge vessel 14 in turn consists of a base plate 18, a cover plate 19 and a frame 20.
  • the base plate 18 and cover plate 19 are each gas-tightly connected to the frame 20 by means of glass solder 21 such that the interior 22 of the discharge vessel 14 is cuboid.
  • the base plate 18 is larger than the cover plate 19 in such a way that the discharge vessel 14 has a peripheral free-standing edge.
  • the inner wall of the cover plate 19 is coated with a phosphor mixture (not visible in the illustration), which converts the UV / VUV radiation generated by the discharge into visible white light.
  • a phosphor mixture (not visible in the illustration)
  • the inner wall of the base plate and the frame are additionally coated with a mixture of phosphors.
  • a light-reflecting layer of Al 2 O 3 or TiO 2 is applied to the base plate.
  • the breakthrough in the cover plate 19 is used only for illustrative purposes and gives a view of part of anodes 8, 9 and cathodes 12, 15 free.
  • the anodes 8, 9 and cathodes 12, 15 are alternately and in parallel the inner wall of the bottom plate 18 is arranged.
  • Anodes 8, 9 and Cathodes 12, 15 are each extended at one end and on the base plate 18 from the inside 22 of the discharge vessel 14 on both sides guided on the outside such that the associated anodic or cathodic Bushings on opposite sides of the base plate 18 are arranged.
  • the electrode strips go on the edge of the base plate 18 8, 9, 12, 15 each in a cathode-side 23 and anode-side 24 bus-like conductor track over.
  • the two conductor tracks 23, 24 serve as contacts for connection to an electrical voltage source (not shown).
  • the anodes 8, 9 are complete covered with a glass layer 25 (see also Figures 1 and 2), the Thickness is approx. 250 ⁇ m.
  • the double anodes 9 each consist of two parallel strips, as already shown in detail in FIG. 2.
  • the two anode strips 9a, 9b of each anode pair 9 are widened on one side in the direction of the edges 26, 27 of the flat radiator 13 oriented perpendicularly thereto in the direction of the respective partner strips 9b and 9a.
  • the anode strips 9a, 9b are approx. 0.5 mm wide at the narrowest point and approx. 1 mm wide at the widest point.
  • the mutual greatest distance g max (cf. FIG. 2) of the two strips of each anode pair 9 is approximately 4 mm, the smallest distance g min is approximately 3 mm.
  • the two individual anode strips 8 are each arranged in the immediate vicinity of the two edges 29, 30 of the flat radiator 13 which are parallel to the electrode strips 8, 9, 12, 15.
  • the cathode strips 12; 15 have nose-like, each adjacent Anode 8; 9 facing extensions 28. They cause locally limited reinforcements of the electric field and consequently that the delta-shaped individual discharges (not shown in FIGS. 3a, 3b, but see FIG. 1) exclusively ignite at these points.
  • the Distance d (see FIG. 2) between the extensions 28 and the respective one immediately adjacent anode strips is approx. 6 mm.
  • the electrodes 8, 9, 12, 15 including bushings and power supplies 23, 24 are on the cathode or anode side in each case as coherent structure similar to a conductor track.
  • the two structures are by means of Screen printing technology applied directly to the base plate 18.
  • a variant differs from that in the figures 3a, 3b shown flat radiators only in that not only the anodes, but also the cathodes with a dielectric layer from The inside of the discharge vessel is separated (dielectrically handicapped on both sides Discharge).
  • the anodes 8, 9 and cathodes 12, 15 of the Flat radiator 13 via the contacts 24 and 23 to one pole of a pulse voltage source (not shown in Figures 3a, 3b) connected.
  • the pulse voltage source supplies unipolar voltage pulses, which are separated by pauses.
  • a large number are formed individual discharges (not shown in Figures 3a, 3b), which between the extensions 28 of the respective cathode 12; 15 and the corresponding immediately adjacent anode strips 8; 9 burn.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Vessels And Coating Films For Discharge Lamps (AREA)
  • Gas-Filled Discharge Tubes (AREA)
  • Planar Illumination Modules (AREA)

Description

Die Erfindung geht aus von einem Flachstrahler gemäß dem Oberbegriff des Anspruchs 1. Außerdem betrifft die Erfindung ein System aus diesem Flachstrahler und einer Spannungsquelle gemäß dem Oberbegriff des Anspruchs 10.The invention relates to a flat radiator according to the preamble of Claim 1. In addition, the invention relates to a system from this Flat radiator and a voltage source according to the preamble of the claim 10th

Unter der Bezeichnung "Flachstrahler" sind hier Strahler mit einer flächigen Geometrie gemeint, die Licht emittieren, d.h. sichtbare elektromagnetische Strahlung, oder auch Ultraviolett(UV)- sowie Vakuumultraviolett(VUV)-Strahlung.Under the name "flat radiators" here are radiators with a flat surface Geometry meant that emit light, i.e. visible electromagnetic Radiation, or also ultraviolet (UV) and vacuum ultraviolet (VUV) radiation.

Derartige Strahlungsquellen eignen sich, je nach dem Spektrum der emittierten Strahlung, für die Allgemein- und Hilfsbeleuchtung, z.B. Wohn- und Bürobeleuchtung bzw. Hintergrundbeleuchtung von Anzeigen, beispielsweise LCD's (Liquid Crystal Displays), für die Verkehrs- und Signalbeleuchtung, für die UV-Bestrahlung, z.B. Entkeimung oder Photolytik.Such radiation sources are suitable, depending on the spectrum of the emitted radiation, for general and auxiliary lighting, such as home and office illumination or backlighting of displays, such as LCDs (L iquid C rystal D isplays), for the transport and signal lighting, for UV radiation, e.g. disinfection or photolytics.

Es handelt sich dabei um Flachstrahler, die mittels dielektrisch behinderter Entladung betrieben werden.These are flat radiators, which are used by means of dielectric Discharge operated.

Bei dieser Art von Strahler sind entweder die Elektroden einer Polarität oder alle Elektroden, d.h. beiderlei Polarität, mittels einer dielektrischen Schicht von der Entladung getrennt (einseitig bzw. zweiseitig dielektrisch behinderte Entladung, siehe z.B. WO 94/23442 bzw. EP 0 363 832). Derartige Elektroden werden im folgenden auch verkürzend als "dielektrische Elektroden" bezeichnet.In this type of radiator either the electrodes are of one polarity or all electrodes, i.e. both polarities, by means of a dielectric layer separated from the discharge (one-sided or two-sided dielectric barrier Discharge, see e.g. WO 94/23442 and EP 0 363 832). Such electrodes are also shortened below as "dielectric electrodes" designated.

Stand der TechnikState of the art

Aus der DE-OS 195 26 211 ist ein Flachstrahler bekannt, bei dem streifenförmige Elektroden auf der Außenwandung des Entladungsgefäßes angeordnet sind. Der Strahler wird mit Hilfe einer Folge von durch Pausenzeiten voneinander getrennten Wirkleistungspulsen betrieben. Dadurch brennen zwischen benachbarten Elektroden jeweils eine Vielzahl gleichartiger, in Draufsicht, also senkrecht zur Ebene, in der die Elektroden angeordnet sind, deltaähnlicher (Δ) einzelner Entladungen. Diese Einzelentladungen sind nebeneinander entlang der Elektroden aufgereiht, wobei sie sich jeweils in Richtung der (momentanen) Anode verbreitern. Im Fall wechselnder Polarität der Spannungspulse einer zweiseitig dielektrisch behinderten Entladung erscheint visuell eine Überlagerung zweier deltaförmiger Strukturen. Die Anzahl der einzelnen Entladungsstrukturen ist unter anderem durch die eingekoppelte elektrische Leistung beeinflußbar.A flat radiator is known from DE-OS 195 26 211, in which the strip-shaped Electrodes arranged on the outer wall of the discharge vessel are. The spotlight is switched with a sequence of pause times separate active power pulses operated. Burn through it a plurality of similar, in each case between adjacent electrodes Top view, i.e. perpendicular to the plane in which the electrodes are arranged, delta-like (Δ) individual discharges. These individual discharges are side by side lined up along the electrodes, each in Widen the direction of the (current) anode. In the case of changing polarity the voltage pulses of a bilaterally dielectric discharge there is a visual overlay of two delta-shaped structures. The The number of individual discharge structures is partly due to the Coupled electrical power can be influenced.

Entsprechend der äquidistant angeordneten Streifen sind die Einzelentladungen - ausreichende elektrische Eingangsleistung vorausgesetzt - nahezu gleichmäßig innerhalb des flächenartigen Entladungsgefäßes des Strahlers verteilt. Nachteilig bei dieser Lösung ist allerdings, daß die Flächenleuchtdichte zum Rand hin deutlich abfällt. Ursache hierfür ist unter anderem der am Rand fehlende Strahlungsbeitrag von den benachbarten Bereichen außerhalb des Entladungsgefäßes.The individual discharges correspond to the equidistantly arranged strips - Provided sufficient electrical input power - almost evenly within the flat discharge vessel of the lamp distributed. A disadvantage of this solution, however, is that the surface luminance drops significantly towards the edge. One of the reasons for this is marginally no radiation contribution from the neighboring areas outside of the discharge vessel.

Ein weiterer Nachteil ist, daß sich die Einzelentladungen bevorzugt zwischen den Anoden und nur einer der beiden jeweils unmittelbar benachbarten Kathoden ausbilden. Offenbar bilden sich nicht gleichzeitig zu beiden Seiten der Anodenstreifen unabhängig voneinander Einzelentladungen aus. Another disadvantage is that the individual discharges are preferably between the anodes and only one of the two immediately adjacent Form cathodes. Apparently they don't form at the same time Sides of the anode strips independently of one another.

Es kann vielmehr nicht vorhergesagt werden, von welcher der beiden Nachbarkathoden sich die Entladungen jeweils ausbilden werden. Auf den Flachstrahler als Ganzes bezogen resultiert dadurch eine unregelmäßige Entladungsstruktur und folglich eine zeitlich und räumlich ungleichförmige Flächenleuchtdichte.Rather, it cannot be predicted from which of the two neighboring cathodes the discharges will form in each case. On the Covering flat radiators as a whole results in an irregular Discharge structure and consequently a non-uniform in time and space Surface luminance.

Eine gleichförmige Flächenleuchtdichte ist aber für zahlreiche Anwendungen derartiger Strahler wünschenswert. So wird beispielsweise für die Hinterleuchtung von LCD's eine visuelle Gleichförmigkeit gefordert, deren Modulationstiefe 15 % nicht überschreitet.A uniform surface luminance is, however, for numerous applications such radiator is desirable. For example, for backlighting LCDs demand a visual uniformity, their depth of modulation Does not exceed 15%.

Darstellung der ErfindungPresentation of the invention

Aufgabe der vorliegenden Erfindung ist es, einen Flachstrahler mit streifenartigen Elektroden gemäß dem Oberbegriff des Anspruchs 1 bereitzustellen, dessen Flächenleuchtdichte bis zum Rand nahezu gleichförmig ist.The object of the present invention is to provide a flat radiator with stripe-like To provide electrodes according to the preamble of claim 1, whose surface luminance is almost uniform up to the edge.

Diese Aufgabe wird durch die kennzeichnenden Merkmale des Anspruchs 1 gelöst. Besonders vorteilhafte Ausgestaltungen finden sich in den abhängigen Ansprüchen.This object is achieved by the characterizing features of claim 1 solved. Particularly advantageous configurations can be found in the dependent ones Claims.

Unter dem Begriff "streifenartige Elektrode" oder auch verkürzend "Elektrodenstreifen" soll hier und im folgenden ein längliches, im Vergleich zu seiner Länge sehr dünnes Gebilde verstanden werden, das in der Lage ist, als Elektrode wirken zu können. Dabei müssen die Kanten dieses Gebildes nicht notwendigerweise parallel zueinander sein. Insbesondere sollen auch Unterstrukturen entlang der Längsseiten der Streifen umfaßt sein.Under the term "strip-like electrode" or shortening "Electrode strips" is intended to be an elongated one here and below, in comparison can be understood to be very thin along its length, capable of to be able to act as an electrode. The edges of this structure must not necessarily be parallel to each other. In particular, too Substructures may be included along the long sides of the strips.

Die Grundidee der Erfindung besteht darin, den für Flachstrahler typischen Abfall der Leuchtdichte von der Mitte zu den Rändern hin durch eine angepaßte Elektrodenstruktur auszugleichen. Zu diesem Zwecke ist die Elektrodenstruktur dahingehend gestaltet, daß die elektrische Leistungsdichte zu den Rändern des Flachstrahlers hin zunimmt,The basic idea of the invention is that typical for flat radiators Decrease in luminance from the center to the edges due to an adapted Compensate electrode structure. For this purpose, the electrode structure designed in such a way that the electrical power density increases increases towards the edges of the flat radiator,

In einer ersten Ausführung sind die streifenartigen Elektroden nebeneinander auf einer gemeinsamen Wandung des Entladungsgefäßes angeordnet (Typ I). Dadurch ergibt sich im Betrieb eine im wesentlichen flächenartige Entladungsstruktur. Der Vorteil ist, daß Abschattungen durch die Elektroden auf der gegenüberliegenden Wandung vermieden werden. Zwischen den Kathodenstreifen sind jeweils zwei zueinander parallele Anodenstreifen, d.h. ein Anodenpaar, statt bisher ein einzelner Anodenstreifen angeordnet. Dadurch wird das eingangs geschilderte Problem behoben, daß beim zitierten Stand der Technik jeweils nur von einem von zwei benachbarten Kathodenstreifen Einzelentladungen in Richtung zum dazwischen liegenden einzelnen Anodenstreifen brennen.In a first embodiment, the strip-like electrodes are next to one another arranged on a common wall of the discharge vessel (Type I). This results in an essentially area-like operation Discharge structure. The advantage is that shadowing through the electrodes be avoided on the opposite wall. Between the cathode strips are two parallel anode strips, i.e. an anode pair, instead of a single anode strip previously arranged. This solves the problem described at the outset that when Prior art cited only from one of two neighboring ones Single discharges towards the intervening cathode strip burn individual anode strips.

In der folgenden prinzipiellen Erläuterung einer ersten erfindungsgemäßen Realisierung einer Elektrodenstruktur für einen Flachstrahler vom Typ I wird Bezug auf die schematische Darstellung in Figur 1 genommen. Um die Details besser erkennen zu können, ist lediglich ein Ausschnitt des Elektrodenbereichs gezeigt. Ziel ist es zu erreichen, daß sich im Betrieb die Einzelentladungen zu den Rändern 1-3 des Flachstrahlers hin räumlich dichter ausbilden als im übrigen Teil des Entladungsgefäßes. Zu diesem Zweck sind die Kathodenstreifen 4 gezielt derart geformt, daß sie räumlich bevorzugte Ansatzpunkte für die Einzelentladungen aufweisen. Diese bevorzugten Ansatzpunkte sind durch nasenartige, der jeweils benachbarten Anode 5 zugewandte Fortsätze 6 realisiert. Sie bewirken lokal begrenzte Verstärkungen des elektrischen Feldes und folglich, daß die deltaförmigen Einzelentladungen 7 ausschließlich an diesen Stellen zünden. Die Fortsätze 6 sind in Richtung zu den Schmalseiten der Kathoden 4,4', d.h. in Richtung zu den bezüglich der Elektrodenstreifen 4,5 senkrecht orientierten Rändern 1,3 hin, dichter angeordnet. Typisch ist der gegenseitige Abstand der Fortsätze 6 an den Rändern 1,3 nur noch halb so groß wie in der Mitte. In der unmittelbaren Nähe der Eckpunkte des Flachstrahler ist der Abstand der Fortsätze 6 schließlich auf ca. ein Drittel reduziert. In unmittelbarer Nachbarschaft zu den bezüglich der Elektrodenstreifen 4,5 parallel orientierten Rändern 2 (der korrespondierende gegenüberliegende zweite Rand des Flachstrahlers ist im gewählten Ausschnitt der Figur 1 nicht dargestellt) ist bevorzugt jeweils ein einzelner Anodenstreifen 5' angeordnet. Folglich sind im Betrieb jeweils die Grundseiten der entlang dieser einzelnen Anodenstreifen 5' aufgereihten deltaförmigen (Δ) Einzelentladungen den entsprechenden Rändern 2 unmittelbar benachbart. Dadurch ist der Leuchtdichteabfall auch bis in die Nähe dieser Ränder 2 relativ gering. Außerdem können unterstützend zusätzlich die den beiden einzelnen Anodenstreifen 5' zugewandten Fortsätze 8 der unmittelbar benachbarten Kathodenstreifen 4' insgesamt dichter als bei den übrigen Kathodenstreifen 4 angeordnet sein. Allerdings ist die mittlere Leistungsdichte geringer als die maximal erzielbare Leistungsdichte. Folglich läßt sich durch diese Lösung auch nicht die maximale Leuchtdichte, über den gesamten Flächenstrahler gemittelt, erzielen.In the following basic explanation of a first invention Realization of an electrode structure for a type I flat radiator reference is made to the schematic illustration in FIG. 1. To the To be able to recognize details better is only a section of the electrode area shown. The aim is to ensure that the individual discharges occur during operation spatially denser towards the edges 1-3 of the flat radiator train as in the rest of the discharge vessel. For this purpose the cathode strips 4 deliberately shaped such that they preferred spatially Have starting points for the individual discharges. These preferred starting points are by nose-like, the adjacent anode 5 facing Extensions 6 realized. They cause locally limited reinforcements of the electric field and consequently that the delta-shaped individual discharges 7 ignite only at these points. The extensions 6 are in the direction to the narrow sides of the cathodes 4,4 ', i.e. towards the re the electrode strips 4.5 vertically oriented edges 1.3 towards denser arranged. The mutual spacing of the extensions 6 on the is typical Margins 1.3 only half as large as in the middle. In the immediate The distance between the extensions 6 is near the corner points of the flat radiator finally reduced to about a third. In the immediate vicinity of the edges 2 oriented parallel to the electrode strips 4, 5 (the corresponding opposite second edge of the flat radiator is in selected section of Figure 1 is not shown) is preferably one individual anode strips 5 'arranged. Consequently, the are in operation Bases of those lined up along these individual anode strips 5 ' delta-shaped (Δ) individual discharges the corresponding edges 2 immediately adjacent. As a result, the luminance drop is also up close these edges 2 are relatively small. They can also be supportive in addition the extensions 8 of the two individual anode strips 5 ' immediately adjacent cathode strips 4 'overall denser than in the remaining cathode strips 4 may be arranged. However, the average power density is less than the maximum achievable power density. consequently this solution also does not allow the maximum luminance to be exceeded averaged the entire area radiator.

Die zweite prinzipielle Realisierung einer Elektrodenstruktur für einen Flachstrahler vom Typ I zielt darauf ab, die Leuchtdichte der Einzelentladungen um so mehr zu erhöhen, je näher sie zum Rand angeordnet sind. Das wird dadurch erreicht (vgl. die ausschnittsweise schematische Darstellung des Prinzips in Figur 2), daß die beiden Anodenstreifen 9a,9b jedes Anodenpaares 9 in Richtung zu den dazu senkrecht orientierten Rändern 10,11 des Flachstrahlers hin verbreitert sind. Typische Werte für die Verbreiterung betragen ca. bis zu Faktor zwei für die Randbereiche des Flachstrahlers und ca. bis zu Faktor drei für die Eckbereiche.The second basic realization of an electrode structure for one Type I flat spotlight aims to control the luminance of the individual discharges the closer they are to the edge, the more they increase. This is achieved (see the partial schematic diagram of the principle in Figure 2) that the two anode strips 9a, 9b of each anode pair 9 in the direction of the edges 10, 11 oriented perpendicular thereto of the flat radiator are widened. Typical broadening values amount to up to a factor of two for the edge areas of the flat radiator and approx. up to a factor of three for the corner areas.

In einer ersten Variante sind die Anodenstreifen bezüglich ihrer Längsachse asymmetrisch in Richtung zum jeweiligen anodischen Partnerstreifen 9b bzw. 9a verbreitert. Durch diese Maßnahme bleibt der jeweilige Abstand d zur Nachbarkathode 12 trotz Verbreiterung der Anodenstreifen 9a,9b durchgängig konstant. Folglich sind im Betrieb auch die Zündbedingungen für alle Einzelentladungen (nicht dargestellt) entlang der Elektrodenstreifen 9,12 gleich. Somit ist sichergestellt, daß sich die Einzelentladungen entlang der gesamten Elektrodenlänge aufgereiht ausbilden (ausreichende elektrische Eingangsleistung vorausgesetzt).In a first variant, the anode strips are in relation to their longitudinal axis asymmetrically in the direction of the respective anodic partner strip 9b or 9a widened. With this measure, the respective distance d to the neighboring cathode 12 despite widening of the anode strips 9a, 9b consistently constant. Consequently, the ignition conditions are also in operation for all single discharges (not shown) along the electrode strips 9.12 equal. This ensures that the individual discharges run along of the entire electrode length in a row (sufficient electrical input power provided).

In einer zweiten Variante (nicht dargestellt) sind die Anodenstreifen in Richtung zur jeweiligen Nachbarkathode verbreitert. Allerdings ist in diesem Fall die Verbreiterung nur relativ schwach ausgebildet. Dadurch wird verhindert, daß sich die Entladungen ausschließlich an der Stelle der größten Breite des Anodenstreifens, d.h. an der Stelle der in diesem Fall kürzesten Schlagweite, ausbilden. Die Verbreiterung ist deutlich kleiner als die Schlagweite, typisch etwa ein Zehntel der Schlagweite. Ferner können beide Verbreiterungsvarianten auch kombiniert sein, d.h. die Verbreiterung ist sowohl in Richtung zum jeweiligen Anodenpartnerstreifen als auch zur Nachbarkathode ausgebildet.In a second variant (not shown), the anode strips are in Widened direction to the respective neighboring cathode. However, in this If the broadening is only relatively weak. This will prevents the discharges from occurring only at the location of the largest Width of the anode strip, i.e. in the place of the shortest in this case Training distance. The broadening is significantly smaller than that Stroke, typically about a tenth of the stroke. Furthermore, both can Widening variants can also be combined, i.e. the broadening is both towards the respective anode partner strip and towards the Adjacent cathode formed.

Entlang der Verbreiterung wird eine zunehmende elektrische Stromdichte und folglich auch eine zunehmende Leuchtdichte der Einzelentladungen erzielt, wodurch sich die Leuchtdichteverteilung bis zu den Rändern 10,11 gut ausgleichen läßt. Allerdings ist durch die Leuchtdichteanhebung in den Randbereichen des Flachstrahlers in dessen Mittenbereich nicht mehr die maximale Leuchtdichte realisierbar. Der Vorteil gegenüber der ersten Lösung ist allerdings, daß - ausreichende elektrische Eingangsleistung vorausgesetzt - überall innerhalb des Entladungsgefäßes die maximale räumliche Dichte der Einzelentladungen erzielbar ist, d.h. die Einzelentladungen grenzen in diesem Fall im wesentlichen unmittelbar aneinander an. Along the broadening there is an increasing electrical current density and consequently an increasing luminance of the individual discharges achieved, whereby the luminance distribution up to the edges 10.11 compensates well. However, the increase in luminance in the Edge areas of the flat radiator no longer in the middle area maximum luminance possible. The advantage over the first solution is, however, that - sufficient electrical input power is required - the maximum spatial everywhere within the discharge vessel Density of the individual discharges can be achieved, i.e. limit the individual discharges in this case, essentially in direct contact with one another.

Außerdem können die beiden prinzipiellen Realisierungen der gezielten Elektrodenformung auch miteinander kombiniert werden (vgl. Figur 3a).In addition, the two principal realizations of the targeted Electrode shaping can also be combined with one another (cf. FIG. 3a).

Bei der Anodenverbreiterung müssen die Kathoden nicht notwendigerweise, wie in Figur 2 lediglich beispielhaft gezeigt, mit Fortsätzen versehen sein. Vielmehr können im Fall der verbreiterten Anodenstreifen die Kathoden auch als einfache Parallelstreifen ausgeführt sein.When widening the anode, the cathodes do not necessarily have to as shown only by way of example in FIG. 2, be provided with extensions. Rather, in the case of the widened anode strips, the cathodes can also be designed as a simple parallel strip.

Um den Randabfall der Flächenleuchtdichte zu minimieren, ist im konkreten Einzelfall eine experimentelle Optimierung der Verdichtung der Fortsätze und/oder der Anodenverbreiterung erforderlich.In order to minimize the edge drop in the surface luminance, In individual cases an experimental optimization of the compression of the extensions and / or the anode widening required.

In einer weiteren Ausführung sind die Anoden- und Kathodenstreifen auf einander gegenüberliegenden Wandungen des Entladungsgefäßes angeordnet (Typ II). Im Betrieb brennen die Entladungen folglich von den Elektroden der einen Wandung durch den Entladungsraum hindurch zu den Elektroden der anderen Wandung. Dabei sind jedem Kathodenstreifen zwei Anodenstreifen zugeordnet derart, daß im Querschnitt bezüglich der Elektroden betrachtet jeweils die gedachte Verbindung von Kathoden- und korrespondierenden Anodenstreifen die Form eines "V" ergibt. Auf diese Weise wird erreicht, daß die Schlagweite größer als der Abstand zwischen den beiden Wandungen ist. Wie sich gezeigt hat, lassen sich mit dieser Anordnung höhere UV-Ausbeuten erzielen als wenn Anoden und Kathoden auf nur einer gemeinsamen Wandung wechselweise nebeneinander angeordnet sind. Nach dem gegenwärtigen Stand der Erkenntnis wird dieser positive Effekt verminderten Wandverlusten zugeschrieben. Vorzugsweise sind die Doppelanodenstreifen auf der primär der Lichtauskopplung dienenden Deckenplatte und die Kathodenstreifen auf der Bodenplatte des Flachstrahlers angeordnet. Der Vorteil ist die geringe Abschattung des von der Dekkenplatte emittierten Nutzlichtes, da die Anodenstreifen schmäler als die Kathodenstreifen ausgeführt sind. Für einen möglichst geringen Randabfall der Leuchtdichte weisen die Kathodenstreifen, wie beim Typ-I-Flachstrahler, Fortsätze auf, die zu ihren Schmalseiten hin zunehmend dichter angeordnet sind. Zusätzlich oder alternativ ist zudem die ebenfalls bereits beim Typ-I-Flachstrahler erläuterte Verbreiterung der Anodenstreifen zum Rand der Flachlampe hin vorteilhaft.In a further embodiment, the anode and cathode strips are open opposite walls of the discharge vessel arranged (Type II). During operation, the discharges burn from the electrodes one wall through the discharge space to the electrodes the other wall. There are two anode strips for each cathode strip assigned such that in cross section with respect to the electrodes considers the imaginary connection between the cathode and the corresponding one Anode strips give the shape of a "V". In this way is achieved that the stroke distance is greater than the distance between the is both walls. As has been shown, this arrangement can be used achieve higher UV yields than when using anodes and cathodes only one common wall alternately arranged side by side are. According to the current state of knowledge, this becomes positive Effect attributed to reduced wall losses. Preferably, the Double anode strips on the primary serving for light extraction Ceiling plate and the cathode strips on the base plate of the flat radiator arranged. The advantage is the low shading of the ceiling tile emitted useful light because the anode strips are narrower than that Cathode strips are executed. For the lowest possible edge waste the luminance of the cathode strips, as with the Type I flat spotlight, Processes that are increasingly densely arranged towards their narrow sides are. Additionally or alternatively, this is also already with the Type I flat radiator explained widening of the anode strips to the edge of the Flat lamp advantageous.

Beschreibung der ZeichnungenDescription of the drawings

Im folgenden soll die Erfindung anhand eines Ausführungsbeispiels näher erläutert werden. Es zeigen:

  • Figur 1 eine schematische Darstellung zur Erläuterung des Prinzips einer ersten erfindungsgemäßen Formgebung der Elektroden,
  • Figur 2 eine schematische Darstellung zur Erläuterung des Prinzips einer zweiten erfindungsgemäßen Formgebung der Elektroden,
  • Figur 3a eine schematische Darstellung einer teilweise durchbrochenen Draufsicht eines erfindungsgemäßen Flachstrahlers,
  • Figur 3a eine schematische Darstellung einer Seitenansicht des Flachstrahlers aus Figur 3a.
  • In the following, the invention will be explained in more detail using an exemplary embodiment. Show it:
  • FIG. 1 shows a schematic illustration to explain the principle of a first shaping of the electrodes according to the invention,
  • FIG. 2 shows a schematic illustration to explain the principle of a second shaping of the electrodes according to the invention,
  • FIG. 3a shows a schematic illustration of a partially broken top view of a flat radiator according to the invention,
  • 3a shows a schematic representation of a side view of the flat radiator from FIG. 3a.
  • Die Figuren 3a, 3b zeigen in schematischer Darstellung eine Draufsicht bzw. Seitenansicht einer flachen Leuchtstofflampe, d.h. eines Flachstrahlers, der im Betrieb weißes Licht emittiert. Dieser Flachstrahler eignet sich für die Allgemeinbeleuchtung oder für die Hintergrundbeleuchtung von Anzeigen, z.B. LCD (Liquid Crystal Display). Im folgenden sind gleichartige Merkmale wie in den Figuren 1 und 2 mit den gleichen Bezugsziffern bezeichnet.Figures 3a, 3b show a schematic representation of a top view or Side view of a flat fluorescent lamp, i.e. a flat radiator, the emits white light during operation. This flat radiator is suitable for the General lighting or for backlighting displays, e.g. LCD (Liquid Crystal Display). The following are similar features as in Figures 1 and 2 with the same reference numerals.

    Der Flachstrahler 13 besteht aus einem flachen Entladungsgefäß 14 mit rechteckiger Grundfläche, vier streifenartigen metallischen Kathoden 12,15 (-) sowie dielektrisch behinderten Anoden (+), wovon drei als längliche Doppelanoden 9 und zwei als einzelne streifenförmige Anoden 8 ausgebildet sind. Das Entladungsgefäß 14 besteht seinerseits aus einer Bodenplatte 18, einer Deckplatte 19 und einem Rahmen 20. Bodenplatte 18 und Deckplatte 19 sind jeweils mittels Glaslot 21 mit dem Rahmen 20 gasdicht verbunden derart, daß das Innere 22 des Entladungsgefäßes 14 quaderförmig ausgebildet ist. Die Bodenplatte 18 ist größer als die Deckplatte 19 derart, daß das Entladungsgefäß 14 einen umlaufenden freistehenden Rand aufweist. Die Innenwandung der Deckplatte 19 ist mit einem Leuchtstoffgemisch beschichtet (in der Darstellung nicht sichtbar), welches die von der Entladung erzeugte UV/VUV-Strahlung in sichtbares weißes Licht konvertiert. In einer Variante (nicht dargestellt) sind außer der Innenwandung der Deckplatte zusätzlich noch die Innenwandung der Bodenplatte sowie des Rahmens mit einem Leuchtstoffgemisch beschichtet. Ferner ist auf der Bodenplatte je eine lichtreflektierende Schicht aus Al2O3 bzw. TiO2 aufgebracht.The flat radiator 13 consists of a flat discharge vessel 14 with a rectangular base area, four strip-like metallic cathodes 12, 15 (-) and dielectric anodes (+), three of which are designed as elongated double anodes 9 and two as individual strip-shaped anodes 8. The discharge vessel 14 in turn consists of a base plate 18, a cover plate 19 and a frame 20. The base plate 18 and cover plate 19 are each gas-tightly connected to the frame 20 by means of glass solder 21 such that the interior 22 of the discharge vessel 14 is cuboid. The base plate 18 is larger than the cover plate 19 in such a way that the discharge vessel 14 has a peripheral free-standing edge. The inner wall of the cover plate 19 is coated with a phosphor mixture (not visible in the illustration), which converts the UV / VUV radiation generated by the discharge into visible white light. In one variant (not shown), in addition to the inner wall of the cover plate, the inner wall of the base plate and the frame are additionally coated with a mixture of phosphors. Furthermore, a light-reflecting layer of Al 2 O 3 or TiO 2 is applied to the base plate.

    Der Durchbruch in der Deckplatte 19 dient lediglich darstellerischen Zwekken und gibt den Blick auf einen Teil der Anoden 8, 9 und Kathoden 12, 15 frei. Die Anoden 8, 9 und Kathoden 12, 15 sind abwechselnd und parallel auf der Innenwandung der Bodenplatte 18 angeordnet. Die Anoden 8, 9 und Kathoden 12, 15 sind jeweils an ihrem einen Ende verlängert und auf der Bodenplatte 18 aus dem Inneren 22 des Entladungsgefäßes 14 beidseitig nach außen geführt derart, daß die zugehörigen anodischen bzw. kathodischen Durchführungen auf zueinander entgegengesetzten Seiten der Bodenplatte 18 angeordnet sind. Auf dem Rand der Bodenplatte 18 gehen die Elektrodenstreifen 8, 9, 12, 15 in je eine kathodenseitige 23 bzw. anodenseitige 24 busartige Leiterbahn über. Die beiden Leiterbahnen 23, 24 dienen als Kontakte für die Verbindung mit einer elektrischen Spannungsquelle (nicht dargestellt). Im Inneren 22 des Entladungsgefäßes 14 sind die Anoden 8, 9 vollständig mit einer Glasschicht 25 bedeckt (vgl. auch Figuren 1 und 2), deren Dicke ca. 250 µm beträgt. The breakthrough in the cover plate 19 is used only for illustrative purposes and gives a view of part of anodes 8, 9 and cathodes 12, 15 free. The anodes 8, 9 and cathodes 12, 15 are alternately and in parallel the inner wall of the bottom plate 18 is arranged. Anodes 8, 9 and Cathodes 12, 15 are each extended at one end and on the base plate 18 from the inside 22 of the discharge vessel 14 on both sides guided on the outside such that the associated anodic or cathodic Bushings on opposite sides of the base plate 18 are arranged. The electrode strips go on the edge of the base plate 18 8, 9, 12, 15 each in a cathode-side 23 and anode-side 24 bus-like conductor track over. The two conductor tracks 23, 24 serve as contacts for connection to an electrical voltage source (not shown). Inside the discharge vessel 14, the anodes 8, 9 are complete covered with a glass layer 25 (see also Figures 1 and 2), the Thickness is approx. 250 µm.

    Die Doppelanoden 9 bestehen jeweils aus zwei zueinander parallelen Streifen, wie bereits in der Figur 2 detailliert dargestellt. Die beiden Anodenstreifen 9a,9b jedes Anodenpaares 9 sind in Richtung zu den dazu senkrecht orientierten Rändern 26, 27 des Flachstrahlers 13 einseitig in Richtung auf den jeweiligen Partnerstreifen 9b bzw. 9a zu verbreitert. An der schmalsten Stelle sind die Anodenstreifen 9a, 9b ca. 0,5 mm und an der breitesten Stelle ca. 1 mm breit. Der gegenseitige größte Abstand gmax (vgl. Figur 2) der beiden Streifen jedes Anodenpaares 9 beträgt ca. 4 mm, der kleinste Abstand gmin beträgt ca. 3 mm. Die beiden einzelnen Anodenstreifen 8 sind jeweils in unmittelbarer Nähe der beiden zu den Elektrodenstreifen 8, 9, 12, 15 parallelen Rändern 29,30 des Flachstrahlers 13 angeordnet.The double anodes 9 each consist of two parallel strips, as already shown in detail in FIG. 2. The two anode strips 9a, 9b of each anode pair 9 are widened on one side in the direction of the edges 26, 27 of the flat radiator 13 oriented perpendicularly thereto in the direction of the respective partner strips 9b and 9a. The anode strips 9a, 9b are approx. 0.5 mm wide at the narrowest point and approx. 1 mm wide at the widest point. The mutual greatest distance g max (cf. FIG. 2) of the two strips of each anode pair 9 is approximately 4 mm, the smallest distance g min is approximately 3 mm. The two individual anode strips 8 are each arranged in the immediate vicinity of the two edges 29, 30 of the flat radiator 13 which are parallel to the electrode strips 8, 9, 12, 15.

    Die Kathodenstreifen 12; 15 weisen nasenartige, der jeweils benachbarten Anode 8; 9 zugewandte Fortsätze 28 auf. Sie bewirken lokal begrenzte Verstärkungen des elektrischen Feldes und folglich, daß die deltaförmigen Einzelentladungen (in Figur 3a, 3b nicht dargestellt, vgl. aber Figur 1) ausschließlich an diesen Stellen zünden. Die Fortsätze 28 der beiden Kathoden 15, die den zu den Elektrodenstreifen 8, 9, 12, 15 parallelen Rändern 29, 30 des Flachstrahlers 13 unmittelbar benachbart sind, sind entlang der jeweiligen, den genannten Rändern 29, 30 zugewandten Längsseiten in Richtung zu den Schmalseiten der Kathoden 15 hin zunehmend dichter angeordnet. Der Abstand d (vgl. Figur 2) zwischen den Fortsätzen 28 und dem jeweiligen unmittelbar benachbarten Anodenstreifen beträgt ca. 6 mm.The cathode strips 12; 15 have nose-like, each adjacent Anode 8; 9 facing extensions 28. They cause locally limited reinforcements of the electric field and consequently that the delta-shaped individual discharges (not shown in FIGS. 3a, 3b, but see FIG. 1) exclusively ignite at these points. The extensions 28 of the two cathodes 15, the edges 29, 30 parallel to the electrode strips 8, 9, 12, 15 of the flat radiator 13 are immediately adjacent, are along the respective, the said edges 29, 30 facing longitudinal sides in the direction the narrow sides of the cathodes 15 increasingly densely arranged. The Distance d (see FIG. 2) between the extensions 28 and the respective one immediately adjacent anode strips is approx. 6 mm.

    Die Elektroden 8, 9, 12, 15 inklusive Durchführungen und Stromzuführungen 23, 24 sind als jeweils zusammenhängende kathoden- bzw. anodenseitige leiterbahnähnliche Struktur ausgebildet. Die beiden Strukturen sind mittels Siebdrucktechnik direkt auf der Bodenplatte 18 aufgebracht.The electrodes 8, 9, 12, 15 including bushings and power supplies 23, 24 are on the cathode or anode side in each case as coherent structure similar to a conductor track. The two structures are by means of Screen printing technology applied directly to the base plate 18.

    Im Inneren 22 des Flachstrahlers 13 befindet sich eine Gasfüllung aus Xenon mit einem Fülldruck von 10 kPa. Inside the flat radiator 13 there is a gas filling made of xenon with a filling pressure of 10 kPa.

    Eine Variante (nicht dargestellt) unterscheidet sich von dem in den Figuren 3a, 3b dargestellten Flachstrahler lediglich dadurch, daß nicht nur die Anoden, sondern ebenso die Kathoden mit einer dielektrischen Schicht vom Innern des Entladungsgefäßes getrennt sind (beidseitig dielektrisch behinderte Entladung).A variant (not shown) differs from that in the figures 3a, 3b shown flat radiators only in that not only the anodes, but also the cathodes with a dielectric layer from The inside of the discharge vessel is separated (dielectrically handicapped on both sides Discharge).

    In einem kompletten System sind die Anoden 8, 9 und Kathoden 12, 15 des Flachstrahlers 13 über die Kontakte 24 bzw. 23 an je einen Pol einer Impulsspannungsquelle (in den Figuren 3a, 3b nicht dargestellt) angeschlossen. Die Impulsspannungsquelle liefert im Betrieb unipolare Spannungspulse, welche durch Pausen voneinander getrennt sind. Dabei bilden sich eine Vielzahl einzelner Entladungen (in den Figuren 3a, 3b nicht dargestellt) aus, die zwischen den Fortsätzen 28 der jeweiligen Kathode 12; 15 und dem entsprechenden unmittelbar benachbarten Anodenstreifen 8; 9 brennen.In a complete system, the anodes 8, 9 and cathodes 12, 15 of the Flat radiator 13 via the contacts 24 and 23 to one pole of a pulse voltage source (not shown in Figures 3a, 3b) connected. The In operation, the pulse voltage source supplies unipolar voltage pulses, which are separated by pauses. A large number are formed individual discharges (not shown in Figures 3a, 3b), which between the extensions 28 of the respective cathode 12; 15 and the corresponding immediately adjacent anode strips 8; 9 burn.

    Die Erfindung ist nicht durch die angegebenen Ausführungsbeispiele beschränkt. Außerdem können Merkmale unterschiedlicher Ausführungsbeispiele auch kombiniert werden.The invention is not restricted by the exemplary embodiments specified. In addition, features of different exemplary embodiments can also be combined.

    Claims (10)

    1. Flat radiator (13) having an at least partially transparent discharge vessel which is closed (14) and filled with a gas filling or open and flowed through by a gas filling and consists of electrically non-conducting material, and having strip-like electrodes (8; 9; 12; 15) arranged on the wall of the discharge vessel (14), at least the anodes (8, 9) being separated in each case from the interior of the discharge vessel (14) by a dielectric material (25), characterized in that for the purpose of specifically influencing the electric power density distribution in the discharge, the electrodes (8; 9; 12; 15) are specifically shaped in such a way that in operation the surface luminous density of the flat radiator (13) is largely constant up to its edges (26, 27, 29, 30).
    2. Flat radiator according to Claim 1, characterized in that the shaping of the electrodes consists in that the cathodes (15) have nose-like extensions (28) facing the neighbouring anodes (8), which extensions (28) are arranged more densely in a spatially increasing fashion in the direction of the respective two narrow sides of the cathode (15).
    3. Flat radiator according to Claim 1, characterized in that the shaping of the electrodes consists in widening the anode strips (9a; 9b) in the direction of their respective two narrow sides.
    4. Flat radiator according to Claim 1, characterized by the features of Claims 2 and 3.
    5. Flat fluorescent lamp according to Claim 1, characterized in that the strip-like electrodes (8; 9; 12; 15) are arranged next to one another on a common inner wall of the discharge vessel (14), two anode strips (9a, 9b), that is to say an anode pair (9), being arranged in each case between neighbouring cathode strips (12, 12) or 12, 15).
    6. Flat radiator according to Claim 5, characterized in that the shaping of the electrodes consists in that the two anode strips (9a; 9b) of each anode pair (9) are widened in the direction of their respective two narrow sides and asymmetrically with respect to their longitudinal axis in the direction of the respective partner strip (9b or 9a), so that the respective spacing (d) from the neighbouring cathode (12, 15) is constant throughout, the luminous density of the individual discharges increasing in operation towards the edges (26, 27).
    7. Flat radiator according to Claim 1, characterized in that the electrode strips (9; 12; 15; 16) are arranged on the inner wall of the discharge vessel (14), at least the anode strips (9; 16) being completely covered by a dielectric layer (25).
    8. Flat radiator according to one or more of the preceding claims, characterized in that the electrodes (8, 9, 12, 15) including feedthroughs and supply leads (23, 24) are constructed as in each case functionally different subregions of a continuous cathode-side or anode-side structure resembling a conductor track.
    9. Flat radiator according to Claim 1, characterized in that at least a part of the inner wall of the discharge vessel has a layer made from a fluorescent material or a mixture of fluorescent materials.
    10. System having a flat radiator and an electric pulsed voltage source which is suitable for delivering voltage pulses separated from one another by pauses during operation, characterized in that the flat radiator has the features of one or more of Claims 1 to 9.
    EP98925421A 1997-03-21 1998-03-20 Flat light emitter Expired - Lifetime EP0912992B1 (en)

    Applications Claiming Priority (3)

    Application Number Priority Date Filing Date Title
    DE19711893A DE19711893A1 (en) 1997-03-21 1997-03-21 Flat radiator
    DE19711893 1997-03-21
    PCT/DE1998/000830 WO1998043278A2 (en) 1997-03-21 1998-03-20 Flat light emitter

    Publications (2)

    Publication Number Publication Date
    EP0912992A2 EP0912992A2 (en) 1999-05-06
    EP0912992B1 true EP0912992B1 (en) 2003-10-15

    Family

    ID=7824180

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP98925421A Expired - Lifetime EP0912992B1 (en) 1997-03-21 1998-03-20 Flat light emitter

    Country Status (11)

    Country Link
    US (1) US6252352B1 (en)
    EP (1) EP0912992B1 (en)
    JP (1) JP3249538B2 (en)
    KR (1) KR100385009B1 (en)
    CN (1) CN1165961C (en)
    DE (2) DE19711893A1 (en)
    DK (1) DK0912992T3 (en)
    ES (1) ES2209149T3 (en)
    HU (1) HU223639B1 (en)
    TW (1) TW414917B (en)
    WO (1) WO1998043278A2 (en)

    Families Citing this family (13)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    DE19636965B4 (en) * 1996-09-11 2004-07-01 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Electrical radiation source and radiation system with this radiation source
    DE19844720A1 (en) * 1998-09-29 2000-04-06 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Dimmable discharge lamp for dielectric barrier discharges
    DE19845228A1 (en) * 1998-10-01 2000-04-27 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Dimmable discharge lamp for dielectric barrier discharges
    EP1104006A3 (en) 1999-11-23 2001-10-04 Koninklijke Philips Electronics N.V. Flat lamp
    DE10048409A1 (en) 2000-09-29 2002-04-11 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Discharge lamp with capacitive field modulation
    JP3471782B2 (en) 2001-02-13 2003-12-02 Nec液晶テクノロジー株式会社 Flat fluorescent lamp unit and liquid crystal display device using the same
    KR100437954B1 (en) * 2002-08-09 2004-07-01 주식회사 엘에스텍 Flat type fluorescent lamp and lamp assembly applying the same
    CN100336160C (en) * 2005-05-26 2007-09-05 西安交通大学 Resistance discharging fluorescent lamp of planar medium
    FR2890232A1 (en) * 2005-08-23 2007-03-02 Saint Gobain COPLANAR DISCHARGE PLANE LAMP AND USES THEREFOR
    DE102006026332A1 (en) 2006-06-02 2007-12-06 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Discharge lamp for dielectrically impeded discharges with rib-like support elements between base plate and ceiling plate
    DE102006026333A1 (en) 2006-06-02 2007-12-06 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Discharge lamp for dielectrically impeded discharges with flat discharge vessel
    US20070290599A1 (en) * 2006-06-14 2007-12-20 Chu-Chi Ting Flat fluorescent lamp and liquid crystal display device thereof
    US7586262B2 (en) * 2006-09-15 2009-09-08 Chunghwa Picture Tubes, Ltd. Flat fluorescent lamp and liquid crystal display

    Family Cites Families (19)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    JPS54184065U (en) * 1978-06-19 1979-12-27
    NL8003697A (en) 1980-06-26 1982-01-18 Philips Nv METHOD FOR MANUFACTURING AN ELECTRICAL DISCHARGE DEVICE INCLUDING AN ELECTRODES PATTERN APPLIED TO A GLASS SUBSTRATE AND ELECTRICAL DISCHARGE DEVICE SO OBTAINED.
    JPS60172135A (en) * 1984-02-15 1985-09-05 Mitsubishi Electric Corp Flat plate light source
    JPS63232261A (en) 1987-03-20 1988-09-28 Sanyo Electric Co Ltd Plane type fluorescent lamp
    JPS6489242A (en) * 1987-09-30 1989-04-03 Mitsubishi Electric Corp Electrode for discharge light source
    NL8800478A (en) * 1988-02-25 1989-09-18 Philips Nv LOW-PRESSURE MERCURY DISCHARGE LAMP.
    CH676168A5 (en) 1988-10-10 1990-12-14 Asea Brown Boveri
    US5266865A (en) * 1989-08-22 1993-11-30 Nec Corporation Structure of lead conductor for third electrode of three-electrode type electroluminescent lamp
    JPH03261024A (en) * 1990-03-09 1991-11-20 Canon Inc Electron emitter and image display
    KR930000575B1 (en) 1990-10-31 1993-01-25 삼성전관 주식회사 Plasma display device and manufacturing method
    DE4140497C2 (en) 1991-12-09 1996-05-02 Heraeus Noblelight Gmbh High-power radiation
    US5276378A (en) * 1992-01-10 1994-01-04 Neonix, Inc. Fluorescent light emitting device
    US5343116A (en) * 1992-12-14 1994-08-30 Winsor Mark D Planar fluorescent lamp having a serpentine chamber and sidewall electrodes
    DE4311197A1 (en) 1993-04-05 1994-10-06 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Method for operating an incoherently radiating light source
    US5525861A (en) * 1993-04-30 1996-06-11 Canon Kabushiki Kaisha Display apparatus having first and second internal spaces
    DE19526211A1 (en) * 1995-07-18 1997-01-23 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Process for operating discharge lamps or emitters
    JP3576661B2 (en) 1995-10-27 2004-10-13 Necライティング株式会社 Rare gas discharge lamp
    KR100263773B1 (en) * 1998-03-23 2000-08-16 구자홍 A sustain electrode structure of pdp
    KR100547427B1 (en) * 1999-09-14 2006-01-31 주식회사 엘지이아이 Refrigerator Home Bar Door Automatic Closing Device

    Also Published As

    Publication number Publication date
    HU223639B1 (en) 2004-10-28
    CN1165961C (en) 2004-09-08
    DE19711893A1 (en) 1998-09-24
    TW414917B (en) 2000-12-11
    US6252352B1 (en) 2001-06-26
    DK0912992T3 (en) 2003-11-24
    CN1220770A (en) 1999-06-23
    JP3249538B2 (en) 2002-01-21
    WO1998043278A2 (en) 1998-10-01
    DE59809916D1 (en) 2003-11-20
    HUP0000674A3 (en) 2003-01-28
    KR100385009B1 (en) 2003-08-21
    KR20000015789A (en) 2000-03-15
    EP0912992A2 (en) 1999-05-06
    ES2209149T3 (en) 2004-06-16
    HUP0000674A2 (en) 2000-06-28
    WO1998043278A3 (en) 1998-12-23
    JP2000500917A (en) 2000-01-25

    Similar Documents

    Publication Publication Date Title
    EP0912990B1 (en) Gas discharge lamp with dielectrically impeded electrodes
    EP0895653B1 (en) Electric radiation source and irradiation system with this radiation source
    EP0912991B1 (en) Flat fluorescent light for background lighting and liquid crystal display device fitted with said flat fluorescent light
    EP0839436B1 (en) Method for operating a lighting system and suitable lighting system therefor
    DE19718395C1 (en) Fluorescent lamp and method of operating it
    DE10205903B4 (en) Fluorescence lamp unit and method for light emission
    EP0912992B1 (en) Flat light emitter
    EP0901687B1 (en) Flat light emitter
    DE19817480A1 (en) Gas discharge lamp for dielectrically-impeded discharge for lighting system or flat screen image display
    EP1050066B1 (en) Discharge lamp with dielectrically inhibited electrodes
    EP1417699B1 (en) Discharge lamp with starting aid
    EP1118099B1 (en) Dimmable discharge lamp for dielectrically impeded discharges
    WO1999066537A2 (en) Discharge lamp with dielectrically impeded electrodes
    DE102006026332A1 (en) Discharge lamp for dielectrically impeded discharges with rib-like support elements between base plate and ceiling plate
    EP0990262B1 (en) Discharge lamp with dielectrically impeded electrodes
    DE19729175A1 (en) Flat radiator
    DE4203594A1 (en) Light discharge tube - has two electrodes parallel to length of transparent tube, one inside and one outside tube
    WO2007141181A2 (en) Indicator device with a barrier discharge lamp for backlighting
    WO2007141184A2 (en) Discharge lamp for dielectrically impeded discharge using a flat discharge vessel
    WO2007141183A2 (en) Discharge lamp for unipolar, dielectrically impeded discharge
    DE19711891A1 (en) Flat panel gas discharge visible light emitter

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    17P Request for examination filed

    Effective date: 19981105

    AK Designated contracting states

    Kind code of ref document: A2

    Designated state(s): BE DE DK ES FI FR GB IT NL SE

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    GRAS Grant fee paid

    Free format text: ORIGINAL CODE: EPIDOSNIGR3

    AK Designated contracting states

    Kind code of ref document: B1

    Designated state(s): BE DE DK ES FI FR GB IT NL SE

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: FG4D

    Free format text: NOT ENGLISH

    REF Corresponds to:

    Ref document number: 59809916

    Country of ref document: DE

    Date of ref document: 20031120

    Kind code of ref document: P

    REG Reference to a national code

    Ref country code: DK

    Ref legal event code: T3

    GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

    Effective date: 20040108

    REG Reference to a national code

    Ref country code: SE

    Ref legal event code: TRGR

    REG Reference to a national code

    Ref country code: ES

    Ref legal event code: FG2A

    Ref document number: 2209149

    Country of ref document: ES

    Kind code of ref document: T3

    ET Fr: translation filed
    PLBE No opposition filed within time limit

    Free format text: ORIGINAL CODE: 0009261

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

    26N No opposition filed

    Effective date: 20040716

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: DK

    Payment date: 20100309

    Year of fee payment: 13

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: IT

    Payment date: 20100324

    Year of fee payment: 13

    Ref country code: FR

    Payment date: 20100325

    Year of fee payment: 13

    Ref country code: FI

    Payment date: 20100309

    Year of fee payment: 13

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: GB

    Payment date: 20100311

    Year of fee payment: 13

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: ES

    Payment date: 20100416

    Year of fee payment: 13

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: NL

    Payment date: 20100303

    Year of fee payment: 13

    Ref country code: DE

    Payment date: 20100521

    Year of fee payment: 13

    Ref country code: BE

    Payment date: 20100312

    Year of fee payment: 13

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: SE

    Payment date: 20100309

    Year of fee payment: 13

    BERE Be: lapsed

    Owner name: *PATENT-TREUHAND-G.- FUR ELEKTRISCHE GLUHLAMPEN M.

    Effective date: 20110331

    REG Reference to a national code

    Ref country code: NL

    Ref legal event code: V1

    Effective date: 20111001

    REG Reference to a national code

    Ref country code: DK

    Ref legal event code: EBP

    REG Reference to a national code

    Ref country code: SE

    Ref legal event code: EUG

    GBPC Gb: european patent ceased through non-payment of renewal fee

    Effective date: 20110320

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: FI

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20110320

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: ST

    Effective date: 20111130

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: BE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20110331

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: NL

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20111001

    Ref country code: DE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20111001

    Ref country code: FR

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20110331

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: R119

    Ref document number: 59809916

    Country of ref document: DE

    Effective date: 20111001

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: GB

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20110320

    Ref country code: IT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20110320

    REG Reference to a national code

    Ref country code: ES

    Ref legal event code: FD2A

    Effective date: 20120424

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: DK

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20110331

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: ES

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20110321

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: SE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20110321